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ABSTRACT: All 2D electrically conductive metal—organic
frameworks (MOFs) are constructed from hexasubstituted
aromatics that oxidize during self-assembly. Since electrical
conduction is thought to occur through the ligand z-system, but
aromaticity itself results in stabilized sw-electrons, the delocal-
ization of ligand wavefunctions should be inversely related to
the ligand 7-stability. That is, aromatic z-electrons should
prefer to localize on a single linker rather than delocalize to
form a curved band in the MOF. Here, we use a combination of
NICS-xy scans and bulk electronic band structure calculations
to show that the extent of residual aromaticity in the oxidized
linker is a good predictor for electronic localization in the
resultant MOF. Thus, ligands that feature antiaromatic zz-systems in the oxidation state found within the MOF should yield
increased band curvature, a target parameter that affects charge mobility in high performing electrical conductors.
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is critical for developing electrodes for capacitive

energy storage.”” Toward this goal, the realization of
electrically conductive MOFs>* has spurred the development
of novel porous conductors featuring 2D- and 3D-connected
scaffolds with conductivities exceeding 100 S/cm,’ making
them a viable manifold for real-world energy storage
devices."® The peak performing materials are 2D-connected
kagome lattices’ composed of divalent metals'*~"? paired with
a hexasubsituted triphenylene linker (e.g., hexaiminotripheny-
lene (HITP)"’ and hexahydroxytriphenyelene (HHTP)'*). In
those cases, both crystallinity and doping mechanisms are areas
of active development but there are also outstanding
knowledge gaps in how the ligand composition affects the
bulk material properties.

In square-planar Ni** and Cu®" molecular complexes,
the degree of ligand redox noninnocence depends on the
energetics and geometry of the ligand orbitals, where increased
covalency results in large molecular orbital splitting. Related
MOFs'® are formed through the general assembly shown in
Scheme 1. There, the ligand is both deprotonated and
oxidized, and the MOFs are obtained from a goldilocks
scenario where the linker is oxidized to achieve both charge
neutrality and covalency. Hence, a central focus of ligand
development is the control of electronic induction in the
interior of the ring system, which should be an opposing
driving force to increasing band dispersion (one property of
bulk electronic delocalization). Herein, we show that some

T he discovery of high-surface-area electrical conductors
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Scheme 1. Kagome MOFs Obtain Charge Neutrality by
Deprotonation and Oxidation of the Linker, Each Which
Can Be Drawn in Many Resonance Forms, Including As
Either a Quartet or Doublet
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degree of aromaticity persists in the oxidized linkers found in
the 2D conductive MOFs and is directly related to the
bandwidth of MOFs made therefrom. From xy-plane nucleus-
independent chemical shift (NICS-xy) scans'’ paired with
periodic DFT computations of 2D Ni-based MOFs (Cu-
analogues are presented in the Supporting Information),* we
posit that the propensity for 7-electrons to aromatize opposes
electronic delocalization in the crystalline MOF (i.e., band
curvature and resultant charge mobility”'), in effect yielding
less favorable conduction pathways.

Given the family of 2D conductors are prone to stacking
faults (2D sheet slipping), the extent of out-of-plane dispersion
depends heavily on noncovalent orientation.”” While bulk
electronic properties will naturally depend on the van der
Waals stacking, the monolayer provides critical insights into
“through-bond” electronic interactions.”> Some of the 2D
materials are predicted to be narrow gap semiconductors in the
monolayer but have bulk metallicity (as in Niy(HITP),, HITP
= hexaiminotriphenylene).”*™>” In those cases, the monolayer
calculations serve a lower estimate of the most conductive
crystallographic direction. In other cases, the monolayer may
be metallic (as in Ni;(HIB),, HIB = hexaiminobenzene®® and
other hexasubstituted benzenes®), in which case the
monolayer may possess the most conductive crystallographic
plane. Regardless, by examining a systematically altered family
of experimentally tractable 2D MOFs we can study the ligand’s
z-system and its impact on predicted band curvature, a
property that affects bulk conductivity.

To do so, we first construct a small library of plausible
linkers used in the formation of 2D MOFs, Figure la. These
systems were selected as they canvas both known linkers, and
synthetically plausible structures with appropriate 3-connected
geometries and have been used in other conductive
materials.”’~>* In order to achieve charge neutrality in a bulk
MOF of nominal stoichiometry metal;linker,, the metal is 2+
(e.g, Ni**, Cu®*) and the linker is 3—. This is achieved by six
deprotonations and three oxidation events, yielding a radical
(either a quartet or doublet depending on the propensity for
two radicals to pair, Scheme 1). These exocyclic compounds,
shown as quartets in Figure la, have a nominal C; rotational
axis, and our DFT calculations suggest that the doublet is more
favorable than the depicted quartet.

NICS-xy scans can then be used to probe the degree of
aromatic/antiaromatic character and 7 delocalization by
sampling the extent of deshielding of a fictitious atom
positioned 1.7 A above the ring system.””*° While the
NICS-xy scan is not conventionally used for exocyclic
compounds it is instructive in this case, as there are internal
ring systems that may have aromatic character depending on
the locality and pairing of the radicals, per Scheme 1. These
scans are presented in Figure 1b, following a sampling path
presented in Figure lc. HIB is a nonaromatic compound and
the NICS scan results in a +350 ppm shift, Figure S1. Perhaps
this could be interpreted as being highly antiaromatic, although
NICS-xy scans are less applicable to systems that are neither
aromatic or antiaromatic; a three electron oxidation of HIB
satisfies neither 4n or 4n+2 7 electrons. The other linkers,
HHTP, HITP, HITT, HHTT, and HIIB exhibit an increasing
degree of aromaticity, attributed to a progressively more
delocalized 7-system across more C/N/O centers (an example
of a S-substituted linker is presented in Figure S1). This aligns
with our chemical intuition, as the larger linker maintains more
aromatic character as more z-electrons need to be removed to
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Figure 1. Ligands and their associated NICS-xy scans examined in
this study. (a) The ligands are depicted in their formal oxidation
and charge state as they appear in the charge neutral MOF of
nominal stoichiometry M;L,. Hexaiminobenzene (HIB), the
hydroxy and imino triphenylenes (HHTP and HITP, respectively),
and the hexahydroxy tetraazanaphthotetraphene (HHTT) have
been synthesized with both Ni** and Cu**. The imino function-
alized tetraazanaphthotetraphene (HITT) and the indolo-benzene
(HIIB) were included as logical derivatives. (b) The associated
NICS-xy scans probed at (c) 1.7 A for the doublet ligands.
Aromatic and antiaromatic signatures are negative (blue) and
positive (yellow) chemical shifts, respectively. The NICS-xy paths
are labeled a—e, and the path is depicted by the pink line.

fully dearomatize it. A similar conclusion can also be gleaned
from examination of the spin density, Figure S2.

In fact, the spin density was used to instruct the NICS-xy
sampling paths. In the case of HITP and HHTP, the
conventional pathway would be to sample a-b-c (Figure 1a),
but we wanted to demonstrate that the doublet results in
electronic asymmetry where the a center is nominally less
antiaromatic than the c and d centers, which are indistinguish-
able. The asymmetry was also visible in the spin density. For
the other linkers, we simply followed a path that traversed the
two dissimilar chemical environments. Both HITT and HHTT
show slightly more aromatic character. One can imagine that
this is achieved by ionizing N-bound electrons, rather than C-
bound neighbors. Finally, the HIIB linker appears to maintain
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Figure 2. Electronic band structures and density of states of monolayer two-dimensional MOFs constructed from the six linkers. The lowest
energy ligand-centered conduction band and its width are emphasized in blue.

aromatic character despite being oxidized. This result high-
lights that the N p-electrons play a supporting role in
maintaining aromaticity. Together, these molecular calcula-
tions suggest larger s-systems can mitigate the effect of
oxidation, particularly those with heteroatoms. With this in
mind, we would then expect that more stabilized electrons
should result in diminished band dispersion (delocalization) in
materials made therefrom.

To probe this hypothesis, we next computed the electronic
band structure and accompanying density of states (DOS) for
the monolayer 2D Ni**-MOFs, Figure 2 (Cu**-MOFs are
presented in Figure S3). There are some common features in
the electronic band structures, including the emergence of
relatively flat bands associated with metal-centered DOS. This
effect is particularly pronounced in the Cu®" systems, which
inherently have a half-populated Cu d,>_ orbital.

To simplify the analysis, we will focus on the Ni** materials
presented in Figure 2, but note that the same concepts apply to
the Cu systems. We selected the first conduction band with
primarily linker character (these bands are highlighted in blue).
Including band unfolding, the bandwidths (dispersion) are
labeled on the figure and decrease with increasing aromatic
character of the linker. That is, the HIIB is predicted to have
the widest electronic band gap (~500 meV), and the smallest
conduction band dispersion (30 meV) of the computed MOFs.
Ni;HIB, shows the largest band dispersion of any of the 2D
MOFs, likely due to the highly unstable “antiaromatic”
character of the free linker, Figure SI.

Perhaps most interesting are the features that appear in
comparison of the HITP- and HHTP-based MOFs. While the
Ni,HITP, material is the experimental champion conductor,
Ni;HHTP, features a folded band at I, effectively doubling the
bandwidth, and resulting in metallicity. These data suggest that
HHTP-based materials should offer some upside relative to
HITP-analogues. Of course, band curvature is only one factor
in determining bulk conductivity, with the other operative
parameters (charge carrier concentration and charge carrier
identity) playing a critical role. To this end, the key challenge
in these materials remains the control of the Fermi level, which
in turn depends on the defect contributions in the material and
is an area of ongoing interest.

Through a combination of NICS-xy scans and bulk
electronic band structure calculations of monolayer Ni-based
MOFs, we have concisely demonstrated that there is a direct
relationship between material band dispersion and degree of
(anti)aromaticity of the linker, computed in the same
protonation and charge state as is found in the MOF. Looking
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forward, these results indicate that the formation MOFs with
highly curved electronic bands can be accessed by designing
linkers that do not have a propensity to aromatize. There is
hence a tension targeting linkages that are synthetically
tractable but reactive enough to form exotic, relatively
destabilized radicals. The results also highlight the critical
role of controlling the Fermi level through defect engineering
and metal selection. Finally, these data further point to a
fundamental challenge in conductive MOF development—
larger ligands increase accessible porosity to the detriment of
band curvature in the resultant MOF.

B COMPUTATIONAL METHOD

Molecular calculations were performed in Gaussian09,”” using
the B3LYP hybrid functional with a triple-{ basis, 6-311+G*.
NICS-xy scans were generated using Aroma, a free software
package that creates the sampling paths and parses the
shielding information. Periodic boundary calculations were
performed within the Kohn—Sham DFT framework as
implemented in Vienna ab initio simulation package (VASP
5.4.4).>® Beginning with crystallographic unit cells of
Ni;(HIB),, the lattice parameters and atomic positions were
equilibrated using the PBEsol functional,” with a ['-centered 4
X 4 X 2 k-mesh and 500 eV planewave cutoff. Convergence
was reached at 0.025 eV/atom. HSEsol'’ was then used to
recover the electronic band structures and density of states.
Other materials were manually constructed through ligand
substitution.

B ASSOCIATED CONTENT
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