

Supporting Upper Elementary Students in Multidisciplinary Block-Based Narrative Programming

Jessica Vandenberg

Anisha Gupta

Andy Smith

jvanden2@ncsu.edu

agupta44@ncsu.edu

pmsmith4@ncsu.edu

North Carolina State University
USA

Rasha ElSayed

Kimkinyona Fox

Aleata Hubbard Cheuoua

relsaye@wested.org

kfox@wested.org

ahubbar@wested.org

WestEd
USA

Cathy Ringstaff

cringst@wested.org

WestEd

USA

James Minogue

Kevin Oliver

jminogu@ncsu.edu

kmoliver@ncsu.edu

North Carolina State University
USA

Bradford Mott

bwmott@ncsu.edu

North Carolina State University

USA

ABSTRACT

Digital storytelling, which combines traditional storytelling with digital tools, has seen growing popularity as a means of creating motivating problem-solving activities in K-12 education. Though an attractive potential solution to integrating language arts skills across topic areas such as computational thinking and science, better understanding of how to structure and support these activities is needed to increase adoption by teachers. Building on prior research on block-based programming for interactive storytelling, we present initial results from a study of 28 narrative programs created by upper elementary students that were collected in both classroom and extracurricular contexts. The narrative programs are evaluated across multiple dimensions to better understand the types of narrative programs being created by the students, characteristics of the students who created the narratives, and what types of support could most benefit the students in their narrative program construction. In addition to analyzing the student-created narrative programs, we also provide recommendations for promising system-generated and instructor-led supports.

1 OVERVIEW

Digital storytelling has received growing recognition as an effective tool for enabling learning in the classroom [3], including in science classes [4]. Meanwhile, there is growing emphasis on computational thinking (CT) learning at the elementary level, a topic for which elementary teachers tend to have minimal training [1]. Moreover, teachers facing dwindling instructional time may view storytelling as an inefficient form of teaching [5]. In this poster, we present INFUSECS, a narrative-centered learning environment that integrates science, CT, and storytelling in support of meaningful

learning. Building on findings that storytelling motivates students to learn programming [2] as well as best practices for designing block-based programming languages for younger learners [6], we conducted a series of pilot studies with students in the southeastern and western United States. We assessed the block-based narrative programs students created in the pilots on CT, story quality, and science concepts using a multi-dimensional rubric. Three profiles of student performance and understanding emerged—from incomplete science and minimal block and CT concepts usage to near mastery of these concepts. As a result of these findings, we suggest varied system and in-class supports including checklists that students can use to identify which criteria they have completed, to more complex AI-driven systems utilizing natural language processing to understand student stories.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation (NSF) through grants DRL-1921495 and DRL-1921503. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

- [1] Computer Science Teachers Association et al. 2018. State of computer science education.
- [2] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice motivates middle school girls to learn computer programming. In *Proceedings of the SIGCHI conference on Human factors in computing systems*. ACM, New York, 1455–1464.
- [3] Bernard R Robin. 2008. Digital storytelling: A powerful technology tool for the 21st century classroom. *Theory into practice* 47, 3 (2008), 220–228.
- [4] Ami Sutiani. 2021. Implementation of an inquiry learning model with science literacy to improve student critical thinking skills. *International Journal of Instruction* 14, 2 (2021), 117–138.
- [5] Michael Tan, Shu-Shing Lee, and David WL Hung. 2014. Digital storytelling and the nature of knowledge. *Education and Information Technologies* 19, 3 (2014), 623–635.
- [6] David Weintrop, Alexandria K Hansen, Danielle B Harlow, and Diana Franklin. 2018. Starting from Scratch: Outcomes of early computer science learning experiences and implications for what comes next. In *Proceedings of the 2018 ACM conference on international computing education research*. ACM, New York, 142–150.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9433-8/23/03.

<https://doi.org/10.1145/3545947.3576345>