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Abstract—Fractional-order dynamical networks are in-
creasingly being used to model and describe processes
demonstrating long-term memory or complex interlaced de-
pendencies among the spatial and temporal components
of a wide variety of dynamical networks. Notable examples
include networked control systems or neurophysiological
networks which are created using electroencephalographic
(EEG) or blood-oxygen-level-dependent data. As a result,
the estimation of the states of fractional-order dynamical
networks poses an important problem. To this effect, this
article addresses the problem of minimum-energy state es-
timation for discrete-time fractional-order dynamical net-
works, where the state and output equations are affected
by an additive noise that is considered to be deterministic,
bounded, and unknown. Specifically, we derive the corre-
sponding estimator and show that the resulting estimation
error is exponentially input-to-state stable with respect to
the disturbances and to a signal that is decreasing with
the increase of the accuracy of the adopted approxima-
tion model. An illustrative example shows the effectiveness
of the proposed method on real-world neurophysiological
networks. Our results may significantly contribute to the
development of novel neurotechnologies, particularly in the
development of state estimation paradigms for neural sig-
nals such as EEG, which are often noisy signals known to
be affected by artifacts not having any particular stochastic
characterization.

Index Terms—Biological networks, cyberphysical sys-
tems, decision or estimation theory, other applications.
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I. INTRODUCTION

I
N A wide variety of dynamical networks, it is often seen

that a Markovian dependence of the current state on only

the previous state is insufficient to describe the long-term be-

havior of the considered systems [1]. This is due to the fact

that real-world networks often demonstrate behaviors in which

the current system state is dependent on a combination of

several past states or the entire gamut of states seen so far in

time. Recent works suggest that discrete-time fractional-order

dynamical networks (DT-FODNs) evince great success in accu-

rately modeling dynamics that show evidence of nonexponential

power-law decay in the dependence of the current state on

past states, systems exhibiting long-term memory or fractal

properties, or dynamics where there are adaptations in multiple

time scales [2], [3], [4], [5], [6]. These networks include biolog-

ical swarms [7]; networked control systems [8], [9], [10]; and

cyber-physical systems [11] to mention a few. Some of these re-

lationships have also been explored in the context of neurophys-

iological networks constructed from electroencephalographic

(EEG), electrocorticographic, or blood-oxygen-level-dependent

data [12], [13].

On the other hand, the problem of state estimation entails

the retrieval of the internal state of a given network, often from

incomplete or partial measurements of the network’s inputs and

outputs. Solving this problem is of utmost importance, since, in

the majority of real-world networks exchanging measurement

information with each other, the network’s states are often not

directly measurable, and a knowledge of the states is needed

to, e.g., collectively stabilize the system using state feedback.

Given the fundamental nature of the problem, the existence of

prior art in the context of state estimation of continuous as well as

discrete-time fractional-order systems is no surprise [14], [15],

[16], [17], [18], [19], [20], [21], [22].

Nonetheless, in practice, the assumptions in Kalman-like

filter formulations can be restrictive and not suitable for some

applications, as they assume Gaussian additive process and

measurement noises, which implies a uniform prevalence in

the power spectrum. In particular, in the case of EEG signals,

there is evidence that the former are prone to disturbances that

are noncerebral in origin, which are known as artifacts in the

neuroscience literature [23]. These artifacts do not follow any

particular stochastic characterization. Due to this reason, we

propose the design of a minimum-energy estimation (MEE)

framework for DT-FODNs, where we assume that the state

and output equations are affected by an additive disturbance
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and noise, respectively, that is considered to be deterministic,

bounded, and unknown. First proposed by Mortensen [24] and

later refined by Hijab [25], MEEs produce an estimate of the

system state that is the “most consistent” with the dynamics and

the measurement updates of the system [26], [27], [28], [29],

[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41].

To summarize, the main contribution of this article is a MEE

procedure to estimate the states of a DT-FODN. In particular, we

prove the exponential input-to-state stability of the estimation

error when the aforementioned estimator is used to estimate the

states of a DT-FODN. We also provide evidence of the efficacy

of our approach via a pedagogical example showing the suc-

cessful estimation of the states of a neurophysiological network

constructed using EEG data. Our results provide a structured

approach to estimating the states of a DT-FODN in the presence

of deterministic and bounded, but unknown disturbances, thus,

paving a path for state estimation in neural signals such as EEG,

in the presence of noncerebral artifacts.

Notation: The symbols R,R+,Z,N, and N
+ denote the set of

reals, positive reals, integers, non-negative integers, and positive

integers, respectively. Additionally, R
n and R

n×m represent the

set of column vectors of size n and n×m matrices with real

entries and I denotes an identity matrix of appropriate order.

For a given square matrix M ∈ R
n×n, the notation M � 0

(respectively, M � 0) indicates that the matrix M is positive

semidefinite (respectively, negative semidefinite), i.e., vTMv ≥
0 (respectively, vTMv ≤ 0) for any v ∈ R

n. Furthermore, we

use M−T to denote the inverse of MT. We also write A � B and

A � B to mean that the matrix A−B is positive semidefinite

and negative semidefinite, respectively. The Euclidean norm is

denoted by ‖ · ‖.

II. PROBLEM FORMULATION

In this section, we introduce DT-FODN and formulate the

minimum-energy state estimation problem for DT-FODN.

A. Continuous-Time and DT-FODNs

The concept of fractional-order dynamical networks arises

from the concept of a fractional-order derivative. There are two

commonly used (and equivalent) definitions of a fractional-

order derivative, the Caputo and the Riemann–Liouville defi-

nitions [42]. Caputo’s definition of a fractional derivative is as

follows:

∆αiσ(t) =
1

Γ(m− αi)

∫ t

0

∆mσ(τ)

(t− τ)αi+1−m
dτ (1)

with

Γ(αi) =

∫ ∞

0

e−τ ταi−1 dτ (2)

where Γ(αi) denotes the Gamma function [43], αi ∈ R
+, i ∈

{1, . . . , n} is the fractional exponent, and m ∈ Z is the first

integer not less than αi for all i, i.e., m = 	αi
 for all i. With the

above ingredients, a continuous-time fractional-order dynamical

network is given by

∆αx(t) = Ax(t) +Bu(t), (3a)

y(t) = Cx(t) +Du(t) (3b)

with α = [α1, . . . , αn]
T.

Consider a left-bounded sequence {x[k]}k∈Z over k, i.e.,

with lim supk→−∞ ‖x[k]‖ < ∞. Then, for any α ∈ R
+, the

Grünwald–Letnikov fractional-order difference is defined as

∆αx[k] :=

∞∑

j=0

cαj x[k − j], cαj = (−1)j
(
α

j

)

,

(
α

j

)

=

{

1 if j = 0,
∏j−1

i=0
α−i
i+1 = Γ(α+1)

Γ(j+1)Γ(α−j+1) if j > 0
(4)

for all j ∈ N. The summation in (4) is well defined from the

uniform boundedness of the sequence {x[k]}k∈Z and the fact

that |cαj | ≤
αj

j! , which implies that the sequence {cαj }j∈N is

absolutely summable for any α ∈ R
+ [44], [45].

With the above ingredients, a DT-FODN with additive distur-

bance can be described, respectively, by the state evolution and

output equations

l∑

i=1

Ai∆
aix[k + 1] =

r∑

i=1

Bi∆
biu[k] +

s∑

i=1

Gi∆
giw[k],

(5a)

z[k] = C ′
kx[k] + v′[k] (5b)

with the variablesx[k] ∈ R
n,u[k] ∈ R

m, andw[k] ∈ R
p denot-

ing the state, input, and disturbance vectors at time step k ∈ N,

respectively. The scalars ai ∈ R
+ with 1 ≤ i ≤ l, bi ∈ R

+ with

1 ≤ i ≤ r, and gi ∈ R
+ with 1 ≤ i ≤ s are the fractional-order

coefficients corresponding, respectively, to the state, the input,

and the disturbance. The vectors z[k], v′[k] ∈ R
q denote the

output and measurement disturbance at time step k ∈ N, re-

spectively.

We assume that the (unknown but deterministic) disturbance

vectors are bounded as

‖w[k]‖ ≤ bw, ‖v
′[k]‖ ≤ bv′ , k ∈ N (6)

for some scalars bw, bv′ ∈ R
+. Notice that the assumption that

the disturbance vectors are deterministic, bounded, unknown,

and not possessing any particular stochastic characterization, is

distinctly different from the assumptions one makes in deriving

the Kalman filter, in which case, the disturbances are assumed

to be additive, white, and Gaussian [46], which would not be

satisfied when we are dealing with a setting characterized by the

absence of uniform prevalence of frequency components in the

power spectral density of the disturbances.

We also assume that the control inputu[k] is known for all time

steps k ∈ N. We denote by x[0] = x(0) the initial condition of

the state at time k = 0. In the computation of the fractional-order

difference, we assume that the system is causal, i.e., the state,

input, and disturbances are all considered to be zero before the

initial time (i.e.,x[k] = 0, u[k] = 0, andw[k] = 0 for all k < 0).

In addition, the matrices Ai ∈ R
n×n, 1 ≤ i ≤ l denote the

(possibly time-varying) spatial dependencies between the state

variables at different time lags, the matrices Bi ∈ R
n×m, 1 ≤

i ≤ r denote the dependency of which (known) input variables
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are being actuated at different time steps, and the matrices Gi ∈
R

n×p, 1 ≤ i ≤ s are the disturbances acting as (unknown) inputs

into the system at a particular time instant.

Given that we have determined the nature of the deterministic

but unknown process and output uncertainties, we can now

focus on trying to minimize the impact of these uncertainties,

as well as the uncertainty with respect to the unknown initial

state x[0]. Henceforth, we will focus on trying to minimize

the objective functionJ (x[0], {w[i]}N−1
i=0 , {v′[j]}Nj=1), for some

N ∈ N, subject to the evolution of the state and output trajecto-

ries given by (5a) and (5b). There are a wide variety of choices

we can consider for the objective function J (·, ·, ·), but from a

computational perspective, and considering an association with

the process of minimizing an energy functional, we take the ob-

jective function to consist of quadratic terms with respect to the

components pertaining to the process and output disturbances

as well as the uncertainty pertaining to the initial state.

With the above ingredients, we seek to solve the following

problem in this article.

Problem 1: Consider the quadratic weighted least-squares

objective function

J
(
x[0], {w[i]}N−1

i=0 , {v′[j]}Nj=1

)
=

N−1∑

i=0

w[i]TQ−1
i w[i]

+
N∑

j=1

v′[j]TR−1
j v′[j] + (x[0]− x̂0)

TP−1
0 (x[0]− x̂0) (7)

subject to the constraints

l∑

i=1

Ai∆
aix[k + 1] =

r∑

i=1

Bi∆
biu[k] +

s∑

i=1

Gi∆
giw[k] (8a)

and

z[k] = C ′
kx[k] + v′[k] (8b)

for someN ∈ N, with the weighting matricesQi (0 ≤ i ≤ N −
1), Rj (1 ≤ j ≤ N), andP0 chosen to be symmetric and positive

definite, and x̂0 chosen to be the a priori estimate of the system’s

initial state. The MEE procedure seeks to solve the following

optimization problem:

minimize
{x[k]}N

k=0
,{w[i]}N−1

i=0
,{v′[j]}N

j=1

J
(
x[0], {w[i]}N−1

i=0 , {v′[j]}Nj=1

)

subject to (8a) and (8b)
(9)

for some N ∈ N.

Additionally, we consider the following mild technical as-

sumption to hold.

Assumption 1: The matrix
∑l

i=1 Ai is invertible.

III. MEE FOR DISCRETE-TIME FRACTIONAL-ORDER

DYNAMICAL NETWORKS

In order to derive the solution to Problem 1, we will first

start with some alternative formulations of the DT-FODN and

relevant definitions that will be used in the sequel. Then, we

present the solution in Section III-A and in Section III-B we

provide some additional properties of the derived solution, i.e.,

the exponential input-to-state stability of the estimation error.

In Section III-D, we present a practical discussion of the results

obtained in the context of DT-FODN. All proofs are relegated

to the Appendix.

We start by considering a truncation of the last v tem-

poral components of (5a), which we will refer to as the v-

approximation for the DT-FODN. That being said, we note

that using Assumption 1, the DT-FODN model in (5a) can be

equivalently written as

x[k+1]=
∞∑

j=1

Ǎjx[k−j + 1]+
∞∑

j=0

B̌ju[k−j]+
∞∑

j=0

Ǧjw[k−j]

(10)

where Ǎj = −Â−1
0 Âj , B̌j = Â−1

0 B̂j , and Ǧj = Â−1
0 Ĝj with

Âj =
∑l

i=1 Aic
ai

j , B̂j =
∑r

i=1 Bic
bi
j , and Ĝj =

∑s
i=1 Gic

gi
j .

Notice that if the network is intrinsically linear time-invariant

(LTI), then, a suitable choice of zero fractional exponents would

seamlessly model the LTI dynamics. Nonetheless, we obtain

an infinite-dimensional linear system due to the presence of

the infinite sum in (10). However, the entirety of the dynamics

admits a compact abstraction using just the parameters ai and

Ai, 1 ≤ i ≤ l. Furthermore, for any positive integer v ∈ N
+,

the DT-FODN model in (5a) can be recast as

x̃[k + 1] = Ãvx̃[k] + B̃vu[k] + G̃vr[k], x̃[0] = x̃0,

(11a)

y[k + 1] = Ck+1x̃[k + 1] + v[k + 1] (11b)

where

r[k] =
∞∑

j=v+1

Ǎjx[k − j + 1] +
∞∑

j=v+1

B̌ju[k − j]

+

∞∑

j=0

Ǧjw[k − j] (12)

with the augmented state vector x̃[k] = [x[k]T, . . . , x[k − v+
1]T, u[k − 1]T, . . . , u[k − v]T]T ∈ R

v×(n+m), and appropriate

matrices Ãv, B̃v, and G̃v, where x̃0 = [xT
0, 0, . . . , 0]

T denotes

the initial condition. y[k] represents the output and the matrix

Ck represents the scaling between the states and the outputs,

with v representing the temporal memory dependency, the de-

pendency being retained for the last v temporal components.

The matrices Ãv and B̃v are formed using the terms {Ǎj}1≤j≤v

and {B̌j}1≤j≤v, while the remaining terms {Ǧj}1≤j<∞ and the

state and input components not included in x̃[k] are absorbed

into the term G̃vr[k]. Furthermore, we refer to (11a) as the

v-approximation of the DT-FODN presented in (5a).

A. Minimum-Energy Estimator

First, let us consider the quadratic weighted least-squares

objective function

J
(
x̃[0], {r[i]}N−1

i=0 , {v[j]}Nj=1

)
=

N−1∑

i=0

r[i]TQ−1
i r[i]
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+

N∑

j=1

v[j]TR−1
j v[j] + (x̃[0]− x̂0)

TP−1
0 (x̃[0]− x̂0) (13)

subject to the constraints

x̄[k + 1] = Ãvx̄[k] + B̃vu[k] + G̃vr̄[k], (14a)

y[k + 1] = Ck+1x̄[k + 1] + v̄[k + 1] (14b)

for some N ∈ N. The weighting matrices Qi (0 ≤ i ≤ N − 1)
and Rj (1 ≤ j ≤ N) are chosen to be symmetric and positive

definite. The term x̂0 denotes the a priori estimate of the (un-

known) initial state of the system, with the matrix P0 being

symmetric and positive definite.

Subsequently, to construct a minimum-energy estimator for

the system (11), we then consider the weighted least-squares

optimization problem

minimize
{x̄[k]}N

k=0
,{r̄[i]}N−1

i=0
,{v̄[j]}N

j=1

J
(
x̃[0], {r[i]}N−1

i=0 , {v[j]}Nj=1

)

subject to (14a) and (14b)
(15)

for some N ∈ N. The following theorem then certifies the

solution of the MEE problem posed in (15).

Theorem 1: Denote by x̂[k] the state vector that corresponds

to the solution of the optimization problem (15). Then, x̂[k]
satisfies the recursion

x̂[k + 1] = Ãvx̂[k] + B̃vu[k] +Kk+1 (y[k + 1]

−Ck+1

(

Ãvx̂[k] + B̃vu[k]
))

, 0 ≤ k ≤ N − 1 (16)

with initial conditions specified for x̂0 and {u[j]}kj=0, and with

the update equations

Kk+1 = Mk+1C
T
k+1

(
Ck+1Mk+1C

T
k+1 +Rk+1

)−1
, (17a)

Mk+1 = ÃvPkÃ
T
v
+ G̃vQkG̃

T
v

(17b)

and

Pk+1 = (I −Kk+1Ck+1)Mk+1(I −Kk+1Ck+1)
T

+Kk+1Rk+1K
T
k+1 = (I −Kk+1Ck+1)Mk+1 (17c)

with symmetric and positive definite P0.

Proof: The proof of Theorem 1 follows directly from [28],

Ths. 2.3 and 2.4], which, in turn, follow from formalizing

the properties of the discrete-time algebraic Riccati equation

(DARE) [47] – see, for instance, in [28], Lemmas 4.3–4.7,

Proposition 4.8]. Broadly speaking, the key steps of the proof

can be structured as follows. We first consider a single-stage

state transition of the system in (14) and, then, sequentially,

course through the remaining state transitions. Then, the iterative

closed-form recursions in (16) and (17) are obtained using

the principle of feedback invariance [48] and the minimum-

energy estimator for discrete-time LTI systems [28], since the

v-approximated DT-FODN in (11a) fits the latter description.�

In Theorem 1, the dynamics of the recursion in (16) (with

the initial conditions on x̂0 and the values of {u[j]}kj=0 being

known) along with the update equations (17) together solve

Problem 1 completely. It is interesting to note here that the output

term y[k + 1] presented in (14b) and (16) is the output of the

v-approximated system (11), which, in turn, is simply a subset of

the outputs z[k + 1] obtained from (5b), truncated v time steps in

the past, provided v[k] and Ck are formed from the appropriate

blocks of v′[k] and C ′
k for all k ∈ N.

In what follows, we show that given the v-approximation out-

lined in (11a), the evolution of the Lyapunov equation admits a

solution over time, by establishing the exponential input-to-state

stability of the estimation error.

B. Exponential Input-to-State Stability of the Estimation
Error

In order to prove the exponential input-to-state stability of

the MEE error, we need to consider the following mild technical

assumptions:

Assumption 2: There exist constants α, α, β, γ ∈ R
+ such

that

αI � ÃvÃ
T
v
� αI, G̃vG̃

T
v
� βI, and CT

kCk � γI (18)

for all k ∈ N.

First, notice that the state transition matrix for the dynamics

in (11a) is given by

Φ(k, k0) = Ã
(k−k0)
v , with Φ(k0, k0) = I (19)

for all k ≥ k0 ≥ 0. We also consider the discrete-time control-

lability Gramian associated with the dynamics (11a) described

by

Wc(k, k0) =
k−1∑

i=k0

Φ(k, i+ 1)G̃vG̃
T
v
ΦT(k, i+ 1) (20)

and the discrete-time observability Gramian associated with

(11a) to be

Wo(k, k0) =
k∑

i=k0+1

ΦT(i, k0)C
T
i CiΦ(i, k0) (21)

for k ≥ k0 ≥ 0. We also make the following assumptions re-

garding complete uniform controllability and complete uniform

observability of the v-approximated system in (11a).

Assumption 3: The v-approximated system (11a) is com-

pletely uniformly controllable, i.e., there exist constants δ ∈ R
+

and Nc ∈ N
+ such that

Wc(k +Nc, k) � δI (22)

for all k ≥ 0.

Assumption 4: The v-approximated system (11a) is com-

pletely uniformly observable, i.e., there exist constants ε ∈ R
+

and No ∈ N
+ such that

Wo(k +No, k) � εΦT(k +No, k)Φ(k +No, k) (23)

for all k ≥ 0.

Next, we also present an assumption certifying lower and

upper bounds on the weight matrices Qk and Rk+1 in (13).

Assumption 5: Without loss of generality, we assume that

the weight matrices Qk and Rk+1 satisfy

ϑI � Qk � ϑI and ρI � Rk+1 � ρI (24)
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for all k ≥ 0 and constants ϑ, ϑ, ρ, ρ ∈ R
+.

1) Bounds on the Covariance Matrix Pk: In this section,

we establish lower and upper bounds for the matrix Pk, which

will be required in Section III-B2, where we use an approach

using Lyapunov functions in order to show that the estimation

error is exponentially input-to-state stable.

Lemma 1: Given Assumptions 2 and 3 and the constant π ∈
R

+, we have that

Pk � π(Nc)I (25)

holds for all k ≥ Nc.

Lemma 2: Given Assumptions 2 and 4 and the constant π ∈
R

+, we have that

Pk � π(No)I (26)

holds for all k ≥ No.

2) Exponential Input-to-State Stability of the Estimation

Error: We start with the MEE error e[k], given by

e[k] = x̂[k]− x̃[k]. (27)

Next, we certify that the estimation error associated with the

MEE process is exponentially input-to-state stable.

Theorem 2: Under Assumptions 2, 3, and 4, there exist

constants σ, τ, χ, ψ ∈ R
+ with τ < 1 such that the estimation

error e[k] satisfies

‖e[k]‖ ≤ max

{

στk−k0‖e[k0]‖, χ max
ko≤i≤k−1

‖r[i]‖,

ψ max
ko≤j≤k−1

‖v[j + 1]‖

}

(28)

for all k ≥ k0 ≥ max{Nc, No}.

Note that the above result provides us with theoretical guaran-

tees to obtain an estimate of the system state that is the most con-

sistent with the dynamics and the measurement updates of the

system in the context of DT-FODNs. In particular, in the context

of designing novel neurotechnologies, we will see an application

of this result in estimating the states of real-life biological signals

modeled using DT-FODNs, such as EEG signals, presented in

Section III-D. Furthermore, the above input-to-state stability

result has important consequences in the study of complex

interconnections of networked systems in which our minimum-

energy estimator framework constitutes one particular block in

a larger chain of blocks—see, for instance [49] and [50].

C. Discussion

It is interesting to note that the bound on the estimation error

e[k] in (28) actually depends on ‖r[i]‖, where k0 ≤ i ≤ k − 1
for all i ∈ N. In fact, a distinguishing feature of DT-FODN is

the presence of a finite nonzero disturbance term in the input-to-

state stability bound of the tracking error when tracking a state

other than the origin. This disturbance is dependent on the upper

bounds on the nonzero reference state being tracked as well as the

input. While the linearity of the Grünwald–Letnikov fractional-

order difference operator allows one to mitigate this issue in

the case of tracking a nonzero exogenous state by a suitable

Fig. 1. Distribution of the sensors for the measurement of EEG data is
shown on the left. The channel labels are shown along with their corre-
sponding numbers and the selected channels over the motor cortex are
shown in red. The corresponding network formed by the EEG sensors
is shown on the right.

change of state and input coordinates, this approach is not one

we can pursue in this article, since the state we wish to estimate

is unknown. However, it can be shown that as the value of v

in the v-approximation increases, the upper bound associated

with‖r[i]‖decreases drastically since thev-approximation gives

us progressively better representations of the unapproximated

system. This further implies that ‖r[i]‖ in (28) stays bounded,

with progressively smaller upper bounds associated with ‖r[i]‖
(and hence, ‖e[k]‖) with increasing v.

Last, the estimation error associated with the MEE process

in (27) is defined in terms of the state of the v-approximated

system x̃[k]. In reality, as detailed above, with larger values

of v, the v-approximated system approaches the real network

dynamics, and, thus, we obtain an expression for the estimation

error with respect to the real system in the limiting case, where

the input-to-state stability bound presented in Theorem 2 holds.

D. Illustrative Example

In this section, we consider the performance of the MEE

paradigm on real-world neurophysiological networks consid-

ering EEG data. Specifically, we use 150 noisy measurements

taken from 4 channels of a 64-channel EEG signal which records

the brain activity of subjects, as shown in Fig. 1. The subjects

were asked to perform a variety of motor and imagery tasks,

and the specific choice of the 4 channels was dictated due

to them being positioned over the motor cortex of the brain,

and, therefore, enabling us to predict motor actions such as the

movement of the hands and feet. The data were collected using

the BCI2000 system with a sampling rate of 160 Hz [51], [52].

The spatial and temporal parameter components of the DT-

FODN assumed to model the original EEG data were iden-

tified using the methods described in [53]. The identification

process is data driven and is done for the overall DT-FODN.

The process to identify the spatial and temporal parameters

of the DT-FODN is sequential, with a wavelet-like approach
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TABLE I
MEAN ± STANDARD DEVIATION FOR THE ESTIMATION ERROR OF EACH CHANNEL FOR DIFFERENT VALUES OF THE TEMPORAL MEMORY DEPENDENCY

PARAMETER v

Fig. 2. Comparison between the measured output of the v-augmented
system (with v = 2) versus the estimated output of a minimum-energy
estimator implemented on the same, in the presence of process and
measurement noises for 4 channels of a 64-channel EEG signal.

Fig. 3. Comparison between the measurement error of the v-
augmented system (with v = 2) versus the estimation error of a
minimum-energy estimator implemented on the same, in the presence
of process and measurement noises for 4 channels of a 64-channel EEG
signal.

being used to estimate the temporal parameters, followed by

least squares to estimate the spatial parameters. It is relevant

to mention here that although this method has demonstrated

good results in practice, the identification of fractional-order

systems remains an underexplored area in general. Nonetheless,

from an analytical perspective it is possible to perform a bilevel

iterative scheme to estimate the spatial and temporal parame-

ters of a fractional-order system – see details in [54]. Using

the aforementioned approach, the fractional-order coefficients

are identified to be a = [0.9211, 0.9655, 0.9620, 0.8821]T. The

matrices Bi = [1 1 1 1]T for all i.

The results of our approach, considering different values of v,

are shown in Figs. 2 and 3 (for v = 2), Figs. 4 and 5 (for v = 10),

and Figs. 6 and 7 (forv = 20), which show, respectively (for each

Fig. 4. Comparison between the measured output of the v-augmented
system (with v = 10) versus the estimated output of a minimum-energy
estimator implemented on the same, in the presence of process and
measurement noises for 4 channels of a 64-channel EEG signal.

Fig. 5. Comparison between the measurement error of the v-
augmented system (with v = 10) versus the estimation error of a
minimum-energy estimator implemented on the same, in the presence
of process and measurement noises for 4 channels of a 64-channel EEG
signal.

value of v), the comparison between the measured output of the

network with noise and the estimated response obtained from

the minimum-energy estimator, and also the juxtaposition of the

measurement error and the estimation error of the MEE process.

Additionally, we also present in Table I the means and standard

deviations for the estimation error for each channel for various

values of the temporal dependency parameter v. We find that

the minimum-energy estimator is successfully able to estimate

the states in the presence of noise in both the dynamics and the

measurement processes.

We also note from the Figs. 2 and 3 that when v = 2, we get

comparatively larger estimation errors associated with the last

50 or so samples of Channel 4, and that this behavior can be

mitigated by increasing the value of v, e.g., by choosing v = 10

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on June 27,2023 at 16:27:27 UTC from IEEE Xplore.  Restrictions apply. 



232 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 1, MARCH 2023

Fig. 6. Comparison between the measured output of the v-augmented
system (with v = 20) versus the estimated output of a minimum-energy
estimator implemented on the same, in the presence of process and
measurement noises for 4 channels of a 64-channel EEG signal.

Fig. 7. Comparison between the measurement error of the v-
augmented system (with v = 20) versus the estimation error of a
minimum-energy estimator implemented on the same, in the presence
of process and measurement noises for 4 channels of a 64-channel EEG
signal.

or v = 20. This is in line with the discussion in Section III-C, and

choosing a larger value of v can always, in practice, provide us

with better estimation performances, as seen from this example.

IV. CONCLUSION

In this article, we introduced minimum-energy state es-

timation for DT-FODNs. In particular, the aforementioned

minimum-energy estimator is capable of providing an estimate

of the unknown states of a DT-FODN while assuming that the

associated process and measurement noises are deterministic,

bounded, and unknown in nature. We proved that the MEE

error is exponentially input-to-state stable and illustrated its

performance on real-world neurophysiological EEG networks,

thus, providing a general framework to estimate the states of

neural data modeled by DT-FODNs.

Future work will focus on the construction of a resilient and

attack-resistant version of the minimum-energy estimator, to

take into consideration adversarial attacks or artifacts associ-

ated with the measurement process, since, the former approach

is consistent with the fact that adversarial attacks on sensors

often do not follow any particular dynamical or stochastic

characterization.

In addition, it is also important to emphasize the observation

that although the estimation accuracy increases with increasing

values of the temporal memory dependency v, it only does

so up to a certain value. Further increasing v beyond that

value leads to no further gains when it comes to the results,

thus preventing us from the hassles of dealing with infinite

memory. Nonetheless, it is important to emphasize that better

understanding the relationship between the dimensions of the

state space and the specific values of the fractional coefficients

may very well change the value of v that leads to good results.

The precise nature of this relationship will be the subject of

future work.

APPENDIX

Proof of Lemma 1 Suppose Lk+1 is an arbitrary matrix. We

can write
(
Pk+1 + Lk+1L

T
k+1

)−1
=

((
M−1

k+1 + CT
k+1R

−1
k+1Ck+1

)−1

+Lk+1L
T
k+1

)−1

(29)

where we use the equation

P−1
k+1 = M−1

k+1 + CT
k+1R

−1
k+1Ck+1 (30)

which can be obtained from (17c) using the Woodbury iden-

tity [55], eq. (157)]. Notice that the invertibility of Pk and Mk+1

for any k ≥ 0 is a consequence of (17), Assumptions 2 and 5,

and the fact that P0 is positive definite.

Subsequently, using the bounds in Assumptions 2 and 5, and

defining β1 = γ
ρ

, we have

(
Pk+1 + Lk+1L

T
k+1

)−1

�
((

M−1
k+1 + β1I

)−1
+ Lk+1L

T
k+1

)−1

(†)
=

(

1

β1
I −

1

β2
1

(

Mk+1 +
1

β1
I

)−1

+ Lk+1L
T
k+1

)−1

(‡)
=

1

β2
1

(
1

β1
I + Lk+1L

T
k+1

)−1

×

(

Mk+1 +
1

β1
I −

1

β2
1

(
1

β1
I + Lk+1L

T
k+1

)−1
)−1

×

(
1

β1
I + Lk+1L

T
k+1

)−1

+

(
1

β1
I + Lk+1L

T
k+1

)−1

(
)
=

1

β2
1

(

β1I − β2
1Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1

)

×
(

Mk+1 + Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1

)−1

×
(

β1I − β2
1Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1

)

+ β1I

− β2
1Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1
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(
)

� 2β2
1Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1

×
(

Mk+1 + Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1

)−1

× Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1

+ 2
(

Mk+1 + Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1

)−1

+ β1I − β2
1Lk+1

(
I + β1L

T
k+1Lk+1

)−1
LT
k+1

� 2(Mk+1 + α1,k+1Lk+1L
T
k+1)

−1 + 2β1I (31)

where α1,k+1 = ‖I + β1L
T
k+1Lk+1‖

−1. The equalities (†), (‡),
and (
) in (31) are obtained via three successive applications of

the Woodbury identity and the inequality (
) in (31) is obtained

by using the Young-like inequality

(f(v) + g(v))T(f(v) + g(v)) ≤ 2fT(v)g(v) + 2 gT(v)f(v)
(32)

with f(v) = (Mk+1 + Lk+1(I + β1L
T
k+1Lk+1)

−1LT
k+1)

− 1

2 v

and g(v)=− β1(Mk+1+Lk+1(I + β1L
T
k+1Lk+1)

−1LT
k+1)

− 1

2

Lk+1(I + β1L
T
k+1Lk+1)

−1LT
k+1v.

Plugging in the value ofMk+1 from the update equations (17),

we have

(
Pk+1 + Lk+1L

T
k+1

)−1
� 2β1I + 2Ã−T

v

×
(

Pk + Ã−1
v

(

G̃vQkG̃
T
v
+ α1,k+1Lk+1L

T
k+1

)

Ã−T
v

)−1

Ã−1
v
.

(33)

Now, for any k ≥ 0, define recursively

LjL
T
j = Ã−1

v

(

G̃vQjG̃
T
v
+ α1,j+1Lj+1L

T
j+1

)

Ã−T
v

(34)

for k ≤ j ≤ k +Nc − 1, with Lk+Nc
LT
k+Nc

= 0. By substi-

tuting (34) into (33), and repeatedly applying the resulting

inequality we obtain

P−1
k+Nc

� 2NcΦ−T (k +Nc, k)
(
Pk + LkL

T
k

)−1

× Φ−1 (k +Nc, k) + 2β1

Nc−1∑

i=0

2i

× Φ−T (k +Nc, k +Nc − i) Φ−1 (k +Nc, k +Nc − i) .
(35)

Using the bounds defined in Assumption 5, (20), and (34), we

can write

LkL
T
k � γ1Φ

−1(k +Nc, k)Wc(k +Nc, k)Φ
−T(k +Nc, k)

(36)

with γ1 = ϑ
∏k+Nc−1

j=k α1,j+1 [41]. Aggregating the bounds

in (35), (36), and invoking Assumptions 2 and 3, we have

Pk+Nc
�

(

2Nc

γ1δ
+ 2β1

∑Nc−1

i=0

(
2

α

)i
)−1

︸ ︷︷ ︸

π(Nc)

I. (37)

Proof of Lemma 2: Suppose Yk+1 is an arbitrary matrix. We

can write

(P−1
k+1 + Y T

k+1Yk+1)
−1 =

((

ÃvPkÃ
T
v
+ G̃vQkG̃

T
v

)−1

+ZT
k+1Zk+1

)−1
(38)

where the matrix Zk+1 is defined as

Zk+1 = CT
k+1R

−1
k+1Ck+1 + Y T

k+1Yk+1. (39)

Using the bounds in Assumptions 2 and 5, and definingβ2 = βϑ,

we have

(
P−1
k+1 + Y T

k+1Yk+1

)−1

�

((

ÃvPkÃ
T
v
+ β2I

)−1

+ ZT
k+1Zk+1

)−1

(�)
=

(

1

β2
I −

1

β2
2

Ãv

(

P−1
k +

1

β2
ÃT

v
Ãv

)−1

ÃT
v

+ ZT
k+1Zk+1

)−1

(�)
=

1

β2
2

(
1

β2
I + ZT

k+1Zk+1

)−1

Ãv

×

(

P−1
k +

1

β2
ÃT

v
Ãv−

1

β2
2

ÃT
v

(
1

β2
I+ZT

k+1Zk+1

)−1

Ãv

)−1

× ÃT
v

(
1

β2
I + ZT

k+1Zk+1

)−1

+

(
1

β2
I + ZT

k+1Zk+1

)−1

(�)
=

1

β2
2

(

β2I − β2
2Z

T
k+1

(
I + β2Zk+1Z

T
k+1

)−1
Zk+1

)

Ãv

×
(

P−1
k +ÃT

v
ZT
k+1

(
I + β2Zk+1Z

T
k+1

)−1
Zk+1Ãv

)−1

ÃT
v

×
(

β2I − β2
2Z

T
k+1

(
I + β2Zk+1Z

T
k+1

)−1
Zk+1

)

+ β2I − β2
2Z

T
k+1

(
I + β2Zk+1Z

T
k+1

)−1
Zk+1

(��)

� 2β2
2Z

T
k+1

(
I + β2Zk+1Z

T
k+1

)−1
Zk+1Ãv

×
(

P−1
k + ÃT

v
ZT
k+1

(
I + β2Zk+1Z

T
k+1

)−1
Zk+1Ãv

)−1

× ÃT
v
ZT
k+1

(
I + β2Zk+1Z

T
k+1

)−1
Zk+1

+2Ãv

(

P−1
k +ÃT

v
ZT
k+1

(
I+β2Zk+1Z

T
k+1

)−1
Zk+1Ãv

)−1

ÃT
v

+ β2I − β2
2Z

T
k+1

(
I + β2Zk+1Z

T
k+1

)−1
Zk+1

� 2Ãv(P
−1
k + α2,k+1Ã

T
v
ZT
k+1Zk+1Ãv)

−1 + 2β2I (40)

where α2,k+1 = ‖I + β2Zk+1Z
T
k+1‖

−1. The equalities (�),
(�), and (�) in (40) are obtained via three successive applications

of the Woodbury identity and the inequality (��) in (40) is

obtained by using the Young-like inequality (32).
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Now, for any k ≥ 0, define

Y T
j Yj = α2,j+1Ã

T
v
ZT
j+1Zj+1Ãv (41)

where k ≤ j ≤ k +No − 1, withY T
k+No

Yk+No
= 0. By repeat-

edly applying (40) and (41), we obtain

Pk+No
� 2NoΦ(k +No, k)

(
P−1
k + Y T

k Yk

)−1

× ΦT (k +No, k) + 2β2

No−1∑

i=0

2i

× Φ(k +No, k +No − i) ΦT (k +No, k +No − i) .
(42)

Aggregating the bounds in Assumption 5, (21), (39), and (41),

we have

Y T
k Yk � γ2Wo(k +No, k) (43)

with γ2 = 1
ρ

∏k+No−1
j=k α2,j+1 [41]. Finally, we assimilate the

inequalities in (42) and (43), along with Assumptions 2 and 4,

which gives us

Pk+No
�

(
2No

γ2ε
+ 2β2

∑No−1

i=0
(2α)i

)

︸ ︷︷ ︸

π(No)

I. (44)

�

Proof: Proof of Theorem 2: From the equations (11a) and (16),

we can obtain the dynamics of the estimation error e[k], which

admits the following form:

e[k + 1] = (I −Kk+1Ck+1)
(

Ãve[k]− G̃vr[k]
)

+Kk+1v[k + 1]. (45)

In order to prove exponential input-to-state stability of the

estimation error, we consider the candidate Lyapunov function

Vk = e[k]TP−1
k e[k]. (46)

Consider any time index k that satisfies k ≥ max{Nc, No} and

let Sk+1 be an arbitrary matrix. We have

e[k + 1]T
(
Pk+1 + Sk+1S

T
k+1

)−1
e[k + 1]

=
(

Ãve[k]− G̃vr[k]
)T

M−1
k+1

(

Ãve[k]− G̃vr[k]
)

+ v[k + 1]TR−1
k+1v[k + 1]

−
(

Ck+1

(

Ãve[k]− G̃vr[k]
)

− v[k + 1]
)T

×
(
Ck+1Mk+1C

T
k+1 +Rk+1

)−1

×
(

Ck+1

(

Ãve[k]− G̃vr[k]
)

− v[k + 1]
)

−
(

M−1
k+1

(

Ãve[k]−G̃vr[k]
)

+CT
k+1R

−1
k+1v[k+1]

)T
Sk+1

×
(
I + ST

k+1

(
M−1

k+1 + CT
k+1R

−1
k+1Ck+1

)
Sk+1

)−1
ST
k+1

×
(

M−1
k+1

(

Ãve[k]− G̃vr[k]
)

+ CT
k+1R

−1
k+1v[k + 1]

)

(•)

≤
(

Ãve[k]− G̃vr[k]
)T

M−1
k+1

(

Ãve[k]− G̃vr[k]
)

+ 2v[k + 1]TR−1
k+1v[k + 1]−

1

2

(

Ãve[k]− G̃vr[k]
)T

×M−1
k+1Sk+1

(
I+ST

k+1

(
M−1

k+1+CT
k+1R

−1
k+1Ck+1

)
Sk+1

)−1

× ST
k+1M

−1
k+1

(

Ãve[k]− G̃vr[k]
)

(••)

≤
(

1−
α3,k+1

2

)(

Ãve[k]− G̃vr[k]
)T

M−1
k+1

×
(

Ãve[k]− G̃vr[k]
)

+
α3,k+1

2

(

Ãve[k]− G̃vr[k]
)T

×
(
Mk+1 + Sk+1S

T
k+1

)−1
(

Ãve[k]− G̃vr[k]
)

+ 2v[k + 1]TR−1
k+1v[k + 1]

(�)

≤
(

1−
α3,k+1

2

)

(1 + ε3) e[k]
TP−1

k e[k]

+
α3,k+1

2
(1 + ε3) e[k]

T

×
(

Pk + Ã−1
v

(

G̃vQkG̃
T
v
+ Sk+1S

T
k+1

)

Ã−T
v

)−1

e[k]

+

(
1 + ε3

ε3

)

r[k]TQ−1
k r[k] + 2v[k + 1]TR−1

k+1v[k + 1]

(47)

with α3,k+1 = ‖I + 1
π
ST
k+1Sk+1‖

−1 and ε3 ∈ R
+. The in-

equality (•) in (47) is a consequence of the Young-like inequal-

ity (32), the inequality (••) in (47) results from the Woodbury

identity used in conjunction with Lemma 1 and (30), whereas

the inequality (�) is a result of (17) and (32).

From Assumption 5 and (47), we can write

e[k + 1]TP−1
k+1e[k + 1] ≤ (1 + ε3)e[k]

TP−1
k e[k]

+

(
1 + ε3

ε3ϑ

)

‖r[k]‖2 +

(
2

ρ

)

‖v[k + 1]‖2. (48)

Now, from the equality

SkS
T
k = Ã−1

v

(

G̃vQkG̃
T
v
+ Sk+1S

T
k+1

)

Ã−T
v

(49)

we have

e[k + 1]T
(
Pk+1 + Sk+1S

T
k+1

)−1
e[k + 1]

≤

(
1 + ε3

ε3ϑ

)

‖r[k]‖2 +
(

1−
α3,k+1

2

)

(1 + ε3) e[k]
TP−1

k e[k]

+

(
2

ρ

)

‖v[k + 1]‖2

+
α3,k+1

2
(1 + ε3)e[k]

T (Pk + SkS
T
k

)−1
e[k]. (50)

We let Sk+Nc
ST
k+Nc

= 0 and by repeated application of (50),

we get

e[k +Nc]
TP−1

k+Nc
e[k +Nc]
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≤ (1− γ3)(1 + ε3)
Nce[k]TP−1

k e[k]

+ γ3(1 + ε3)
Nce[k]T

(
Pk + SkS

T
k

)−1
e[k]

+
(1 + ε3)

Nc

ε3ϑ

k+Nc−1∑

i=k

‖r[i]‖2

+
2(1 + ε3)

Nc−1

ρ

k+Nc−1∑

j=k

‖v[j + 1]‖2 (51)

where γ3 = 1
2Nc

∏k+Nc−1
i=k α3,i+1. Using the recursive defini-

tion in (49), the bounds in (20), and Assumption 5, we get the

bound

SkS
T
k � ϑΦ−1(k +Nc, k)Wc(k +Nc, k)Φ

−T(k +Nc, k).
(52)

With the inequality (52), we can then aggregate the bounds in

Assumptions 2 and 3 and Lemma 2 to then obtain

SkS
T
k �

ϑδ

αNcπ
Pk. (53)

Now, given the Lyapunov function Vk = e[k]TP−1
k e[k] and the

bound in (48), we have

Vk ≤ (1 + ε3)
k−k0Vk0

+
(1 + ε3)

k−k0

ε3ϑ

k−1∑

i=k0

‖r[i]‖2

+
2(1 + ε3)

k−k0−1

ρ

k−1∑

j=k0

‖v[j + 1]‖2 (54)

for all k ≥ k0 ≥ max{Nc, No}. Using Assumption 5, (51),

and (53), we have

Vk+Nc
≤ η3Vk +

(1 + ε3)
Nc

ε3ϑ

k+Nc−1∑

i=k

‖r[i]‖2

+
2(1 + ε3)

Nc−1

ρ

k+Nc−1∑

j=k

‖v[j + 1]‖2 (55)

for all k ≥ k0 ≥ max{Nc, No} and with

η3 =

(

1−
γ3ϑδ

ϑδ + αNcπ

)

(1 + ε3)
Nc . (56)

If we assume, without loss of generality, that ε3 is chosen such

that η3 < 1, then from (54) and (55), we obtain

Vk ≤

(

(1 + ε3)
Nc

η3

)Nc−1

Nc

η
k−k0

Nc

3 Vk0

+
Nc (1 + ε3)

Nc

ε3ϑ (1− η3)
max

k0≤i≤k−1
‖r[i]‖2

+
2Nc (1 + ε3)

Nc−1

ρ (1− η3)
max

k0≤j≤k−1
‖v[j + 1]‖2 (57)

for all k ≥ k0 ≥ max{Nc, No}.

On the other hand, from Lemmas 1 and 2, we have the

following bounds on the Lyapunov function

1

π
‖e[k]‖2 ≤ Vk ≤

1

π
‖e[k]‖2 (58)

for all k ≥ max{Nc, No} [41].

Thus, using (57) and (58), the proof of the theorem follows

with

σ =

√
3π

π

(
(1 + ε3)

Nc

η3

)Nc−1

2Nc

(59a)

τ = η
1

2Nc

3 (59b)

χ =

√

3πNc(1 + ε3)Nc

ε3ϑ(1− η3)
(59c)

and

ψ =

√

6πNc(1 + ε3)Nc−1

ρ(1− η3)
. (59d)

�
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