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Abstract

In [ESAIM: M2AN, 54(2020), 2229-2264], we proposed an HDG method to approxi-

mate the solution of a tangential boundary control problem for the Stokes equations

and obtained an optimal convergence rate for the optimal control that reflects its global

regularity. However, the error estimates depend on the pressure, and the velocity is not

divergence free. The importance of pressure-robust numerical methods for fluids was

addressed by John et al. [SIAM Review, 59(2017), 492-544]. In this work, we devise a

new HDG method to approximate the solution of the Stokes tangential boundary control

problem; the HDG method is also of independent interest for solving the Stokes equations.

This scheme yields a H(div) conforming, globally divergence free, and pressure-robust

solution. To the best of our knowledge, this is the first time such a numerical scheme has

been obtained for an optimal boundary control problem for the Stokes equations. We

also provide numerical experiments to show the performance of the new HDG method

and the advantage over the non pressure-robust scheme.
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1. Introduction

Control of fluid flows modeled by Stokes or Navier-Stokes equations is an important

area of research that has undergone major developments in the recent past. The model

poses many theoretical and computational challenges and there is an extensive body of

literature devoted to this subject; see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9]. In [10] we investigated5

an HDG discretization for the tangential boundary control of a fluid governed by the

Stokes system and proved optimal error estimates with respect to the global regularity

of the optimal control; however, the numerical method is not pressure-robust, i.e., the

discretization errors depend on the norm of the pressure.

As pointed out by John et al. in the 2017 review article [11], many mixed finite10

element methods, such as Taylor-Hood finite element, Crouzeix-Raviart and MINI ele-

ments are not pressure-robust. The key for a numerical scheme to be pressure-robust is

the way the null divergence condition is discretized. In the above mentioned review, at

least three ways to obtain pressure-robust mixed methods are described: building H1-

conforming divergence-free schemes, using discontinuous Galerkin methods, or commit-15

ting some variational crime. In 2014, Linke [12] slightly modified the classical lowest order

Crouzeix-Raviart element with a variational crime by noticing that the Raviart-Thomas

interpolation – see (3.5) below – maps divergence-free vector fields onto divergence-free

discrete vector fields. In this way, the discrete velocity of the numerical solution is not

affected when the external force is modified with a gradient field, which is a property20

that is satisfied by the continuous solution: if −∆y+∇p = f and ∇·y = 0, then for any

scalar field φ, −∆y +∇(p + φ) = f +∇φ, ∇ · y = 0 and only the pressure is modified.

∗Corresponding author
Email addresses: cglwdm@scu.edu.cn (Gang Chen), wgong@lsec.cc.ac.cn (Wei Gong),

mmateos@uniovi.es (Mariano Mateos), singlerj@mst.edu (John R. Singler),
yangwenz@andrew.cmu.edu (Yangwen Zhang)

1G. Chen is supported by National Natural Science Foundation of China (NSFC) under grant no.
11801063 and no. 121713413, the Fundamental Research Funds for the Central Universities grant no.
YJ202030.

2W. Gong is supported by the Strategic Priority Research Program of Chinese Academy of Sciences
(Grant No. XDB 41000000), the National Key Basic Research Program (Grant No. 2018YFB0704304)
and the National Natural Science Foundation of China (Grant No. 12071468 and 11671391).

3M. Mateos is supported by MCIN/ AEI/10.13039/501100011033/ under research project PID2020-
114837GB-I00.

4J. Singler is supported by the US National Science Foundation (NSF) under grant number 2111421.
5Y. Zhang is supported by the US National Science Foundation (NSF) under grant number 2111315.

2



In 2007, Cockburn et al. [13] had already studied a DG method for the Navier-Stokes

equations which yields divergence-free solutions.

Hybridizable discontinuous Galerkin (HDG) methods were proposed by Cockburn et25

al. in [14] as an improvement of traditional DG methods; for a recent didactic exposition,

see, e.g., [15]. The HDG algorithm proposed and analyzed in our work [10] is not pressure-

robust: although the convergence rate is optimal, the magnitude of the error strongly

depends on the pressures; see Example 4.1 below.

In 2016, Lehrenfeld and Schöberl [16] first proposed a pressure-robust HDG method30

for the Navier-Stokes equations and used a divergence-conforming velocity space; see

also Lederer, Lehrenfeld, and Schöberl [17] for an improvement of this method. Re-

cently, Rhebergen and Wells, in [18], used standard cell and facet discontinuous Galerkin

spaces that do not involve a divergence-conforming finite element space for the velocity.

They obtained pressure-robust scheme for the Navier-Stokes equation; see also Kirk and35

Rhebergen in [19] for a detailed analysis of this method. For other pressure-robust HDG

methods, see [20, 21, 22, 23]. In this paper, we propose a new HDG scheme with less

degrees of freedom than that of [16], apply it to a tangential boundary control problem

governed by the Stokes equation, and prove that the method is pressure-robust.

Despite the large amount of existing work on numerical methods for fluid flow control

problems, the authors are only aware of one work dealing with pressure-robustness in the

context of optimal control problems, the very recent preprint [24], where a distributed

control problem governed by the Stokes equation is discretized by means of a pressure-

robust variant of a classical finite element discretization. We, on the other hand, propose

a pressure-robust HDG scheme for solving the following tangential boundary control

problem:

min
u∈U

J(u) =
1

2
‖yu − yd‖2L2(Ω) +

γ

2
‖u‖2U , (1.1)

where yd is the desired state, yu is the unique solution in the transposition sense (see,

e.g., [10, Defintion 2.3]) of

−∆y +∇p = f in Ω, ∇ · y = 0 in Ω, y = u on Γ,

∫
Ω

p = 0, (1.2)

γ is a positive constant, and we take the control space

U = {u = uτ : u ∈ L2(Γ)}
3



with norm ‖u‖U = ‖u‖L2(Γ) and τ the unit tangential vector.40

Formally, the optimal control u ∈ L2(Γ) and the optimal state y ∈ L2(Ω) satisfy the

first order optimality system

−∆y +∇p = f in Ω, ∇ · y = 0 in Ω, y = uτ on Γ, (1.3a)

−∆z −∇q = y − yd in Ω, ∇ · z = 0 in Ω, z = 0 on Γ, (1.3b)

∂nz · τ = γu on Γ. (1.3c)

In [10], we proved that the optimal control is indeed determined by a very weak formula-

tion of the above optimality system and we proved a regularity result for the solution in

2D polygonal domains. The optimal control satisfies (see [10, Theorem 2.4]) u ∈ Hs(Γ)

with s ∈ (0, 3/2). We utilized an existing HDG method to discretize the optimality

system and obtained the following a priori error estimate (see [10, Theorem 4.1]):

‖u− uh‖L2(Γ) ≤ Chs(‖y‖Hs+1/2(Ω) + ‖z‖Hs+3/2(Ω) + ‖p‖Hs−1/2(Ω) + ‖q‖Hs+1/2(Ω) + ‖u‖Hs(Γ)).

(1.4)

The error estimate (1.4) implies that the error is dependent on the pressure p and dual

pressure q.

In this paper, we propose a new HDG method to revisit the problem (1.1)-(1.2).

Our new HDG method is pressure-robust; i.e., we obtain the a priori error estimate (see

Theorem 3.1):

‖u− uh‖L2(Γ) ≤ Chs(‖y‖Hs+1/2(Ω) + ‖z‖Hs+3/2(Ω)). (1.5)

The error estimate (1.5) shows the same convergence rate as obtained in [10], but the

errors no longer depend on the pressures.

As in [18], our method introduces a numerical trace to approximate the pressure on45

the boundary edge, but in that reference, the authors use polynomials of degree k + 1

to approximate the trace of the velocity and we use polynomials of degree k. Hence,

the degrees of freedoms of our scheme are less than that in [18]. The price, of course, is

that we obtain lower orders of convergence than those obtained in [19] for the method

proposed in [18], but on the other hand, our error estimates are valid for problems with50

very low regularity solutions, as the ones we find when solving Dirichlet control problems.

4



We find that a pressure-robust method is specially appropriate for the tangential

control problem that we address. Notice that if we perturb yd with a conservative field

∇φ for some scalar function φ, the optimal solution would not change at all. We sould

just replace q by q + φ to obtain the solution of the optimality system.55

The plan of this paper is as follows. In Section 2 we present the functional framework,

the optimality system for the control problem, and the new HDG formulation; we prove

that, for any given control, both the discrete velocity and adjoint velocity are divergence

free. Section 3 is devoted to the error analysis; we present and prove our main result.

The scheme of our proof largely follows the structure in our previous work [10], but here60

we needed to use new techniques to show in every auxiliary lemma that the obtained

estimates are independent of the pressure. Finally, in Section 4 we provide the results of

two numerical experiments to compare the performance of the present pressure-robust

method with the method in [10].

2. Background: Regularity and HDG Formulation65

In this section, we briefly review the regularity results for the tangential boundary

control problem and give the HDG formulation.

First, we define some notation. Let Ω be a bounded polygonal domain. We use the

standard notation Hm(Ω) to denote the Sobolev space with norm ‖ · ‖m,Ω. In many

places, we use ‖ · ‖m to replace ‖ · ‖m,Ω if the context makes the norm clear. Let

Hm(Ω) = [Hm(Ω)]2×2, Hm(Ω) = [Hm(Ω)]2 and H1
0 (Ω) = {v ∈ H1(Ω);v = 0 on Γ}.

Let 〈·, ·〉Γ denote the inner product in L2(Γ) and let [·, ·]Γ denote the duality product

between H−s(Γ) and Hs(Γ). We introduce the spaces

V s(Ω) = {y ∈Hs(Ω) : ∇ · y = 0, [y · n, 1]Γ = 0}, for s ≥ 0,

V s
0 (Ω) = {y ∈Hs(Ω) : ∇ · y = 0, y = 0 on Γ}, for s > 1/2,

V s(Γ) = {u ∈Hs(Γ) : 〈u · n, 1〉Γ = 0}, for 0 ≤ s < 3/2.

We denote the L2-inner products on L2(Ω), L2(Ω), L2(Ω) and L2(Γ) by

(L,G)Ω =

2∑
i,j=1

∫
Ω

LijGij , (y, z)Ω =

2∑
j=1

∫
Ω

yjzj , (p, q)Ω =

∫
Ω

pq, 〈y, z〉Γ =

2∑
j=1

∫
Γ

yjzj .
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Define the spaces H(div; Ω) and L2
0(Ω) as

H(div,Ω) = {K ∈ L2(Ω),∇ ·K ∈ L2(Ω)}, L2
0(Ω) =

{
p ∈ L2(Ω), (p, 1)Ω = 0

}
.

2.1. Regularity

In [10, Theorem 2.8 and Corollary 2.9], we proved the following well-posedness and

regularity result for the tangential Dirichlet boundary control problem (1.1) - (1.2). Set

L = ∇y and G = ∇z, let ω be the largest interior angle of Γ, and let ξ ∈ (0.5, 4] be the

real part of the smallest root different from zero of the equation

sin2(λω)− λ2 sin2 ω = 0. (2.1)

It is known that ξ > π/ω if ω < π and 0.5 < ξ < π/ω if ω > π.

Theorem 2.1. If Ω is a convex polygonal domain, f ∈ L2(Ω) and yd ∈ Hmin{2,ξ}(Ω),

then there is a unique solution u ∈ L2(Γ) of problem (1.1)-(1.2). The solution u satisfies

u ∈ Hs(Γ) for all 1/2 < s < min{3/2, ξ − 1/2} and there exists

y ∈ V s+1/2(Ω), L ∈ Hs−1/2(Ω), p ∈ Hs−1/2(Ω) ∩ L2
0(Ω),

z ∈ V r+1
0 (Ω), G ∈ Hr(Ω), q ∈ Hr(Ω) ∩ L2

0(Ω)

for all 1 < r < min{3, ξ}, and L− pI ∈ H(div,Ω) such that

(L,T)Ω + (y,∇ · T)Ω = 〈uτ ,Tn〉Γ, (2.2a)

−(∇ · (L− pI),v)Ω = (f ,v)Ω, (2.2b)

(∇ · y, w)Ω = 0, (2.2c)

(G,T)Ω + (z,∇ · T)Ω = 0, (2.2d)

−(∇ · (G + qI),v)Ω = (y − yd,v)Ω, (2.2e)

(∇ · z, w)Ω = 0, (2.2f)

〈γuτ −Gn, µτ 〉Γ = 0 (2.2g)

for all (T,v, w, µ) ∈ H(div,Ω)×L2(Ω)× L2
0(Ω)× L2(Γ). Moreover,

u ∈
m∏
i=1

Hr−1/2(Γi) for all r < min{3, ξ}, (2.3)

where Γi denotes the smooth segment of Γ such that Γ =
m⋃
i=1

Γi.70
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2.2. The HDG Formulation

We use the same notation as in [10] to describe the HDG method. Let {Th} be a

family of conforming and quasi-uniform triangular meshes of Ω. This assumption on the

meshes is stronger than in [10]; there we assumed {Th} is a family of conforming and

quasi-uniform polygonal meshes. Let ∂Th denote the set {∂K : K ∈ Th}. For an element

K of the collection Th, e = ∂K ∩ Γ is the boundary edge if the length of e is non-zero.

For two elements K+ and K− of the collection Th, e = ∂K+ ∩ ∂K− is the interior edge

between K+ and K− if the length of e is non-zero. Let Eoh and E∂h denote the set of

interior and boundary edges, respectively. We denote by Eh the union of Eoh and E∂h . We

introduce various inner products:

(η, ζ)Th =
∑
K∈Th

(η, ζ)K , (η, ζ)Th =

2∑
i=1

(ηi, ζi)Th , (L,G)Th =

2∑
i,j=1

(Lij , Gij)Th ,

〈η, ζ〉∂Th =
∑
K∈Th

〈η, ζ〉∂K , 〈η, ζ〉∂Th =

2∑
i=1

〈ηi, ζi〉∂Th .

The norms induced by the above inner products are defined accordingly.

Let Pk(D) denote the set of polynomials of degree at most k on a domain D. We

introduce the following discontinuous finite element spaces:

Kh := {L ∈ L2(Ω) : L|K ∈ [Pk(K)]2×2, ∀K ∈ Th},

Vh := {v ∈ L2(Ω) : v|K ∈ [Pk+1(K)]2, ∀K ∈ Th},

Wh := {w ∈ L2(Ω) : w|K ∈ Pk(K), ∀K ∈ Th},

Mh := {µ ∈ L2(Eh) : µ|e ∈ [Pk(e)]2, ∀e ∈ Eh},

Mh := {µ ∈ L2(E∂h ) : µ|e ∈ Pk(e), ∀e ∈ E∂h},

Qh := {µ ∈ L2(Eh) : µ|e ∈ Pk+1(e), ∀e ∈ Eh}.

Let Mh(o) denote the space defined in the same way as Mh, but with Eh replaced

by Eoh. We use ∇v and ∇ · L to denote the gradient of v and the divergence of L taken

piecewise on each element K ∈ Th. Finally, we define

W 0
h =

{
w ∈ L2(Ω) : w|K ∈ Pk(K), ∀K ∈ Th and (w, 1)Ω = 0

}
.

The HDG method seeks approximate fluxes Lh,Gh ∈ Kh, states yh, zh ∈ Vh, pres-

sures ph, qh ∈ W 0
h , interior element boundary traces ŷoh, ẑ

o
h ∈ Mh(o) and p̂h, q̂h ∈ Qh,
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and boundary control uh ∈Mh satisfying

(Lh,T1)Th + (yh,∇ · T1)Th − 〈ŷoh,T1n〉∂Th\E∂h = 〈uhτ ,T1n〉E∂h , (2.4a)

−(∇ · Lh,v1)Th − (ph,∇ · v1)Th + 〈p̂h,v1 · n〉∂Th

+〈h−1PMyh,v1〉∂Th − 〈h−1ŷoh,v1〉∂Th\E∂h = (f ,v1)Th + 〈h−1uhτ ,v1〉E∂h , (2.4b)

(∇ · yh, w1)Th = 0, (2.4c)

〈yh · n, ŵ1〉∂Th = 0 (2.4d)

for all (T1,v1, w1, ŵ1) ∈ Kh × Vh ×W 0
h ×Qh,

(Gh,T2)Th + (zh,∇ · T2)Th − 〈ẑoh,T2n〉∂Th\E∂h = 0, (2.4e)

−(∇ ·Gh,v2)Th + (qh,∇ · v2)Th − 〈q̂h,v2 · n〉∂Th

+〈h−1PMzh,v2〉∂Th − 〈h−1ẑoh,v2〉∂Th\E∂h = (yh − yd,v2)Th , (2.4f)

(∇ · zh, w2)Th = 0, (2.4g)

〈zh · n, ŵ2〉∂Th = 0 (2.4h)

for all (T2,v2, w2, ŵ2) ∈ Kh × Vh ×W 0
h ×Qh,

〈Lhn− h−1(PMyh − ŷoh),µ1〉∂Th\E∂h = 0 (2.4i)

for all µ1 ∈Mh(o),

〈Ghn− h−1(PMzh − ẑoh),µ2〉∂Th\E∂h = 0 (2.4j)

for all µ2 ∈Mh(o),

〈Ghn− h−1PMzh − γuhτ , µ3τ 〉E∂h = 0 (2.4k)

for all µ3 ∈ Mh. Here PM denotes the standard L2-orthogonal projection from L2(Eh)

onto Mh; see (3.3c) below. This completes the formulation of the HDG method.

Remark 2.2. Our method resembles the one introduced in [18] and analyzed in [19] in75

the sense that the numerical trace of the pressure plays the role of Lagrange multipliers

enforcing continuity of the normal component of the velocity across element boundaries.

Nevertheless, to approximate the trace of the velocity, we use polynomials of degree k
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instead of k + 1. In this way, our method has fewer degrees of freedom, but at the price

of a lower order of convergence. This feature can be seen as a drawback when solving80

an uncontrolled Stokes problem or even a distributed control problem governed by the

Stokes equation. But for the problem at hand the regularity of the solution is usually

very low, see Theorem 2.1, and the order of convergence will be mainly limited by this

fact, so it makes sense to use a method with suboptimal rates of convergence.

Notice also that the HDG method developed in this paper has more degrees of freedom85

than the scheme in [10], since we introduced two more numerical traces p̂h and q̂h to

approximate the traces of the pressures ph and qh, respectively in order to obtain a

pressure robust method.

Next, we show that the discrete system (2.4) yields a globally divergence free state

yh and dual state zh.90

Proposition 2.3. Let yh and zh be the solutions of (2.4), then we have yh, zh ∈

H(div; Ω) and ∇ · yh = ∇ · zh = 0.

Proof. We only prove the result for yh since the proof for zh is similar. Let K1, K2 ∈ Th
be any two adjacent elements sharing a common edge e. Define r̂ ∈ Qh as follows:

r̂|e = −(yh · ne)|K1∩e − (yh · ne)|K2∩e ∀e ∈ Eoh,

r̂|e = 0 ∀e ∈ E∂h .

Let c0 = 1
|Ω|

∑
K∈Th

∫
K
∇ · yh and take (w1, ŵ1) = (∇ · yh − c0, r̂ − c0) in (2.4c)-(2.4d) to

get

0 = −(∇ · yh,∇ · yh − c0)Th + 〈yh · n, r̂ − c0〉∂Th

= −(∇ · yh,∇ · yh)Th + 〈yh · n, r̂〉∂Th

= −(∇ · yh,∇ · yh)Th −
∑
e∈Eoh

‖(yh · ne)|K1
+ (yh · ne)|K2

‖20,e.

This implies yh ∈H(div; Ω) and ∇ · yh = 0.

3. Error Analysis

We assume that the solution of (2.2a)-(2.2g) satisfies

L ∈ HrL(Ω), y ∈Hry (Ω), G ∈ HrG(Ω), z ∈Hrz (Ω),
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where

ry > 1, rz > 2, rL > 1/2, rG > 1. (3.1)

We now state our main result.95

Theorem 3.1. For

sL = min{rL, k + 1}, sy = min{ry, k + 2}, sG = min{rG, k + 1}, sz = min{rz, k + 2},

if the regularity assumption (3.1) holds we have

‖u− uh‖E∂h . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω,

‖y − yh‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω,

‖G−Gh‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω,

‖z − zh‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω + hsz−

3
2 ‖z‖sz,Ω .

If k ≥ 1, then

‖L− Lh‖Th . hsL ‖L‖sL,Ω + hsy−1 ‖y‖sy,Ω + hsG−1 ‖G‖sG,Ω +hsz−2 ‖z‖sz,Ω.

Remark 3.2. The error estimates in Theorem 3.1 are independent of the pressures p

and q, which are different from the error estimates in [10, Theorem 4.1]. Therefore, our

HDG method is pressure-robust. We note that the HDG method considered here has

more degrees of freedom than that in [10], since we have introduced numerical traces for

the pressures. We also note that the technique used in [10] cannot be applied here to100

treat the case when rL ≤ 1/2. This low regularity for L = ∇y may appear when ξ ≤ 3/2,

which corresponds to a value of ω greater than ω3/2 ≈ 0.839138753489667π; see more

details in Remark 3.11. Moreover, the meshes here are restricted to be triangular, while

in [10] we can use general polygonal meshes.

Noticing that for ω ∈ [π/3, ω3/2) we have that ξ ∈ (3/2, 4], the application of105

Theorems 3.1 and 2.1 gives the following result.

Corollary 3.3. Suppose yd ∈ Hξ(Ω). Let ω ∈ [π/3, ω3/2) be the largest interior angle

of Γ, and define rΩ by

rΩ = min

{
3

2
, ξ − 1

2

}
∈ (1,

3

2
].
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Then the regularity condition (3.1) is satisfied. Also, if k ≥ 1, then for any r < rΩ we

have

h
1
2 ‖L− Lh‖Th + ‖y − yh‖Th + ‖G−Gh‖Th + ‖z − zh‖Th + ‖u− uh‖E∂h . hr.

Moreover, if k = 0, we have

‖u− uh‖E∂h + ‖y − yh‖Th + ‖z − zh‖Th + ‖G−Gh‖Th . h1/2.

3.1. Preliminary material

We use the standard L2 projections ΠK : L2(Ω) → Kh, ΠV : L2(Ω) → Vh, and

ΠW : L2(Ω)→Wh satisfying

(ΠKL,T)K = (L,T)K ∀ T ∈ [Pk(K)]2×2, (3.2a)

(ΠV y,v)K = (y,v)K ∀ v ∈ [Pk+1(K)]2, (3.2b)

(ΠW p, w)K = (p, w)K ∀ w ∈ Pk(K). (3.2c)

For all edges e of the triangle K, we also need the L2-orthogonal projections PM onto

Mh, PQ onto Qh, and PM onto Mh satisfying

〈PMu− u, µ〉e = 0 ∀µ ∈Mh, (3.3a)

〈PQp− p, µ〉e = 0 ∀µ ∈ Qh, (3.3b)

〈PMy − y,µ〉e = 0 ∀µ ∈Mh. (3.3c)

In the analysis, we use the following classical results [25, Section 4.2]:

‖ΠKL− L‖Th . hsL‖L‖sL,Ω, ‖ΠV y − y‖Th . hsy‖y‖sy,Ω, (3.4a)

‖ΠKL− L‖∂Th . hsL−
1
2 ‖L‖sL,Ω, ‖ΠV y − y‖∂Th . hsy−

1
2 ‖y‖sy,Ω, (3.4b)

‖ΠW p− p‖Th . hsp‖p‖sp,Ω, ‖PMy − y‖∂Th . hsy−
1
2 ‖y‖sy,Ω, (3.4c)

‖PMu− u‖∂Th . hsy−
1
2 ‖y‖sy,Ω, ‖PQp− p‖∂Th . hsp−

1
2 ‖p‖sp,Ω. (3.4d)

We have the same projection error bounds for G, z and q.

For the error analysis in this section, we need to introduce the classical Raviart-

Thomas (RT) space:

Rk(K) = [Pk(K)]2 + xPk(K),
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and define the RT projection ΠRT : H1(K)→ Rk+1(K)

〈ΠRTv · n, w〉e = 〈v · n, w〉e ∀w ∈ Pk+1(e), e ⊂ ∂K, (3.5a)

(ΠRTv,w)K = (v,w)K ∀w ∈ [Pk(K)]2. (3.5b)

We also need the following classical results [26, Theorem 3.1]:

‖ΠRTy − y‖Th . hsy‖y‖sy,Ω, ‖ΠRTy − y‖∂Th . hsy−1/2‖y‖sy,Ω.

By the well-known commutative diagram [26, Equation (38)] we have

∇ · (ΠRTv) = Π(∇ · v),

where Π is the standard L2 projection from L2(K) onto Pk+1(K). If v ∈H(div; Ω) and

∇ · v = 0, then

∇ · (ΠRTv) = 0.

Applying [26, Lemma 3.1] we have the following lemma.

Lemma 3.4. For any v ∈H(div; Ω) and ∇ · v = 0, we have ΠRTv ∈ Vh.110

To simplify notation, we define an HDG operator B. For all (Lh,yh, ph, p̂h, ŷoh) ∈

Kh × Vh ×W 0
h ×Qh ×Mh(o), we define

B(Lh,yh, ph, p̂h, ŷoh;T1,v1, w1, ŵ1,µ1)

= (Lh,T1)Th + (yh,∇ · T1)Th − 〈ŷoh,T1n〉∂Th\E∂h − (∇ · Lh,v1)Th

− (ph,∇ · v1)Th + 〈p̂h,v1 · n〉∂Th + 〈h−1PMyh,v1〉∂Th − 〈h−1ŷoh,v1〉∂Th\E∂h
+ (∇ · yh, w1)Th − 〈yh · n, ŵ1〉∂Th + 〈Lhn− h−1(PMyh − ŷoh),µ1〉∂Th\E∂h (3.6)

for all (T1,v1, w1, ŵ1,µ1) ∈ Kh × Vh ×W 0
h ×Qh ×Mh(o).

By the definition of B, we can rewrite the HDG formulation (2.4) as follows: find

(Lh,yh, ph, p̂h, ŷoh;Gh, zh, qh, q̂h, ẑoh) ∈ [Kh×Vh×W 0
h ×Qh×Mh(o)]2 and uh ∈Mh such

that

B(Lh,yh, ph, p̂h, ŷoh;T1,v1, w1, ŵ1,µ1) = 〈uhτ ,T1n+ h−1v1〉E∂h + (f ,v1)Th , (3.7a)

B(Gh, zh,−qh,−q̂h, ẑoh;T2,v2, w2, ŵ2,µ2) = (yh − yd,v2)Th , (3.7b)

〈Ghn− h−1PMzh, µ3τ 〉E∂h = γ〈uh, µ3〉E∂h (3.7c)

for all (T1,v1, w1, ŵ1,µ1;T2,v2, w2, ŵ2,µ2) ∈ [Kh×Vh×W 0
h×Qh×Mh(o)]2 and µ3 ∈Mh.
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Lemma 3.5. For any (Lh,yh, ph, p̂h, ŷoh) ∈ Kh × Vh ×Wh ×Qh ×Mh(o),

B(Lh,yh, ph, p̂h, ŷoh;Lh,yh, ph, p̂h, ŷoh)

= ‖Lh‖2Th + h−1‖PMyh − ŷoh‖2∂Th\E∂h + h−1‖PMyh‖2E∂h .
(3.8)

Proof. According to the definition of B in (3.6) and integration by parts, we get

B(Lh,yh, ph, p̂h, ŷoh;Lh,yh, ph, p̂h, ŷoh)

= (Lh,Lh)Th + (yh,∇ · Lh)Th − 〈ŷoh,Lhn〉∂Th\E∂h − (∇ · Lh,yh)Th

− (ph,∇ · yh)Th + 〈p̂h,yh · n〉∂Th +
〈
h−1(PMyh − ŷoh),yh

〉
∂Th\E∂h

+ 〈h−1PMyh,yh〉E∂h + (∇ · yh, ph)Th − 〈yh · n, p̂h〉∂Th

+ 〈Lhn− h−1(PMyh − ŷoh), ŷoh〉∂Th\E∂h
= ‖Lh‖2Th + h−1‖PMyh − ŷoh‖2∂Th\E∂h + h−1‖PMyh‖2E∂h .

Similarly, for any (Gh, zh, qh, q̂h, ẑoh) ∈ Kh × Vh ×Wh ×Qh ×Mh(o), we have

B(Gh, zh,−qh,−q̂h, ẑoh;Gh, zh,−qh,−q̂h, ẑoh)

= ‖Gh‖2Th + h−1‖PMzh − ẑoh‖2∂Th\E∂h + h−1‖PMzh‖2E∂h .
(3.9)

Next we give a property of B that is critically important to our error analysis of this

method.

Lemma 3.6. For any (Lh,yh, ph, p̂h, ŷoh;Gh, zh, qh, q̂h, ẑoh) ∈ [Kh × Vh × Wh × Qh ×

Mh(o)]2,

B(Lh,yh, ph, p̂h, ŷoh;−Gh, zh, qh, q̂h, ẑoh) = B(Gh, zh,−qh,−q̂h, ẑoh;−Lh,yh, ph, p̂h, ŷoh).

Proof. By the definition of B in (3.6) we have

B(Lh,yh, ph, p̂h, ŷoh;−Gh, zh, qh, q̂h, ẑoh)

= −(Lh,Gh)Th − (yh,∇ ·Gh)Th + 〈ŷoh,Ghn〉∂Th\E∂h − (∇ · Lh, zh)Th

− (ph,∇ · zh)Th + 〈p̂h, zh · n〉∂Th + 〈h−1PMyh, zh〉∂Th − 〈h−1ŷoh, zh〉∂Th\E∂h
+ (∇ · yh, qh)Th − 〈yh · n, q̂h〉∂Th + 〈Lhn− h−1(PMyh − ŷoh), ẑoh〉∂Th\E∂h .
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Rearrange the terms above to get

B(Lh,yh, ph, p̂h, ŷoh;−Gh, zh, qh, q̂h, ẑoh)

= −(Gh,Lh)Th − (zh,∇ · Lh)Th + 〈ẑoh,Lhn〉∂Th\E∂h − (∇ ·Gh,yh)Th

+ (qh,∇ · yh)Th − 〈q̂h,yh · n〉∂Th + 〈h−1PMzh,yh〉∂Th − 〈h−1ẑoh,yh〉∂Th\E∂h
− (∇ · zh, ph)Th + 〈zh · n, p̂h〉∂Th + 〈Ghn− h−1(PMzh − ẑoh), ŷoh〉∂Th\E∂h

= B(Gh, zh,−qh,−q̂h, ẑoh;−Lh,yh, ph, p̂h, ŷoh),

where we used the fact that zh ∈H(div; Ω) and ∇ · zh = 0 in Proposition 2.3.115

To prove the uniqueness of solution of the HDG formulation, we need to recall the

following BDM projection.

Lemma 3.7. [27, Equation (2.3)] For any K ∈ Th and v ∈
[
H1(K)

]2
, there exists a

unique ΠBDMv ∈ [Pk+1(K)]2 such that

〈
ΠBDMv · ne, wk+1

〉
e

= 〈v · ne, wk+1〉e ∀wk+1 ∈ Pk+1(e), e ∈ ∂K, (3.10a)(
ΠBDMv,∇pk

)
K

= (v,∇pk)K ∀pk ∈ Pk(K), (3.10b)(
ΠBDMv, curl (bKpk−1)

)
K

= (v, curl (bKpk−1))K , ∀pk−1 ∈ Pk−1(K), (3.10c)

where bK = λ1λ2λ3 is a “bubble” function and curlφ = [∂yφ,−∂xφ]>. If k = 0, then

(3.10c) is vacuous and ΠBDM is defined by (3.10a) and (3.10b).

Remark 3.8. In [27, Lemma 2.1], Brezzi, Douglas and Marini proved that the system

(3.10) determines ΠBDM uniquely. In other words, the matrix formed from the left hand

side of (3.10) is non-singular. Hence, for any z1 ∈ H1(e), z2, z3 ∈
[
H1(K)

]2
, we can

uniquely determine vh ∈ [Pk+1(K)]2 such that

〈vh · ne, wk+1〉e = 〈z1, wk+1〉e ∀wk+1 ∈ Pk+1(e), e ∈ ∂K, (3.11a)

(vh,∇pk)K = (z2,∇pk)K ∀pk ∈ Pk(K), (3.11b)

(vh, curl (bKpk−1))K = (z3, curl (bKpk−1))K , ∀pk−1 ∈ Pk−1(K). (3.11c)

Theorem 3.9. There exists a unique solution of the HDG discrete optimality system120

(3.7).
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Proof. Since the system (3.7) is finite dimensional, we only need to prove the unique-

ness. Therefore, we assume yd = f = 0 and we show the system (3.7) only has the trivial

solution.

First, take (T1,v1, w1, ŵ1,µ1) = (−Gh, zh,−qh,−q̂h, ẑoh), (T2,v2, w2, ŵ2,µ2) =

(−Lh,yh, ph, p̂h, ŷoh), and µ3 = −uh in (3.7), respectively. By Lemma 3.6 we have

B(Lh,yh, ph, p̂h, ŷoh;−Gh, zh,−qh,−q̂h, ẑoh)−B(Gh, zh, qh, q̂h, ẑoh;−Lh,yh, ph, p̂h, ŷoh)

= −(yh,yh)Th − γ〈uh, uh〉E∂h
= 0.

This implies yh = uh = 0 since γ > 0.125

Next, taking (T1,v1, w1, ŵ1,µ1) = (Lh,yh, ph, p̂h, ŷoh) in (3.7a) and (T2,v2, w2, ŵ2,µ2) =

(Gh, zh, qh, q̂h, ẑoh) in (3.7b) and using Lemma 3.5, we obtain Lh = Gh = 0, ŷoh = ẑoh = 0.

Next, taking (T1, w1, ŵ1,µ1) = (0, 0, 0, 0) and (T2,v2, w2, ŵ2,µ2) = (0, 0, 0, 0, 0) and

applying integration by parts gives

(∇ph,v1)Th + 〈p̂h − ph,v1 · n〉∂Th = 0. (3.12)

Next, set z1 = p̂h − ph in (3.11a), z2 = 0 in (3.11b), and z3 = 0 in (3.11c). Then

there exists a unique v1 ∈ [Pk+1(K)]2 such that on each element K we have

〈v1 · ne, wk+1〉e = 〈p̂h − ph, wk+1〉e ∀wk+1 ∈ Pk+1(e), e ∈ ∂K,

(v1,∇pk)K = 0 ∀pk ∈ Pk(K).

This implies that (v1,∇ph)K = 0 and v1 · n = p̂h − ph on ∂K. This gives p̂h = ph.

Finally, taking v1 = ∇ph in (3.12) we have ∇ph = 0, which together with the fact that

p̂h is single-valued on each edge implies ph is a constant on the whole domain. Moreover,130

ph ∈ L2
0(Ω) gives p̂h = ph = 0. Following the same idea gives q̂h = qh = 0.

3.2. Proof of Theorem 3.1

We follow the strategy of our earlier work [10] and split the proof into eight steps.

Consider the following auxiliary problem: find (Lh(u),yh(u), ph(u), p̂h(u), ŷoh(u);
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Gh(u), zh(u), qh(u), q̂h(u), ẑoh(u)) ∈ [Kh × Vh ×W 0
h ×Qh ×Mh(o)]2 such that

B(Lh(u),yh(u), ph(u), p̂h(u), ŷoh(u);T1,v1, w1, ŵ1,µ1) = 〈(PMu)τ , h−1v1 + T1n〉E∂h
+ (f ,v1)Th , (3.13a)

B(Gh(u), zh(u),−qh(u),−q̂h(u), ẑoh(u);T2,v2, w2, ŵ2,µ2) = (yh(u)− yd,v2)Th

(3.13b)

for all (T1,v1, w1, ŵ1,µ1;T2,v2, w2, ŵ2,µ2) ∈ [Kh × Vh ×W 0
h ×Qh ×Mh(o)]2.

We also note that although the proof strategy is very similar to [10], a simple rewriting

of the proofs for the settings of this paper is not enough. For each of the following lemmas,135

we must take care of the spaces of velocity and pressure so that estimates are independent

of the pressure.

We begin by bounding the error between the solutions of the auxiliary problem and

the mixed form (2.2a)-(2.2g) of the optimality system. Define

δL = L−ΠKL, εLh = ΠKL− Lh(u),

δy = y −ΠRTy, εyh = ΠRTy − yh(u),

δp = p−ΠW p, εph = ΠW p− ph(u),

δp̂ = p− PQp, εp̂h = PQp− p̂h(u),

δŷ = y − PMy, εŷh = PMy − ŷh(u),

(3.14)

where ŷh(u) = ŷoh(u) on Eoh and ŷh(u) = (PMu)τ on E∂h , then εŷh = 0 on E∂h .

Step 1: The error equation for part 1 of the auxiliary problem (3.13a)

Lemma 3.10. Let (L,y, p) be the solution of the optimality system (1.3). Then we have

for all (T1,v1, w1, ŵ1,µ1) ∈ Kh × Vh ×W 0
h ×Qh ×Mh(o) that

B(ΠKL,ΠRTy,ΠW p, PQp,PMy;T1,v1, w1, ŵ1,µ1)

= (f ,v1)Th + 〈(PMu)τ ,T1n+ h−1v1〉E∂h − 〈h
−1PMδ

y,v1〉∂Th

+ 〈δLn,v1〉∂Th − 〈δLn,µ1〉∂Th\E∂h + 〈h−1PMδ
y,µ1〉∂Th\E∂h .

Proof. Since ∇ · y = 0, by Lemma 3.4 we have ΠRTy ∈ Vh. By the definition of the
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operator B in (3.6) we obtain

B(ΠKL,ΠRTy,ΠW p, PQp,PMy;T1,v1, w1, ŵ1,µ1)

= (ΠKL,T1)Th + (ΠRTy,∇ · T1)Th − 〈PMy,T1n〉∂Th\E∂h − (∇ ·ΠKL,v1)Th

− (ΠW p,∇ · v1)Th + 〈PQp,v1 · n〉∂Th + 〈h−1PMΠRTy,v1〉∂Th

− 〈h−1PMy,v1〉∂Th\E∂h + (∇ ·ΠRTy, w1)Th − 〈ΠRTy · n, ŵ1〉∂Th

+ 〈ΠKLn− h−1(PMΠRTy − PMy),µ1〉∂Th\E∂h .

By definition of the L2 projections and the RT projection, we have

B(ΠKL,ΠRTy,ΠW p, PMp,PMy;T1,v1, w1, ŵ1,µ1)

= (L,T1)Th + (y,∇ · T1)Th − 〈y,T1n〉∂Th\E∂h + (∇ · δL,v1)Th

− (∇ · L,v1)Th − (p,∇ · v1)Th + 〈p,v1 · n〉∂Th + 〈h−1PMy,v1〉∂Th

− 〈h−1PMδ
y,v1〉∂Th − 〈h−1PMy,v1〉∂Th\E∂h + (∇ ·ΠRTy, w1)Th

− 〈y · n, ŵ1〉∂Th + 〈ΠKLn,µ1〉∂Th\E∂h + 〈h−1PMδ
y,µ1〉∂Th\E∂h .

Moreover, integration by parts gives

(∇ ·ΠRTy, w1)Th = 〈ΠRTy · n, w1〉∂Th − (ΠRTy,∇w1)Th

= 〈y · n, w1〉∂Th − (y,∇w1)Th

= (∇ · y, w1)Th

= 0.

Note that the exact solutions L, y and p satisfy

(L,T1)Th + (y,∇ · T1)Th − 〈y,T1n〉∂Th\E∂h = 〈uτ ,T1n〉E∂h ,

−(∇ · (L− pI),v1)Th = (f ,v1)Th ,

(∇ · y, w1)Th = 0,

〈y · n, ŵ1〉∂Th = 0

for all (T1,v1, w1, ŵ1) ∈ Kh × Vh ×W 0
h ×Qh and y = uτ on E∂h . Then we have

B(ΠKL,ΠRTy,ΠW p, PMp,PMy;T1,v1, w1, ŵ1,µ1)

= (f ,v1)Th + 〈(PMu)τ ,T1n+ h−1v1〉E∂h − 〈h
−1PMδ

y,v1〉∂Th

+ (∇ · δL,v1)Th + 〈ΠKLn,µ1〉∂Th\E∂h + 〈h−1PMδ
y,µ1〉∂Th\E∂h .
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Since L ∈ HrL(Ω) with rL > 1/2, then 〈Ln,µ1〉∂Th\E∂h = 0. This implies

B(ΠKL,ΠRTy,ΠW p, PMp,PMy;T1,v1, w1, ŵ1,µ1)

= (f ,v1)Th + 〈(PMu)τ ,T1n+ h−1v1〉E∂h − 〈h
−1PMδ

y,v1〉∂Th

+ 〈δLn,v1〉∂Th − 〈δLn,µ1〉∂Th\E∂h + 〈h−1PMδ
y,µ1〉∂Th\E∂h ,

where we used the fact that (L−ΠKL,∇v1)Th = 0.140

Remark 3.11. In [10], we used L − pI ∈ H(div,Ω) when sL ≤ 1/2. However, L ∈

H(div,Ω) does not hold here. Hence, we assume rL > 1/2 so that L has a well-defined

trace. Improving the analysis to handle the case sL ≤ 1/2 is left to be considered

elsewhere.

Subtract part 1 of (3.13a) from Lemma 3.10 to obtain the following lemma.145

Lemma 3.12. For all (T1,v1, w1, ŵ1,µ1) ∈ Kh × Vh ×W 0
h ×Qh ×Mh(o), we have

B(εLh, ε
y
h, ε

p
h, ε

p̂
h, ε

ŷ
h;T1,v1, w1, ŵ1,µ1) = −〈h−1PMδ

y,v1〉∂Th + 〈h−1PMδ
y,µ1〉∂Th\E∂h

+ 〈δLn,v1〉∂Th − 〈δLn,µ1〉∂Th\E∂h . (3.15)

Step 2: Estimate for εLh

We first provide a key inequality which was proven in [10, Lemma 4.7].

Lemma 3.13. We have

‖∇εyh‖Th + h−
1
2 ‖εyh − ε

ŷ
h‖∂Th . ‖εLh‖Th + h−

1
2 ‖PMεyh − ε

ŷ
h‖∂Th . (3.16)

Lemma 3.14. We have

‖εLh‖Th + h−
1
2 ‖PMεyh − ε

ŷ
h‖∂Th . hsL ‖L‖sL,Ω + hsy−1 ‖y‖sy,Ω .

Proof. First, since εŷh = 0 on E∂h , the basic property of B in Lemma 3.5 gives

B(εLh, ε
y
h, ε

p
h, ε

p̂
h, ε

ŷ
h; εLh, ε

y
h, ε

p
h, ε

p̂
h, ε

ŷ
h) = ‖εLh‖2Th + h−1‖PMεyh − ε

ŷ
h‖

2
∂Th .

On the other hand, taking (T1,v1, p1, p̂1,µ1) = (εLh, ε
y
h, ε

p
h, ε

p̂
h, ε

ŷ
h) in (3.15) gives

‖εLh‖2Th + h−1‖PMεyh − ε
ŷ
h‖

2
∂Th = 〈δLn, εyh − ε

ŷ
h〉∂Th − 〈h

−1δy,PMε
y
h − ε

ŷ
h〉∂Th .

By Lemma 3.13 and Young’s inequality, we have

‖εLh‖Th + h−
1
2 ‖PMεyh − ε

ŷ
h‖∂Th . hsL ‖L‖sL,Ω + hsy−1 ‖y‖sy,Ω .
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Step 3: Estimate for εyh by a duality argument

Next, we introduce the dual problem

A−∇Φ = 0 in Ω, −∇ · A−∇Ψ = Θ in Ω, ∇ ·Φ = 0 in Ω, Φ = 0 on ∂Ω.

(3.17)

Since the domain Ω is convex, we have the following regularity estimate:

‖A‖1,Ω + ‖Φ‖2,Ω + ‖Ψ‖1,Ω ≤ C‖Θ‖0,Ω. (3.18)

Before we estimate εyh, we introduce the following notation, which is similar to the earlier

notation in (3.14):

δA = A−ΠKA, δΦ = Φ−ΠRTΦ, δΨ = Ψ−ΠWΨ, δΨ̂ = Ψ− PQΨ, δΦ̂ = Φ− PMΦ.

Since Φ = 0 on ∂Ω, by using Lemma 3.10 we have the following lemma:

Lemma 3.15. Let (A,Φ,Ψ) be the solution of (3.17), then for all (T1,v1, w1, ŵ1,µ1) ∈

Kh × Vh ×W 0
h ×Qh ×Mh(o), we have

B(ΠKA,ΠRTΦ,ΠWΨ, PQΨ,PMΦ;T1,v1, w1, ŵ1,µ1)

= (Θ,v1)Th − 〈h−1PMδ
Φ,v1〉∂Th + 〈h−1PMδ

Φ,µ1〉∂Th\E∂h
+ 〈δAn,v1〉∂Th − 〈δAn,µ1〉∂Th\E∂h .

Lemma 3.16. We have

‖εyh‖Th . hsL+1‖L‖sL,Ω + hsy ‖y‖sy,Ω . (3.19)

Proof. Consider the dual problem (3.17) and let Θ = εyh. Since εŷh = 0 on E∂h , it follows

from Lemmas 3.6 and 3.15 that

B(εLh, ε
y
h, ε

p
h, ε

p̂
h, ε

ŷ
h;−ΠKA,ΠRTΦ,ΠWΨ, PQΨ,PMΦ)

= B(ΠKA,ΠRTΦ,−ΠWΨ,−PQΨ,PMΦ;−εLh, ε
y
h, ε

p
h, ε

p̂
h, ε

ŷ
h)

= 〈δAn, εyh − ε
ŷ
h〉∂Th − 〈h

−1δΦ,PMε
y
h − ε

ŷ
h〉∂Th + ‖εyh‖

2
Th .

On the other hand, taking (T1,v1, w1, ŵ1,µ1) = (−ΠKA,ΠRTΦ,ΠWΨ, PQΨ,PMΦ) in

(3.15) gives

B(εLh, ε
y
h, ε

p
h, ε

p̂
h, ε

ŷ
h;−ΠKA,ΠRTΦ,ΠWΨ, PQΨ,PMΦ)

= 〈δLn,ΠRTΦ− PMΦ〉∂Th + 〈h−1δy,PMδ
Φ〉∂Th .
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Then we have

‖εyh‖
2
Th = 〈δLn,ΠRTΦ− PMΦ〉∂Th − 〈δAn, ε

y
h − ε

ŷ
h〉∂Th

+ 〈h−1δΦ,PMε
y
h − ε

ŷ
h〉∂Th + 〈h−1δy,PMδ

Φ〉∂Th ,

which together with the approximation properties of the L2-orthogonal projection and150

the projection ΠRT and Lemma 3.14 gives the desired result.

As a consequence of Lemmas 3.14 and 3.16, a simple application of the triangle

inequality gives optimal convergence rates for ‖L− Lh(u)‖Th and ‖y − yh(u)‖Th :

Lemma 3.17. Let (L,y, p) and (Lh(u),yh(u), ph(u)) be the solution of (1.3) and (3.13a),

respectively. We have

‖L− Lh(u)‖Th.hsL ‖L‖sL,Ω + hsy−1 ‖y‖sy,Ω , (3.20a)

‖y − yh(u)‖Th . hsL+1 ‖L‖sL,Ω + hsy ‖y‖sy,Ω . (3.20b)

Step 4: The error equation for part 2 of the auxiliary problem (3.13b)

We continue to bound the error between the solutions of the auxiliary problem and

the mixed form (2.2a)-(2.2g) of the optimality system. In steps 4-5, we focus on the dual

variables, i.e., G, z and q. We use the following notation

δG = G−ΠKG, εGh = ΠKG−Gh(u),

δz = z −ΠRTz, εzh = ΠRTz − zh(u),

δq = q −ΠW q, εqh = ΠW q − qh(u),

δq̂ = q − PQq, εq̂h = PQq − q̂h(u),

δẑ = z − PMz, εẑh = PMz − ẑh(u).

(3.21)

The derivation of the error equation for part 2 of the auxiliary problem (3.13b) is155

similar to the analysis for part 1 of the auxiliary problem in step 1. Therefore, we state

the result and omit the proof.

Lemma 3.18. For all (T2,v2, w2, ŵ2,µ2) ∈ Kh × Vh ×W 0
h ×Qh ×Mh(o), we have

B(εGh , ε
z
h,−ε

q
h,−ε

q̂
h, ε

ẑ
h;T2,v2, w2, ŵ2,µ2)

= −〈h−1PMδ
z,v2〉∂Th + 〈h−1PMδ

z,µ2〉∂Th\E∂h
+ 〈δGn,v2〉∂Th − 〈δGn,µ2〉∂Th\E∂h + (y − yh(u),v2)Th .

(3.22)
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Step 5: Estimate for εGh

Before we estimate εGh , we give the following discrete Poincaré inequality from [28,

Proposition A.2].160

Lemma 3.19. We have

‖εzh‖Th ≤ C(‖∇εzh‖Th + h−
1
2 ‖εzh − εẑh‖∂Th). (3.23)

Lemma 3.20. We have

‖εGh‖Th + h−
1
2 ‖PMεzh − εẑh‖∂Th

. hsL+1 ‖L‖sL,Ω + hsy ‖y‖sy,Ω + hsG ‖G‖sG,Ω + hsz−1 ‖z‖sz,Ω , (3.24a)

‖εzh‖Th . hsL+1 ‖L‖sL,Ω + hsy ‖y‖sy,Ω + hsG ‖G‖sG,Ω + hsz−1 ‖z‖sz,Ω . (3.24b)

Proof. First, we note the key inequality in Lemma 3.13 is valid with (L,y, ŷ) in place

of (G, z, ẑ). This gives

‖∇εzh‖Th + h−
1
2 ‖εzh − εẑh‖∂Th.‖εGh‖Th + h−

1
2 ‖PMεzh − εẑh‖∂Th , (3.25)

which we use below. Next, since εẑh = 0 on E∂h , the property of B in (3.9) gives

B(εGh , ε
z
h,−ε

q
h,−ε

q̂
h, ε

ẑ
h; εGh , ε

z
h,−ε

q
h,−ε

q̂
h, ε

ẑ
h) = ‖εGh‖2Th + h−1‖PMεzh − εẑh‖2∂Th . (3.26)

Next, we take (T2,v2, w2, ŵ2,µ2) = (εGh , ε
z
h,−ε

q
h,−ε

q̂
h, ε

ẑ
h) in (3.22) gives

B(εGh , ε
z
h,−ε

q
h,−ε

q̂
h, ε

ẑ
h; εGh , ε

z
h,−ε

q
h,−ε

q̂
h, ε

ẑ
h)

= −〈δz,PMεzh − εẑh〉∂Th + 〈δGn, εzh − εẑh〉∂Th + (y − yh(u), εzh)Th .

The estimate in (3.25), Lemmas 3.17 and 3.19 and Young’s inequality give the desired

result.

As a consequence of Lemma 3.20 and a simple application of the triangle inequality

we obtain the optimal convergence rates for ‖G−Gh(u)‖Th and ‖z − zh(u)‖Th :

Lemma 3.21. Let (G, z, q) and (Gh(u), zh(u), ph(u)) be the solution of (1.3) and (3.13b),

respectively. We have

‖G−Gh(u)‖Th . hsL+1 ‖L‖sL,Ω + hsy ‖y‖sy,Ω + hsG ‖G‖sG,Ω , (3.27a)

‖z − zh(u)‖Th . hsL+1 ‖L‖sL,Ω + hsy ‖y‖sy,Ω + hsG ‖G‖sG,Ω + hsz ‖z‖sz,Ω . (3.27b)
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Step 6: Estimates for ‖u− uh‖E∂h and ‖y − yh‖Th165

Next, we bound the error between the solutions of the auxiliary problem and the

HDG problem (3.7). We use these error bounds and the error bounds in Lemmas 3.17

and 3.21 to obtain the main results. For the next step, we denote

ζL = Lh(u)− Lh, ζy = yh(u)− yh, ζp = ph(u)− ph, ζp̂ = p̂h(u)− p̂h,

ζG = Gh(u)−Gh, ζz = zh(u)− zh, ζq = qh(u)− qh, ζq̂ = q̂h(u)− q̂h,

and

ζŷ = ŷoh(u)− ŷoh on εoh and ζŷ = PMuτ − uhτ on E∂h ,

ζẑ = ẑoh(u)− ẑoh on εoh and ζẑ = 0 on E∂h .

Subtracting the auxiliary problem and the HDG problem gives the following error equa-

tions

B(ζL, ζy, ζp, ζp̂, ζŷ;T1,v1, w1, ŵ1,µ1) = 〈(PMu− uh)τ , h−1v1 + T1n〉E∂h , (3.28a)

B(ζG, ζz,−ζq,−ζq̂, ζẑ;T2,v2, w2, ŵ2,µ2) = (ζy,v2)Th (3.28b)

for all (T1,v1, w1, ŵ1,µ1;T2,v2, w2, ŵ2,µ2) ∈ [Kh × Vh ×W 0
h ×Qh ×Mh(o)]2.

Lemma 3.22. We have

γ‖u− uh‖2E∂h + ‖ζy‖2Th = 〈γuτ −Gh(u)n+ h−1PMzh(u), (u− uh)τ 〉E∂h

− 〈γuhτ −Ghn+ h−1PMzh, (u− uh)τ 〉E∂h .
(3.29)

Proof. First, we have

〈γuτ −Gh(u)n+ h−1PMzh(u), (u− uh)τ 〉E∂h
− 〈γuhτ −Ghn+ h−1PMzh, (u− uh)τ 〉E∂h
= γ ‖u− uh‖2E∂h + 〈−ζGn+ h−1PMζz, (u− uh)τ 〉E∂h .

Next, Lemma 3.6 gives

B(ζL, ζy, ζp, ζp̂, ζŷ;−ζG, ζz, ζq, ζq̂, ζẑ) = B(ζG, ζz,−ζq,−ζq̂, ζẑ;−ζL, ζy, ζp, ζp̂, ζŷ).
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On the other hand, from (3.28a) and (3.28b) we have

B(ζL, ζy, ζp, ζp̂, ζŷ;−ζG, ζz, ζq, ζq̂, ζẑ)−B(ζG, ζz,−ζq,−ζq̂, ζẑ;−ζL, ζy, ζp, ζp̂, ζŷ)

= −(ζy, ζy)Th + 〈PM (u− uh)τ ,−ζGn+ h−1ζz〉E∂h
= −(ζy, ζy)Th + 〈(u− uh)τ ,−ζGn+ h−1PMζz〉E∂h .

Comparing the above two equalities gives

(ζy, ζy)Th = 〈(u− uh)τ ,−ζGn+ h−1PMζz〉E∂h .

Theorem 3.23. Let (y, u) and (yh, uh) be the solutions of (1.3) and (3.7), respectively.

We have

‖u− uh‖E∂h . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω,

(3.30a)

‖y − yh‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω.

(3.30b)

Proof. Since γuτ −Gn = 0 on E∂h and γuhτ −Ghn+ h−1PMzh = 0 on E∂h we have

γ ‖u− uh‖2E∂h + ‖ζy‖2Th = 〈γuτ −Gh(u)n+ h−1PMzh(u), (u− uh)τ 〉E∂h

= 〈(G−Gh(u))n+ h−1PMzh(u), (u− uh)τ 〉E∂h .

Next, since ẑh(u) = z = 0 on E∂h we have

‖PMzh(u)‖E∂h = ‖PMzh(u)− PMΠRTz + PMΠRTz − PMz + PMz − ẑh(u)‖E∂h
≤ ‖PMεzh − εẑh‖∂Th + ‖ΠRTz − z‖E∂h .

This together with Lemma 3.21 gives

‖u− uh‖E∂h + ‖ζy‖Th . h−
1
2

∥∥εGh∥∥Th + hsG−
1
2 ‖G‖sG,Ω

+ h−1‖PMεzh − εẑh‖∂Th+h−1‖ΠRTz − z‖E∂h .

By Lemma 3.20 and properties of the L2 projection, we have

‖u− uh‖E∂h + ‖ζy‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω + hsz−

3
2 ‖z‖sz,Ω.

Then, by the triangle inequality and Lemma 3.17 we obtain

‖y − yh‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω.
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Step 7: Estimates for ‖G−Gh‖Th and ‖z − zh‖Th
Lemma 3.24. We have

‖ζG‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsp+ 1

2 ‖p‖sp,Ω + hsy−
1
2 ‖y‖sy,Ω

+ hsG−
1
2 ‖G‖sG,Ω + hsq−

1
2 ‖q‖sq,Ω + hsz−

3
2 ‖z‖sz,Ω , (3.31a)

‖ζz‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsp+ 1

2 ‖p‖sp,Ω + hsy−
1
2 ‖y‖sy,Ω

+ hsG−
1
2 ‖G‖sG,Ω + hsq−

1
2 ‖q‖sq,Ω + hsz−

3
2 ‖z‖sz,Ω . (3.31b)

Proof. By Lemma 3.5, the error equation (3.28b), and since ζẑ = 0 on E∂h , we have

(ζG, ζG)Th + h−1‖PMζz − ζẑ‖2∂Th

= B(ζG, ζz,−ζq,−ζq̂, ζẑ; ζG, ζz,−ζq,−ζq̂, ζẑ)

= (ζy, ζz)Th

≤ ‖ζy‖Th ‖ζz‖Th
. ‖ζy‖Th (‖∇ζz‖Th + h−

1
2 ‖ζz − ζẑ‖∂Th)

. ‖ζy‖Th (‖ζG‖Th + h−
1
2 ‖PMζz − ζẑ‖∂Th),

where we used the discrete Poincaré inequality in Lemma 3.19 and also (3.16). This

implies

‖ζG‖Th + h−
1
2 ‖PMζz − ζẑ‖∂Th. ‖ζy‖Th

. hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω

+ hsG−
1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω.

The discrete Poincaré inequality in Lemma 3.19 also gives

‖ζz‖Th . ‖∇ζz‖Th + h−
1
2 ‖ζz − ζẑ‖∂Th

. ‖ζG‖Th + h−
1
2 ‖PMζz − ζẑ‖∂Th

. hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω.

The above lemma along with the triangle inequality and Lemmas 3.17 and 3.21 gives

the next part of the main result:
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Theorem 3.25. Let (G, z) and (Gh, zh) be the solutions of (1.3) and (3.7), respectively.

We have

‖G−Gh‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω,

(3.32a)

‖z − zh‖Th . hsL+ 1
2 ‖L‖sL,Ω + hsy−

1
2 ‖y‖sy,Ω + hsG−

1
2 ‖G‖sG,Ω +hsz−

3
2 ‖z‖sz,Ω.

(3.32b)

Step 8: Estimate for ‖L− Lh‖Th170

Lemma 3.26. If k ≥ 1 holds, then

‖ζL‖Th . hsL ‖L‖sL,Ω + hsy−1 ‖y‖sy,Ω + hsG−1 ‖G‖sG,Ω +hsz−2 ‖z‖sz,Ω. (3.33)

Proof. By Lemma 3.5 and the error equation (3.28a), we have

(ζL, ζL)Th + 〈(h−1(PMζy − ζŷ), ζy − ζŷ〉∂Th\E∂h + 〈h−1PMζy,PMζy〉E∂h
= B(ζL, ζy, ζp, ζŷ; ζL, ζy, ζp, ζŷ)

= 〈(PMu− uh)τ , ζL · n+ h−1ζy〉E∂h
= 〈(u− uh)τ , ζL · n+ h−1PMζy〉E∂h
. ‖u− uh‖E∂h (‖ζL‖E∂h + h−1 ‖PMζy‖E∂h )

. h−
1
2 ‖u− uh‖E∂h (‖ζL‖Th + h−

1
2 ‖PMζy‖E∂h ),

which gives

‖ζL‖Th . h−
1
2 ‖u− uh‖E∂h . hsL ‖L‖sL,Ω + hsy−1 ‖y‖sy,Ω + hsG−1 ‖G‖sG,Ω +hsz−2 ‖z‖sz,Ω.

The above lemma along with the triangle inequality and Lemmas 3.17 and 3.21 com-

pletes the proof of the main result:

Theorem 3.27. Let L and Lh be the solutions of (1.3) and (3.7), respectively. If k ≥ 1

holds, then

‖L− Lh‖Th . hsL ‖L‖sL,Ω + hsy−1 ‖y‖sy,Ω + hsG−1 ‖G‖sG,Ω +hsz−2 ‖z‖sz,Ω.
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4. Numerical experiments

In this section, we present some numerical experiments to illustrate our theoretical

results (see Theorem 3.1). We use uniform triangular meshes and define

div(yh) = max
K∈Th

1

|K|

∫
K

|∇ · yh| dx.

Example 4.1. We begin with an example which has an analytical solution. The domain

is the unit square Ω = (0, 1)2 and the data is chosen as

y1 = −2π2 sin2(πx1) cos(πx2)− 2π2 sin(πx1) sin(2πx2),

y2 = 2π2 cos(πx1) sin2(πx2) + 2π2 sin(πx2) sin(2πx1),

z1 = π sin2(πx1) sin(2πx2), z2 = −π sin2(πx2) sin(2πx1),

p = 10n cos(πx1), q = 10n cos(πx1), γ = 1.

Here n is a parameter.

To make a comparison, we first solve the optimality system (1.3) by using the HDG175

method proposed in [10], with n = 2, 4, 6 and k = 0. The errors for all variables are

shown in Tables 1 and 2. Although the convergence rates are optimal and consistent

with the error analysis in [10] for n = 4, 6, the magnitude of the errors strongly depend

on the pressures. This shows that the algorithm proposed and analyzed in [10] is not

pressure-robust.180
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Table 1: Example 4.1: Lack of pressure-robustness: Errors and observed convergence orders for the

control u, pressure p, state y, and its flux L by using the HDG method in [10].

k n
√

2
h

div(yh)
‖y − yh‖L2(Ω) ‖L− Lh‖L2(Ω) ‖p− ph‖L2(Ω) ‖u− uh‖L2(Γ)

Error Rate Error Rate Error Rate Error Rate

4 7.52E+01 1.18E+01 5.58E+01 3.63E+01 1.77E+01

8 3.36E+01 3.58E+00 1.72 2.80E+01 0.99 2.45E+01 0.56 6.33E+00 1.48

0 2 16 1.59E+01 1.51E+00 1.24 1.39E+01 0.99 1.43E+01 0.78 1.89E+00 1.74

32 7.79E+00 1.03E+00 0.54 8.92E+00 0.64 1.14E+01 0.32 5.65E-01 1.74

64 3.87E+00 9.31E-01 0.15 7.49E+00 0.25 1.10E+01 0.04 2.69E-01 1.06

4 2.74E+03 6.17E+02 4.49E+03 3.43E+03 1.74E+03

8 1.17E+03 1.69E+02 1.86 2.21E+03 1.09 2.19E+03 0.64 6.24E+02 1.48

0 4 16 4.78E+02 4.56E+01 1.89 8.30E+02 1.34 9.17E+02 1.25 1.83E+02 1.76

32 2.14E+02 1.19E+01 1.93 3.33E+02 1.31 3.14E+02 1.54 4.95E+01 1.89

64 1.03E+02 3.15E+00 1.91 1.46E+02 1.18 1.00E+02 1.65 1.28E+01 1.94

4 2.74E+05 6.17E+04 4.49E+05 3.43E+05 1.74E+05

8 1.17E+05 1.69E+04 1.86 2.21E+05 1.09 2.19E+05 0.64 6.24E+04 1.48

0 6 16 4.78E+04 4.56E+03 1.89 8.30E+04 1.34 9.17E+04 1.25 1.83E+04 1.76

32 2.14E+04 1.19E+03 1.93 3.33E+04 1.31 3.14E+04 1.54 4.95E+03 1.89

64 1.03E+04 3.15E+02 1.91 1.46E+04 1.18 1.00E+04 1.65 1.28E+03 1.94
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Table 2: Example 4.1: Lack of pressure-robustness: Errors and observed convergence orders for the dual

pressure q, dual state z, and its flux G by using the HDG method in [10].

k n
√

2
h

div(zh)
‖z − zh‖L2(Ω) ‖G−Gh‖L2(Ω) ‖q − qh‖L2(Ω)

Error Rate Error Rate Error Rate

4 1.19E+01 3.21E+00 1.35E+01 9.28E+00

8 5.62E+00 8.98E-01 1.83 7.80E+00 0.79 3.31E+00 1.48

0 2 16 2.76E+00 2.30E-01 1.96 4.06E+00 0.94 1.00E+00 1.71

32 1.38E+00 5.74E-02 2.00 2.05E+00 0.98 3.16E-01 1.67

64 6.89E-01 1.96E-02 1.54 1.03E+00 0.98 1.20E-01 1.39

4 1.12E+03 3.08E+02 1.31E+03 9.15E+02

8 5.11E+02 8.66E+01 1.83 7.59E+02 0.79 3.21E+02 1.50

0 4 16 2.51E+02 2.25E+01 1.94 3.95E+02 0.94 9.27E+01 1.79

32 1.25E+02 5.68E+00 1.98 1.99E+02 0.98 2.45E+01 1.91

64 6.26E+01 1.42E+00 1.99 1.00E+02 0.99 6.25E+00 1.97

4 1.12E+05 3.08E+04 1.31E+05 9.15E+04

8 5.11E+04 8.66E+03 1.83 7.59E+04 0.79 3.21E+04 1.50

0 6 16 2.51E+04 2.25E+03 1.94 3.95E+04 0.94 9.27E+03 1.79

32 1.25E+04 5.68E+02 1.98 1.99E+04 0.98 2.45E+03 1.91

64 6.26E+03 1.42E+02 1.99 1.00E+04 0.99 6.25E+02 1.97

Now we use the new HDG method (see the formulation (2.4)) to test the same prob-

lem. The errors for all variables are shown in Tables 3 and 4. We see that the error

magnitudes of the state y, dual state z and control u are independent of the pressure p

and the dual pressure q. We also notice that the convergence rates are higher than pre-

dicted by our error analysis; a similar phenomena has been observed for other numerical185

methods for Dirichlet boundary control problems involving elliptic equations [25, 29, 30]

and Stokes equations [10, 31]. To the best of our knowledge, only one work explained

the above phenomena: May, Rannacher, and Vexler in [32] used a duality argument to

obtain improved convergence rates for the state and dual state with the standard finite

element method. It is not clear how to apply this technique to the HDG methods.190
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Table 3: Example 4.1: Pressure-robustness: Errors and observed convergence orders for the control u,

pressure p, state y, and its flux L by using the new HDG formulation (2.4).

k n
√

2
h

div(yh)
‖y − yh‖L2(Ω) ‖L− Lh‖L2(Ω) ‖p− ph‖L2(Ω) ‖u− uh‖L2(Γ)

Error Rate Error Rate Error Rate Error Rate

4 8.88E-16 8.76E+00 5.33E+01 1.47E+01 6.30E+00

8 6.66E-16 2.20E+00 2.00 2.79E+01 0.93 7.20E+00 1.03 3.15E+00 1.00

0 2 16 3.33E-16 5.41E-01 2.02 1.41E+01 0.99 3.64E+00 0.99 1.64E+00 0.94

32 3.05E-16 1.34E-01 2.01 7.05E+00 1.00 1.80E+00 1.02 8.06E-01 1.03

64 1.94E-16 3.34E-02 2.00 3.52E+00 1.00 8.86E-01 1.02 3.98E-01 1.02

4 1.78E-15 8.76E+00 5.33E+01 1.30E+03 6.40E+00

8 6.66E-16 2.20E+00 2.00 2.79E+01 0.93 6.53E+02 0.99 3.42E+00 0.91

0 4 16 3.87E-16 5.41E-01 2.02 1.41E+01 0.99 3.27E+02 1.00 1.58E+00 1.11

32 2.91E-16 1.34E-01 2.01 7.05E+00 1.00 1.64E+02 1.00 7.53E-01 1.07

64 1.87E-16 3.34E-02 2.00 3.52E+00 1.00 8.18E+01 1.00 3.96E-01 0.93

4 1.78E-15 8.76E+00 5.33E+01 1.30E+05 6.49E+00

0 8 6.66E-16 2.20E+00 2.00 2.79E+01 0.93 6.53E+04 0.99 3.42E+00 0.93

6 16 4.44E-16 5.41E-01 2.02 1.41E+01 0.99 3.27E+04 1.00 1.66E+00 1.04

32 3.19E-16 1.34E-01 2.01 7.05E+00 1.00 1.64E+04 1.00 7.90E-01 1.07

64 1.87E-16 3.34E-02 2.00 3.52E+00 1.00 8.18E+03 1.00 3.98E-01 0.99

4 1.88E-15 1.18E+00 1.40E+01 5.53E+00 1.61E+00

8 1.79E-15 1.52E-01 2.96 3.78E+00 1.89 1.19E+00 2.22 4.37E-01 1.89

1 2 16 1.05E-15 1.94E-02 2.97 1.03E+00 1.88 2.74E-01 2.12 1.11E-01 1.98

32 8.90E-16 2.45E-03 2.98 2.91E-01 1.82 6.89E-02 1.99 2.77E-02 2.00

64 4.72E-16 3.12E-04 2.98 8.73E-02 1.74 1.86E-02 1.89 6.98E-03 1.99

4 1.72E-15 1.18E+00 1.40E+01 1.25E+02 1.65E+00

8 1.78E-15 1.52E-01 2.96 3.78E+00 1.89 3.14E+01 1.99 4.37E-01 1.92

1 4 16 1.07E-15 1.94E-02 2.97 1.03E+00 1.88 7.87E+00 2.00 1.11E-01 1.98

32 8.90E-16 2.45E-03 2.98 2.91E-01 1.82 1.97E+00 2.00 2.79E-02 1.99

64 4.55E-16 3.12E-04 2.98 8.73E-02 1.74 4.92E-01 2.00 6.98E-03 2.00

4 1.65E-15 1.18E+00 1.40E+01 1.25E+04 1.65E+00

1 8 1.78E-15 1.52E-01 2.96 3.78E+00 1.89 3.14E+03 1.99 4.37E-01 1.92

6 16 1.03E-15 1.94E-02 2.97 1.03E+00 1.88 7.87E+02 2.00 1.11E-01 1.98

32 8.92E-16 2.45E-03 2.98 2.91E-01 1.82 1.97E+02 2.00 2.79E-02 1.99

64 4.58E-16 3.12E-04 2.98 8.73E-02 1.74 4.92E+01 2.00 6.98E-03 2.00
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Table 4: Example 4.1: Pressure-robustness: Errors and observed convergence orders for the dual pressure

q, dual state z, and its flux G by using the new HDG formulation (2.4).

k n
√

2
h

div(zh)
‖z − zh‖L2(Ω) ‖G−Gh‖L2(Ω) ‖q − qh‖L2(Ω)

Error Rate Error Rate Error Rate

4 1.11E-16 8.51E-01 6.27E+00 1.31E+01

8 5.55E-17 2.47E-01 1.78 3.37E+00 0.90 6.59E+00 0.99

0 2 16 3.23E-17 6.55E-02 1.92 1.71E+00 0.97 3.29E+00 1.00

32 2.31E-17 1.68E-02 1.96 8.60E-01 1.00 1.64E+00 1.00

64 1.61E-17 4.24E-03 1.98 4.30E-01 1.00 8.20E-01 1.00

4 1.11E-16 8.51E-01 6.27E+00 1.30E+03

8 5.55E-17 2.47E-01 1.78 3.37E+00 0.90 6.53E+02 0.99

0 4 16 4.36E-17 6.55E-02 1.92 1.71E+00 0.97 3.27E+02 1.00

32 2.29E-17 1.68E-02 1.96 8.60E-01 1.00 1.64E+02 1.00

64 1.39E-17 4.24E-03 1.98 4.30E-01 1.00 8.18E+01 1.00

4 1.11E-16 8.51E-01 6.27E+00 1.30E+05

0 8 5.55E-17 2.47E-01 1.78 3.37E+00 0.90 6.53E+04 0.99

6 16 3.72E-17 6.55E-02 1.92 1.71E+00 0.97 3.27E+04 1.00

32 2.08E-17 1.68E-02 1.96 8.60E-01 1.00 1.64E+04 1.00

64 1.39E-17 4.24E-03 1.98 4.30E-01 1.00 8.18E+03 1.00

4 1.59E-16 1.62E-01 1.93E+00 1.49E+00

8 1.34E-16 2.12E-02 2.93 5.06E-01 1.93 3.60E-01 2.05

1 2 16 9.26E-17 2.70E-03 2.97 1.28E-01 1.99 8.76E-02 2.04

32 6.39E-17 3.41E-04 2.99 3.20E-02 2.00 2.17E-02 2.02

64 3.92E-17 4.27E-05 3.00 8.01E-03 2.00 5.39E-03 2.01

4 1.64E-16 1.62E-01 1.93E+00 1.25E+02

8 1.30E-16 2.12E-02 2.93 5.06E-01 1.93 3.14E+01 1.99

1 4 16 8.68E-17 2.70E-03 2.97 1.28E-01 1.99 7.87E+00 2.00

32 6.72E-17 3.41E-04 2.99 3.20E-02 2.00 1.97E+00 2.00

64 3.84E-17 4.27E-05 3.00 8.01E-03 2.00 4.92E-01 2.00

4 1.64E-16 1.62E-01 1.93E+00 1.25E+04

1 8 1.26E-16 2.12E-02 2.93 5.06E-01 1.93 3.14E+03 1.99

6 16 8.52E-17 2.70E-03 2.97 1.28E-01 1.99 7.87E+02 2.00

32 6.37E-17 3.41E-04 2.99 3.20E-02 2.00 1.97E+02 2.00

64 3.95E-17 4.27E-05 3.00 8.01E-03 2.00 4.92E+01 2.00
30



Example 4.2. Next, we test the problem with unknown true solutions. We use the

same data from [10, Example 5.1]. We set Ω = (0, 0.125)2, f = 0, and γ = 1. To show

that our HDG method is pressure-robust, we perturb the external force yd by a large

gradient field. We take

yd = 200× 83[x2(1− 8x)2y(1− 8y)(1− 16y),−x(1− 8x)(1− 16x)y2(1− y)2]>,

ỹd = yd + 106[1, 1]>.

We denote the corresponding velocity by y and ỹ. We know the fact that perturbing the

external force by a gradient field affects only the pressure, and not the velocity; this was

shown in [12]. Hence, y = ỹ.

We first solve the optimality system (1.3) by using the HDG method proposed in [10]

with h =
√

2
1024and k = 1 for both yd and ỹd, we compute the difference of yh and ỹh:

‖yh − ỹh‖L2(Ω) = 214.

Next, we use the HDG formulation (2.4) in this paper, and we have

‖yh − ỹh‖L2(Ω) = 6.94× 10−7.

We see that the algorithm proposed and analyzed in [10] is not pressure-robust; while

the algorithm (2.4) is pressure-robust.195

5. Conclusion

In [10], we used an existing HDG method to approximate the solution of a tangential

Dirichlet boundary control problem for the Stokes system. The velocities were not in

H(div; Ω) and the error estimates depended on the pressures. In this work, we devised a

new globally divergence free and pressure-robust HDG method for solving this problem.200

We proved that the discrete velocity belongs to H(div; Ω) and is globally divergence free.

Furthermore, our error estimates show that the errors for the control and velocities do

not depend on the pressures.

As far as we are aware, this is the first work to obtain a global divergence free and

pressure-robust numerical method for an optimal boundary control problem involving205

Stokes equations. In the future, we will consider devising pressure-robust numerical
31



methods when using an energy space for the control [31]. Besides that, we plan to devise

divergence free and pressure-robust HDG schemes for more complicated PDEs, such as

the Oseen and Navier-Stokes equations; and apply the methods to other PDE optimal

control problems.210
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