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Discrete-Time Fractional-Order Dynamical
Networks Minimum-Energy State Estimation

Sarthak Chatterjee ¥, Andrea Alessandretti

and Sérgio Pequito

Abstraci—Fractional-order dynamical networks are in-
creasingly being used to model and describe processes
demonstrating long-term memory or complex interlaced de-
pendencies among the spatial and temporal components
of a wide variety of dynamical networks. Notable examples
include networked control systems or neurophysiological
networks which are created using electroencephalographic
(EEG) or blood-oxygen-level-dependent data. As a result,
the estimation of the states of fractional-order dynamical
networks poses an important problem. To this effect, this
article addresses the problem of minimum-energy state es-
timation for discrete-time fractional-order dynamical net-
works, where the state and output equations are affected
by an additive noise that is considered to be deterministic,
bounded, and unknown. Specifically, we derive the corre-
sponding estimator and show that the resulting estimation
error is exponentially input-to-state stable with respect to
the disturbances and to a signal that is decreasing with
the increase of the accuracy of the adopted approxima-
tion model. An illustrative example shows the effectiveness
of the proposed method on real-world neurophysiological
networks. Our results may significantly contribute to the
development of novel neurotechnologies, particularly in the
development of state estimation paradigms for neural sig-
nals such as EEG, which are often noisy signals known to
be affected by artifacts not having any particular stochastic
characterization.

Index Terms—Biological networks, cyberphysical sys-
tems, decision or estimation theory, other applications.
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|. INTRODUCTION

that a Markovian dependence of the current state on only
the previous state is insufficient to describe the long-term be-
havior of the considered systems [1]. This is due to the fact
that real-world networks often demonstrate behaviors in which
the current system state is dependent on a combination of
several past states or the entire gamut of states seen so far in
time. Recent works suggest that discrete-time fractional-order
dynamical networks (DT-FODNs) evince great success in accu-
rately modeling dynamics that show evidence of nonexponential
power-law decay in the dependence of the current state on
past states, systems exhibiting long-term memory or fractal
properties, or dynamics where there are adaptations in multiple
time scales [2], [3], [4], [5], [6]. These networks include biolog-
ical swarms [7]; networked control systems [8], [9], [10]; and
cyber-physical systems [11] to mention a few. Some of these re-
lationships have also been explored in the context of neurophys-
iological networks constructed from electroencephalographic
(EEQG), electrocorticographic, or blood-oxygen-level-dependent
data [12], [13].

On the other hand, the problem of state estimation entails
the retrieval of the internal state of a given network, often from
incomplete or partial measurements of the network’s inputs and
outputs. Solving this problem is of utmost importance, since, in
the majority of real-world networks exchanging measurement
information with each other, the network’s states are often not
directly measurable, and a knowledge of the states is needed
to, e.g., collectively stabilize the system using state feedback.
Given the fundamental nature of the problem, the existence of
prior art in the context of state estimation of continuous as well as
discrete-time fractional-order systems is no surprise [14], [15],
[16], [17], [18], [19], [20], [21], [22].

Nonetheless, in practice, the assumptions in Kalman-like
filter formulations can be restrictive and not suitable for some
applications, as they assume Gaussian additive process and
measurement noises, which implies a uniform prevalence in
the power spectrum. In particular, in the case of EEG signals,
there is evidence that the former are prone to disturbances that
are noncerebral in origin, which are known as artifacts in the
neuroscience literature [23]. These artifacts do not follow any
particular stochastic characterization. Due to this reason, we
propose the design of a minimum-energy estimation (MEE)
framework for DT-FODNs, where we assume that the state
and output equations are affected by an additive disturbance

I N A wide variety of dynamical networks, it is often seen
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and noise, respectively, that is considered to be deterministic, y(t) = Cx(t) + Du(t) (3b)
bounded, and unknown. First proposed by Mortensen [24] and ' T
later refined by Hijab [25], MEEs produce an estimate of the witha = [, ..., an].

system state that is the “most consistent” with the dynamics and
the measurement updates of the system [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41].

To summarize, the main contribution of this article is a MEE
procedure to estimate the states of a DT-FODN. In particular, we
prove the exponential input-to-state stability of the estimation
error when the aforementioned estimator is used to estimate the
states of a DT-FODN. We also provide evidence of the efficacy
of our approach via a pedagogical example showing the suc-
cessful estimation of the states of a neurophysiological network
constructed using EEG data. Our results provide a structured
approach to estimating the states of a DT-FODN in the presence
of deterministic and bounded, but unknown disturbances, thus,
paving a path for state estimation in neural signals such as EEG,
in the presence of noncerebral artifacts.

Notation: The symbols R, R, Z, N, and N denote the set of
reals, positive reals, integers, non-negative integers, and positive
integers, respectively. Additionally, R™ and R™*"" represent the
set of column vectors of size n and n X m matrices with real
entries and [ denotes an identity matrix of appropriate order.
For a given square matrix M € R™*", the notation M > 0
(respectively, M = 0) indicates that the matrix M is positive
semidefinite (respectively, negative semidefinite), i.e., vT Mv >
0 (respectively, v Mv < 0) for any v € R™. Furthermore, we
use M~ to denote the inverse of M T. We also write A = B and
A =< B to mean that the matrix A — B is positive semidefinite
and negative semidefinite, respectively. The Euclidean norm is
denoted by || - ||.

[I. PROBLEM FORMULATION

In this section, we introduce DT-FODN and formulate the
minimum-energy state estimation problem for DT-FODN.

A. Continuous-Time and DT-FODNs

The concept of fractional-order dynamical networks arises
from the concept of a fractional-order derivative. There are two
commonly used (and equivalent) definitions of a fractional-
order derivative, the Caputo and the Riemann-Liouville defi-
nitions [42]. Caputo’s definition of a fractional derivative is as
follows:

1 L A™e(7)
T'(m — a;) /0 (t — 7)xitl-m

F(ai):/o e TTYT

where T'(c;) denotes the Gamma function [43], a; € R4
{1,...,n} is the fractional exponent, and m € Z is the first
integer not less than «; for all 4, i.e., m = [«; | for all i. With the
above ingredients, a continuous-time fractional-order dynamical
network is given by

A%x(t)

A% (t) = dr ()

with

Ldr (2)

= Ax(t) + Bu(t), (3a)

Consider a left-bounded sequence {z[k]}rcz over k, ie.,
with limsup,,_, . ||[k]|| < co. Then, for any a € R*, the
Griinwald-Letnikov fractional-order difference is defined as

@ - « - (e i
Al = 3o cgalk - gl ¢ = (17 (%),
— J
7=0
(a) 1 if j =0, @
S| = -1 a—i I'(a+1) e
J Iz $7 = romorta—gen 1f7>0
for all 7 € N. The summation in (4) is well defined from the
uniform boundedness of the sequence {x[k]}rcz and the fact
that [c§| < ‘j—,], which implies that the sequence {cf}jcn is
absolutely summable for any o € RT [44], [45].
With the above ingredients, a DT-FODN with additive distur-

bance can be described, respectively, by the state evolution and
output equations

ZAM k+1] =

1=1

ZB Abiy ]+iGiA9iw k
i=1

(5a)
z[k] = Cz[k] + v'[K] (5b)

with the variables z[k] € R™, u[k] € R™, and w[k] € RP denot-
ing the state, input, and disturbance vectors at time step k € N,
respectively. The scalars a; € Rt withl <34 <[, b; € Rt with
1<i<r,andg; € RT with1 < i < s are the fractional-order
coefficients corresponding, respectively, to the state, the input,
and the disturbance. The vectors z[k], v'[k] € RY denote the
output and measurement disturbance at time step k € N, re-
spectively.

We assume that the (unknown but deterministic) disturbance
vectors are bounded as

[wlk][| < bw, [V'[K][] < bu, k€N ©)

for some scalars b,,, b,y € RT. Notice that the assumption that
the disturbance vectors are deterministic, bounded, unknown,
and not possessing any particular stochastic characterization, is
distinctly different from the assumptions one makes in deriving
the Kalman filter, in which case, the disturbances are assumed
to be additive, white, and Gaussian [46], which would not be
satisfied when we are dealing with a setting characterized by the
absence of uniform prevalence of frequency components in the
power spectral density of the disturbances.

We also assume that the control input u[k] is known for all time
steps k € N. We denote by z[0] = z(0) the initial condition of
the state at time k£ = 0. In the computation of the fractional-order
difference, we assume that the system is causal, i.e., the state,
input, and disturbances are all considered to be zero before the
initial time (i.e., x[k] = 0, u[k] = 0,and w[k] = Oforall & < 0).

In addition, the matrices A; € R™*", 1 < <[ denote the
(possibly time-varying) spatial dependencies between the state
variables at different time lags, the matrices B; € R™*™ 1 <
1 < r denote the dependency of which (known) input variables
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are being actuated at different time steps, and the matrices G; €
R™P 1 <4 < sarethedisturbances acting as (unknown) inputs
into the system at a particular time instant.

Given that we have determined the nature of the deterministic
but unknown process and output uncertainties, we can now
focus on trying to minimize the impact of these uncertainties,
as well as the uncertainty with respect to the unknown initial
state 2:[0]. Henceforth, we will focus on trying to minimize
the objective function 7 (x[0], {w[i]} -, {v'[j 1}5,), for some
N € N, subject to the evolution of the state and output trajecto-
ries given by (5a) and (5b). There are a wide variety of choices
we can consider for the objective function 7 (-, -, ), but from a
computational perspective, and considering an association with
the process of minimizing an energy functional, we take the ob-
jective function to consist of quadratic terms with respect to the
components pertaining to the process and output disturbances
as well as the uncertainty pertaining to the initial state.

With the above ingredients, we seek to solve the following
problem in this article.

Problem 1: Consider the quadratic weighted least-squares
objective function

2

-1

T (@[0], {wli] 255N {o'l1H5) = Y whil '@y wli]

i

Il
o

1T R[] + ([0] — 20) "By (2[0] — 20) (D)

subject to the constraints

ZBAb

ZA A%k +1

+ZG A%

] (8a)

and
z[k] = Crx[k] + v'[k] (8b)

forsome N € N, with the weighting matrices Q; (0 < i < N —
1), R; (1 < j < N),and P, chosen to be symmetric and positive
definite, and & chosen to be the a priori estimate of the system’s
initial state. The MEE procedure seeks to solve the following
optimization problem:

minimize 7 (0], {wli ot (Y
(el o {wll g o Y ( = =)
subject to (8a) and (8b)

©))
for some N € N.
Additionally, we consider the following mild technical as-
sumption to hold.
Assumption 1: The matrix \_, A, is invertible.

lll. MEE FOR DISCRETE-TIME FRACTIONAL-ORDER
DYNAMICAL NETWORKS

In order to derive the solution to Problem 1, we will first
start with some alternative formulations of the DT-FODN and
relevant definitions that will be used in the sequel. Then, we
present the solution in Section III-A and in Section III-B we
provide some additional properties of the derived solution, i.e.,

the exponential input-to-state stability of the estimation error.
In Section ITI-D, we present a practical discussion of the results
obtained in the context of DT-FODN. All proofs are relegated
to the Appendix.

We start by considering a truncation of the last v tem-
poral components of (5a), which we will refer to as the v-
approximation for the DT-FODN. That being said, we note
that using Assumption 1, the DT-FODN model in (5a) can be
equivalently written as

o0 o0

wlk+1] Z wlk—j + 1+ Byulk—j]+>_ Giulk—
j=1 =0 j=0
(10)

where A; = —Aj'A;, B; = A 1B], and G; = Aj'G; with
A; = Zi:l Aicfl, B =", Blcj cand Gy = 3708, Gzc?.
Notice that if the network is intrinsically linear time-invariant
(LTT), then, a suitable choice of zero fractional exponents would
seamlessly model the LTI dynamics. Nonetheless, we obtain
an infinite-dimensional linear system due to the presence of
the infinite sum in (10). However, the entirety of the dynamics
admits a compact abstraction using just the parameters a; and
A;, 1 <4 <. Furthermore, for any positive integer v € N+,
the DT-FODN model in (5a) can be recast as

ik + 1) = AuZ[k] + Boulk] + Gor[k],  #[0] = o,
(11a)
ylk + 1] = Chop1@[k + 1] + v[k + 1] (11b)
where
rlkl= > Ajlk—j+11+ Y Bjulk—j]
J=v+1 J=v+1
+Zéjw[k—j] (12)
j=0
with the augmented state vector Z[k] = [z[k]",... , z[k — v +

0" ulk —1)7, ..., ulk — 0]T]T € R®*(»+™) " and appropriate
matrices A,, By, and Gy, where o = [24,0,...,0]T denotes
the initial condition. y[k] represents the output and the matrix
C}, represents the scaling between the states and the outputs,
with v representing the temporal memory dependency, the de-
pendency being retained for the last v temporal components.
The matrices A, and B, are formed using the terms {A H<j<o
and { B, }1< <y, while the remaining terms {G; }1<j <~ and the
state and input components not included in Z[k] are absorbed
into the term Gy r[k]. Furthermore, we refer to (11a) as the
v-approximation of the DT-FODN presented in (5a).

A. Minimum-Energy Estimator

First, let us consider the quadratic weighted least-squares
objective function
N-1

}j 1 T
=0

T (@[] {r (i1}
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+ Z o[f]TR; ] + (2(0] — 20)T Py N(F[0] — &0)  (13)

Jj=1
subject to the constraints

Tk + 1] = A Z[k] + Byulk] + Go7[K], (14a)

ylk + 1] = CroprZ[k + 1] + [k + 1] (14b)

for some NV € N. The weighting matrices @; (0 <i¢ < N — 1)
and R; (1 <j < N) are chosen to be symmetric and positive
definite. The term 2o denotes the a priori estimate of the (un-
known) initial state of the system, with the matrix F, being
symmetric and positive definite.

Subsequently, to construct a minimum-energy estimator for
the system (11), we then consider the weighted least-squares
optimization problem

minimize T (&[0, {r[i 3N {olh] 1
(BRI (B ( ’ )
subject to (14a) and (14b)

15)
for some N € N. The following theorem then certifies the
solution of the MEE problem posed in (15).

Theorem 1: Denote by Z[k]| the state vector that corresponds
to the solution of the optimization problem (15). Then, Z[k]
satisfies the recursion

[k + 1) = Ap@[k] + Boulk] + Kyt (y[k + 1]
Chnr ([lbfc[k] + B’w[k})) L 0<k<N-1 (16)

with initial conditions specified for &y and {u[j] };?:0, and with
the update equations

-1
Kji1 = My1C0F 1 (Crp1 M1 Cly + Rii1) —, (17a)

Myy1 = A PLAT + GoQrGT (17b)
and
Pi1 = (I = Kj1Chi1) My1 (I — Kis1Crpr)'
+ Kiy1 R 1 Ky = (I = K1 Crg1) My (17¢)

with symmetric and positive definite F.

Proof: The proof of Theorem 1 follows directly from [28],
Ths. 2.3 and 2.4], which, in turn, follow from formalizing
the properties of the discrete-time algebraic Riccati equation
(DARE) [47] — see, for instance, in [28], Lemmas 4.3-4.7,
Proposition 4.8]. Broadly speaking, the key steps of the proof
can be structured as follows. We first consider a single-stage
state transition of the system in (14) and, then, sequentially,
course through the remaining state transitions. Then, the iterative
closed-form recursions in (16) and (17) are obtained using
the principle of feedback invariance [48] and the minimum-
energy estimator for discrete-time LTI systems [28], since the
v-approximated DT-FODN in (11a) fits the latter description.ll

In Theorem 1, the dynamics of the recursion in (16) (with
the initial conditions on & and the values of {u[j] ;?:0 being
known) along with the update equations (17) together solve
Problem 1 completely. Itis interesting to note here that the output

term y[k + 1] presented in (14b) and (16) is the output of the
v-approximated system (11), which, in turn, is simply a subset of
the outputs z[k + 1] obtained from (5b), truncated v time steps in
the past, provided v[k] and C}, are formed from the appropriate
blocks of v'[k] and C, for all k € N.

In what follows, we show that given the v-approximation out-
lined in (11a), the evolution of the Lyapunov equation admits a
solution over time, by establishing the exponential input-to-state
stability of the estimation error.

B. Exponential Input-to-State Stability of the Estimation
Error

In order to prove the exponential input-to-state stability of
the MEE error, we need to consider the following mild technical
assumptions:

Assumption 2: There exist constants o, @, 3,y € R* such
that

al < A Al <al, G,Gl <pI, and ClCy <~I (18)

forall £ € N.
First, notice that the state transition matrix for the dynamics
in (11a) is given by

Ok, ko) = AL with ®(ko ko) =1  (19)

for all k > kg > 0. We also consider the discrete-time control-
lability Gramian associated with the dynamics (11a) described
by
k-1
Welk ko) = > @(k,i+ 1)GoGi®T (ki + 1)

i=ko

(20)

and the discrete-time observability Gramian associated with
(11a) to be

k
Wo(k ko) = > @ (i, ko)CT Ci®(i, ko)

i=ko+1

21

for k > kg > 0. We also make the following assumptions re-
garding complete uniform controllability and complete uniform
observability of the v-approximated system in (11a).

Assumption 3: The v-approximated system (11a) is com-
pletely uniformly controllable, i.e., there exist constants § € R™
and N, € NT such that

We(k + No, k) = 61 (22)

for all £ > 0.
Assumption 4: The v-approximated system (11a) is com-

pletely uniformly observable, i.e., there exist constants ¢ € R™
and N, € N1 such that

Wo(k + N, k) = €@ (k + No, k)®(k + N,, k)

forall £ > 0.
Next, we also present an assumption certifying lower and
upper bounds on the weight matrices (), and Ry in (13).
Assumption 5: Without loss of generality, we assume that
the weight matrices j and Ry satisfy

91 2 Qp 29I and pI = Ryyq <0l

(23)

(24)
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for all k£ > 0 and constants 1,19, p,5 € RT.

1) Bounds on the Covariance Matrix P, : In this section,
we establish lower and upper bounds for the matrix Py, which
will be required in Section III-B2, where we use an approach
using Lyapunov functions in order to show that the estimation
error is exponentially input-to-state stable.

Lemma 1: Given Assumptions 2 and 3 and the constant = €
R, we have that

Py = w(N)I

(25)

holds for all £ > N..
Lemma 2: Given Assumptions 2 and 4 and the constant 7 €
R*, we have that

P, < T(N,)I (26)

holds for all £ > N,,.
2) Exponential Input-to-State Stability of the Estimation
Error: We start with the MEE error e[k], given by

e[k] = &[k] — Z[K].

Next, we certify that the estimation error associated with the
MEE process is exponentially input-to-state stable.

Theorem 2: Under Assumptions 2, 3, and 4, there exist
constants o, 7, %, € R with 7 < 1 such that the estimation
error e[k] satisfies

27

[l {alll

max
Xk <i<k-—1

lefk]]| < max {UT’“’“OIe[ko}II

(28)

max
ko<j<k—1

[ol + 1]|}

forall k > ko > max{N,, N,}.

Note that the above result provides us with theoretical guaran-
tees to obtain an estimate of the system state that is the most con-
sistent with the dynamics and the measurement updates of the
system in the context of DT-FODN:S. In particular, in the context
of designing novel neurotechnologies, we will see an application
of this result in estimating the states of real-life biological signals
modeled using DT-FODNS, such as EEG signals, presented in
Section III-D. Furthermore, the above input-to-state stability
result has important consequences in the study of complex
interconnections of networked systems in which our minimum-
energy estimator framework constitutes one particular block in
a larger chain of blocks—see, for instance [49] and [50].

C. Discussion

It is interesting to note that the bound on the estimation error
e[k] in (28) actually depends on ||r[é]||, where kg <i < k —1
for all 7 € N. In fact, a distinguishing feature of DT-FODN is
the presence of a finite nonzero disturbance term in the input-to-
state stability bound of the tracking error when tracking a state
other than the origin. This disturbance is dependent on the upper
bounds on the nonzero reference state being tracked as well as the
input. While the linearity of the Griinwald—Letnikov fractional-
order difference operator allows one to mitigate this issue in
the case of tracking a nonzero exogenous state by a suitable

2 )
(KF\) &/

" @/th

@@ ® )
9@

Fig. 1. Distribution of the sensors for the measurement of EEG data is
shown on the left. The channel labels are shown along with their corre-
sponding numbers and the selected channels over the motor cortex are
shown in red. The corresponding network formed by the EEG sensors
is shown on the right.

change of state and input coordinates, this approach is not one
we can pursue in this article, since the state we wish to estimate
is unknown. However, it can be shown that as the value of v
in the v-approximation increases, the upper bound associated
with ||r[i]|| decreases drastically since the v-approximation gives
us progressively better representations of the unapproximated
system. This further implies that ||r[é]|| in (28) stays bounded,
with progressively smaller upper bounds associated with || [i]||
elk]||) with increasing v.

Last, the estimation error associated with the MEE process
in (27) is defined in terms of the state of the v-approximated
system Z[k]. In reality, as detailed above, with larger values
of v, the v-approximated system approaches the real network
dynamics, and, thus, we obtain an expression for the estimation
error with respect to the real system in the limiting case, where
the input-to-state stability bound presented in Theorem 2 holds.

D. lllustrative Example

In this section, we consider the performance of the MEE
paradigm on real-world neurophysiological networks consid-
ering EEG data. Specifically, we use 150 noisy measurements
taken from 4 channels of a 64-channel EEG signal which records
the brain activity of subjects, as shown in Fig. 1. The subjects
were asked to perform a variety of motor and imagery tasks,
and the specific choice of the 4 channels was dictated due
to them being positioned over the motor cortex of the brain,
and, therefore, enabling us to predict motor actions such as the
movement of the hands and feet. The data were collected using
the BCI2000 system with a sampling rate of 160 Hz [51], [52].

The spatial and temporal parameter components of the DT-
FODN assumed to model the original EEG data were iden-
tified using the methods described in [53]. The identification
process is data driven and is done for the overall DT-FODN.
The process to identify the spatial and temporal parameters
of the DT-FODN is sequential, with a wavelet-like approach
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TABLE |
MEAN =+ STANDARD DEVIATION FOR THE ESTIMATION ERROR OF EACH CHANNEL FOR DIFFERENT VALUES OF THE TEMPORAL MEMORY DEPENDENCY
PARAMETER b

Channel 3 Channel 4

Channel 1 Channel 2
=2 0.1177 + 1.1378 —0.0243 + 1.2085
v=10 | —0.0136 + 1.1966 | —0.0442 + 1.2230
v =20 0.0308 £+ 1.3191 0.0630 + 1.2944

0.1122 + 1.1647
0.0622 £+ 1.1795
0.1144 4+ 1.3075

1.0128 + 2.0140
0.3512 + 1.2236
—0.0539 + 1.5305

Channel 1 Channel 2

s 8

B 3

P =

£ 3

< <

= -10 Hf—Measurement| = -10 {—Measurement

g Estimation g imation

g . H

215 2 15

50 100 150 0 50 100 150

Sample ID Sample ID
Channel 3 Channel 4

Neural Activity (arb. unit)

Measurement I asurement]
—Estimation —Estimation
0 50 100 150 0 50 100 150
Sample ID Sample ID

Neural Activity (arb. unit)

Fig. 2.  Comparison between the measured output of the v-augmented
system (with v = 2) versus the estimated output of a minimum-energy
estimator implemented on the same, in the presence of process and
measurement noises for 4 channels of a 64-channel EEG signal.
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Fig. 4. Comparison between the measured output of the v-augmented
system (with v = 10) versus the estimated output of a minimum-energy
estimator implemented on the same, in the presence of process and
measurement noises for 4 channels of a 64-channel EEG signal.
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Fig. 3. Comparison between the measurement error of the ov-
augmented system (with v =2) versus the estimation error of a
minimum-energy estimator implemented on the same, in the presence
of process and measurement noises for 4 channels of a 64-channel EEG
signal.

being used to estimate the temporal parameters, followed by
least squares to estimate the spatial parameters. It is relevant
to mention here that although this method has demonstrated
good results in practice, the identification of fractional-order
systems remains an underexplored area in general. Nonetheless,
from an analytical perspective it is possible to perform a bilevel
iterative scheme to estimate the spatial and temporal parame-
ters of a fractional-order system — see details in [54]. Using
the aforementioned approach, the fractional-order coefficients
are identified to be a = [0.9211,0.9655, 0.9620, 0.8821]". The
matrices B; =1 1 1 1]T for all .

The results of our approach, considering different values of v,
are shown in Figs. 2 and 3 (for v = 2), Figs. 4 and 5 (forv = 10),
and Figs. 6 and 7 (for v = 20), which show, respectively (for each

Error (arb. unit)
Error (arb. unit)

o 50 100 150

Sample ID Sample ID

Fig. 5. Comparison between the measurement error of the v-
augmented system (with v = 10) versus the estimation error of a
minimum-energy estimator implemented on the same, in the presence
of process and measurement noises for 4 channels of a 64-channel EEG
signal.

value of v), the comparison between the measured output of the
network with noise and the estimated response obtained from
the minimum-energy estimator, and also the juxtaposition of the
measurement error and the estimation error of the MEE process.
Additionally, we also present in Table I the means and standard
deviations for the estimation error for each channel for various
values of the temporal dependency parameter v. We find that
the minimum-energy estimator is successfully able to estimate
the states in the presence of noise in both the dynamics and the
measurement processes.

We also note from the Figs. 2 and 3 that when v = 2, we get
comparatively larger estimation errors associated with the last
50 or so samples of Channel 4, and that this behavior can be
mitigated by increasing the value of v, e.g., by choosing v = 10
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Fig. 6. Comparison between the measured output of the v-augmented

system (with v = 20) versus the estimated output of a minimum-energy
estimator implemented on the same, in the presence of process and
measurement noises for 4 channels of a 64-channel EEG signal.
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Fig. 7. Comparison between the measurement error of the v-
augmented system (with v = 20) versus the estimation error of a
minimum-energy estimator implemented on the same, in the presence
of process and measurement noises for 4 channels of a 64-channel EEG
signal.

orv = 20. This is in line with the discussion in Section I1I-C, and
choosing a larger value of v can always, in practice, provide us
with better estimation performances, as seen from this example.

[V. CONCLUSION

In this article, we introduced minimum-energy state es-
timation for DT-FODNs. In particular, the aforementioned
minimum-energy estimator is capable of providing an estimate
of the unknown states of a DT-FODN while assuming that the
associated process and measurement noises are deterministic,
bounded, and unknown in nature. We proved that the MEE
error is exponentially input-to-state stable and illustrated its
performance on real-world neurophysiological EEG networks,
thus, providing a general framework to estimate the states of
neural data modeled by DT-FODNS.

Future work will focus on the construction of a resilient and
attack-resistant version of the minimum-energy estimator, to
take into consideration adversarial attacks or artifacts associ-
ated with the measurement process, since, the former approach
is consistent with the fact that adversarial attacks on sensors

often do not follow any particular dynamical or stochastic
characterization.

In addition, it is also important to emphasize the observation
that although the estimation accuracy increases with increasing
values of the temporal memory dependency v, it only does
so up to a certain value. Further increasing v beyond that
value leads to no further gains when it comes to the results,
thus preventing us from the hassles of dealing with infinite
memory. Nonetheless, it is important to emphasize that better
understanding the relationship between the dimensions of the
state space and the specific values of the fractional coefficients
may very well change the value of v that leads to good results.
The precise nature of this relationship will be the subject of
future work.

APPENDIX

Proof of Lemma 1 Suppose Ly is an arbitrary matrix. We
can write

—1 _ _ -1
(Per1 + L L) = ((Mk-il + Op 1 Ryt )

-1
+Lk+1L-l|;+1> (29)

where we use the equation
Py =M, + CIIHRE}ACI@H (30)

which can be obtained from (17c) using the Woodbury iden-
tity [55], eq. (157)]. Notice that the invertibility of Py, and My 1
for any k > 0 is a consequence of (17), Assumptions 2 and 5,
and the fact that F is positive definite.

Subsequently, using the bounds in Assumptions 2 and 5, and
defining 81 = %, we have

(Prgr + Lk+1LZ+1)71

= ((Mkjl + 51-7)71 + Lk+1L£+1)_

-1

M (1 1 ( 1 )1 T
= =T - = (Mp1+—1) +LpL
/81 ﬁ% k+1 51 k+14p41
w1 /1 !
=2 (=I+ Ly Ll )
5% (51 k+14p41

-1

1 1 /1 -t
X | Myyr + —1— = <—1 + LkHLZH)
ﬂl ﬂ1 1

1 - 1 -
X <—I + Lk+1LZ+1) + <—1 + Lk+1LL+1>
b1 B1

© 1
Bt

-1 -1
% (Miss + Lier (T + 81 LT i)™ L)

-1
(ﬁlf — B3Ljt1 (I + B1Liy Litr) LZH)

~1
X (51[ — BiLis1 (I + B1Lj 1 Lys1) L£+1> + Bl

-1
— B3Ly1 (I+ B1LL Li1) Ly
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(¢) -1
< 267Lker (I+ AL Lis1) Ly

T 1o\t
% (Micss + Lir (T+ 81 LT Lin) ' L)

-1
X L1 (I + BlL-kr+1Lk+1) L};H

T -1.7 -1

+2 (Miyr + Liya (T+ Bl L) L)

—1
+ B = BiLis1 (I + 1Ll Li1) Ll

< 2(Myi1 + a1 L L y) ™t 4+ 2611 (31)

where oy 41 = || + 1L}, 1 Lit1| ' The equalities (1), (1),
and (¢) in (31) are obtained via three successive applications of
the Woodbury identity and the inequality (¢) in (31) is obtained
by using the Young-like inequality

(f(0) + 9(0)T(f(v) + g(v)) < 2fT(v)g(v) + 29" (v) f(v)

with f(’l}) = (MkJrl —+ Lk+1(I + ﬂlLZ+1Lk+1)71L;+1)7EU
and g(v)=— B1(Mp1+Liyr(I+ 1Ll Liyr) L) 72
Ligpi(I 4 BiL] 1 Lys1) 'L 0.

Plugging in the value of M}, ; from the update equations (17),
we have

1 ~
(Pos1 + Lk+1LL+1) <261 + 24,7

~ - - - —1
x (Pk + A (GUQkGI n al,kHLML;H) A;T) AL
(33)

Now, for any k£ > 0, define recursively
0Ll = A, (éanéI i al,jHLjHLJTH) AT (34

for k < j <k+ N.— 1, with Lyyn, L]y = 0. By substi-
tuting (34) into (33), and repeatedly applying the resulting
inequality we obtain

Pty =2V T (k+ Ny k) (P + Ly L])
Ne—1
x &' (k+ Neyk) +280 Y 2
i=0
x® T (k+N,k+N.—i)® ' (k+ N, k+N.—1i).
(35)
Using the bounds defined in Assumption 5, (20), and (34), we
can write

LiLi = 1@ (k + Ne, k)We(k + Ne, k)@ (k + Ne, k)
(36)
with 7, = QH?:]]:C*I a1 [41]. Aggregating the bounds
in (35), (36), and invoking Assumptions 2 and 3, we have

N\ —1
2Ne Ne-1 (2"
P, = 2 — I. 37
e <715 NI <a> ) 7
E(NC)
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Proof of Lemma 2: Suppose Y}, is an arbitrary matrix. We
can write

~ ~ ~ ~ -1
(Pity + Yia Vi)™ = ((AnPkAI +GoQuGY)

~1
+ 7441 Zi41) (38)
where the matrix Zj is defined as
Zj1 = Chy Rt Crst + Vi Y. (39)

Using the bounds in Assumptions 2 and 5, and defining 3, = (9,
we have

_ —1
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<24, (Pt + ao i1 AL ZE 1 Zpr Ay) T+ 2620 (40)

where a1 = |1+ B2Zk+1Z || " The equalities (A),
(V) and (.) in (40) are obtained via three successive applications
of the Woodbury identity and the inequality (..) in (40) is
obtained by using the Young-like inequality (32).
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Now, for any k£ > 0, define

Y Yj = ar A7) j+1Zj+1 40

edly applying (40) and (41), we obtain

-1
Pign, =2V°®@ (k+ N, k) (Pt + Y, Ya)

N,—1
k) + 25, Z 2!
=0

®(k+ Ny k+N,—i)® (k+ N, k+N,—1i).

x ®T (k+ N,,

(42)
Aggregating the bounds in Assumption 3, (21), (39), and (41),

we have
Y Yi = 7o Wo(k 4+ N,, k)
with o = H]HN

which gives us

2o
Prin, = (
N Y2€

ZZ: (2a)i> I.

7(No)

|
Proof: Proof of Theorem 2: From the equations (11a) and (16),
we can obtain the dynamics of the estimation error e[k], which

admits the following form:
e[k + 1] = (I — Ki1Ci1) (/L,e

+ Kypv[k +1].

K] = Gorlk])

In order to prove exponential input-to-state stability of the

estimation error, we consider the candidate Lyapunov function

Vi, = e[k] TP te[k].

Consider any time index k that satisfies £ > max{N,, N, } and

let Sk41 be an arbitrary matrix. We have
elk+ 1T (Pest + SiaSTey)
_ . LI .
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(4D
wherek < j < k+ N, — 1, with Yk+Non+No = 0. By repeat-

(43)

oz j+1 [41]. Finally, we assimilate the
inequalitles in (42) and (43), along with Assumptions 2 and 4,

(44)

(45)

(46)
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3
(47)

with asz 1 = |1 + SkHSkHH’l and £3 € RT. The in-
equality () in (47) is a consequence of the Young-like inequal-
ity (32), the inequality (ee) in (47) results from the Woodbury
identity used in conjunction with Lemma 1 and (30), whereas
the inequality ((J) is a result of (17) and (32).

From Assumption 5 and (47), we can write

elk + 1Pl e[k + 1] < (1+e3)elk] Py e[k]
1 2
(Y e (2) e+ 6
Now, from the equality
SiST = A, (Go@uGT + SkiiSTa ) 4,7 (49)
we have
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2

We let Sp4n, S,;r 4+, = 0 and by repeated application of (50),
we get

elk+ NJ"P v elk + N.]
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where 73 = 5 1 Hlik ¢ " ag4+1. Using the recursive defini-

tion in (49), the bounds in (20), and Assumption 5, we get the
bound

SkSy = 90 (k + N, k)We(k + Ne, k)@ (k + N, k).
(52)
With the inequality (52), we can then aggregate the bounds in
Assumptions 2 and 3 and Lemma 2 to then obtain

5.5 = 2 _p,. (53)
iy

alVe
Now, given the Lyapunov function Vj, = e[k]T P, *e[k] and the
bound in (48), we have
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for all k > ko > max{N,, N,}. Using Assumption 5, (51),
and (53), we have
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If we assume, without loss of generality, that €3 is chosen such
that 3 < 1, then from (54) and (55), we obtain
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On the other hand, from Lemmas 1 and 2, we have the
following bounds on the Lyapunov function

ekl < Vi < efa)? (58)

for all & > max{N., N,} [41].
Thus, using (57) and (58), the proof of the theorem follows
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