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Abstract

A fundamental challenge in neuroscience is to uncover the principles governing how the
brain interacts with the external environment. However, assumptions about external stimuli
fundamentally constrain current computational models. We show in silico that unknown
external stimulation can produce error in the estimated linear time-invariant dynamical sys-
tem. To address these limitations, we propose an approach to retrieve the external
(unknown) input parameters and demonstrate that the estimated system parameters during
external input quiescence uncover spatiotemporal profiles of external inputs over external
stimulation periods more accurately. Finally, we unveil the expected (and unexpected) sen-
sory and task-related extra-cortical input profiles using functional magnetic resonance imag-
ing data acquired from 96 subjects (Human Connectome Project) during the resting-state
and task scans. This dynamical systems model of the brain offers information on the struc-
ture and dimensionality of the BOLD signal’s external drivers and shines a light on the likely
external sources contributing to the BOLD signal’s non-stationarity. Our findings show the
role of exogenous inputs in the BOLD dynamics and highlight the importance of accounting
for external inputs to unravel the brain’s time-varying functional dynamics.

1 Introduction

Over the past few decades, functional MRI has widened our understanding of the functional
organization of intrinsic brain networks and their role in cognition and behavior. Classical
univariate (i.e., voxel-wise) analyses of fMRI signal (i.e., blood-oxygenation level-dependent,
or BOLD) have been instrumental in probing the specialized function of brain regions. More
recent approaches using functional connectivity and network neuroscience portray a complex
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and multi-scale set of interactions between brain structures. Following this view, a wide array
of graph theoretical and complex systems tools have been used to describe BOLD dynamics
[1-3].

Despite these efforts, we still lack a unified mechanistic framework that overcomes three
key limitations. First, the features of the BOLD signal that are important for neural activity are
unclear. Several prior studies demonstrate a relation between BOLD and slow amplitude fea-
tures of cortical activity [4-6], and between BOLD and the hemodynamic response function
(HREF) [7, 8]. These studies imply that the low frequency component of the BOLD signal con-
tains information relevant to underlying neural dynamics [9, 10], although it is also clear that
the signal contains artifact [11, 12]. Due to the mixture of signal and artifact in the BOLD time
series, it is possible that the common practice of band-pass filtering the BOLD signal at low fre-
quencies may exclude functionally relevant signal [13, 14]. Second, many graph theoretic and
network analyses are inherently descriptive in nature, and lack the power to give a generative
understanding of the relationship between model inputs and outputs (for extensions of these
approaches that move beyond description into explanation and prediction, see [15]). Finally,
model-based approaches often treat the brain as an isolated system by ignoring external input,
or assuming an artificial profile of internal and external noise.

To address these three limitations, we develop a generative framework that explicitly
includes exogenous input (e.g., external sensory or subcortical structures’ inputs), and provide
evidence that the brain’s activity can be fruitfully understood in the context of its natural driv-
ers. Specifically, we use a multivariate autoregressive model with unknown inputs to capture
the spatiotemporal evolution of the BOLD signal driven by extra-cortical inputs. These models
have been used to characterize and predict the evolution of several synthetic and biological sys-
tems [16-19]. For instance, Chang and colleagues (2012) leveraged a multivariate linear
dynamical system’s framework and the patients’ intracranial EEG to model the cortical
impulse response to the direct electrical stimulation. Many prior studies use this [20] and simi-
lar methods such as Granger causality and dynamic causal modeling (DCM) for understand-
ing the directed functional connectivity of BOLD [1, 21-23]. While some prior studies account
for the effect of exogenous input [1, 24], they typically assume a simple known and abstract
form of the input function [19]. Moreover, the inability of models such as DCM to capture sig-
nal variations beyond those caused by the external inputs makes the connectivity estimation
highly dependent on the assumed number and form of the inputs [25].

In this work, we treat the exogenous inputs to the cortex as unknown parameters of a linear
time-invariant (LTI) system, which we estimate following recent developments in linear sys-
tems theory [26]. We use these developments to provide new insights into how the brain
responds to ongoing task requirements, and to shine a light on factors that contribute to the
dynamics of cortical functional connectivity. To demonstrate our approach’s utility, we begin
with a proof-of-concept where we consider synthetic examples for which we retrieve the exter-
nal inputs’ spatiotemporal profiles of a known LTI system. We demonstrate that unknown
external inputs result in apparent changes in internal system parameters, and consequently, in
estimated external inputs’ error. Also, we show that using internal system parameters esti-
mated from time windows without external stimulation significantly improves our ability to
extract external inputs’ profile from periods with external stimulation, expect for simulations
with relatively low external inputs and signal-to-noise.

Next, we test the hypothesis that variations in cortical dynamics during different tasks or
cognitive states can be accurately modeled as external excitations on fairly stable interactions
between cortical regions. Specifically, we recover the unknown external cortical inputs during
resting-state and task scans for 96 subjects with the lowest motion artifact from the Human
Connectome Project (HCP). Our results demonstrate that using system parameters estimated
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from resting-state scans enables uncovering the expected spatiotemporal profiles of external
sensory (i.e., visual cues) and task-related extra-cortical inputs, while system parameters esti-
mated from task scans result in highly inaccurate input estimations. In addition, an in-depth
examination of estimated inputs during task scans reveals the spatiotemporal patterns of other
task-related inputs that were not captured by the abstract task regressors.

Lastly, we measure the non-stationarity of estimated external inputs over resting-state scans
to examine the assumption of the system’s time-invariance and to identify exogenous determi-
nants of the BOLD signal’s non-stationarity. Recently, the nature of non-stationarity of BOLD
signal and dynamic functional connectivity has been a topic of scientific debate, as several recent
publications paint seemingly contrasting portraits of the processes’ stationarity underlying the
brain’s functional dynamics [27-32]. However, to the best of authors’ knowledge, no study
examines the BOLD signal’s stationarity in the context of time-varying external inputs and their
effects. Our results show that the inputs to several brain regions, most notably over default
mode network, estimated from the resting-state scans display significantly high non-stationarity
compared to other brain regions. Together, we demonstrate that our framework allows us to
uncover spatiotemporal patterns and dimensionality of unknown cortical drivers. These find-
ings offer insight into how a relatively static relation between brain regions and exogenous driv-
ers can give rise to complex cortical dynamics and contribute to their non-stationarity.

2 Materials and methods
2.1 Linear time-invariant (LTI) dynamical systems with external inputs

Each region i of interest (ROI) from which the BOLD signal is collected provided us with a

time series described by x;[k] at sampling point k=0, .. ., T. A total of n = 100 regions are con-
sidered and the collection of these signals is captured by the vector x[k] = [x,[k] ... x,[k]],
with k=0, ..., T, which we refer to as the state of the system (i.e., it describes the evolution of

the BOLD signal across different regions). The evolution of the system’s state is mainly driven
by (i) the cross-dependencies of the signals in different regions (not necessarily adjacent), and
(#i) the external inputs that are either excitation noise or inputs arriving from the environment
surrounding the regions captured by the state of the system (e.g., stimulus arriving from sub-
cortical structures not accounted for during BOLD signal collection).

Subsequently, a first step towards modeling the evolution of the system’s state is:

x[k + 1) = Ax[k] + Bulk] + w,, k=0,...,T, (1)

where A € R™" described the autonomous dynamics, B € R"? is the input matrix that
describes the impact of inputs (i.e., external drivers) u[k] € R”*' on the system state’s evolu-
tion, and @, € R" is the internal dynamics noise (i.e., internal drivers) at sampling point k.
Notice that {x[k]},_, is the BOLD signal at the different ROIs and is the only known. However,
the state of the underlying neural activity is unknown since we did not account for the hemo-
dynamic response function (HRF) in our reduced model. Therefore, the input in the model
captures the external drivers of regional BOLD and only indirectly, the underlying neural
activity. In order to determine the parameters of the system (1), i.e., (A, B, {u[k]},_,), we need
to solve an optimization problem that minimizes the distance between the system’s state x[k]
and the estimate of that state given by x[k] driven by the unknown quantities. Specifically, we
have the following optimization problem:

5[k}, € arg_min | 20K — (K] |

s.t. z[k + 1] = Az[k] + Bulk].
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Notice that this problem is more challenging than the usual least squares problem considered
when the parameters of the system are known [33]. Thus, similar to the method develop by
[26], we perform the following steps: (i) we assume that the state z[0] = x[0], and {u[k] }::U is
identically zero, to find an approximation to A;(ii) assuming A is given by the initial approxi-
mation, we provide a sparse low-rank structure to matrix B and we find an approximation to
both z[0] and {u[k]}_,, which suffices to obtain z[0], . . ., z[ T] subsequently, {X[k]},_,; and
(iii) assume {z[k]},_, and {u[k]},_, are as approximated in step (ii) and determine an approxi-
mation to B. The process consists of executing step (ii) and (iii) iteratively. Our experiments
reveal that the estimated parameters converge after a few iterations in both synthetic and fMRI
time series (518 Fig in S1 File). Additionally, to force the inputs to be used as little as possible,
since otherwise they could contain all the required information to obtain the sequence

{z[k]},_, (e.g., consider A to be zero and B to be the identity matrix), the optimization objec-
tive is rather given by || z[k] — x[k] ||5 +A || u ||, + 4 || B ||?, which penalizes the use of the
input with a weight 4 > 0.—See section SI1 in S1 File for algorithm details.

We will demonstrate in the following results section that unaccounted external inputs result
in error in estimation of system matrix A. Therefore, in a modified version of this algorithm,
in step (i) we estimate A from x’[k] measured during an extended window without external
stimulation (e.g., resting-state). Next, we repeat steps (ii) and (iii) iteratively—as detailed
above. Since we did not know the true dimensionality of the external inputs, we approximated
the dimensions of the input matrix B by performing principal component analysis on the
residuals of the models. As seen in S19 Fig in S1 File, principal components 1-25 capture more
than 80% of variance in the average residuals and more than average 60% of subject-level
residuals’ variance across all tasks. In addition, we compared the goodness-of-fit of the LTI
model with and without external inputs using Akaike information criterion (AIC) [34]. Our
results demonstrate that incorporating external inputs does not results in overfitting and
improves the model’s fit—an effect most pronounced in higher dimensional input matrices
(520 Fig in S1 File). Finally, we demonstrate that we identify the external inputs during the
motor task similarly at high-dimensional input matrices (S6 Fig in S1 File), as indicated by the
high correlation (>0.8) of inputs estimated using input matrix dimensions higher than 25 (S6I
Fig in S1 File). Therefore, we select p = 25 for input matrix B to estimate the inputs from task
fMRI time series.

2.2 Spectral analysis of an LTI system

Provided an LTI description of the system dynamics (1), the autonomous evolution of the
dynamical system can be decomposed in a so-called eigenmode decomposition. Briefly, con-
sider the n eigenmodes (i.e., eigenvalues and the corresponding eigenvectors) associated with
A. Each eigenmode corresponds to an eigenvalue-eigenvector pair (4;, v;) satisfying Av; = 4, v;,
and it describes the oscillatory behavior for a specific direction v;.

Specifically, for any given eigenvalue 4; represented in polar coordinates (6;, |1,]), we have
that it captures the frequency characterized as

0
fi - %51‘7

where ¢ corresponds to the sampling frequency, and the time scale given by

log(|4;])

i ot

which can be interpreted as the damping rate.
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In particular, we can re-write A = VAV', where V= [vy, ..., v,] and A = diag(4,, .. ., 4,)) are
the matrices of eigenvectors and eigenvalues. Subsequently, we can apply a change of variable
as z[k] = V* x[k], where V* is the transpose conjugate, which implies that z,[k] = v]x[k] isa
weighted combination described by the iy, eigenvector associated with the iy, eigenvalue.
Hence, this can be understood as the spatial contributions of the n ROIs at a given (spatiotem-
poral) frequency f;. Additionally, we can revisit the damping rate of the process in such direc-
tion v, by reasoning as follows: first, we can recursively obtain |z;[k]| = |4,||z,[0]]. Therefore,
we have the following three scenarios: (i) |A;|<1; (ii) |1,|>1; and (iii) |4, = 1. In case (i) and (ii),
we can readily see that |z;[k]| — 0 and |z;[k]| — oo as k — oo, respectively. Lastly, in scenario
(iii), or practically, when |1;|~1, we have that the process oscillates between stability and insta-
bility, and therefore these dynamics are refer to as meta-stable.

In summary, the dynamical process z(k) describes the spatiotemporal brain BOLD signal
evolution. Specifically, the timescales are encoded in the eigenvalues and the spatial contribu-
tions of the different ROIs are described by the eigenvectors with a spatiotemporal timescale
described by the associated eigenvalues.

2.3 Dataset and preprocessing

We used data from the Human Connectome Project (HCP). As part of the HCP protocol, sub-
jects underwent two separate resting-state scans along with seven task fMRI scans, both of
which included two sessions. All data analyzed here came from these scans and was part of the
HCP S1200 release. The fMRI protocol (both resting-state and task) includes a multi-band fac-
tor of 8, spatial resolution of 2 mm isotropic voxels, and a TR of 0.72 sec (for more details see
[35]). Subjects that completed both resting-state scans and all task scans were analyzed. Each
of the scanning sessions included both resting-state and task fMRI. First, two 15-minute rest-
ing-state scans (eyes open and fixation on a cross-hair) are acquired, for a total of 1 hour of
resting-state data over the two-day visit. Second, approximately 30 min of task-fMRI is
acquired in each session, including 7 tasks split between the two sessions, for a total of 1 hour
of task fMRI (for details see [36]).

Head-motion artifacts result in significant error in the functional connectivity estimates
[37]. Therefore, to minimize head-motion artifacts, we selected 100 subjects with the lowest
mean frame-wise displacement in our study, where we utilized a cortical parcellation with
N =100 parcels that maximizes the similarity of functional connectivity within each parcel
[38]. Next to keep the same subjects across the resting state and task scans, we removed the
four patients with missing either task or resting state scans. We preprocessed resting-state and
task data using similar pipelines. For resting-state, the ICA-FIX [39, 40] resting-state data pro-
vided by the Human Connectome Project were utilized [41], which used ICA to remove nui-
sance and motion signals. For task data, CompCor [42], with five components from the
ventricles and white matter masks, was used to regress out nuisance signals from the time
series. In addition, for the task data, the 12 detrended motion estimates provided by the
Human Connectome Project were regressed out from the time series. For both task and rest-
ing-state, the mean global signal was also removed in an effort to remove the auto-correlated
non-physiological noise and reduce the model estimation error [43].

2.4 Statistics

We performed student’s ¢-test and Welch’s t-test [44] to test the statistical significance of the
differences between the distributions of interest. Non-parametric Wilcoxon rank-sum test [45]
were utilized for comparisons of distributions with non-normal profiles. We corrected calcu-
lated test statistics for multiple comparisons using false discovery rate (FDR) method [46], as
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well as the more conservative Bonferroni method [47]. To identify the task-specific fluctua-
tions in the average estimated inputs, for each brain regions we compared task-related inputs
to those estimated from resting-state time series (paired ¢—test, p < 0.05, FDR). In addition we
also generated phase-randomized null time series from each subjects’ BOLD times series for
the task time series. We select the phase-randomized null model since it maintains most of the
statistical properties of multivariate time series (e.g., autocorrelation, covariance) [48]. Next,
for each brain region, we compared the average empirical and null estimated inputs for each
time point (paired t—test, p < 0.05, FDR).

To identify estimated inputs that display changes that correspond to different task condi-
tions in the motor paradigm, we first performed a principal component analysis (PCA) on all
estimated inputs (U) concatenated over all subjects. Next, we identified a single input with the
highest absolute principal component (PC) loading for every component. We then multiplied
the selected inputs with negative PC loadings by —1. Next, we separately fitted a multiple linear
regression model for each PC’s inputs (U) using the known task-regressors. We created task-
regressors for different conditions by assigning every sample to baseline (0) or one of six events
(i.e., visual cue, left hand, right hand, left foot, and right foot movements) based on their tem-
poral proximity to events’ onsets and offsets. We repeated this analysis by shifting task-regres-
sors by different lags (0-12 TRs) to identify the lag that produces the best fit (i.e., highest R®
values) for each region. Finally, we performed t—tests on estimated coefficients at the group-
level to identify task conditions similarly echoed in estimated inputs associated with each PC
across participants. We also identified brain regions that correspond to the identified inputs
by performing group-level region-wise t—tests on input matrix B elements that correspond to
inputs U identified by PCs.

We examined the estimated inputs’ non-stationarity using two methods. First, we used a
sliding window approach to examine temporal fluctuations of estimated inputs’ means over
resting-state scans for all brain regions, measured from the windowed-means’ standard devia-
tion. Second, we used the nonlinear non-stationarity index introduced by [49], with & = 0.9
and S = 1 exponent parameters following their study, where a and 3 parameters control the
relative weighting between the importance of long versus large excursions in time series.
Therefore, non-stationarity indexes with our selected parameters give marginally greater
weighting to excursions’ height. Finally, to test the group-level significance of both non-statio-
narity metrics, we first normalized the values across all brain regions. Next, we used the t—test
(FDR corrected for multiple comparisons across all brain regions) to establish the statistical
significance of the measured non-stationarities across patients. Traditionally, researchers have
commonly used the 0.05 as the statistical significance level, though the choice is largely subjec-
tive. Therefore to convey the probabilistic nature of the statistical analysis and the proper inter-
pretation of statistical test results, in the manuscript, we refer to results of the commonly
accepted statistical threshold of 0.05 as “significant” and the more conservative thresholds of
0.0005 or lower as “highly significant”.

2.5 Ethics statement

All subject recruitment procedures and written informed consents were approved by the
Washington University Institutional Review Board (IRB). For more details see [35].

2.6 Retrieving the external inputs to a synthetic LTI system

We use the proposed method to explicitly model the contributions of internal system dynam-
ics and external inputs on the BOLD signal during rest and task. To build intuition, we begin
by estimating the internal system parameters and unknown inputs using data simulated from
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a synthetic LTI model (Eq 1) with four states representing four brain regions. We first simulate
the dynamics of our model (Fig 1A), where each region is driven by random internal noise,
and only one region is driven by an additional square pulse train (Fig 1B). For details regarding
the simulation see section SI2 in S1 File. Next, we estimate internal system parameters (4 x 4
matrix of interactions) and unknown inputs from the simulated time series, and to recover the
spatial and temporal profiles of the pulse train input (Fig 1C). Although the estimated inputs
(green line) fluctuate time-locked to the ground-truth input, their temporal profiles notably
differ. We hypothesize that this divergence arises from the error in system matrices estimated
during periods with external stimulations. In Fig 1D, we show that the LTI system parameters
receiving time-varying external inputs can falsely appear to change and diverge farther from
the ground-truth when examined over periods with external stimulation.

Consequently, we hypothesize that system matrices estimated from periods without exter-
nal inputs would improve our ability to capture the unknown inputs’ profile accurately. Fig 1C
shows that using a fixed system matrix estimated from periods without external inputs signifi-
cantly increases the similarity (correlation) to the ground-truth inputs. We also demonstrate
that although estimated inputs contain noise, averaging inputs estimated over 100 simulations
results in highly accurate estimations (correlation = 0.99). The significant (Wilcoxon rank-
sum test, Bonferroni p < 0.0001) changes in the input matrix B’s loading for estimation win-
dows overlapping the external stimulation periods, reveals the unknown external inputs’ spa-
tial profile (i.e., the blue input node) (Fig 1E). Together, these results demonstrate that external
inputs can increase estimation error in system matrices, and consequently, input parameters.
More importantly, these results also show that identifying system matrices from periods with-
out external stimulation allow an accurate estimation of unknown external inputs’ spatiotem-
poral profiles.

Next, we generate synthetic time series by stimulating LTI systems, parameters of which
were estimated from subjects’ resting-state BOLD time series. We set external inputs’ magni-
tude such that the global average stimulus-induced changes in normalized simulated outputs
match the largest average task-related changes in a sample (social) task. We confirm that simi-
lar to the low-dimensional example in Fig 1, our approach is able to extract synthetic external
inputs to high-dimensional LTI models of BOLD signal dynamics (Fig 2). Likewise, employing
system parameters estimated from periods without external stimulation results in a significant
(t—test, p < 0.05, p = 6.6 x 107 and p = 2.9 x 107 for 1000 TR- and 250 TR-long estimation
windows, respectively) increase in the similarity between the ground-truth and estimated
inputs (Fig 2F). The notably higher similarity between the average estimated to ground-truth
inputs than that of subject-level estimated inputs suggests that profiles of external inputs are
correctly approximated although with noise. Together these results demonstrate the utility of
our framework in identifying external inputs to LTI systems, and highlight the importance of
accurate estimation of model parameters.

So far, we have examined the LTI system’s response in a low recording noise level (signal-
to-recording noise = 1000). Next, we examine the accuracy of the retrieved model and input
parameters at different recording and internal noise levels. The contributions of the recording
and internal noise to the BOLD signal, for the most part, are unknown quantities. However,
they play an essential role in our ability to capture external inputs accurately. Simulating the
system’s response magnitude and variance (i.e., t-values) at various recording and internal
noise levels show how different noise levels can lead to seemingly similar outputs.

Moreover, at high noise levels, the error increases notably in the system parameters esti-
mated from periods without external inputs, and consequently, in the estimated input parame-
ters during stimulation periods. Interestingly, at such high noise levels, the system matrices
estimated during stimulation periods more accurately recover external inputs than those
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Fig 1. Synthetic LTI system with unknown inputs. (A) A schematic of the brain as a network, where the nodes represent brain regions, and the edges
represent connections between regions. The activity of four observed regions is modeled as a four-dimensional LTI system, and the influence of the
unobserved regions and external stimuli into each node as an unknown driver. The synthetic system matrix is designed with eigenmodes oscillating at
0.01 and 0.06 Hz to mimic the frequencies of BOLD signal’s neurophysiological component. (B) Simulated time-evolution of each node’s activity
(sampling rate = 1.4 Hz) is color-coded and shown in the presence of drivers, namely the internal noise and the external input (brighter colors). Only
the blue node receives external input indicated by the magenta line. Three periods (I-III) are highlighted dashed lines. At period I (3—-6 min), there is no
external stimulation. At period II (9-12 min), the blue node is stimulated in 25 samples = 18 seconds blocks, interleaved with similarly sized rest
periods. At period III (15-18 min), the blue node is stimulated for 7 samples = 5.04 seconds, with inter-stimulus intervals of 3 samples = 2.16 seconds.
(C) Left panels show the estimated inputs to the blue node (green line, arbitrary units AU) estimated from a single simulation. The panels on the right
show the average input and its standard error over 100 simulations. (D) The average 2-norm and standard error of the difference between the system’s
true and estimated matrices of a 3-minute sliding window. (E) The color-coded lines show the average (and standard error) loading of each node on
input matrix B.

https://doi.org/10.1371/journal.pone.0257580.g001
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Fig 2. Extracting spatiotemporal profiles of unknown external drivers in simulated brain dynamics. (A &D) Estimated external inputs (i.e., BxU) to
all brain regions from synthetic time series generated from a sample subject’s internal system parameters and (B & E) the average estimated external
inputs across all subjects (input matrix B dimension = 7, regularization factor = 0.5). Brain regions (y-axis) are sorted based on resting-state networks
identified by [50], namely the visual (Vis), sensory/motor (SM), dorsal attention (DN), ventral attention/salience (VN/Sal), limbic, executive control
(ECN), and default mode network (DMN). System parameters in panels D & E are estimated from the stimulation window, however system parameters
in panels A & B are estimated from same-length windows without external inputs. (C) Ground-truth synthetic inputs over 1000 samples (TR = 0.72
sec). (F) The similarity between ground-truth and estimated inputs. The system matrix A estimated from windows without external stimulation results
in a significantly higher correlation between the vectorized estimated external and ground-truth input matrices (t-test, p < 0.05, p = 6.6 x 10™°> and

P = 2.9 x 10°% for estimation windows with 1000 and 250 samples, respectively), compared to system matrix A estimated from the stimulation windows
(indicated by *” markers). The smaller estimation windows significantly (ttest, p < 0.05, p = 1.15 x 10~**) reduce the estimated and ground-truth
inputs’ similarity, only for the system matrix A estimated over stimulation windows (indicated by *“” markers). The correlation values between the
ground-truth and group average estimated inputs are indicated by ‘0’ markers.

https://doi.org/10.1371/journal.pone.0257580.9002

estimated during periods without stimulation (S1 Fig in S1 File). These observations suggest
that the choice of system matrices and the goodness-of-fit of the estimated inputs can further
provide insight into the empirical noise levels. In the following, we consider the proposed
methodology in the context of quantifying important spatial and temporal features of the
internal system dynamics and external inputs estimated from the HCP resting-state and task
fMRI scans.

2.7 Capturing external drivers of BOLD signal

2.7.1 Brain’s large-scale oscillatory modes display heterogeneous spatiotemporal pro-
files. We begin by showing that the estimated system parameters during resting-state reliably
capture and reproduce known brain functional organization. Further, because these parame-
ters reside within a quantitative dynamical model, we simultaneously capture both spatial
(regions that are co-active) and temporal (oscillation frequency) information through the
eigenmodes of our estimated system. Specifically, each eigenvector indicates an independent
pattern of co-active regions, and its corresponding eigenvalue determines both the oscillation
frequency and the change in amplitude of the activation patterns. Intuitively, if we initialize
our estimated system state to a pattern of activity corresponding to an eigenvector, then the
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system states would oscillate and dampen according to the associated eigenvalue’s characteris-
tics (see more details in Materials and Methods section).

To capture the spatial and temporal patterns of activity, we use our method to estimate the
internal system parameters from the resting-state time series (1200 TR ~14.5 min). The high
stability of the (i.e., slow damping rate) low-frequency eigenvalues as seen in Fig 3A indicates
that the system’s outputs are dominated by lower frequency oscillations. To identify the eigen-
modes with similar spatial patterns across subjects, we aggregate all subjects’ eigenvectors and
perform k-means clustering analysis. We used the elbow method (optimal k ~ 4), Calinski-
Harabasz, Davies-Bouldin, and Silhouette criteria (optimal k = 2) to identify the optimal clus-
tering resolution—for details, see SI5 and S3 Fig in S1 File. The non-converging results across
the different criteria suggest that the community organization of eigenvector clusters does not
display a distinct optimal topological scale. We provide the course (k = 2) and finer scale
(k =4) clusters in S2A Fig and Fig 3, respectively. To ensure that the image acquisition type
(i.e., phase-encoding direction) or the scanning session does not affect these results, we pro-
vide statistical comparisons between the coarse-scale cluster’s stability and frequency in S4 Fig
in S1 File. These results show that very similar distributions and clusters are identified regard-
less of phase-encoding direction or day of scans. Specifically, statistical comparisons (boot-
strapping n = 50, 000, p < 0.05) fail to find any difference between cluster’s means. To test the
spatial inhomogeneity in the frequency and damping of these clustered eigenvectors, we per-
formed a pairwise comparison between the distribution of eigenvalues corresponding to the
eigenvectors in each of the clusters (bootstrap n = 50, 000, Bonferroni corrected p < 0.05). We
found significant differences in the frequencies and damping rates between all cluster pairs,
except for the comparison between the frequencies in clusters 3 and 4). Together, these find-
ings highlight the spatial heterogeneity in the frequency and damping profiles of brain
oscillations.

2.7.2 Task-specific increases in the extra-cortical input’s power. Up to now, we pro-
vided evidence that the system dynamics can capture the spatial and temporal behavior of rest-
ing-state brain networks. Next, we try to assess if the task-induced dynamics are driven by the
external inputs, retrieved by the proposed method. The sensory inputs to the brain are some of
the major drivers of cortical dynamics. Therefore, we hypothesize that the external inputs to
the subjects’ brains, as estimated by the proposed method, will mirror real-time changes pres-
ent in these task regressors (see S5 Fig in S1 File for details regarding the task regressors).

To test this hypothesis, we apply our method to the fMRI activity to estimate the internal
system parameters and external inputs for each subject during task performance (i.e., social,
gambling, motor, working memory, language, and relational). Then, we compare the average
estimated inputs’ frequency spectrum for each task. Statistical tests (Wilcoxon rank-sum test,
FDR corrected, p < 0.0005) reveal highly significant unique peaks, matching the expected
external task-specific frequencies (Fig 4). Note that the distinct task-induced peaks are identi-
fied at low (< 0.1 Hz) and high (> 0.1 Hz) frequencies, even as high as 0.3-0.4 Hz (Fig 4B-
4C).

2.7.3 Task-specific profiles of extra-cortical inputs. Next, we consider an LTI frame-
work to quantify spatial and temporal features of external inputs to the brain using HCP’s
motor task dataset. The motor task comprises 3-second long visual cues, where participants
are asked to either tap left or right fingers, squeeze left or right toes, or move their tongue over
12-second long periods following the visual cue’s offset. We select the motor task since the
high dimensionality of input and various task conditions in this paradigm allows us to evaluate
our framework’s ability to estimate external inputs’ complex spatiotemporal structure. We aim
to assess if we can retrieve the external inputs that drive task-induced dynamics. We hypothe-
size that subjects’ estimated external inputs will mirror real-time changes present in known
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Fig 3. Eigenmodes estimated from the full (1200 TR ~14.5 min) resting-state time series. (A) Distribution of frequency versus stability of
eigenvalues during resting-state. Clustering the eigenvalues based on their eigenvector’s similarity highlights the spectral profile of different systems. All
eigenvectors from all subjects were normalized and grouped into 4 clusters using the k-means clustering algorithm. We color-coded the clusters
identified across subjects and all resting-state sessions (n = 4). (B) the inset plot shows the eigenvalues’ distribution. (C) The brain overlays represent the
spatial distribution of the eigenvector associated with an eigenvalue (displayed with the same color code) that is at the centroid of each cluster.(D) The
similarity between eigenvector clusters’ centroids and the resting-state networks. We performed spatial multiple linear regression analyses using all
resting-state networks identified by [50], namely the visual (Vis), sensory/motor (SM), dorsal attention (DN), ventral attention/salience (VN/Sal),
limbic, executive control (ECN), and default mode network (DMN) as the explanatory variables, to show which resting-state networks overlap with the
eigenvector clusters’ centroids shown in the panel. The color-coded matrix shows the estimated normalized (divided by maximum value at each row)
coefficients of the regression, calculated separately for every eigenvectors’ cluster’s centroid. The plot on the right shows the p-value and R* calculated
for each cluster centroid.

https://doi.org/10.1371/journal.pone.0257580.9003

task regressors. Moreover, due to relatively lower levels of structured external stimulations
during resting-state scans, we hypothesize that the system parameters estimated from subjects’
full-length resting-state time series will increase the accuracy of external inputs estimated from
motor task datasets.

Fig 5 demonstrates estimated inputs (input matrix B dimensions = 25, regularization fac-
tor = 0.5) to all brain regions (i.e., B x U) averaged across all subjects during the motor task.
These results highlight the brain-wide significant task-specific changes in the estimated inputs
when system parameters are estimated from the resting-state time series Fig 5A and 5B. We
provide evidence of the robustness of these results to changes in the input matrix B’s dimen-
sion (S6 Fig in S1 File). Conversely, the identified inputs using the system parameters esti-
mated from the subjects’ motor task time series notably reduces our ability to capture the task-
related changes (Fig 5C-5D).

We establish these observations’ statistical significance by comparing the external inputs
estimated from task datasets against those from subjects’ resting-state scans (paired t—test,
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Fig 4. Matching the spectral profile of the known and estimated external inputs. (A-F) The difference between the average Fourier transform of the
estimated inputs to all brain regions during tasks compared to that of other task conditions (see Materials and Methods for details). Top panels display
the average (two sessions) spectral profile of the known boxcar regressors for each task (see S5 Fig in S1 File). Note the significant changes in the
spectrum at expected task-specific frequency peaks across several brain regions, at low (<0.1 Hz) and high (>0.1 Hz) frequencies represented with red
and green arrows, respectively. Frequencies for which brain regions did not pass the significance level (Wilcoxon rank-sum test, FDR p < 0.0005) are

represented in black.

https://doi.org/10.1371/journal.pone.0257580.9004

p < 0.05, FDR corrected for multiple comparisons). Comparisons against the phase-random-
ized null time series also provide converging observations (S7 Fig in S1 File). We also use mul-
tiple linear regression analyses to assess the estimated inputs’ similarity to the known temporal
profile of the task regressors. Our results demonstrate that external inputs estimated using the
full-length resting-state system parameters result in significantly (paired t—test, p < 0.05, Bon-
ferroni corrected for multiple comparisons) improved fit (measured by R” values), compared
to system parameters estimated from the motor task (S8 Fig in S1 File). We also find similar
results when resting-state system parameters were estimated from a short (250 sample) win-
dow that match task scans’ length (S8B Fig in S1 File). Together these results highlight the
importance of the modeled system’s accuracy in capturing a reliable picture of the brain’s
external inputs.

Next, we examine the temporal (i.e., U matrix) and the spatial (i.e., input matrix B) profiles
of the external inputs (estimated using resting-state system parameters), to demonstrate how
the estimated inputs reveal the dimensionality and the spatiotemporal dependencies of the
task-related inputs. Prior works using univariate and multivariate analyses of HCP task data-
sets have demonstrated that activation induced by the hand, foot, and tongue movements can
be localized over the somatomotor network. Therefore, we expect the dimensionality of the
external inputs to roughly match or exceed those of task conditions (i.e., six dimensions). As
mentioned in the Materials and Methods section, the principal component analysis reveals
that in all HCP task conditions, principal components (PCs) 1-25 explain more than 80% of
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Fig 5. Average estimated external inputs in the motor task. Internal system parameters (i.e., A matrices) during full-length resting-state and motor
scans were used to estimate the external inputs in panels A & C, respectively. Panels B & D show time points form panels A & C with significantly
higher or lower average inputs estimated during motor task than resting-state scans (paired t—test, p < 0.05, false discovery rate (FDR) corrected for
multiple comparisons). Top plots in panels A & B show onsets and durations of visual cues and motor task conditions—left foot, left hand, right foot,
right hand, and tongue movement blocks.

https://doi.org/10.1371/journal.pone.0257580.9005

the variance in the model’s average residuals. Therefore, we choose p = 25 as the input matrix
B dimension in Fig 6.

We performed principal component analysis on external inputs estimated temporal profiles
(i.e., U) concatenated across all subjects to identify the input patterns similarly identified over
the group. Fig 6A shows the temporal profile of the concatenated inputs’ PCs 1-15. As seen in
Fig 6B, the first few PCs (=~ 9) explain a relatively larger portion of the variance. Fig 6A shows
the high similarity between known task regressors and PCs’ temporal profiles. We quantify
this similarity using subject-level multiple linear regression analysis of the estimated inputs
using the known task (motor) regressors. We note apparent time lags between the known and
estimated inputs. Therefore, we perform the multiple linear regression analysis using various
lags. Fig 6D shows distributions of lags (samples) that yield the highest R* values for PCs 1-9.
Fig 6B shows the group average coefficients estimated from external inputs associated with
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Fig 6. Principal component analysis of estimated external inputs. (A) Group-level principal components (PCs) 1-15 calculated from concatenated
estimated inputs (input matrix B dimension = 25) across all subjects. Top plots show onsets and durations of visual cues and motor task conditions. (B)
Percent variance explained by PCs. Insets depict the percent variance explained by PCs 1-25. (C) t-values calculated from coefficients of multiple linear
regression models of estimated external inputs associated with each PC (see methods for details). The average coefficients that fail to pass the
significance-level across subjects (—test, p < 0.05, Bonferroni corrected for multiple comparisons) are depicted in gray. (D) Distributions of R* values
of multiple linear regression models in panel B for components with significant coefficients. White circles and color-coded horizontal bars indicate the
medians and means of distributions, respectively. Pairwise comparison (Wilcoxon rank-sum test, p < 0.05, FDR corrected for multiple comparisons)
between distributions reveal that R* values for principal components marked by red **” are significantly higher than those marked by black ‘0’ (except
for the non-significant difference between PC 1 and PC 9). (E) Distributions of the number of lags (samples) that results in best fit (i.e., maximum R?»)
for PCs 1-9. We used the mean (round to nearest integer) of optimal subject-level lags for analysis in panels C and D.

https://doi.org/10.1371/journal.pone.0257580.9006

each PC (i.e., external inputs with highest PC weights). We used the group average optimal lag
(based on R* values) identified in Fig 6E in Fig 6B. Estimated coefficients have significant val-
ues, only in PCs 1-9. These results demonstrate that the estimated inputs provide insight into
the extra-cortical drivers’ dimensionality.

Next, we examine spatiotemporal profiles of subject-level estimated inputs associated with
these components to understand their relationship to the external stimuli. Fig 6D demonstrate
that compared to other PCs, the inputs associated with PCs 1-4 and 6 fit task regressors rela-
tively better, indicated by significantly (Wilcoxon rank-sum test, p < 0.05, FDR corrected for
multiple comparisons) higher R* values. Fig 6C reveals that PCs 1-4 and 6 are associated with
the visual cue, hand and feet movements (maximum coefficient in left hand), all movements
(maximum coefficient in right hand), feet movements (maximum coefficient in left foot), and
tongue movements, respectively. S9 Fig in S1 File shows that the brain regions with the highest
average absolute input matrix B values corresponding to PCs 2, 4, and 6 reveal the same
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regions identified in the somatomotor cortices using general linear model analysis of BOLD
time series for hand, foot, and tongue movements.

The input matrix B also captures the spatiotemporal relationship between the inputs across
different conditions. For instance, S9A Fig in S1 File shows that hand or feet movements are
associated with simultaneous positive and negative (e.g., inhibition or deactivation) inputs to
the contra- and ipsilateral somatomotor cortices, respectively. Fig 7 also shows that PCs 5, 1,
and 3 reveal the temporal order of inputs to visual, dorsal attention, and finally, somatomotor
cortices following the onset of visual cue. Note that the spatial and temporal profile of PC 5
demonstrates the inverse relationship between inputs to visual and somatomotor cortices. This
unexpected temporal profile contributes to the low similarity of PC 5 to task regressors in Fig
6D. We show that changing the delay between estimated inputs and task regressors changes
the coefficient patterns with significant loading (S10 Fig in S1 File). These results demonstrate
an early positive relationship of PC 5 input with visual cue blocks, followed by a later positive
(negative) relationship with left-hand movements (visual) blocks.

Finally, in Fig 6C we demonstrate that PCs 7, 8, and 9 are primarily associated with the
right foot movement blocks. However, the significantly smaller R” values of these PCs than
other PCs in Fig 6C indicates the lower similarity of corresponding estimated inputs’ temporal
profiles to those of task regressors. Closer examination of these inputs’ spatiotemporal profiles
reveals that in addition to changes related to left-hand movements, these PCs capture the rapid
sequence of inputs to frontal and somatomotor cortices following the motor task block’s offset
and the baseline (i.e., no task) onset (S11 Fig in S1 File). Together, these results suggest that an
LTI model of cortical dynamics can reveal the unknown spatiotemporal profiles of the BOLD
signal’s external task-related drivers.

We provide additional analysis and discussion on model parameters and their effect on the
reported results in the in S1 File document. We explored sparsity constraints on the system
and input parameters in SI5. S12 Fig in S1 File demonstrates that increasing the system matri-
ces’ sparsity reduces the model’s goodness-of-fit (measured using the AIC criterion). In the
same vein, the increased spatiotemporal sparsity of the inputs overall reduces the accuracy
(measured using the R value of the linear regression) of the estimated inputs (S13 Fig in S1
File). Nevertheless, estimated inputs’ group-level PCA reveals that the higher sparsity con-
straints can improve the accuracy of specific empirically identified input patterns (S14 Fig in
S1 File). In addition, we examined the effect of the estimation window’s size on the input’s
accuracy in SI6. These results show that a smaller estimation window (3 min) provide compa-
rable results to the full-length window, however overall it increases the accuracy of mean
inputs to many brain regions (S8 Fig in S1 File) and several main input patterns (S15 Fig in S1
File). Finally, we explored the sensitivity of the identified input patterns to the factorizations
method in the SI7. These results demonstrate that PCA decomposition of the model’s residuals
reveals the analogous primary input patterns (S16 Fig in S1 File) uncovered by our spatiotem-
poral regularization scheme.

2.7.4 Non-stationarity of inputs to resting-state networks. So far, we showed that adopt-
ing a time-invariant model of the intrinsic relationship between large-scale brain regions
allows us to extract the unknown external drivers of cortical dynamics. Our results demon-
strate that the resting-state paradigm serves as a viable option for a more accurate estimation
of internal system parameters. However, sensory and other extra-cortical inputs are still pres-
ent during resting-state scans, resulting in system parameters and input estimation errors.
Despite the estimation error in the external inputs’ profile, we hypothesize that quantifying the
non-stationarity of the estimated resting-state inputs provides information on the external fac-
tors that contribute to resting-state BOLD signal non-stationarities.
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Fig 7. Temporal and spatial profiles of estimated external inputs associated with visual cues. (A) Color-coded lines show the mean and standard
error (shaded area) of estimated inputs with the highest subject-level loadings for PCs 1 (green), 3 (orange), and 5 (blue). Time points with significant (¢
—test, p < 0.05, FDR corrected for multiple comparisons across time points) divergence from zero are marked with color-coded dots. The black and
dashed red lines show the visual cue and motor task blocks, respectively. Color-coded panels (B-D) show the ¢—test values of brain regions with
significant (t-test, p < 0.05, FDR corrected for multiple comparisons across ROIs) loadings on input matrix B rows corresponding to the

aforementioned PCs.

https://doi.org/10.1371/journal.pone.0257580.9007

We quantify estimated inputs’ non-stationarity for every brain region (i.e., B x U) from the
temporal fluctuations (i.e., standard deviation) of external inputs’ means, measured using a
sliding window. Fig 8 shows brain regions that exhibit significantly high input means’ fluctua-
tion across different sliding window sizes (see methods for details). We demonstrate the results
for sliding windows of 6, 24, and 50 samples (TR = 0.72 sec) lengths and half window-length
shifts. We also measure the non-stationary of external inputs during resting-state scans using
the nonlinear measure developed by [49] and find converging results (Fig 8B). We find several
brain regions within DMN consistently display high non-stationarity values. Statistical com-
parisons between the quantified non-stationarity of estimated inputs to identified brain
regions in Fig 8 reveal the significantly (Welch’s ¢-test, p < 0.05, Bonferroni corrected for mul-
tiple comparisons) higher non-stationarity of external inputs to identified DMN regions rela-
tive to several other resting-state networks (S17 Fig in S1 File). Together, these results reveal
that time-varying external inputs may partly contribute to the previously reported resting-state
BOLD signal’s non-stationary, and the LTI model offers an avenue to determine the spatio-
temporal profiles of these unknown external sources.

3 Discussion

Based on the theory of embodied cognition, the evolution and emergent function of the brain
can be best understood in the context of the body and its interactions with the environment
[51-54]. In this view, the information does not exist in an abstract form outside the agent,
instead, it is actively created through the agent’s physical interaction with the environment
[54]. Therefore, understanding the native structure of the external inputs to the brain, as well
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Fig 8. Non-stationarity of estimated external inputs over resting-state scans. (A) Brain overlays on top panels highlight regions with significantly (¢
— test, p < 0.05, FDR corrected for multiple comparisons) high normalized (z-scored over all brain regions) fluctuations (i.e., standard deviation) in the
normalized (z-score) estimated inputs’ means, measured using sliding windows (6, 24, and 50 samples window length, TR = 0.72 sec). (B) Brain
overlays on top panels highlight regions with significantly (¢ — test, p < 0.05, FDR corrected for multiple comparisons) high normalized (z-scored over
all brain regions) nonlinear non-stationarity index developed by [49], calculated from the normalized (z-score) estimated inputs. The color-coded
regions in the bottom plots in panels A and B highlight the allegiance of brain regions in top panels to the seven resting-state networks identified by
[50].

https://doi.org/10.1371/journal.pone.0257580.9008

as the interaction between the brain and its exogenous drivers, is germane to understanding
the functional dynamics of the embodied brain [55].

What are the external drivers of BOLD signal? Current theories suggest that cortical outputs
reflect changes in the balance between the strong recurrent local excitation and inhibition con-
nectivity, rather than a feedforward integration of weak subcortical inputs [56]. Changes in
this balance heavily affects the local metabolic energy demands and consequently the regula-
tion of cerebral blood flow and the BOLD signal, despite the net excitatory or inhibitory output
of the circuits [57]. Inhibition in principle can lead to both increases [57] and decreases [58-
60] in metabolic demands [61]. Moreover, cortical afferents and microcircuits can function as
drivers by transmitting information about the stimuli, or alternatively as modulators by modu-
lating the sensitivity and context-specificity of the response [62-64]. Excitatory sensory infor-
mation, transmitted mostly via glutamatergic or aspartergic drivers, combined with the strong
evoked recurrent GABAergic interneurons are a major part of neurotransmission dynamics,
which in turn affect the local cerebral blood flow (CBF) [57]. Likewise, regulation of cortical
excitability mediated by neuromodulatory neurotransmitters including acetylcholine [65],
norepinephrine [66-68], serotonin [65], and dopamine [69, 70] can also significantly effect
CBF and the BOLD signal.

What do input parameters of an LTI model capture in BOLD fMRI? We show that an LTI
system acts predominantly as a high-pass filter and highlights the rapid transient fluctuations
in the BOLD signal. We provide evidence that the influence of sensory inputs is identifiable in
the estimated inputs to sensory cortices. More importantly, the task-related changes that are
temporally decoupled from the sensory stimuli, such as the motor cortex’s activation following
the offset of visual cues and onset of behavioral outputs, are also captured as external inputs to
the LTI system.
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Prior research has reported brain-wide and heterogeneous task-related changes in the
BOLD signal power spectrum [10, 71, 72] and estimated system parameters [2, 73]. However,
we provide evidence that the time-varying unknown exogenous (i.e., extra-cortical) inputs also
likely contribute to non-stationarities in the cortical dynamics. Specifically, we demonstrate in
silico that determining the LTI system’s parameters from periods with unknown stimuli can
lead to high estimation errors in system and input parameters. We verify these observations
empirically by showing that LTI system parameters identified from resting-state, instead of
task BOLD time series, result in notably more accurate identification of unknown extra-corti-
cal inputs’ spatiotemporal profiles in task scans. Our results have implications for the common
interpretation of correlation-based functional connectivity changes as altered intrinsic rela-
tionships between regions. More importantly, our findings highlight the importance of model-
ing and interpreting the brain’s dynamic functional connectivity and non-stationarity as an
open system.

Can the brain during resting-state scans be fully described as a linear and time-invariant
system? Prior studies demonstrate that temporal fluctuations in the BOLD signal (< 0.1 Hz)
cannot be fully attributed to linear stochastic processes [74-76], and suggest that the nonline-
arities in the BOLD signal could be attributed to the presence of a strange attractor [75]. Addi-
tionally, other neuroimaging studies using paradigms such as “temporal summation” have
more directly probed the system and provide evidence of system nonlinearities [77-80].

Model-based approaches such as work by [80, 81] have concluded that nonlinear transduc-
tion of rCBF to BOLD is sufficient to account for the nonlinear behaviors observed in the
BOLD signal. However, care should be taken in the interpretation of these results as in the
temporal summation framework, where the profile of input is assumed to be known and is
approximated by an abstract stimulus representation. We believe our framework provides a
novel avenue for testing the system linearities through the examination of the estimated
unknown inputs in summation paradigms. Specifically, the delay between estimated and
known external inputs can be further leveraged to tease out the nonlinear components of
hemodynamic response function (e.g., vascular) from the neural impulse response function.

Stationary signals are characterized by time-invariant statistical properties, such as mean
and variance [82]. To date, several tests have been proposed to examine the non-stationarity of
BOLD time series and the presence of dynamic functional connectivity, including test statistics
based on the variance of the FC time series [83, 84], the FC time series’ Fourier transform [85],
multivariate kurtosis of time series [27, 28], non-linear test statistics [49], and wavelet-based
methods [29, 31], among others [32]. These methods commonly compare measured properties
between the time series of empirical data and a suitable surrogate or null time series that is
designed to lack time-varying properties through non-parametric resampling [86, 87], phase-
randomization [85, 88], or generative models [31, 49], and the choice of measured properties
and null models profoundly impact on the outcomes of stationarity tests in conflicting reports
on BOLD signal [27-30].

Notably, the presence of non-stationarity in the outputs does not directly imply the under-
lying system’s non-stationarity. An LTI system’s outputs, for instance, while receiving non-sta-
tionary external inputs, can also display time-varying properties. As mentioned earlier, using
internal system parameters of an LTI system estimated over resting-state scans enables more
accurate identification of exogenous inputs’ spatiotemporal profile task scans. These results
suggest that a large-scale stationarity model of the brain with time-varying external inputs can,
in theory, account for a large portion of the observed task-related changes in cortical dynamics.
It is worth noting that any possible task-related changes in the underlying system parameters
are also captured as external inputs in an LTI framework. Therefore, from the system identifi-
cation and model-fitting perspective, it is likely that a linear switching system with higher
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degrees of freedom would improve the fit. Beyond the goodness-of-fit of the model, care
should be taken in interpreting the epiphenomenal large-scale models’ parameters and their
changes at the micro-scale biophysical level.

However, the impetus for this work is to highlight the estimates’ notable sensitivity to the
unknown, and thus, unaccounted external inputs. More practically, when simulated with a
wideband unknown external inputs, our results suggest that an open LTI model estimated dur-
ing resting-state allows us to uncover the influence of these unknown drivers of BOLD dynam-
ics. Nevertheless, participants’ cortices receive external stimulation even during resting-state
scans, contributing to estimation inaccuracy and the system’s outputs’ non-stationarity. In this
work, we aim to disentangle the non-stationarity of the system from its outputs over resting-
state by examining estimated inputs’ non-stationarity. Our results show that external inputs’
non-stationarity over resting-state scans are spatially inhomogeneous, with identified DMN
regions showing the highest levels consistently across different analyses. These observations
are in line with prior reports of higher dynamic functional connectivity of these brain struc-
tures over rest [49]. The identified non-stationary inputs during resting-state scans also imply
that we should expect more error in the estimated spectral profile of the aforementioned
regions. Therefore, future work should explore leveraging other states of consciousness, such
as sleep with lower global cortical activity, to address this limitation. Despite the presence of
possible confounding factors such as unaccounted nonlinearities and non-stationarities in the
recording noise [89, 90], our framework and observations provide new insight into the exter-
nal drivers of cortical dynamics and factors that contribute to their non-stationarity. Recent
system-identification [91] and control-theoretic [92] work have also demonstrated the utility
of a stationary system in explaining BOLD dynamics. Together these findings pave the way for
principled model-based control of pathological brain dynamics, such as depression and
schizophrenia, using open-loop external or closed-loop neurofeedback stimulation.

Historically, a narrow band of slow frequencies between 0.01 to 0.1 Hz was thought to con-
tain information relevant to underlying neural activity, and that the higher frequency (> 0.1
Hz) BOLD activity considered mainly as an artifact [9, 93]. Our results also demonstrate that
the primary oscillatory modes of the LTT model of the resting-state BOLD display similar slow
frequencies heterogeneously over the brain. In addition, the hemodynamic response function
(HREF) is also expected to dampen the higher frequency neural activity significantly. More
recent evidence, however, portrays a broadband picture of BOLD signal fluctuations with fre-
quencies up to 0.25 Hz [10, 13, 94, 95] and even higher [14]. We also provide converging evi-
dence that despite the expected low-pass filtering of HRF, information about the stimulus-
related activity can still be extracted from the BOLD signal even as high as ~ 0.4 Hz. Future
work can leverage acquisition protocol with higher sampling rates than HCP and rapid stimuli
capable of inducing brain-wide activations to accurately delineate the inputs’ attenuation pro-
file by HRF at higher frequencies. In line with previous reports of intrinsic functional connec-
tivity networks, our clustering analysis reveals the low dimensionality of the system
eigenmodes as the eigenvectors can be roughly grouped in a small number of spatial patterns.
However, we show that depending on the task, the dimensionality of inputs can be high; for
example, in the motor task with multiple conditions, we identified task-specific inputs to dif-
terent ROIs across motor cortices. Future work should use our proposed framework to identify
the highest bound of input dimensionality using higher resolution parcellations or voxel-wise
modeling of the BOLD signal.

However, the HRF plays another critical role in biophysical models where it enables the
approximation of the latent neural states from the BOLD signal. This is one of the main limita-
tions of our simplified model, as it incorrectly assumes that the BOLD signal in one region
(instead of the underlying neural activity) can cause changes in the BOLD signal in the
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connected regions. This assumption for spatially inhomogeneous HRF functions can, in the-
ory, lead to incorrect identification of the external inputs’ focus and error in the direction and
speed of the interactions within functional networks. We believe the overlapping patterns of
inputs and the task activation maps identified using the conventional univariate general linear
model analysis suggest that the above-mentioned error is likely tolerable. To improve the esti-
mated unknown inputs’ accuracy, future work should leverage the formulated quantitative
spatiotemporal [81, 96-98] models, or the more recent models informed by the precise mecha-
nisms of neurovascular coupling [99]. Nevertheless, care should be taken in these or other
related deconvolution-based inferences [100-102], since as mentioned earlier, they rely on the
assumption of a known profile of HRF or inputs. Future work can also leverage neural adapta-
tion paradigms to influence the neural response timing and help tease out the neural and vas-
cular components’ contributions to the modeled inputs. Comparing our identified inputs with
those extracted from other neuroimaging modalities such as Magnetoencephalography (MEG)
that are more direct measurements of the underlying neural activity will also us to further
decouple the aforementioned mechanisms.

Structured recording noise such as autocorrelated noise can negatively impact the modeled
system [89, 90], and the estimated input. Although we have included global mean signal
regression (GSR) [43] as a preprocessing step to account for the shared global noise that is
present in many of the functional networks [103-105], our model is unable to account for
other unknown structured (e.g., autocorrelated) and time-varying recording noise [89, 90].
Moreover, GSR may also introduce artifact, as in addition to the shared noise, it also removes
any global activation patterns (e.g., vigilance [106] or arousal [107]) and can alter the correla-
tion structure. These limitations are the source of ongoing controversy around this noise
reduction method [108]. Having weighed the potential drawbacks of GSR against the major
concerns regarding the significant global artifacts such as the cardiac and respiratory noise, we
adopted this preprocessing step. Nevertheless, it would be beneficial to investigate the spectral
profile of the global signal and the impact of GSR on the estimated system and inputs’ spectral
characteristics.

One of the current limitations of our proposed framework is that the estimated inputs’
accuracy depends on the internal and recording noise levels. We show that group-level analysis
and repeated measurement designs are effective strategies to increase signal-to-recording
noise and to increase the estimated inputs” accuracy. In addition, although we can not accu-
rately tease out the contributions of internal noise from other sources of noise, our simulations
and experimental results suggest lower levels of internal noise relative to external drivers in
task fMRI. We draw this conclusion based on the relatively large input estimation errors asso-
ciated with system parameters identified during external stimulation.

We used individual subjects’ resting-state datasets to identify the system parameters for
uncovering the unknown inputs from the BOLD signal. Although beyond the scope of our
current work, it is critical to comprehensively examine the identifiability of the estimated sys-
tem parameters across different scanning sessions, types, and individuals. Subsequently, it
would be interesting to explore further the extent to which our proposed system identification
framework can highlight the shared features across subjects or increase the accuracy of the
subject-specific mapping of spatiotemporal dynamics.

Finally, it is worth highlighting that model-based data-driven methods such as our pro-
posed framework and the hypothesis-driven methods such as DCM [1] are complementary
approaches, suited for interrogation of different aspects of system and output dynamics. For
instance, DCM can also be leveraged fruitfully for a more accurate estimation of the system,
and consequently, external input parameters using highly controlled experimental designs
with known external input profiles. Though, as mentioned before, care should be taken in the
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interpretation of the results produced by methods that incorporate priors, as the boxcar regres-
sors commonly used to model the profile of external inputs are merely abstractions and do not
account for other possible factors such as anticipatory responses, adaptation, or other
unknown drivers that shape the profile of external inputs. However, data-driven approaches
are particularly advantageous when the brain is driven by extensive complex inputs, for
instance, during naturalistic stimuli (e.g., watching a movie), or in general, if we lack a priori
information or hypothesis on the structure of external inputs—for instance, during the healthy
resting-state or pathological brain activity such as epileptic discharges [109].

4 Conclusion

We show that the proposed framework provides an avenue to uncover the structure of the
unknown drivers of BOLD signal fluctuations and shines light on factors that contribute to its
apparent non-stationarities. However, more significantly, our results highlight the importance
of modeling and interpreting the brain’s dynamic functional connectivity as an open system.
Broadly, our approach provides a framework for understanding the brain’s large-scale func-
tional dynamics and non-stationarities, mechanistically via the modeled system and its time-
varying drivers.
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