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Abstract

In [ESAIM: M2AN, 54(2020), 2229-2264], we proposed an HDG method to approxi-
mate the solution of a tangential boundary control problem for the Stokes equations
and obtained an optimal convergence rate for the optimal control that reflects its global
regularity. However, the error estimates depend on the pressure, and the velocity is not
divergence free. The importance of pressure-robust numerical methods for fluids was
addressed by John et al. [STAM Review, 59(2017), 492-544]. In this work, we devise a
new HDG method to approximate the solution of the Stokes tangential boundary control
problem; the HDG method is also of independent interest for solving the Stokes equations.
This scheme yields a H(div) conforming, globally divergence free, and pressure-robust
solution. To the best of our knowledge, this is the first time such a numerical scheme has
been obtained for an optimal boundary control problem for the Stokes equations. We
also provide numerical experiments to show the performance of the new HDG method
and the advantage over the non pressure-robust scheme.
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1. Introduction

Control of fluid flows modeled by Stokes or Navier-Stokes equations is an important
area of research that has undergone major developments in the recent past. The model
poses many theoretical and computational challenges and there is an extensive body of
literature devoted to this subject; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9]. In [10] we investigated
an HDG discretization for the tangential boundary control of a fluid governed by the
Stokes system and proved optimal error estimates with respect to the global regularity
of the optimal control; however, the numerical method is not pressure-robust, i.e., the
discretization errors depend on the norm of the pressure.

As pointed out by John et al. in the 2017 review article [11], many mixed finite
element methods, such as Taylor-Hood finite element, Crouzeix-Raviart and MINI ele-
ments are not pressure-robust. The key for a numerical scheme to be pressure-robust is
the way the null divergence condition is discretized. In the above mentioned review, at
least three ways to obtain pressure-robust mixed methods are described: building H'-
conforming divergence-free schemes, using discontinuous Galerkin methods, or commit-
ting some variational crime. In 2014, Linke [12] slightly modified the classical lowest order
Crouzeix-Raviart element with a variational crime by noticing that the Raviart-Thomas
interpolation — see (3.5) below — maps divergence-free vector fields onto divergence-free
discrete vector fields. In this way, the discrete velocity of the numerical solution is not
affected when the external force is modified with a gradient field, which is a property
that is satisfied by the continuous solution: if —Ay+ Vp = f and V -y = 0, then for any
scalar field ¢, — Ay + V(p+ ¢) = f + Vo, V- y = 0 and only the pressure is modified.
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In 2007, Cockburn et al. [13] had already studied a DG method for the Navier-Stokes
equations which yields divergence-free solutions.

Hybridizable discontinuous Galerkin (HDG) methods were proposed by Cockburn et
al. in [14] as an improvement of traditional DG methods; for a recent didactic exposition,
see, e.g., [15]. The HDG algorithm proposed and analyzed in our work [10] is not pressure-
robust: although the convergence rate is optimal, the magnitude of the error strongly
depends on the pressures; see Example 4.1 below.

In 2016, Lehrenfeld and Schoberl [16] first proposed a pressure-robust HDG method
for the Navier-Stokes equations and used a divergence-conforming velocity space; see
also Lederer, Lehrenfeld, and Schoberl [17] for an improvement of this method. Re-
cently, Rhebergen and Wells, in [18], used standard cell and facet discontinuous Galerkin
spaces that do not involve a divergence-conforming finite element space for the velocity.
They obtained pressure-robust scheme for the Navier-Stokes equation; see also Kirk and
Rhebergen in [19] for a detailed analysis of this method. For other pressure-robust HDG
methods, see [20, 21, 22, 23]. In this paper, we propose a new HDG scheme with less
degrees of freedom than that of [16], apply it to a tangential boundary control problem
governed by the Stokes equation, and prove that the method is pressure-robust.

Despite the large amount of existing work on numerical methods for fluid flow control
problems, the authors are only aware of one work dealing with pressure-robustness in the
context of optimal control problems, the very recent preprint [24], where a distributed
control problem governed by the Stokes equation is discretized by means of a pressure-
robust variant of a classical finite element discretization. We, on the other hand, propose
a pressure-robust HDG scheme for solving the following tangential boundary control

problem:

5
2

. 1
min J(w) = Sllyu = Yallz2(0) + 5 lule, (1.1)

uclU
where yq is the desired state, y,, is the unique solution in the transposition sense (see,
e.g., [10, Defintion 2.3]) of

—Ay+Vp=finQ, V-y=0inQ, y=wuwonl, /p:O, (1.2)
Q

~ is a positive constant, and we take the control space

U={u=ur:uecl*T)}
3



w0 with norm ||ully = |lulz2(ry and 7 the unit tangential vector.
Formally, the optimal control u € L?(T") and the optimal state y € L2(f2) satisfy the

first order optimality system

—Ay+Vp=finQ, V.-y=0in, y=uronl, (1.3a)
—Az—-Vg=y—yqinQ, V-2z=0inQ, z=0onT, (1.3b)
Onz-T=nuonl. (1.3¢)

In [10], we proved that the optimal control is indeed determined by a very weak formula-
tion of the above optimality system and we proved a regularity result for the solution in
2D polygonal domains. The optimal control satisfies (see [10, Theorem 2.4]) u € H*(T")
with s € (0,3/2). We utilized an existing HDG method to discretize the optimality

system and obtained the following a priori error estimate (see [10, Theorem 4.1]):

lu—unll2ry < CR (Yl gavrr2) + 12 metsr2) + 1Pl ge-120) + llall get1/20) + lullsr))-
(1.4)

The error estimate (1.4) implies that the error is dependent on the pressure p and dual
pressure q.

In this paper, we propose a new HDG method to revisit the problem (1.1)-(1.2).
Our new HDG method is pressure-robust; i.e., we obtain the a priori error estimate (see

Theorem 3.1):

lu—unll2ry < CR* (Yl gavrr2 ) + 12 met32(0))- (1.5)

The error estimate (1.5) shows the same convergence rate as obtained in [10], but the
errors no longer depend on the pressures.

s As in [18], our method introduces a numerical trace to approximate the pressure on
the boundary edge, but in that reference, the authors use polynomials of degree k + 1
to approximate the trace of the velocity and we use polynomials of degree k. Hence,
the degrees of freedoms of our scheme are less than that in [18]. The price, of course, is
that we obtain lower orders of convergence than those obtained in [19] for the method

o proposed in [18], but on the other hand, our error estimates are valid for problems with

very low regularity solutions, as the ones we find when solving Dirichlet control problems.
4
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We find that a pressure-robust method is specially appropriate for the tangential
control problem that we address. Notice that if we perturb y4 with a conservative field
V¢ for some scalar function ¢, the optimal solution would not change at all. We sould
just replace ¢ by ¢ + ¢ to obtain the solution of the optimality system.

The plan of this paper is as follows. In Section 2 we present the functional framework,
the optimality system for the control problem, and the new HDG formulation; we prove
that, for any given control, both the discrete velocity and adjoint velocity are divergence
free. Section 3 is devoted to the error analysis; we present and prove our main result.
The scheme of our proof largely follows the structure in our previous work [10], but here
we needed to use new techniques to show in every auxiliary lemma that the obtained
estimates are independent of the pressure. Finally, in Section 4 we provide the results of
two numerical experiments to compare the performance of the present pressure-robust

method with the method in [10].

2. Background: Regularity and HDG Formulation

In this section, we briefly review the regularity results for the tangential boundary
control problem and give the HDG formulation.

First, we define some notation. Let 2 be a bounded polygonal domain. We use the
standard notation H™(Q2) to denote the Sobolev space with norm || - ||;,0. In many
places, we use || - |lm to replace || « ||m.q if the context makes the norm clear. Let
H™(Q) = [H™(Q)]>*2, H™(Q) = [H™(Q)]? and H}(Q) = {v € H(Q);v = 0 on I'}.
Let (-,-)r denote the inner product in L?(T") and let [-,-]r denote the duality product
between H*(T") and H*(T"). We introduce the spaces

Vi) ={ye H(Q):V-y=0, [y-n,lr =0}, for s >0,
Vi) ={ye H*(Q):V-y=0, y=0o0nT}, for s >1/2,

VM) ={ue H*(T) : (u-n,)r =0}, for 0 < s < 3/2.

We denote the L2-inner products on L?(), L*(2), L?(Q2) and L?(T") by

2 2 2
(L,Gla=Y_ /QLijGij7 (¥, 2)a :Z/Qyjzjv (P, o :/qua (y, z)r :Z/ijzj'
i=1

i,7=1

5



Define the spaces H(div; Q) and L3(Q2) as
H(div, ) = (K € L2(2),V-K € L*(@)},  L3() = {p € L*(). (p. 1)a = 0}.
2.1. Regularity
In [10, Theorem 2.8 and Corollary 2.9], we proved the following well-posedness and
regularity result for the tangential Dirichlet boundary control problem (1.1) - (1.2). Set

L =Vy and G = Vz, let w be the largest interior angle of I', and let £ € (0.5,4] be the

real part of the smallest root different from zero of the equation
sin?(A\w) — A?sin®w = 0. (2.1)
It is known that £ > m/wif w < mand 0.5 < ¢ < 7/w if w > 7.

Theorem 2.1. If Q is a convex polygonal domain, f € L*(Q) and yq € H™™2£H(Q),
then there is a unique solution u € L*(T) of problem (1.1)-(1.2). The solution u satisfies
we€ H*(T) for all 1/2 < s < min{3/2,£ — 1/2} and there exists

y e V2, L e H~'/2(Q), pe HV2(Q)n LE(Q),

2z € ViTH(Q), G e H"(Q), g€ H (Q)NL3Q)

for all 1 < r < min{3,¢}, and L — pl € H(div, Q) such that

(L, T)q + (,V - T)q = (ur, Tn)r, (2.2a)
—(V- (L =pl),v)e = (f,v)a, (2.2b)
(V-y,w)o =0, (2.2¢)
(G, Ta+(2,V-T)a = (2.2d)
—(V-(G+dl),v)e = (y — ya,v)o, (2.2¢)
(V- z,w)q = (2.2f)
(yur = Gn, pr)r = (22g)
for all (T, v, w, 1) € H(div, Q) x L2(Q) x L2(Q) x L2(T'). Moreover,
u € ﬁ H™Y2(T;) for all v < min{3, £}, (2.3)

i=1

m
where T'; denotes the smooth segment of T such that T' = |J T';.

=1
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2.2. The HDG Formulation

We use the same notation as in [10] to describe the HDG method. Let {7} be a
family of conforming and quasi-uniform triangular meshes of 2. This assumption on the
meshes is stronger than in [10]; there we assumed {7} is a family of conforming and
quasi-uniform polygonal meshes. Let 97, denote the set {OK : K € T,}. For an element
K of the collection Ty, e = 0K N T is the boundary edge if the length of e is non-zero.
For two elements K+ and K~ of the collection 7Ty, e = OK T NOK ™ is the interior edge
between Kt and K~ if the length of e is non-zero. Let & and 5,? denote the set of
interior and boundary edges, respectively. We denote by £}, the union of £ and Ef? . We

introduce various inner products:

2 2

0 O7 = Y, 0.0k, 0.O7 =Y 67, LG)7 = Y (Lij, Giy)7is
KeTy i=1 ij=1
2
0, Qor. = Y :Qox,  (M,Qam = Y0, Gi)or,
KeTy i=1

The norms induced by the above inner products are defined accordingly.
Let P*(D) denote the set of polynomials of degree at most k& on a domain D. We

introduce the following discontinuous finite element spaces:

Ky, = {L € L*(Q) : L|g € [P*(K)]**?, VK € T},

(
Vi, = {v € L*(Q) : v|g € [P K)]?, VK € Tp},
Wy, = {w € L*(Q) : w|x € P*(K), VK € Tn},
My, = {p € L*(&) : ple € [PH(e)]?, Ve € &},

My, = {p € L*(&D) : ple € P*(e), Ve € &7},

(
Qn = {p e L*(&) : ple € PP (e), Ve € &,}.

Let M}, (o) denote the space defined in the same way as My, but with &, replaced
by &7. We use Vv and V - L to denote the gradient of v and the divergence of L. taken

piecewise on each element K € 7. Finally, we define
WP ={we L*Q): w|g € P*(K), VK € T; and (w,1)qo =0} .

The HDG method seeks approximate fluxes Ly, G, € K, states yp, z, € Vj, pres-

sures pp,qn € W}, interior element boundary traces g9,z7 € My (o) and D, qn € Qn,
7



and boundary control u, € M}, satisfying

Ly TO) 73, + (Y, V- Ta) 7 = (U Tind o gp = (un, Tim)ep,

—(V-Lu,v1)1, — (o1, V- v1) 75, + (Pn, v1 - M)o7;,

(2.4a)

+(h™  Paryn, v1)oT, — <h*137,01,v1)8n\55 =(f,v), + (hiluhr,vﬁg}?, (2.4b)

(v : yh7w1)Th = 07

<yh ‘n, 12]\1>a7—h =0
for all (Tl,vl,wl,ﬁl) e Ky x Vj X W}(L) X Qp,

(Gn, T2)7, + (20, V- T2) 75, — (25, Tam) o720 = 0,

—(V-Gp,v2) 7, + (a1, V - v2) 75, — (Th, V2 - 1)o7,

(AT Parzn, va)or, — (W71 25, va)ornes = (Yn — Ya, v2)75»

(v . Zhan)'Th = 07

(zp - m,Wa)gT;, =0
for all (Tq, v, wa, Wa) € Kp x Vj, X W,? X Qp,
(L — h™ (Payn — 97)s #1) o2 = 0
for all py € Mp,(0),
(Ghn — ™ (Puzn — 27), w2) o7\ g0 = 0
for all py € Mp(0),

(Gpn — h™ ' Pyrzy, — yup, p3T)go =0

(2.4¢)

(2.4d)

(2.4e)

(2.4f)

(2.4g)

(2.4h)

(2.41)

(2.4k)

for all u3 € My. Here Py denotes the standard L?-orthogonal projection from L2(E&p)

onto My,; see (3.3c) below. This completes the formulation of the HDG method.

»  Remark 2.2. Our method resembles the one introduced in [18] and analyzed in [19] in

the sense that the numerical trace of the pressure plays the role of Lagrange multipliers

enforcing continuity of the normal component of the velocity across element boundaries.

Nevertheless, to approximate the trace of the velocity, we use polynomials of degree k

8
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instead of k + 1. In this way, our method has fewer degrees of freedom, but at the price
of a lower order of convergence. This feature can be seen as a drawback when solving
an uncontrolled Stokes problem or even a distributed control problem governed by the
Stokes equation. But for the problem at hand the regularity of the solution is usually
very low, see Theorem 2.1, and the order of convergence will be mainly limited by this
fact, so it makes sense to use a method with suboptimal rates of convergence.

Notice also that the HDG method developed in this paper has more degrees of freedom
than the scheme in [10], since we introduced two more numerical traces p;, and g, to
approximate the traces of the pressures p, and ¢, respectively in order to obtain a

pressure robust method.

Next, we show that the discrete system (2.4) yields a globally divergence free state

yp, and dual state zj,.

Proposition 2.3. Let y, and zp be the solutions of (2.4), then we have yp,zn €
H(div;Q) and V -y, =V - z;, = 0.
PROOF. We only prove the result for yy, since the proof for z;, is similar. Let K1, Ko € T,
be any two adjacent elements sharing a common edge e. Define 77 € @}, as follows:

ﬂe = _(yh . ne)|Klﬂe - (yh ' ne)|Kzﬁe Ve € 5;:’

Fle=0 Ve € £P.

Let ¢g = ﬁ KZT fK V - yp, and take (wy,@1) = (V- yp — co,7 — ¢p) in (2.4¢)-(2.4d) to
SYIS
get

0=—=(V-yn,V-yn—co)r + (Yn - 1,7 — co)or,
=—(Vyn,V-yn)7 +{yn-n, 7)o,

=—(Voun, Voyn) — > s -no)li, + (- ne)lwllf

ec&p

This implies y;, € H(div;Q) and V -y, = 0.
3. Error Analysis

We assume that the solution of (2.2a)-(2.2g) satisfies

LeH™ (), ye H¥(Q), GeH*®(Q), =zecH"™=(Q),
9
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where
ry >1, ry>2, 1, >1/2, rg> L (3.1)
We now state our main result.

Theorem 3.1. For
s, = min{ry, k + 1}, sy = min{ry, k+2}, s¢ =min{rg,k+ 1}, s, =min{r,, k+ 2},
if the regularity assumption (3.1) holds we have

1 _1 .1 _3
BoLts ”L“sL,Q + hSv T2 Hy”sy,ﬂ 4 hSeT 3 HGHSG& +hS="2 ||z||sz7Q,

~

o~ wnllgp
1 1 a1 _3
1y —ynll7, SPF2ILI, o + 272 lylly, 0+ 272 Gl o+ 72 |I2]l,_ 0

~

1 _1 n—L _3
IG = Gally;, S A*2 Ll + 272 yll,, o + 572 [Gll, o +h% 72 |2l 0

1 1 a1 _3
I2 = 2nlly, S B Ll 0+ Byl g+ B G 0+ B 2] 0.
If k> 1, then
L —Lpll7 S ALl o + Ryl 0 + 257G 0 +h%=72 2], o

Remark 3.2. The error estimates in Theorem 3.1 are independent of the pressures p
and ¢, which are different from the error estimates in [10, Theorem 4.1]. Therefore, our
HDG method is pressure-robust. We note that the HDG method considered here has
more degrees of freedom than that in [10], since we have introduced numerical traces for
the pressures. We also note that the technique used in [10] cannot be applied here to
treat the case when 7, < 1/2. This low regularity for L. = Vy may appear when & < 3/2,
which corresponds to a value of w greater than wsz,, ~ 0.839138753489667; see more
details in Remark 3.11. Moreover, the meshes here are restricted to be triangular, while

in [10] we can use general polygonal meshes.

Noticing that for w € [7/3,ws/2) we have that { € (3/2,4], the application of

Theorems 3.1 and 2.1 gives the following result.

Corollary 3.3. Suppose yq € HS(S). Let w € [1/3,ws3/2) be the largest interior angle

of ', and define rq by
3 1 3
=minq -, — = 1, -]
rQ mln{Qvf 2}6( 72]
10



Then the regularity condition (3.1) is satisfied. Also, if k > 1, then for any r < rqo we

have
WAL = Lall7 + |y = wnll7i + G = Gull7s + 2 = zall7 + llu —unllgp S 2"
Moreover, if k =0, we have
lu = unllgo + 1y = ynll7 + 2 = 2all7 + |G = Gall7 S B2

3.1. Preliminary material
We use the standard L? projections Ik : L?(Q) — K, Iy : L*(Q) — Vj, and
[y : L*(Q) — W}, satisfying

(gL, T)x = (L, T)x VT € [P*(K)]**?, (3.2a)
(Myy,v)x = (y,v)x Vv e [PPHK))?, (3.2b)
Mwp,w)k = (p,w)k Y w e PHK). (3.2¢)

For all edges e of the triangle K, we also need the L2-orthogonal projections Pj; onto

My, Pg onto Qy, and Py onto M), satisfying

(Pryu—u, pt)ye =0 Yy € My, (3.3a)
(Pop—p.p)e =0 Vu € Qn, (3.3b)
(Pyy —y,pn)e =0 Yu e M. (3.3¢)

In the analysis, we use the following classical results [25, Section 4.2]:

T« — Li7, < B [Lls0,  [Tvy —yllzm <%yl 0 (3.4a)
Ik — Lllo7, <272 Lo, [Tvy —yllor, <AV 2|yls,.0 (3.4b)

Twp = plis S B2 pllsy0r 1Py — yllor, S 02|yl 0, (3.4c)
1Py —ullor, S 02 ylls,.0. [Pop —pllor, < 2~ 2lplls, 0. (3.4d)

We have the same projection error bounds for G, z and gq.
For the error analysis in this section, we need to introduce the classical Raviart-

Thomas (RT) space:

RM(K) = [P*(K))? + «P*(K),
11
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and define the RT projection II®T : HY(K) — R¥F1(K)
(M - n,w)e = (v-n,w), Vw € P*l(e),e C OK, (3.5a)
(¥, w) g = (v,w)k Vw € [P*(K))%. (3.5b)
We also need the following classical results [26, Theorem 3.1]:
Iy —yll7 S b lylls,00 1Ty —yllor, S8 2ylls, 0
By the well-known commutative diagram [26, Equation (38)] we have
V- (M%) = T(V - v),

where II is the standard L? projection from L?(K) onto P**1(K). If v € H(div; Q) and
Vv =0, then
V- (IT*Ty) = 0.

Applying [26, Lemma 3.1] we have the following lemma.
Lemma 3.4. For any v € H(div;Q) and V - v = 0, we have II¥v € Vj,.

To simplify notation, we define an HDG operator Z. For all (Ly, yn,ph,Dh,Y5) €
Kj, x Vi, x WP x Qp, x My(0), we define

(L Yn, Phs D, Yps T1, v1, we, W1, pr)

= Ln, T)7 + (yn, V- T1) 7 — (@Uh Tindopaeo — (V- La,v1)7,
= (pn, V- v1)75, + (Ph, v1 - n)or, + (™' Prryn, v1)or, — <h71§2,v1>a7-h\gg
+ (V- yn, w1)7, — (Yn - n, 01)or, + (Lan — ™ (Payn — 37), B1)amneo  (3.6)
for all (Ty, vy, wr, Wi, p1) € Ky x Vi, x WP x Qp x Mp,(0).

By the definition of %, we can rewrite the HDG formulation (2.4) as follows: find
(Ltvs Yns Ph» Dh> 23 Gy 20, Qhy Gy 25) € [Ki X Vi x W2 X Q1 x M, (0)]? and uy, € M, such
that

B(Ln, Yn, Ph> Pry Y T1, 01, we, W, p1) = (upT, Tim + h71'171>g]<3 + (f,v1)7,, (3.7)
B(Ghs zhs —qn, —qn, 213 Ta, v2, w2, Wa, p2) = (Yn — Yd, V2)75,» (3.7b)
(Gpn — h ™' Pyrzy,, psT)eo = y(un; 43) o (3.7¢)

for all (Tl,vl,wl,ﬁl,ul;'ll‘g,vg,wg,ﬁg,ug) € [Kh><‘/h><VV£><Qh><Mh(0)]2 and 3 € M;,.
12



Lemma 3.5. For any (Ln, Yn,pr, Ph, Yj,) € K X Viy x Wi, X Qp x M (0),

%(Lh; yhaphvﬁhag}g;Lh,yhvphvﬁhvg}oz)

3.8
= [[LallF, +h~ | Py, — Qf;ll%mgg + h71||PMth§"6:- o
PROOF. According to the definition of £ in (3.6) and integration by parts, we get
PB(Lns Yn, Phs Dhs Yns Lis Yn Phs Dy Yp)
= (L, L) 7+ (Uns V- L) = (U L) oo — (V- Lns yn) 7,
— (o, V- yn) 75 + (Dhy yn - mYo7, + (W™ (Paryn — :”J\Z)7yh>a7—h\gg
+ (W Prryns yn)eo + (V- yu, o) 7 — (Yn - 1, D)o,
+ (Lpn — h™ (Pyyn — 27;3),7§}01>an\5§
= LaliF, + b= 1 Paryn — Gillomneo + 0 I Parynllzo-
Similarly, for any (Gn, 2h, qn, Gh, 25) € Ki X Vi, x Wy X Qp, x Mp(0), we have
B(Gh, zny —qny —Ghs 215 Ghy 2ny —qn, —Ghs 27) (3.9)

= IGulI7, + 2~ 1 Parzn — 25157, 0 + b~ I Parznlzo.

Next we give a property of £ that is critically important to our error analysis of this

method.

Lemma 3.6. For any (Ln,Yn,Pn,Ph, Y7 Ghs 2n, qns G, 25) € [Kn X Vi x Wi x Qp X
M, (0)]?,

B L, Yns P> P Uns =Gy 20y Qhs Qi 21) = B(Gh,y 20y =, — Qs 25 —Lins Y, Phy Dhs Y1) -
PROOF. By the definition of & in (3.6) we have

t@(]Lh? yhaphmﬁfm @\}37 _Gh7 Zhsqh; ahv ’/Z\;)y,)
= =L, Gn) 7, = (Yns V- Gi) 75, + (U5, Gan) g\ eo — (V- L, 20) 7
— (P, V- 20) 75, + (Bhs 20 - Mo, + (B Paayn, zn)om, — (W95, 20) oo

+ (Vo yn,an) 7 — (Yn -1 @n)or, + (Lan — b (Payn — 97), 25 omie2-

13
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Rearrange the terms above to get

B(Lhs Yn, Phs Dhs Y —Ghs 2, ahs Gy 25)
= =G, Ln)7, = (20, V- L)1, + (25, Lan) g7\ 0 — (V- Groyn) 7,
+ (@ns V- yn) 7, = (@ Y - m)om, + (W Parzn, yn)om, — (h™ 127, Yn)ome0
— (V- zp,00) 7 + (201, Bh)or, + (Gan — B (Parzn — 27), U7) omi g2

= %(Ghv Zhy —qh; _a\}m '/Z:\Zy _]Lh; yhmp/’mﬁh) g}(;)a
where we used the fact that z, € H(div; Q) and V - z;, = 0 in Proposition 2.3.

To prove the uniqueness of solution of the HDG formulation, we need to recall the

following BDM projection.

Lemma 3.7. [27, Equation (2.3)] For any K € T, and v € [Hl(K)]2, there exists a
unique TIBPMy € [P*1(K)]? such that

<HBDMU . ne,wk+1>e = (V- e, Wiy1), Ywpy1 € Pk+1(e), e € 0K, (3.10a)
(IIPPMy, V) o = (0, Vi) Vpr € P¥(K), (3.10b)
(IIBPMy, curl (brpr—1)) ;o = (v,curl (bgpr—1)) g » Vpr—1 € PFTH(K), (3.10¢)

where b = A2z is a “bubble” function and curlp = [0y, —0¢] . If k = 0, then
(3.10c) is vacuous and IIBPM s defined by (3.10a) and (3.10b).

Remark 3.8. In [27, Lemma 2.1], Brezzi, Douglas and Marini proved that the system
(3.10) determines ITBPM uniquely. In other words, the matrix formed from the left hand
side of (3.10) is non-singular. Hence, for any z; € H'(e), 22,23 € [Hl(K)}z7 we can

uniquely determine vy, € [P**1(K)]? such that

(U - M, wiy1), = (71, Wet1), Vwg, € P*(e),e € 0K, (3.11a)
(Vn, Vo) o = (22, Vi) e Vpr € PH(K), (3.11b)
(vn, curl (brpr—1)) x = (23, curl (bxpr—1)) Vpr_1 € PPH(K).  (3.11c)

Theorem 3.9. There exists a unique solution of the HDG discrete optimality system
(3.7).
14
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PROOF. Since the system (3.7) is finite dimensional, we only need to prove the unique-
ness. Therefore, we assume yq = f = 0 and we show the system (3.7) only has the trivial
solution.

First, take (T, v1, w1, W1, p1) = (=G, 2hy —qh, —n, 25), (T2, V2, wa, Wa, pa) =

(—=Ln, Yn,Dh, Pr, Yy), and pz = —uy, in (3.7), respectively. By Lemma 3.6 we have

%(thyhaphvﬁfmgz; _Gh7 Zhs —qh; _Z]\ha ‘%\Z) - %(G}th)qha Z]\h,EZ; _]Lha yhvpfmﬁhy@\Z)
= —(Yn, Yn) 7, — V(Un; un)eo

=0.

This implies y, = up = 0 since v > 0.

NeXta taklng (Tla V1, W1, @17 “1) = (Lha yh7ph7ﬁh, ’gZ) in (37&) and (TQa V2, W2, ’&}\27 “2) -

(Gh, 2h, 9, @n, 25) in (3.7b) and using Lemma 3.5, we obtain L, = G, = 0,y;, = zj = 0.
Next, taking (T, w1, w1, 1) = (0,0,0,0) and (Tq, ve, we, Wa, ) = (0,0,0,0,0) and
applying integration by parts gives

(Vph,vl)'rh + <2/7\h — Ph, V1 - ’n>a7’h =0. (3.12)

Next, set 21 = pp, — pp, in (3.11a), zo0 = 0 in (3.11b), and z3 = 0 in (3.11¢). Then

there exists a unique v; € [P¥T1(K)]? such that on each element K we have
(V1 Me, Wit1), = (Ph — Py Wk1), Vw41 € PH(e), e € OK,
(v1, VPr) e =0 vpi, € P*(K).
This implies that (v1, Vpr)x = 0 and vy - n = pj, — pp, on OK. This gives pj, = pp,.
Finally, taking v1; = Vpy, in (3.12) we have Vp;, = 0, which together with the fact that

Dn is single-valued on each edge implies py, is a constant on the whole domain. Moreover,

pn € L3(2) gives pp, = pr, = 0. Following the same idea gives g, = ¢, = 0.

3.2. Proof of Theorem 3.1

We follow the strategy of our earlier work [10] and split the proof into eight steps.
Consider the following auxiliary problem: find (Ly (w), yn(w), pr (), pr(w), y5 (u);

15
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Gh(u),zh(u),qh(u),f]\h(u),fg(u)) S [Kh X Vh X W}(L) X Qh X Mh(O)]2 such that

B(Lp,(w), yn(w), o (w), pr (), gi(u); T1, v1, wr, @1, p1) = (Pyu)T, b oy + T1n>gg
+ (f,v1)7, (3.13a)

B(Gp(u), zn(w), —qn(u), —qn(u), 2; (u); T2, v, w2, Wa, p2) = (Yn(u) — Ya, v2)7;
(3.13b)

for all (Ty, vy, ws, Wi, p1; T, va, wa, Wa, p2) € [Kp x Vi, x WP x Qp x My (0)]2.

We also note that although the proof strategy is very similar to [10], a simple rewriting
of the proofs for the settings of this paper is not enough. For each of the following lemmas,
we must take care of the spaces of velocity and pressure so that estimates are independent
of the pressure.

We begin by bounding the error between the solutions of the auxiliary problem and

the mixed form (2.2a)-(2.2g) of the optimality system. Define

o =1L - TIgL, ey = Mg — Ly, (u),

Y =y -1y, ey =My — gy (u),

oF = p —Twp, e = Mwp — p(u), (3.14)
67 = p — Pyp, b = Pop — p(u),

0¥ =y — Pury, E?L = Pyy — yn(u),

where g, (u) = y2(u) on £ and yp,(u) = (Pyu)T on £, then sg =0on &Y.

Step 1: The error equation for part 1 of the auziliary problem (3.13a)
Lemma 3.10. Let (L,y,p) be the solution of the optimality system (1.3). Then we have
f07’ all (Tl,vl,wl,ﬁl,uﬁ e Ky x Vj X W}(L) X Qp X Mh(O) that

‘%(HKLa HRT.% HWpa PQpa PMya Tla vy, Wy, @1, l'l'l)
= (f,01)7, + (Puw)T, Tin + b~ o) go — (W7 Pyd¥, v1)or,

+(0n, v1)or;, — (81, B1)ameo + <h_1PM5yvN1>aTh,\5;?~

PROOF. Since V -y = 0, by Lemma 3.4 we have I[I®Ty € V},. By the definition of the

16



operator & in (3.6) we obtain
B(MkL, 1"y, My p, Pop, Pyy; Tr, v1, we, @1, )
= (I, T1) 7, + (IIy, V- T1) 7, — (Puy, Tin) g e — (V- L, v1)7,
— (Mwp, V - v1)7, + (Pop,v1 - n)a7, + (b Pyl y, v)oar,
- <h_1PMy7’Ul>aTh\sg + (V- 1I*y,w1) 7, — (I¥y - m, 1)o7,
+ (Mxln — b~ (PyIT™y — Pyry), ) o7\ e0-
By definition of the L? projections and the RT projection, we have
BTk, Iy, Ty p, Pyp, Pary; Ty, v, w, @1, pr)
= (L, T1)7 + (4. VT3 — (4. Tin)or\ep + (V- 87, 01) 7,
—(V-L,v1)7, — (,V-v1)7, + (0,01 - Yo7, + (b Pyy,v1)or,
— (W' Pyé?,v1)or, — (B Puy, vi)omeo + (V- Iy, w1) 7,
—{y - n,W)or, + (Tkln, p1)og\eo + (h ™ Pard¥, ) oz e
Moreover, integration by parts gives
(V-TIy,w1) 7, = (MY - n,wi) oy, — (T y, V)7,
= (y-n,wi)or, — (¥, Vur)7,
Vy,wi)7,

0.
Note that the exact solutions L, y and p satisfy

(]Lle)Th + (yv V- Tl)Th - <y7T1n>8Th\£fj = <’LLT,T1TL>5}?,
*(V ) (L 7p]I)’/v1)Th =

(v 'Y, wl)Th

71)1)7—;,7

Il
O —~

(y n, 1)o7, =0
for all (Ty,v1,wy, @) € Ky x Vi, x W x Qp, and y = ur on €. Then we have
P (Mg, Ty, Ty p, Pap, Pary; Ti, v, wi, @1, pr)
= (f,v1)7, + (Pyu)7T, Tin + hilvl)g}? — (W' PydY, v1) o,

+ (V . §L7v1)7—h + <HKILn, “1>3Th\5,‘? + <}L*1.P1\/[(Sy7 “’1>8Th\5;{3'
17
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Since L € H"™ () with rp > 1/2, then (Ln, p1)7,\go = 0. This implies
BT L, Ty, My p, Pyp, Pay; Ty, v, w1, @1, p)
=(f,v1)7, + (Pyu)T, Tin + h_1v1>€g — (R Py6Y,v1) o,
+ (85 n,v1)o7, — (871, pa)ore + (B PardY, pn) o, e
where we used the fact that (L — IIgL, Vv, )7, = 0.

Remark 3.11. In [10], we used L — pI € H(div,) when s, < 1/2. However, L €
H(div, Q) does not hold here. Hence, we assume 71, > 1/2 so that L has a well-defined
trace. Improving the analysis to handle the case s;, < 1/2 is left to be considered

elsewhere.
Subtract part 1 of (3.13a) from Lemma 3.10 to obtain the following lemma.
Lemma 3.12. For all (Ty, v, wq, @1, p1) € Ky X Vi, x WP x Qp x My(0), we have
,%’(6%,52,52,512, Eg;Tl,Ul,wl,@hul) = —(h " 'PyoY,v1)aT, + <h_1PM5y7N1>aTh\gg
+ (6 n, v1)o, — (80, H1>07’h\£g~ (3.15)
Step 2: Estimate for e
We first provide a key inequality which was proven in [10, Lemma 4.7].

Lemma 3.13. We have

1 g _1 o
IVeX |l + 2 el — eXllor, S llekllz +h™2 ([ Puel — &} llom.- (3.16)
Lemma 3.14. We have
_1 g —
lekllz +h™2 ([ Prel = e llom, S R Ll 0 + 2% yll,, o
PROOF. First, since sg =0 on 5,‘? , the basic property of Z in Lemma 3.5 gives

7, + 0Pyl — 1157,

B(ehsellschiensehichy elreh e eh) = llek]
On the other hand, taking (Ty, vy, p1, D1, #1) = (6%,57}1,6%,&‘5,55) in (3.15) gives
ekl + bt I Pael = efl3m, = (6 n.efl — efom — (h™16¥, Pue}l — ef)om.
By Lemma 3.13 and Young’s inequality, we have

_1 g —
ekl 7 +h™2 | Parefl = efllor, < h* L, o + 2%yl q-
18



Step 3: Estimate for €}, by a duality argument

Next, we introduce the dual problem

A-VP=0inQ, —-V-A-VU=0inQ, V- =0inQ, & =0o0nN.
(3.17)

Since the domain €2 is convex, we have the following regularity estimate:

[AlLe + [[@llz0 + (¥

1,0 < CH@HO)Q. (3.18)

Before we estimate €7, we introduce the following notation, which is similar to the earlier

notation in (3.14):
A= A-TIgA, 02=&-TI"d, 5 =0 —Iy0, 6°=0-P,0, *=3%&-Pyd.
Since ® = 0 on 012, by using Lemma 3.10 we have the following lemma:
Lemma 3.15. Let (A, ®,T) be the solution of (3.17), then for all (T1,v1,wy, W1, w1) €
Ky, x Vi, x WP x Qp, x My(0), we have
B(MgA, TR ® Ty U, PoU, Py ®; Ty, vy, w1, @1, p1)
= (0,v1)7, — (K Pud® vi)a, + (h™ Pud®, pa)or\e0
+ (8%, 1)o7, — (0" 0, 1) og 0

Lemma 3.16. We have

etz < =L se0 + R lyll,, o (3.19)

PROOF. Consider the dual problem (3.17) and let © = ¢}. Since 52 =0 on &7, it follows
from Lemmas 3.6 and 3.15 that
Bk e¥ e &P Y _TIgA IV ®, Ty U, PoW, Py ®)

— BIIA, TV ®, —Tlyy U, — PV, Py ®; —el, ¥, ef &f Y)

= (0*n.ell —el)om, — (h™'6%, Parell — el)om, + I} 1.
On the other hand, taking (Ti, vy, wy, @1, p1) = (—IgA, ¥ @ Iy U, PoV, Py ®) in
(3.15) gives

‘@(51}:3 5!}17 €fu 51}3, Eg; 7HKA7 HRT(I)a HW\II7 PQ\I/a PM(I))

= (0"n, TTI*"® — Py ®) o, + (W~ '6Y, Prd®)or,.
19
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Then we have
I |13, = (0Mn, I ® — Py @) o7, — (6", 2¥ — o,
+ <h_1(5q>, PM&‘Z — €g>an + <h_15y7 PM(sq’)a'rh,

which together with the approximation properties of the L?-orthogonal projection and

the projection II’T and Lemma 3.14 gives the desired result.

As a consequence of Lemmas 3.14 and 3.16, a simple application of the triangle
inequality gives optimal convergence rates for ||L — Ly (u)|7, and ||y — yu(w)|| 7, :
Lemma 3.17. Let (L, y,p) and (L (w), yn(uw), pr(w)) be the solution of (1.3) and (3.13a),
respectively. We have

IL = Ly (u) |7 Sh L, 0 + 27 Iy, 0 (3.20a)

Iy = yn(w)ll7 < 2Ll o + 5% [lyll,, o (3.20b)

Step 4: The error equation for part 2 of the auxiliary problem (3.13Db)
We continue to bound the error between the solutions of the auxiliary problem and
the mixed form (2.2a)-(2.2g) of the optimality system. In steps 4-5, we focus on the dual

variables, i.e., G, z and q. We use the following notation

6¢ = G — IkG, ¥ = IxG — Gy (u),

6% =z — Tz, e =T1"2 — 2, (u),

6 = q —Tlwq, ef = Mwq — qn(u), (3:21)
07 = g — Pou, ef = Poq — Gi(u),

6% =z — Py z, € = Pyz — 2, (u).

The derivation of the error equation for part 2 of the auxiliary problem (3.13b) is
similar to the analysis for part 1 of the auxiliary problem in step 1. Therefore, we state

the result and omit the proof.
Lemma 3.18. For all (T2, va, ws, Wa, p2) € Ky, x Vi, x WP x Qp, x My,(0), we have
%(5%, Ei, —E;ZL, —51;1;, Ef:; Tz, V2, W2, @2, HQ)
= —(h™ ' Pad®, v2)or, + (W™ Prd®, o) oz e (3.22)

+ (851, v2)om, — (8510, p2)ornep + (Y — yn(u), v2) 7,
20
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. ; G
Step 5: Estimate for e}

Before we estimate s‘g’, we give the following discrete Poincaré inequality from [28,

Proposition A.2].

Lemma 3.19. We have

z z -1, =z z
lerllm < CUIVerlln +h™2lef — exllom,)- (3.23)
Lemma 3.20. We have

_1 s
ek [l + h™2 | Pae — o,

S PIL,, o + 2 Yl 0 + 2 Gl o + 27 2., q (3.24a)

S(;,,f

lei 7 < P IL, o+ 2%yl 0 + 2 1G] 0+ 2= 2l g (3.24b)

PROOF. First, we note the key inequality in Lemma 3.13 is valid with (L, y,y) in place
of (G, z, 2). This gives

IVeili +h™ 2 e = eillom Sl 7 + 1™ 2| Pusef; — e lloms. (3.25)
which we use below. Next, since 5% =0 on 5}?, the property of % in (3.9) gives
Beh eh,—eh —ehserien i —ch —eh,en) = lehllF, +h 7 [Puef — eill37,.  (3.26)
Next, we take (To, va, wo, Wa, po) = (5,7, —&, —62,5%) in (3.22) gives
B e~ —ehhiehef —eh —eh )
= —(0%, Puej, — ei)om, + (0°n, ¢ — ei)om, + (y — yn(u), 7).

The estimate in (3.25), Lemmas 3.17 and 3.19 and Young’s inequality give the desired

result.

As a consequence of Lemma 3.20 and a simple application of the triangle inequality

we obtain the optimal convergence rates for |G — G (u)||7, and ||z — zp(w)|| 7, :

Lemma 3.21. Let (G, z,q) and (Gp(u), zp(u), pr(u)) be the solution of (1.3) and (3.13b),
respectively. We have
IG = Gr(wll7 S T LI, o+ 2 Iyl .0 + 1% (Gl q. (3.27a)

Iz = za(lln, S AL, o+ R gl o+ B (Gl o+ b 2], q.  (3.27b)
21
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Step 6: Estimates for ||u —up|[¢o and ||y — ynll7,
Next, we bound the error between the solutions of the auxiliary problem and the
HDG problem (3.7). We use these error bounds and the error bounds in Lemmas 3.17

and 3.21 to obtain the main results. For the next step, we denote
L =Ln(u) =Lp, {y=yn(u)—=yn, G =pn(u)—pn, (5=Dpn(u)—Dn,
(6 =Gn(u) —Gpn, G =2znu)—2zn (=aqu(uw)—qn G=aqn(u)—qn,

and

5 =Un(u) — g, on & and (5= Pyut —u,T on &f,
> =2%(u)— 2 on &) and ¢z =0 on &7,
h h h h

Subtracting the auxiliary problem and the HDG problem gives the following error equa-

tions

B(CLs Gy Cps Gy Cgs Ty 01, wr, D1, 1) = (Prru — up) T, h ™Moy + T1">5;3, (3.28a)

B, Czr —Cqs —C55 Gz Ta, v, wa, Wa, p2) = (Cy, v2)7; (3.28b)
for all (T, vy, w1, W1, p1; To, v2, wa, Wa, p2) € [Kp x Vi x WP x Qp x My,(0)]2.

Lemma 3.22. We have

Mu = unllgp + ¢y 17 = (vur = Gr(u)n + h™" Parzy(u), (u — un)T)ep

(3.29)
— (yunT = Gpn + T Pagzy, (u — up)T) go.

PRrOOF. First, we have

(yur — Gp(u)n +h™' Parzp(u), (u —up)7)eo
— (yupT = G+ h™ ' Pyzy,, (u — Un)T)eo

= yllu = unllo + (=Com + A~ PaCa, (u = up)T)ep.
Next, Lemma 3.6 gives

‘@(Cﬂn C‘y7 C;D7Cﬁa C’g?v 7<Ga CZ7C£17<¢/1\7 CE) = ‘@(CG7<Z7 7qu 7CqAa Cza 7@1‘7 C’ya va Cﬁ7 Cﬂ)

22



On the other hand, from (3.28a) and (3.28b) we have
<%(C]La <y7 va <ﬁ7 C‘ﬁ? _Cﬁn CZ? qu Cfﬂ Cg) - ‘%(C(Gm gza _Cq7 _Cfiv CE; _C]La Cyv <p7 Cﬁa C:l?)
= —(Cys )7 + (Par(u = up)T, —Cem +h 7 Co)eo

= —(Cy: Co) 7+ {(w = up)T, —Cem + h™ PuCe)ep.
Comparing the above two equalities gives
(Cy» G = ((u—up) T, —Cem + h™ ' Pars) e

Theorem 3.23. Let (y,u) and (yn,up) be the solutions of (1.3) and (3.7), respectively.
We have

1 _1 n—L _3
hoita ||IL’H51L,Q + hSv 2 Hy”swﬂ 4+ p5eT3 ||G||sx;,ﬂ +hs%=72 ||Z||sz,ﬂ’
(3.30a)

= wnllgp <

~

sL+1 Sy—1% sg—1 S2—3
ly = ynllz S PT2 L, o + 5777 Yl o0 + 272 (Gl o +57 72 |21l o
(3.30b)

PROOF. Since yur — Gn =0 on 5,‘? and yupT — Gpn + h ' Pyz, =0 on 5}? we have

vl = unllgo + 167, = (yur = Ga(uyn +h™" Parzp(w), (u— un)7)ep

= (G — Gp(u))n + h ' Pyzp(u), (u — up)T)go-
Next, since 2, (u) = z = 0 on &’ we have
[ Prrzn(u)llep = ([ Prrzn(u) — Py z + PyIT™ 2 — Pyz + Pyz — Zn(u)]|gp
< ||Puef; = eillom + 1% 2 — 2|l ¢p.
This together with Lemma 3.21 gives
e = unllgo + Gy ll7 S h72 Ik ]l + B2 |Gl g
+h 7 Pyeq, = ehllom, +h7 T 2 — 2| g.

By Lemma 3.20 and properties of the L? projection, we have

1 1 _1 _3
lu = unllgs + ICyll7 < T2 L, o + 272 yll,, o + 277 |Gl o + 2772 |2l o

Sy,

Then, by the triangle inequality and Lemma 3.17 we obtain

1 _1 c— % —2
ly = ynllz S T2 Ll o+ 2772 yll,, o + 5772 (Gl o +h% 72 |2l o
23



Step 7: Estimates for |G — G|, and ||z — 2|7,
Lemma 3.24. We have

1 1 _1
Il < P2 Ly, o + 2772 Ipll o + 2772 lyll,, o

SL,
+ 175 Gl g+ gl g + BT E 2], (3.31a)
. 1 1 _1
I¢=ll7 S RS2 IL, o + B2 (1Pl g + B2 [yl o

3
2

TGl 0+ P72 gl + 2772 2] o (3.31b)
ProOF. By Lemma 3.5, the error equation (3.28b), and since (z = 0 on 5}‘?, we have

(CeCe)Tn + P IPyCe — G5,
= PB((c, Czr —Cqr —C4 (23 Gy G2y —Cgr —C5 C2)
= (Cy» C2) T
<Gyl ¢l
Syl (V¢ +h™21¢x = Cellom,)

_1
S Gl (el +h™2[[Pude = CllaT,),

where we used the discrete Poincaré inequality in Lemma 3.19 and also (3.16). This
implies
1
I¢all, +h™ 2 1PymCe — GlloT, S 16yl
1 1
SR L, o + R |yl «

a1 3
FRETE|G o +h%= 2 2, o
The discrete Poincaré inequality in Lemma 3.19 also gives

_1
¢ S NIVCI7 +h72¢: — GlloT,
_1
S ez + A2 (|1 Pade — CzlloT,

ShoFE LY, o + R F |yl

_1 _3
o TRETEG] o 0772 2]l o

Sy,

The above lemma along with the triangle inequality and Lemmas 3.17 and 3.21 gives

the next part of the main result:
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Theorem 3.25. Let (G, z) and (Gy, zp) be the solutions of (1.3) and (3.7), respectively.
We have

1 1 PR _3
G = Gull, S poLts IILHSL,Q + hSvT3 Hy”%Q 4+ poe3 ||@||SG7Q LR 3 ||z||sz’9,

(3.32a)
sL+3 Sy—% sg—1 s=—3%
Iz = zall7;, S P2 LI, o + 72 (lyll,, o + 272 |Gl 0+ 72 2], o
(3.32b)
w  Step 8: Estimate for |[L —Ly||7,
Lemma 3.26. If k£ > 1 holds, then
IGLlly, S A% Ll 0 + b yll,, 0 + 27 G, 0 +h= 72 2], o (3.33)

PrOOF. By Lemma 3.5 and the error equation (3.28a), we have

(Gr )7 + (P (Purly — )y Gy — Gglomner + (B PrrCy, PurGy)ep
= B(CL: Gy Cps G55 CLs Sy Gps C)
= (Puu—up)7, (L n+h7 e
= ((u—up)T, G-+ A Puy)eo
S llu—unllep (ICellep + R~ 1 ParCyllep)

_1 _1
S 72 lu—unllgo (ICully, + 272 [Puylleo),

which gives

1y

_1 — _ _
5 ShT2 ||u— uh||52 < por ||ILJHSL,Q + vl ||y||syQ + poe-1 ||G,||SGQ +hs=2 ||z||sz79.

The above lemma along with the triangle inequality and Lemmas 3.17 and 3.21 com-

pletes the proof of the main result:

Theorem 3.27. Let L and Ly, be the solutions of (1.3) and (3.7), respectively. If k > 1
holds, then

L = Lally, 2% LI, o+ b iyl 0 + 2N IGH, o +h%= 72 (|2l o-
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4. Numerical experiments

In this section, we present some numerical experiments to illustrate our theoretical

results (See Theorem 31) We use uniform triangular meshes and define
div (7] = Imax V - y dx.
h KeTn |K‘ K h

Example 4.1. We begin with an example which has an analytical solution. The domain

is the unit square Q = (0,1)? and the data is chosen as

y1 = =272 sin? (721 cos(may) — 272 sin(wxy ) sin(27as),
Yo = 2% cos(mxy) sin?(may) 4 217 sin(was) sin(27x),
21 = mwsin?(mxy) sin(27wxs), 2o = —mwsin®(may) sin(2mxy),

p=10"cos(mz1), ¢ =10"cos(mzy), v=1.
Here n is a parameter.

To make a comparison, we first solve the optimality system (1.3) by using the HDG
method proposed in [10], with n = 2,4,6 and k = 0. The errors for all variables are
shown in Tables 1 and 2. Although the convergence rates are optimal and consistent
with the error analysis in [10] for n = 4, 6, the magnitude of the errors strongly depend
on the pressures. This shows that the algorithm proposed and analyzed in [10] is not

pressure-robust.
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Table 1: Example 4.1: Lack of pressure-robustness: Errors and observed convergence orders for the

control u, pressure p, state y, and its flux L by using the HDG method in [10].

& V3 div(yn) ly — ynllr2(a) IL — Ll £2(o) lp — prllr2 (o) v —unllr2(r)
Error Rate Error Rate Error Rate Error Rate
4 | 7.52E401 | 1.18E+01 5.58E+01 3.63E+01 1.77E4-01
8 | 3.36E4+01 | 3.58E+00 | 1.72 | 2.80E+01 | 0.99 | 2.45E+4+01 | 0.56 | 6.33E400 | 1.48
0 16 | 1.59E401 | 1.51E+00 | 1.24 | 1.39E+01 | 0.99 | 1.43E401 | 0.78 | 1.89E4-00 | 1.74
32 | 7.79E+00 | 1.03E4+00 | 0.54 | 8.92E4+00 | 0.64 | 1.14E401 | 0.32 | 5.65E-01 | 1.74
64 | 3.87TE+00 | 9.31E-01 | 0.15 | 7.49E400 | 0.25 | 1.10E4+01 | 0.04 | 2.69E-01 1.06
4 | 2.74E403 | 6.17TE+02 4.49E+03 3.43E+03 1.74E+03
8 | 1.17E4+03 | 1.69E+02 | 1.86 | 2.21E+03 | 1.09 | 2.19E+03 | 0.64 | 6.24E+402 | 1.48
0 16 | 4.78E4+02 | 4.56E+01 | 1.89 | 8.30E+02 | 1.34 | 9.17TE+02 | 1.25 | 1.83E+402 | 1.76
32 | 2.14E+02 | 1.19E401 | 1.93 | 3.33E+02 | 1.31 | 3.14E+4+02 | 1.54 | 4.95E4+01 | 1.89
64 | 1.03E+02 | 3.15E+400 | 1.91 | 1.46E+402 | 1.18 | 1.00E4+02 | 1.65 | 1.28E+01 | 1.94
4 | 2.74E405 | 6.1TE+04 4.49E+05 3.43E+05 1.74E4-05
8 | 1.17TE4+05 | 1.69E+04 | 1.86 | 2.21E+05 | 1.09 | 2.19E+05 | 0.64 | 6.24E+4-04 | 1.48
0 16 | 4.78E4+04 | 4.56E+03 | 1.89 | 8.30E+04 | 1.34 | 9.17TE4+04 | 1.25 | 1.83E404 | 1.76
32 | 2.14E+04 | 1.19E403 | 1.93 | 3.33E+04 | 1.31 | 3.14E+04 | 1.54 | 4.95E+4+03 | 1.89
64 | 1.03E+04 | 3.15E4+02 | 1.91 | 1.46E4+04 | 1.18 | 1.00E4+04 | 1.65 | 1.28E+03 | 1.94
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Table 2: Example 4.1: Lack of pressure-robustness: Errors and observed convergence orders for the dual

pressure ¢, dual state z, and its flux G by using the HDG method in [10].

lz = znllL2(0) IG = GrllL2y lg — anllz2(0)
Error Rate Error Rate Error Rate

kE|ln % div(zs)

4 1.19E401 | 3.21E+00 1.35E4-01 9.28E+00
8 5.62E+00 | 8.98E-01 1.83 | 7.80E400 | 0.79 | 3.31E400 | 1.48
02| 16 | 276E+00 | 2.30E-01 1.96 | 4.06E4+00 | 0.94 | 1.00E+00 | 1.71
32 | 1.38E4-00 | 5.74E-02 | 2.00 | 2.056E400 | 0.98 | 3.16E-01 1.67
64 | 6.89E-01 1.96E-02 1.54 | 1.03E400 | 0.98 1.20E-01 1.39

4 1.12E4-03 | 3.08E+02 1.31E4-03 9.15E+4-02
8 5.11E+02 | 8.66E4-01 | 1.83 | 7.59E+02 | 0.79 | 3.21E+02 | 1.50
0] 4] 16 | 251E+02 | 2.25E+01 | 1.94 | 3.95E4+02 | 0.94 | 9.27TE401 | 1.79
32 | 1.25E4-02 | 5.68E4-00 | 1.98 | 1.99E+4+02 | 0.98 | 2.45E+01 | 1.91
64 | 6.26E401 | 1.42E4-00 | 1.99 | 1.00E402 | 0.99 | 6.25E+00 | 1.97

4 1.12E4-05 | 3.08E+04 1.31E4-05 9.15E+04
8 5.11E+04 | 8.66E403 | 1.83 | 7.59E+04 | 0.79 | 3.21E+04 | 1.50
0] 6| 16 | 251E+04 | 2.25E+03 | 1.94 | 3.95E4+04 | 0.94 | 9.27TE4-03 | 1.79
32 | 1.25E404 | 5.68E402 | 1.98 | 1.99E4+04 | 0.98 | 2.45E+03 | 1.91
64 | 6.26E4-03 | 1.42E4-02 | 1.99 | 1.00E4-04 | 0.99 | 6.25E+02 | 1.97

Now we use the new HDG method (see the formulation (2.4)) to test the same prob-
lem. The errors for all variables are shown in Tables 3 and 4. We see that the error
magnitudes of the state y, dual state z and control u are independent of the pressure p
and the dual pressure q. We also notice that the convergence rates are higher than pre-

15 dicted by our error analysis; a similar phenomena has been observed for other numerical
methods for Dirichlet boundary control problems involving elliptic equations [25, 29, 30]
and Stokes equations [10, 31]. To the best of our knowledge, only one work explained
the above phenomena: May, Rannacher, and Vexler in [32] used a duality argument to
obtain improved convergence rates for the state and dual state with the standard finite

100 element method. It is not clear how to apply this technique to the HDG methods.
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Table 3: Example 4.1: Pressure-robustness: Errors and observed convergence orders for the control wu,

pressure p, state y, and its flux L by using the new HDG formulation (2.4).

il n % div(yn) ly — ynllr2(a) IL — Ll r2(o) lp — prllr2 (o) v —unllr2cr)
Error Rate Error Rate Error Rate Error Rate
4 | 8.88E-16 | 8.76E4-00 5.33E+01 1.47E4-01 6.30E-+00
8 | 6.66E-16 | 2.20E4-00 | 2.00 | 2.79E+4+01 | 0.93 | 7.20E400 | 1.03 | 3.15E400 | 1.00
02| 16 | 3.33E-16 | 5.41E-01 | 2.02 | 1.41E401 | 0.99 | 3.64E4+00 | 0.99 | 1.64E4+00 | 0.94
32 | 3.05E-16 | 1.34E-01 | 2.01 | 7.05E+00 | 1.00 | 1.80E+00 | 1.02 | 8.06E-01 | 1.03
64 | 1.94E-16 | 3.34E-02 | 2.00 | 3.52E+00 | 1.00 | 8.86E-01 | 1.02 | 3.98E-01 | 1.02
4 | 1.78E-15 | 8.76E+4-00 5.33E+01 1.30E+03 6.40E+-00
8 | 6.66E-16 | 2.20E400 | 2.00 | 2.79E401 | 0.93 | 6.53E4+02 | 0.99 | 3.42E400 | 0.91
0| 4] 16 | 3.87E-16 | 541E-01 | 2.02 | 1.41E+4+01 | 0.99 | 3.27E+02 | 1.00 | 1.58E+00 | 1.11
32 | 2.91E-16 | 1.34E-01 | 2.01 | 7.05E+00 | 1.00 | 1.64E+02 | 1.00 | 7.53E-01 | 1.07
64 | 1.87E-16 | 3.34E-02 | 2.00 | 3.52E+00 | 1.00 | 8.18E+01 | 1.00 | 3.96E-01 | 0.93
4 | 1.78E-15 | 8.76E4-00 5.33E+01 1.30E4-05 6.49E+00
0 8 | 6.66E-16 | 2.20E4-00 | 2.00 | 2.79E401 | 0.93 | 6.53E+04 | 0.99 | 3.42E+400 | 0.93
6 | 16 | 4.44E-16 | 5.41E-01 | 2.02 | 1.41E4+01 | 0.99 | 3.27E4+04 | 1.00 | 1.66E4+00 | 1.04
32 | 3.19E-16 | 1.34E-01 | 2.01 | 7.05E+00 | 1.00 | 1.64E+04 | 1.00 | 7.90E-01 | 1.07
64 | 1.87E-16 | 3.34E-02 | 2.00 | 3.52E+00 | 1.00 | 8.18E+03 | 1.00 | 3.98E-01 | 0.99
4 | 1.88E-15 | 1.18E4-00 1.40E4-01 5.53E+00 1.61E4-00
8 | 1.79E-15 | 1.52E-01 | 2.96 | 3.78E+400 | 1.89 | 1.19E+400 | 2.22 | 4.37E-01 | 1.89
112 16 | 1.05E-15 | 1.94E-02 | 2.97 | 1.03E+00 | 1.88 | 2.74E-01 | 2.12 | 1.11E-01 | 1.98
32 | 8.90E-16 | 2.45E-03 | 2.98 | 2.91E-01 | 1.82 | 6.89E-02 | 1.99 | 2.77E-02 | 2.00
64 | 4.72E-16 | 3.12E-04 | 2.98 | 8.73E-02 | 1.74 | 1.86E-02 | 1.89 | 6.98E-03 | 1.99
4 | 1.72E-15 | 1.18E4-00 1.40E4-01 1.25E4-02 1.65E4-00
8 | 1.78E-15 | 1.52E-01 | 2.96 | 3.78E+00 | 1.89 | 3.14E+01 | 1.99 | 4.37E-01 | 1.92
1|4 16 | 1.0TE-15 | 1.94E-02 | 2.97 | 1.03E+00 | 1.88 | 7.87TE+00 | 2.00 | 1.11E-01 | 1.98
32 | 8.90E-16 | 2.45E-03 | 2.98 | 2.91E-01 | 1.82 | 1.97E+00 | 2.00 | 2.79E-02 | 1.99
64 | 4.55E-16 | 3.12E-04 | 2.98 | 8.73E-02 | 1.74 | 4.92E-01 | 2.00 | 6.98E-03 | 2.00
4 | 1.65E-15 | 1.18E4-00 1.40E4-01 1.25E4-04 1.65E4-00
1 8 | 1.78E-15 | 1.52E-01 | 2.96 | 3.78E+400 | 1.89 | 3.14E+4+03 | 1.99 | 4.37E-01 | 1.92
6 | 16 | 1.03E-15 | 1.94E-02 | 2.97 | 1.03E400 | 1.88 | 7.87E+402 | 2.00 | 1.11E-01 | 1.98
32 | 8.92E-16 | 2.45E-03 | 2.98 | 2.91E-01 | 1.82 | 1.97E+02 | 2.00 | 2.79E-02 | 1.99
64 | 4.58E-16 | 3.12E-04 | 2.98 | 8.73E-02 | 1.74 | 4.92E+01 | 2.00 | 6.98E-03 | 2.00

)



Table 4: Example 4.1: Pressure-robustness: Errors and observed convergence orders for the dual pressure

q, dual state z, and its flux G by using the new HDG formulation (2.4).

llz — znllL2(q) IG — Gull L2 llg — qnllL2(q)
Error Rate Error Rate Error Rate

kE|ln % div(zs)

4 1.11E-16 | 8.51E-01 6.27TE+00 1.31E4-01
8 5.55E-17 | 2.47E-01 | 1.78 | 3.37E+00 | 0.90 | 6.59E400 | 0.99
0] 2] 16 | 3.23E-17 | 6.55E-02 | 1.92 | 1.71E400 | 0.97 | 3.29E+00 | 1.00
32 | 2.31E-17 | 1.68E-02 | 1.96 8.60E-01 1.00 | 1.64E400 | 1.00
64 | 1.61E-17 | 4.24E-03 | 1.98 | 4.30E-01 1.00 8.20E-01 1.00

4 1.11E-16 | 8.51E-01 6.27E+00 1.30E+4-03
8 5.55E-17 | 2.47E-01 | 1.78 | 3.37E+00 | 0.90 | 6.53E4-02 | 0.99
0] 4] 16 | 436E-17 | 6.55E-02 | 1.92 | 1.71E400 | 0.97 | 3.27E+02 | 1.00
32 | 2.29E-17 | 1.68E-02 | 1.96 8.60E-01 1.00 | 1.64E+02 | 1.00
64 | 1.39E-17 | 4.24E-03 | 1.98 | 4.30E-01 1.00 | 8.18E+401 | 1.00

4 1.11E-16 | 8.51E-01 6.27E+00 1.30E4-05
0 8 5.55E-17 | 2.47E-01 | 1.78 | 3.37TE+00 | 0.90 | 6.53E+04 | 0.99
6 | 16 | 3.72E-17 | 6.55E-02 | 1.92 | 1.7T1E400 | 0.97 | 3.27TE+04 | 1.00
32 | 2.08E-17 | 1.68E-02 | 1.96 8.60E-01 1.00 | 1.64E+04 | 1.00
64 | 1.39E-17 | 4.24E-03 | 1.98 | 4.30E-01 1.00 | 8.18E+03 | 1.00

4 1.59E-16 | 1.62E-01 1.93E4-00 1.49E4-00
8 1.34E-16 | 2.12E-02 | 2.93 5.06E-01 1.93 3.60E-01 2.05
12| 16 | 9.26E-17 | 2.70E-03 | 2.97 1.28E-01 1.99 8.76E-02 2.04
32 | 6.39E-17 | 3.41E-04 | 2.99 3.20E-02 2.00 2.17E-02 2.02
64 | 3.92E-17 | 4.27E-05 | 3.00 8.01E-03 2.00 5.39E-03 2.01

4 1.64E-16 | 1.62E-01 1.93E4-00 1.25E4-02
8 1.30E-16 | 2.12E-02 | 2.93 5.06E-01 1.93 | 3.14E4+01 | 1.99
1| 4| 16 | 8.68E-17 | 2.70E-03 | 2.97 1.28E-01 1.99 | 7.87E+400 | 2.00
32 | 6.72E-17 | 3.41E-04 | 2.99 3.20E-02 2.00 | 1.97E400 | 2.00
64 | 3.84E-17 | 4.27TE-05 | 3.00 8.01E-03 2.00 | 4.92E-01 2.00

4 1.64E-16 | 1.62E-01 1.93E4-00 1.25E+04
1 8 1.26E-16 | 2.12E-02 | 2.93 5.06E-01 1.93 | 3.14E4+03 | 1.99
6 | 16 | 8.52E-17 | 2.70E-03 | 2.97 1.28E-01 1.99 | 7.87E4+02 | 2.00
32 | 6.37TE-17 | 3.41E-04 | 2.99 3.20E-02 2.00 | 1.97TE+02 | 2.00

64 | 3.95E-17 | 4.27E-05 | 3.00 | 8.01E-03 | 2.00 | 4.92E401 | 2.00
oU
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Example 4.2. Next, we test the problem with unknown true solutions. We use the
same data from [10, Example 5.1]. We set Q = (0,0.125)2, f = 0, and v = 1. To show
that our HDG method is pressure-robust, we perturb the external force y; by a large

gradient field. We take

ya = 200 x 83[z%(1 — 8z)%y(1 — 8y)(1 — 16y), —x(1 — 8z)(1 — 16x)y*(1 —»)?] ",

Ya=yaq+10%[1,1]".

We denote the corresponding velocity by y and y. We know the fact that perturbing the
external force by a gradient field affects only the pressure, and not the velocity; this was
shown in [12]. Hence, y = y.

We first solve the optimality system (1.3) by using the HDG method proposed in [10]

with h = T\/ziand k =1 for both y4 and yg, we compute the difference of y;, and yy,:

lyn — ynllL2() = 214.
Next, we use the HDG formulation (2.4) in this paper, and we have
llyn — %”LQ(Q) =6.94x10".

We see that the algorithm proposed and analyzed in [10] is not pressure-robust; while

the algorithm (2.4) is pressure-robust.

5. Conclusion

In [10], we used an existing HDG method to approximate the solution of a tangential
Dirichlet boundary control problem for the Stokes system. The velocities were not in
H (div; Q) and the error estimates depended on the pressures. In this work, we devised a
new globally divergence free and pressure-robust HDG method for solving this problem.
We proved that the discrete velocity belongs to H (div; 2) and is globally divergence free.
Furthermore, our error estimates show that the errors for the control and velocities do
not depend on the pressures.

As far as we are aware, this is the first work to obtain a global divergence free and
pressure-robust numerical method for an optimal boundary control problem involving

Stokes equations. In the future, we will consider devising pressure-robust numerical
31
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methods when using an energy space for the control [31]. Besides that, we plan to devise

divergence free and pressure-robust HDG schemes for more complicated PDEs, such as

the Oseen and Navier-Stokes equations; and apply the methods to other PDE optimal

control problems.
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