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Abstract—In this paper, we propose a neuro-symbolic frame-
work called signal temporal logic neural network (STONE) that
combines the characteristics of neural networks and temporal
logics. Weighted Signal Temporal Logic (WSTL) formulas are
recursively composed of subformulas connected using logical
and temporal operators. The quantitative semantics of wSTL
is defined such that the quantitative satisfaction of subformulas
with higher weights have a more significant influence on the
quantitative satisfaction of a wSTL formula. In the STONE,
each neuron represents a component of a wSTL formula, and
the output of STONE corresponds to the quantitative satisfac-
tion of a wSTL formula. We use STONE to represent wSTL
formulas and classify time-series data. WSTL formulas are
more interpretable and human-readable than classical time series
classification models. The STONE is end-to-end differentiable,
which allows learning of wSTL formulas to be done using back-
propagation. Experiments on benchmark time-series datasets
show that STONE is comparable to the state-of-the-art time series
classification models and the wSTL learning algorithm is faster
than the traditional STL learning algorithm.

1. INTRODUCTION

Time series classification (TSC) has been considered as
one of the most challenging tasks in machine learning (ML).
Many supervised ML algorithms have been proposed to solve
TSC problems [2]-[8]. However, these classification models
are often not human-readable, for example, hyperplanes in
a higher-dimensional space [3]. Temporal logics are formal
languages that can express specifications about the temporal
properties of systems. Compared with traditional ML models,
temporal logic formulas can express temporal and logical
properties in a human-readable and interpretable form. Human
readability and interpretability are important because they can
give non-expert users insights into the model. With these
benefits, temporal logics have been exploited to model time-
series data [9]-[12] and explore temporal properties in time-
series data.

Signal Temporal Logic (STL), a branch of temporal logic,
can express temporal specifications on cyber-physical systems
[13]-[16]. STL has been a popular tool for analyzing time-
series data by learning STL formulas from data. The learning
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Fig. 1. Time-series data of the “Coffee” dataset with annotated time interval
learned by an STL formula ¢ = Q[154,1655 < —0.8017.

task is based on a notion of quantitative satisfaction of STL
formulas and is posed as an optimization problem with the
quantitative satisfaction in the objective function [11], [12].
For example, an STL formula that can classify the “Coffee”
dataset [17] in Fig. 1 is expressed as ¢ = Q14,1655 <
—0.8017 (details will be discussed in Section III), which
reads as “The signal s is smaller than or equal to —0.8017
at some time point between 154 and 165.” The quantitative
satisfaction of STL, as proposed in [1&], uses max and min
functions, which are non-smooth functions. As pointed out in
[19], the traditional quantitative satisfaction has a limitation
that the satisfaction of parts of the formula other than the most
“significant” part has no contribution to the overall quantitative
satisfaction. The authors in [19] then proposed a weighted
STL (wSTL) that allows the expression of user preference on
STL specifications by encoding the preference of satisfaction
with weights. However, the quantitative satisfaction proposed
in [19] has two limitations: 1) subformulas with zero weights
are still influential in the overall quantitative satisfaction; 2) it
does not reflect that quantitative satisfaction of subformulas
with larger weights has a greater influence on the overall
quantitative satisfaction.

Combining neural networks and symbolic logic to perform
learning tasks has attracted lots of attention [1], [20]-[22] in
recent years, which produces modeling representations that
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are interpretable. Activation functions corresponding to truth
functions of logical operators in first-order logic have been
proposed in [1] such that the truth value bounds of formulas
can be learned from the neural network. Most of the existing
STL learning algorithms solve a non-convex optimization
problem to find the parameters in the formula [12], [23], [24],
where the loss function is not differentiable everywhere with
respect to the parameters which results in the learning process
being slow. Also, the learned STL formula cannot reflect the
importance of data at different time points in deciding the
property of interest. For instance, the STL formula learned
from the “Coffee” dataset, ¢ = Q154,165 < —0.8017, cannot
manifest which time points between 154 and 165 play a more
important role in classifying the two classes of data.

The problem of using neural networks to perform signal
temporal logic learning tasks has not been well studied.
The contributions of this paper are: 1) We define a novel
quantitative satisfaction for wSTL that has the properties of
non-influence of zero weights, ordering of influence, and
monotonicity (see Section IV for more details). 2) We con-
struct a novel neuro-symbolic framework called weighted
Signal Temporal 10gic Neural nEtwork (STONE) that com-
bines the characteristics of neural networks and wSTL to
perform TSC tasks and express the models as interpretable and
human-readable formulas. Each neuron in STONE represents
a predicate, a temporal or a logical operator, with weights on
the edges connecting the neurons. 3) We perform extensive
experiments on multiple benchmark time-series datasets to
compare the proposed STONE with the state-of-the-art TSC
models. We show that STONE is highly competitive to the
other models, and we compare STONE with the traditional
STL learning algorithm and show STONE has the benefit of
high computational efficiency.

II. RELATED WORK

Many existing time series classifiers can be generally di-
vided into distance-based, interval-based, dictionary-based,
frequency-based, Shapelet-based, and ensemble-based mod-
els. Distance-based models, such as the K-nearest neighbors
(KNN) algorithm have been used to perform TSC tasks by re-
placing Euclidean distance metric with dynamic time warping
(DTW) metric [5], which compares the similarity of two time-
evolving sequences of data. Interval-based approaches, such
as time series forest (TSF) [6], classify time-series data using
a random forest classifier, which splits the data into random
intervals and extracts statistical characteristics to complete the
classification task. TSF has been demonstrated to perform
better than KNN with DTW [6]. Supervised Time Series
Forest (STSF) is another interval-based approach that classifies
time-series data by examining groups of relevant intervals
using a tree-based structure [25]. Dictionary-based models,
such as Bag of Symbolic Fourier Approximation Symbols
(BOSS) [26], extract words (sub-series) from time-series data
and create features based on their frequency. The collected
features can then be used with any classifier. Frequency-based
models, such as random interval spectral ensemble (RISE) [7],

extract frequency-domain characteristics. RISE is a variant of
TSF in which the features taken from the original time-series
data are spectral rather than statistical. Shapelet-based methods
are designed to explore shapelets, which are subsequences
of time-series data used to find similarities between series
within the same class [27]. Shapelet Transform (ST) [2§]
is one shapelet-based model that classifies time-series data
based on the similarity between the data and the extracted
shapelets. Ensemble-based models are ensembles of multiple
TSC models. Hierarchical vote collective of transformation-
based ensembles (HIVE-COTE) is one popular ensemble
model for TSC [7], whose prediction is a weighted average of
predictions from its base models. Nonetheless, these models
cannot express the temporal and logical properties of time-
series data as a natural-language form formula that is human-
readable and interpretable.

With the advancement of deep neural networks, end-to-end
neural network architectures also emerged for TSC. Fully con-
volutional neural networks (FCN), residual network (ResNet),
and Multi-scale Convolutional Neural Network (MCNN) have
been developed to classify time-series data [29], [30]. These
models are shown to achieve competitive results as the models
discussed earlier. However, these models also have the limita-
tions of interpretability.

STL has been applied to infer knowledge from time-series
data [12], [24] due to its expressivity of temporal properties in
a logical statement. STL inference refers to learning an STL
formula from a set of labeled data by performing a classifi-
cation task. The STL inference approach has the limitations
of a long training period and a formula that cannot describe
the importance of data at various time points in determining
quantitative satisfaction. The wSTL proposed in this paper
can tackle the above issues, and the STONE can learn wSTL
formulas efficiently due to its end-to-end differentiability.

III. PRELIMINARIES

A discrete [-dimensional time-series data is denoted as s =
5(0), 8(1), ..., s(K), where | € Z~q, s(k) € R, k, K € Zx
and k£ < K. A time interval between k; and ks is denoted as
I = [kl,k‘g] = {k’|]€1 < k' < kz,k‘l,kg S Zzo}, and k+ 1
denotes the time interval [k + ki, k + ko].

A. Signal Temporal Logic (STL)

In this paper, we consider a fragment of Signal Temporal
Logic (STL) proposed in [31], whose syntax is defined recur-
sively as follows:

¢ = T|7m|=|p1 A p2|p1 V 2|0r0[019, (D

where ¢, ¢1, o are STL formulas, T is Boolean True, m :=
f(s) is a predicate defined over s, and f(s) =aTs <c, a €
R |lallz = 1,¢ € R, =, A, V are logical negation, conjunction,
and disjunction operators. Temporal operators [J, { read as
“always” and “eventually”, respectively. I is a time interval,
and ;¢ is satisfied at k if ¢ is satisfied at all ¥ € k +
I, ;¢ is satisfied at k if ¢ is satisfied at least one k' €
k 4+ I. The Boolean semantics of STL measures whether s
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satisfies ¢ at k qualitatively, for example, (s, k) = ¢ reads as
“s satisfies ¢ at k” and (s, k) £~ ¢ reads as “s violates ¢ at
k. The quantitative semantics of STL measures the degree of
satisfaction or violation of ¢ over s at k.

Definition 1 The quantitative semantics (satisfaction) of STL
is defined as [18]:
r(s,m k) = c— a’s(k),
T(Sa _‘(257 k) = *7‘(8, ¢a k)7
'I"(S, ¢1 A ¢27 k) = min(r(& ¢1: k)? 7‘(87 ¢27 k))v

)
(8,01 V ¢a, k) = max(r(s, 1, k), r(s, 92, k),  (2)
T'(S, DI¢7 k) = k”rg]i&[ T(Sv ¢7 kl)7
71(57 <>I¢)7 k) - kpé%if 71(57 ¢7 kl)

The quantitative satisfaction at k£ = 0 is simplified as (s, @).

B. Weighted Signal Temporal Logic (WSTL)

The quantitative satisfaction of the A,J,V, { operators in
Definition 1 is the minimum or maximum of the quantitative
satisfaction of subformulas. This means the overall quantitative
satisfaction is determined by the quantitative satisfaction of
a single subformula. Furthermore, the traditional STL quan-
titative satisfaction cannot express importance over different
subformulas. In many circumstances, we need a quantitative
satisfaction that can account for the effects of different sub-
formulas.

Example 1 Consider the “Coffee” dataset presented in the
Introduction section, the STL formula learned by classifying
this dataset is expressed as ¢ = Q1541655 < —0.8017, which
means there is at least one time point between 154 and 165
such that s is smaller than or equal to —0.8017. Specifically,
the time-series data between k = 154 and k = 165 of the
“Coffee” dataset is shown in Fig. 2. The STL formula ¢ has
the drawback of not being informative enough to reflect which
time points in the interval [154,165] play a more important
role in classifying these two classes of data. This is due to
the fact that the quantitative satisfaction of ¢ is determined
by the data at a single time point. We seek a more informative
formula that can reflect the significance of data at various
time points in classifying the dataset.

We introduce the notion of importance weights into STL, and
the novel STL is called weighted STL (wSTL) [19].

Definition 2 The syntax of wSTL is defined over s as [19]

~ ~ wy ~ wo ~ w1~ wa ~ ~ ~

¢i=Tlr|=gl o1 A Tda| d1V T de|OPG[0F,  (3)
where T, 7, and the logical and temporal operators are
the same as the ones in STL, wy and wa are non-negative
weights on the subformulas ¢, and ¢o, respectively, and
W = [Wh, Why 41y Why|T € R’;)_kﬁl assigns a non-
negative weight wy to k' € [ky, ks| in the temporal operators.

With importance weights, wSTL can express more informa-
tive specifications. Throughout the paper, we use w to denote
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Fig. 2. Time-series data between 154 and 165 of “Coffee” dataset.

weights associated with an operator and w? to denote weights
associated with a wSTL formula ¢ that may have multiple
operators.

Definition 3 The quantitative semantics (satisfaction) of
wSTL is defined as [19]

(s, m k) = c —al s(k),
(s, =, k) = =1 (s, d, k),

Tw(sawlégl A o, k) = @"([wi, 7 (5, diy k))i=1.2),

®v([wiaTw(&&’iak)]i:m),

(s, 07 ¢, k) = @7 (w, [ (s, ¢, k + E )k elioy k)
(s, 0% b, k) = @ (w, [r(s, 0.k + K )wep ) @
where ", @V : R%; x R* — R, Y, ®° : ]R;zo_kﬁl x
RFe=F1+l 5 R are activation functions corresponding to
the N\, V,0, operators, respectively. The concrete-form ac-

tivation functions for the A, V, O, and { operators will be
presented in Section IV.

rw(s7 o le V w2¢~)27 k) -

Remark 1 The double negation property holds for the
activation _ functions in (4) because 1"(s,~—¢p,k) =

7Tw(sa _'(i7 k) = ,r,w(s’ ¢a k)

Remark 2 The quantitative satisfaction in (4) satisfies De-
morgan’s law if and only if the activation functions for the
A, V, 0,0 operators satisfy Demorgan’s law. For example,
we can show that Demorgan’s law holds for the N and vV
operators, and the validity of Demorgan’s law for the [] and
O operators can be proved similarly. It follows that

r(5,2(" 21 A =) k) = — @ ([wi, (s, 61 k)lim1.2).
(%)

As the aggregation function ®@” satisfies Demorgan’s law, we

have

— @"([wy, =1 (s, diy k)i=1,2) = @ ([wi, 7 (8, ¢, k)]i=1.2)

wy ~ wy ~

=7"s, o1V P2, k).
(6)
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C. Problem Statement

In this paper, we consider solving the following problems:
1) Design activation functions for the A, V, [, { operators in
(4) such that subformulas with zero weights are not influential
in the overall quantitative satisfaction of a wSTL formula, and
subformulas with larger weights have a greater influence on
the overall quantitative satisfaction. 2) Given two sets of time-
series data Dp and Dy, where Dp = {D%} | is a set of
positive data with label 1 and Dy = {D%}", is a set of
negative data with label —1, we aim to build a neuro-symbolic
model according to the design of the activation functions for
the A, V, [, ¢ operators. The neuro-symbolic model embodies
the characteristics of neural networks and wSTL, an(~1 can
classify Dp and Dy and produce a wSTL formula ¢ that
is human-readable and interpretable. In the meantime, ¢ is
satisfied by the data in Dp and violated by the data in Dy .

IV. OUR APPROACH

In this section, we define a new quantitative satisfaction for
wSTL such that subformulas with zero weights are not influ-
ential in the overall quantitative satisfaction and subformulas
with larger weights have a greater influence on the overall
quantitative satisfaction. In this manner, we can build a neural
network model in which a neuron has not only a corresponding
activation function but also a logical meaning. The proposed
neuro-symbolic model is called a weighted Signal Temporal
10gic Neural nEtwork (STONE). Structurally, a STONE is
a graph composed of neurons representing predicates and
operators connected in the way determined by a wSTL for-
mula. Neurons representing predicates accept s at single time
points as inputs and have activation functions corresponding
to (s, m, k), whose outputs are quantitative satisfaction of
predicates. Neurons representing logical or temporal operators
accept quantitative satisfaction of subformulas as inputs and
have activation functions corresponding to the operators.

A. Activation Functions for Logical and Temporal Operators

Gradient-based neural learning of importance weights w?
requires the activation functions to be smooth and differen-
tiable with respect to w®, where w® denotes all the weights
in ¢. Activation functions for the V, [, { operators are derived
from the activation function for the A operator using DeMor-
gan’s law. A weighted version of the quantitative satisfaction
in (2) was proposed in [19], where the activation function for
the A operator is expressed as

A . | 1

®" ([wi, rili=1:n) = min { ((5 — w;)sign(r;) + 5) m} ;

) @)
where r; = r(s,¢i,k), and w; = wZ/Zj\;l wj is the
normalized weight, and sign denotes the sign function. The
activation function in (7) has two limitations: 1) If w; = 0,
then r; is still possible to be the one deciding the quantitative
satisfaction, for example, if N = 3, r; = 1,79 = r3 = 3,
and w; = 0,w2 = 0.5,w3 = 0.5, then the overall quan-
titative satisfaction is ®”([w;,r;]i=1.3) = r1. This means

even if the importance weight associated with $1 is 0, it
can still determine the overall quantitative satisfaction. 2)
The quantitative satisfaction of ¢ is still determined by the
data at a single time point. To address these limitations, we
propose several principles of the activation functions such that
subformulas with higher weights have a greater influence on
the overall quantitative satisfaction and the weights can be
learned by a neuro-symbolic framework. As the activation
functions for the Vv, [, and ¢ operators are derived from
the activation functions for the A operator using DeMorgan’s
law, the principles designed for the A operator also hold for
the activation functions for the V, 0J, and { operators. For
simplicity, we only discuss the design principles for the A
operator as follows.

The choice of the activation functions for the A operator

should obey the following principles:

o Non-influence of zero weights: rw(s,q;i,k) has no
influence on (s, ' dy A o, k) if w; = 0,4 = 1,2,
where w; and weq are the weights defined in (4).

o Ordering of influence: if (s, p1,k) = (s, ¢o, k)
and wy > ws, then we have

87'“’ (8, “ QZ~51 A wng;Q, k)
O (s, da, k)

(s, di A" o, k)
87‘w(87 <517 k)

)

where w; and weq are the weights defined in (4).
w1 ~ w3 ~
 Monotonicity: 7 (s, "G1 A ¢, k) increases monoton-

ically over (s, ¢, k), i = 1,2, i.e.
®A([wi7 Tw(sa q’;ia k)]iil,Z) S ®A([wi; rw(sa (;Z’;ZV k)+d]i:1,2):

where d > 0.

This paper develops a concrete activation function for the
A operator by introducing another variable o, which is used
to define a softmin function that replaces the min function
in the traditional STL quantitative semantics. The activation
functions for the other operators are derived using DeMorgan’s
law.

Definition 4 The activation functions for the A, V,, O oper-
ators in (4) are defined as

A wio T Y, wisirs
" ([wy, 7 (s, ¢4, k))i=1,2,0) = 55—,

Dim1 Wisi

O (e, (5,0, W ,0) = — gt TS

>ic1 Wisi

Zfikl W;SiT; ®
Zfikl Wis;

Zfikl W;iS;T;

S, wis
i=k, WiSi

where w; is the normalized weight (w; = wi/Xﬁ:l wj

®D (’LU7 [Tw(sv &, k + i)]iela U) =

®<>(w7 [rw(sv ng k+ i)]iEh O') = -

in the A,V operators, w; = wi/Z?ikl w; in the 0,0
operators), I = [k1,ka], i = r(s,¢:, k) in the \ operator,
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i = —1(s, ¢y, k) in the \/ operator. In the activation function
for the U1 operator, ; is defined as

(s, g k+1i) ifk+i<K,
(0]

Ty = .
otherwise.

In the activation function for the ) operator, r; is defined as

(s, ¢,k +1) ifk+i<K,

Ty = .
otherwise.

Also,

in the A\ and \ operators, and

. k2 T
si=e 7 / Z e
=k
in the [J, { operators, o > 0. Note that the activation function
for the V operator is derived from the activation function
for the A operator using DeMorgan’s law. To clarify the
notation, we use w to denote weights of an operator before
normalization and W to denote weights of the same operator
after normalization. The activation functions for the [ and ¢
operators are designed such that if k+1 > K, i.e., the length
of data is smaller than the time interval of a wSTL formula,
then the quantitative satisfaction beyond K does not affect the
overall quantitative satisfaction by setting r; = oo .

Proposition 1 The activation functions defined in (8) satisfy
the principles of non-influence of zero weights, ordering of
influence, and monotonicity.

Proof The proof of Proposition 1 is described as follows.

o Non-influence of zero weights
Without loss of generality, let wy = 0, and ws = 1, then
we have
wy ~ wo ~ S9T9
(s, 1N o k) = -5 =T
2

which shows r1 is not influential in r* (s, “ o A b2, k).
o Ordering of influence
w1 ~ wa ~
Taking the derivative of (s, 1¢>1 A 2(1)2, k) with re-

spect to (s, ¢1, k), we have

arw(s, “ le A wQQ;Q, k) _
ore (s, é1, k)

(w181 + ITJN”lg%)

(w181 + Wes2)?

(C))

— — — Os
(018171 + WasaT2) W1 52

w181 + Wa89) — — —
( 191 2 2) (1U181+1U282)2

Taking the derivative of r“’(s,mgBl A b2, k) with re-

spect 1o (s, 2, k), we have

8Tw(8, wl(;l A “’2(52’ k) _
orv (87 &27 k)

(IDQSQ + IT]QTQ?TS;)

(1D181 +’Ll7282)2 (10)
(w8171 + @2827"2)@22%

w181 + WaS2) — — —
(@151 252) (w181 + Wa82)?
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As the denominator is positive and is the same in (9) and
(10), we only need to compare the numerator of (9) and
(10). If 7 (s, 1, k) = 1 (s, ¢, k), wy > wo, ie. 14 =
ro and w1 > Wa, the difference between the numerator
is

_ _ Os1., _ _ _ _
(UJ181 + w1Tr1 877"1)@”181 + UJQSQ) — (w1517’1 + IUQSQTQ)
1

@1% — (was2 + @27“2%)(@181 + Wes2) + (W1s171
ory Ory
_ _ 0sy

+ Was2T2) Wo 767’2

0s
= (s1(wy — w2) + 7“1711(1171 — Wy)) (w151 + Was1)

_ _ 0s1, _ _
+ (w1511 + w2817”1)871(w2 —w1)
T1
_ _ _ _ _ Os1, _ _
= s1(wW1 — wa)(Ww181 + W2s1) + w1517‘1§(w1 — W2)
1
0s1 0s1
+ w — (w1 —w2) +w — (w2 —w
W2517T1 o, (wl w2) wi1s1T1 o (w2 w1)
(951
@ dsy,
W2517T1 o (wz wl)

= s2(w? — w3) > 0,

1D
which proves that if (s, ¢1,k) = 1V(s, b2, k) and
wy > wa, the following holds:
arw(s’ w1 ggl /\ ’ll}2g£2’ k.) >
orv (57 ¢1a k)

wy ~ wa ~

arv(s, ¢1 N o, k)
arw(57(527k) '

o Monotonicity

For @"([w;, 7 (s, ¢i, k))i=1,2), we have
w1811 + WaSary

A w 1
iy ; iak = = — —
O

and for @"([wi, (s, di, k) + d)i=1.2), we have

- !0 - !0
A ~ w1811 + WaSyTy
& ([wiarw(87¢i7k) +d]iil,?) - '11113/1 +Uj28’2 )

where v} = r1 +d,rh = ro + d. We can show that

, e_(ri""d)
S, = T
—(rj+d
Zj:l e (rj+d)
e*defT‘i
- —d 2 —p
e Zj:1 e
e "

:7:‘91'71.:172'

2 —Tr;
Zj:l e
Asri+d>rqy, and ro +d > 1o, we have
" ([wi, 7 (s, éq‘,, k) + d]i=1,2)
711181(7’1 + d) + ’lI]QSQ(’I"Q + d)

w181 + W22
W1S1T1 + WaS2T2

Y

w181 + WaS2
®A([wi7 rw(sv ¢i7 k)]i:1,2)7

which proves the monotonicity holds.



The connection between the quantitative satisfactions of
wSTL and STL is discussed in the following proposition.

Proposmon 2 For sufficiently small 0 and w, = 1w,
(s, PN ® b9, k) can be arbitrarily close to the traditional

STL quantitative satisfaction, i.e.
LA Gy, k) = min{r (s, du, k), (s, 62, k) ).

(;52, k), and

lim r*(s
o—0

Proof We know that 1 = (s, gbl, k),ro =1(s

12)

ST T
2‘7‘:1 € -
Without loss of generality, let r1 < ro, then for sufficiently

small o, s1 will approximate 1, and so will approximate 0.
Hence the robustness becomes

w1 (51 TH)ry + wa(s2 1°)r2

li w wy A W2 k) =
v (s, ™ o1 92,k) w1 (s1 1) + wa(s2 19)

= r; = min{r(s, ¢~>1, k),r(s, i;g, k)}.

With the activation functions defined in (8), we can design
neural networks for wSTL formulas by encoding the temporal
and logical operators as neurons. A particular STONE for gB =
()ﬁ’;]ngl]w is shown in Fig 3.

B. Learning of wSTL Formulas with STONE

In this paper, wSTL learning for a given set of M formula
structure candidates refers to optimizing the parameters for
each formula candidate and selecting the wSTL formula that
can best classify the two sets of time-series data Dp and D .
The learned wSTL formula is satisfied by the data in Dp and
violated by the data in Dy. Suppose Do = Dp U Dy that
has 7 = p+ n data. The overall learning process is shown in
Fig. 4.

The loss function should satisfy the requirements that the
loss is small when the learned formula is satisfied by the
positive data or violated by the negative data, and the loss is
large when these two conditions are not satisfied. A candidate
loss function that satisfies the above requirements is [24]

Zh

where DY, is the j-th data in D, I; is the label of D7, and

“(D%,9)), (13)

Clyr* (DL, ¢) if (DL, ¢) >0,

h(l;,r(Dk, 9)) = {7 (14)

else,

where ¢ > 0 is a tuning parameter, and y is a positive large
number that penalizes the cases when ¢ is violated by positive
data or satisfied by negative data. However, this loss function
is not differentiable everywhere with respect to w? and other
parameters in the STONE. An alternative loss function that is
differentiable is

.
J(@) = exp(—Clyr* (DL, 9)).

=1

as)

783

Algorithm 1 wSTL Learning Algorithm
Input: Time-series data D¢, a wSTL formula with specified
structure ¢, number of iterations K, number of subformulas

J
QOutput: Learned wSTL formula ¢

1: Construct a STONE based on the structure of ¢, and
initialize w?, a, c.

2. for k=1,2,..., K do
3:  Select a mini-batch data Dé from D¢.
4. for j=1,2,..,7 do
5: Perform forward-propagation to compute the quanti-
tative satisfaction of the j-th subformula using (8).
end for

7. Compute the loss at the current iteration using (15).

8:  Perform back-propagation to update the parameters in
the STONE.

9: end for

10: return ¢~>

J (gz;) is small when ¢ is satisfied by positive data or violated
by negative data and grows exponentially when ¢ is violated
by positive data or satisfied by negative data. Another issue
of (14) is that for a correctly predicted positive (negative)
example, the loss increases as the quantitative satisfaction
increases (decreases), but for very large (small) quantitative
satisfaction the loss can potentially be greater than the penalty
term . The loss function in (15) addresses this issue by taking
the negation. We use Pytorch to build the STONE and perform
the back-propagation to learn the formula. The wSTL learning
algorithm with STONE is illustrated in Algorithm 1.

C. Formula Structure Selection

In this paper, we consider six wSTL formula structures
that correspond to six common properties, which are also
commonly used in the learning of STL formulas. The formula
structures are described as follows.

(1) Multiple conjunctive patterns:
d="do NP1 N "o N Pk,
where q}o, (;31, e (Z) i are subformulas that can be predi-

cates or wSTL formulas.
Multiple disjunctive patterns:

¢ = wodgo Vv w1¢~51 \ w2<'2§2“‘

Consistent pattern:

2
v bk
(3)

§Z’ = Dﬁl)’,}q §50-
C))

Alternative pattern:

= 0% 0.

Consistently alternative pattern:

¢ D K]O[OKQZ)O-

Alternatively consistent pattern:

¢ = <>[0K

(&)

(6)
w G
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V. EXPERIMENTS

In this section, we use two experiments to evaluate the
performance of the wSTL learning algorithm with STONE. In
the first experiment, we compare the classification accuracy
of STONE and other popular TSC models on 16 benchmark
datasets. In the second experiment, we compare the training
time of STONE and a traditional STL inference algorithm
[24]. For each experiment, we describe the experimental
setup and show the results. The experiments in the paper are
implemented on a Windows laptop with a 1.9GHz Intel i7-
8665U CPU and an 8 GB RAM.

Through the experiments, we aim to answer the following
questions: 1) Can STONE achieve a competitive classification
accuracy compared to the state-of-the-art models, and is there
any improvement in the accuracy? 2) Can the learned wSTL
formula provide insights into the temporal and logical proper-
ties that determine the problem of interest? 3) Can STONE
be more computationally efficient compared with the STL
learning algorithm?

A. Classification Accuracy

Experiment Setup: The datasets used in this experiment
are selected from the UCR Time Series Classification Archive
[17], which contains time-series data from different domains.
We select 16 binary classification datasets and present the
information about each dataset in Table I. The training and test
data are split according to the default split specified in the UCR

archive. For each dataset, we compare our model with 1NN-
DTW [5], TSF [6], HIVE-COTE [7], FCN [29], ResNet [29],
LSTM [32], and GRU [33] models. The formula structures
of STONE are given as the six commonly used structures
described in Section IV-C. The parameters in STONE are set
as 0 = 1 and ¢ = 1. We run the STONE for 100 epochs,
and in each epoch we train the model using all the training
data and evaluate the model using the test data. Since the
dataset archive was published, many machine learning (ML)
models have been applied to perform the classification task [3].
These ML models are less interpretable and human-readable
than the STONE classifier. The weights in these ML models
represent how much each feature in the model contributes
to the prediction, however, the model cannot be written as
a human-readable formula. The STONE classifier can not
only reflect the contribution of the features but also express
the model as a wSTL formula that is human-readable and
interpretable. The learned wSTL formula can tell us what kind
of temporal properties determine the problem of interest.

Results: The classification accuracy for STONE and other
competitive models on the test set is reported in Table 1. The
accuracy of STONE is chosen as the best accuracy of the six
formula structures proposed in Section IV-C, and the number
(i) next to the accuracy means the i-th formula structure
in Section IV-C has the highest accuracy. The classification
accuracy for the other models is the same as their original
papers. The best result for each dataset is highlighted in bold
format. From Table I, we could observe STONE achieves
a better average classification accuracy on the 16 datasets.
Also, we compute the average rank of each classifier and
use a critical difference diagram [34] shown in Fig. V-A to
visualize this comparison, where a bold horizontal line denotes
a collection of classifiers that are statistically similar. On
average, STONE outperforms the other TSC models across
the 16 datasets. The above results demonstrate that STONE is
highly competitive to the state-of-the-art models.

B. Interpretability of STONE

The main advantage of STONE is its interpretability and
human-readability. For example, the wSTL formula learned
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Name #Train | #Test | Length | INN-DTW TSF HIVE-COTE FCN ResNet | LSTM | GRU STONE
Coffee 28 28 286 100.00 100.00 100.00 100.00 | 100.00 | 71.42 | 71.42 | 100.00 / (4)
DistalPhalanxOutlineCorrect 600 276 80 72.46 77.17 77.17 76.00 77.10 78.00 72.82 80.16 / (2)
Earthquakes 322 139 512 72.66 74.82 74.82 72.70 71.20 79.85 | 78.41 79.85/ (5)
ECG200 100 100 96 88.00 85.50 85.00 88.90 87.40 82 81.00 | 90.00 /(1)
ECGFiveDays 23 861 136 79.67 93.69 100.00 98.70 97.50 94.54 | 9581 | 95.65/ (4)
GunPoint 50 150 150 91.33 95.07 100.00 100.00 | 99.10 77.33 | 82.67 | 94.00/(4)
Ham 109 105 431 60.00 74.29 66.67 71.80 75.70 66.67 | 63.81 | 82.85/ (1)
HandOutlines 1000 370 2709 87.84 91.89 93.24 80.60 91.10 70.81 | 69.72 | 90.00 / (2)
Herring 64 64 512 53.12 60.94 68.75 60.80 61.90 7031 | 67.18 | 70.31/ (1)
ItalyPowerDemand 67 1029 24 95.53 97.00 96.30 96.10 96.30 96.30 | 96.89 | 97.08 / (5)
Sony AIBORobotSurfacel 20 601 70 69.55 75.64 76.54 95.80 96.00 84.52 | 83.02 | 92.51/(3)
Sony AIBORobotSurface2 27 953 65 85.94 81.86 92.76 97.90 97.80 75.65 | 81.63 | 84.57/(3)
Strawberry 613 370 235 94.59 96.49 97.03 97.20 98.10 89.72 | 8945 | 97.79/(2)
TwoLeadECG 23 1139 82 86.83 90.39 99.65 100.00 | 100.00 | 66.63 | 67.60 | 100.00 / (2)
Wafer 1000 6164 152 99.59 99.50 99.94 99.90 99.70 98.23 | 98.92 | 96.70 /(1)
Wine 57 54 234 61.11 62.96 77.78 58.70 74.40 64.81 | 6296 | 81.48/ (1)

Average accuracy 81.13 84.82 87.85 87.19 88.95 79.17 | 78.95 89.63
TABLE I

CLASSIFICATION ACCURACY (%) OF STONE AND OTHER TSC MODELS ON 16 BENCHMARK DATASETS.

e
1 2 3 4 5 6 7 8
. . . . . . .
‘ \
STONE 4 \— INN-DTW
HIVE-COTE GRU
ResNet LSTM
FCN TSF

captionCritical difference diagram showing average ranks of
STONE and other TSC models on 16 benchmark datasets.

by classifying the “Coffee” dataset is q~§ = Ofg 285]1.89753 <
—0.6531, where w is the 286-dimensional weight variable.

The three most important normalized weights are

W17 = 03227, W158 = 02691, W19 = 02070, (16)

which means the data at time points k = 157,158,159
are more important in classifying the two classes of data.
Correspondingly, the data belonging to time interval [150, 164]
is shown in Fig 5. We could observe that the difference
between the two classes of data is more significant during
k € [157,159] than at other time points. This temporal
information is more informative than the STL formula learned
from the STL learning algorithm, ¢ = 0[154,165]5 < —0.8017
because ¢ identifies the data at time points 157,158,159 are
more important than the other time points in the interval
[154,165] in classifying the data. Another example is the
wSTL formula learned by classifying the “ItalyPowerDemand”
dataset, which is expressed as

= 08 55 OB 55 1.1493s < 0.3569. (17)

1

The three most important normalized weights in w" are

wi, = 0.5170, wi = 0.2168, wis = 0.2082,  (18)

2

and the five most important normalized weights in w~ are

w? = 0.1068, w3 = 0.1594, wi, = 0.1862, a9)
wi, = 0.1880,w}, = 0.1618,

which implies the data at time points k£ = 7,8,17,18, 19,20
are more important in deciding the season of power usage. In
particular, we could observe an obvious difference between the

— Robusta coffee beans
-21 Arabica coffee beans

150 152 154 156 157 158 159 160 162 164
Time (k)

Fig. 5. Time-series data between 150 and 164 of “Coffee” dataset with
annotated time points k = 157,158, 159.

-2

Summer

0:00 5:00 10:00 15100 17:00  20:00

Time (k)

Fig. 6. Time-series data of “ItalyPowerDemand” dataset with annotated time
interval 17 : 00 — 20 : 00.

two classes happening during 17:00 and 20:00 in Fig. 6, which
corresponds to the fact that in summer, the power demands
start to decrease when evening comes as the weather gets cool,
while in winter, the power demands start to increase when
evening comes as the weather gets cold. The above experi-
mental results demonstrate that STONE could yield a formula
that is close to natural language and can reveal the temporal
and logical characteristics useful for the classification.

C. Computational Efficiency

Traditional STL learning algorithms in [12], [24] can also
express the model as a human-readable STL formula. How-
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ever, as mentioned earlier, the learned STL formula cannot
reflect the importance of data at different time points in deter-
mining the characteristics of interest. Instead, wSTL formulas
can express the importance of data at different time points
by introducing weights. In the meantime, wSTL learning
algorithm can also improve the computational efficiency, i.e.
reduce training time. We compare the training time for the
STL learning algorithm and the wSTL learning algorithm on
each of the 16 datasets. The formula structure used in the STL
learning algorithm is the same as the best formula structure
in STONE. For each dataset, the training time of STONE is
less than the training time of the STL learning algorithm.
The average training time for wSTL learning algorithm is
6.65 seconds, which is 45 times faster than the average
training time for STL learning algorithm (300.92 seconds).
Therefore, STONE is more computationally efficient than the
STL learning algorithm.

D. STONE with Weight Sparsification

As the structures of wSTL formulas become sophisticated,
the number of parameters in the STONE will grow. As a result,
the memory required for back-propagation will be intensive.
Sparsifying the weights of the STONE is one way to reduce
the memory footprint of the network. In the meantime, from
previous experimental results, we could observe that data at
certain time points play a more important role in determining
a property. Weight sparsification could refine the formula by
keeping the subformulas that are more important. A particular
weight sparsification approach is by thresholding the number
(5) of weights to keep, which is called top-s sparsification, i.e.

_ w;

where w; is the i-th weight after sparsification.

The weight sparsification experiments are performed on
eight datasets in Fig. 7. We aim to explore the effect of
sparsification on classification accuracy. The sparsification
level 5 is chosen as 5 € [1, 5], and the classification accuracy
for different sparsification levels is shown in Fig. 7. We could
observe generally with the decreasing of 5, the classification
accuracy also decreases as the important subformulas are
neglected. In practice, we need to consider the trade-off
between the memory saved and the classification accuracy to
determine the sparsification level such that the requirements
for memory and classification accuracy are both satisfied.

if w; is one of the top-5 weights, 20)
otherwise,

E. Interpretability Comparison

Many interpretable TSC models such as Shapelet Trans-
form (ST) [28], Time Series Forest (TSF) [6], and Symbolic
Aggregate Approximation and Vector Space Model (SAX-
VSM) [35] have been developed to extract features from sub-
sequences of time-series data and identify the discriminatory
subsequences to represent a class. However, all these models
cannot provide a human-readable formula. In contrast, STONE
can both identify the discriminatory intervals and express
the discriminatory information as a logical formula that is

Accuracy (%)

3
Sparsification level ($)

Fig. 7. Classification accuracy of STONE with different sparsification levels
on eight benchmark datasets.

human-readable. We use the “GunPoint” dataset to compare
the interpretability of STONE and SAX-VSM. For the “Gun”
class, an actor moves his hand above a hip-mounted holster,
and moves his hand down to grasp the gun, and moves the gun
up to point it at a target and returns the gun to the holster,
and returns his hand to the side. For the “Point” class, the
actor directly moves his finger up and points with his finger
to the target, and then returns his hand to the side. For both
classes, the x position (x-pos) of the centroid of the actor’s
hand is recorded. The discriminatory patterns identified by
STONE and SAX-VSM are shown in Fig. 8, in which patterns
from STONE are consistent with the patterns from SAX-VSM.
The extracted patterns correspond to the difference between
moving hand down to grasp the gun from the holster and
directly moving hand up to the shoulder level. More impor-
tantly, if we truncate the small weights, the discriminatory
patterns learned by STONE can be described by a human-
readable wSTL formula as ¢ = (2(28) < 0.2456) V (2(29) <
0.2093) V (2(30) < 0.2103) V (z(31) < 0.2207) V (z(32) <
0.2311) V (2(33) < 0.2429) Vv (z(34) < 0.2495) V (z(35) <
0.2612) V (2(36) < 0.2831) V (z(37) < 0.3695), which reads
as “x-pos at 28 s is smaller than 0.2456 or x-pos at 29 s is
smaller than 0.2093 or x-pos at 30 s is smaller than 0.2103
or x-pos at 31 s is smaller than 0.2207 or x-pos at 32 s is
smaller than 0.2311 or x-pos at 33 s is smaller than 0.2429 or
x-pos at 34 s is smaller than 0.2495 or x-pos at 35 s is smaller
than 0.2612 or x-pos at 36 s is smaller than 0.2831 or x-pos
at 37 s is smaller than 0.3695”. The patterns at 28 s and 29
s describe moving the hand down to grasp the gun and the
patterns from 29 s to 37 s correspond to moving the hand up
to the shoulder level. In summary, previous interpretable TSC
models cannot provide a human-readable formula to describe
the discriminatory patterns, while STONE can simultaneously
identify the discriminatory patterns and provide a human-
readable formula that describes the discriminatory patterns.

VI. CONCLUSION

We propose new semantics for wSTL, which extends STL
by incorporating weights into the specifications and whose
quantitative satisfaction enjoys three key properties: non-
influence of zero weights, ordering of influence, and mono-
tonicity. A novel framework called STONE combining the
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Fig. 8. Discriminatory patterns extracted by STONE and SAX-VSM on the
“GunPoint” dataset.

characteristics of neural networks and wSTL is presented,
where a neuron has not only a corresponding activation func-
tion but also a logical meaning. Due to the differentiable prop-
erty of the quantitative satisfaction of wSTL, the parameters of
wSTL can be learned from STONE in an end-to-end fashion,
and the task of TSC can be accomplished. STONE is shown
to be competitive against state-of-the-art TSC models with
a series of experiments on benchmark time-series datasets.
Moreover, the outcome of STONE can be expressed as a
logical formula that is interpretable and human-readable. Com-
parisons with a traditional STL learning approach demonstrate
that STONE is on average 45 times faster than the traditional
STL learning approach on the benchmark datasets.
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