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Abstract—In this paper, we propose a neuro-symbolic frame-
work called signal temporal logic neural network (STONE) that
combines the characteristics of neural networks and temporal
logics. Weighted Signal Temporal Logic (wSTL) formulas are
recursively composed of subformulas connected using logical
and temporal operators. The quantitative semantics of wSTL
is defined such that the quantitative satisfaction of subformulas
with higher weights have a more significant influence on the
quantitative satisfaction of a wSTL formula. In the STONE,
each neuron represents a component of a wSTL formula, and
the output of STONE corresponds to the quantitative satisfac-
tion of a wSTL formula. We use STONE to represent wSTL
formulas and classify time-series data. WSTL formulas are
more interpretable and human-readable than classical time series
classification models. The STONE is end-to-end differentiable,
which allows learning of wSTL formulas to be done using back-
propagation. Experiments on benchmark time-series datasets
show that STONE is comparable to the state-of-the-art time series
classification models and the wSTL learning algorithm is faster
than the traditional STL learning algorithm.

I. INTRODUCTION

Time series classification (TSC) has been considered as

one of the most challenging tasks in machine learning (ML).

Many supervised ML algorithms have been proposed to solve

TSC problems [2]–[8]. However, these classification models

are often not human-readable, for example, hyperplanes in

a higher-dimensional space [3]. Temporal logics are formal

languages that can express specifications about the temporal

properties of systems. Compared with traditional ML models,

temporal logic formulas can express temporal and logical

properties in a human-readable and interpretable form. Human

readability and interpretability are important because they can

give non-expert users insights into the model. With these

benefits, temporal logics have been exploited to model time-

series data [9]–[12] and explore temporal properties in time-

series data.

Signal Temporal Logic (STL), a branch of temporal logic,

can express temporal specifications on cyber-physical systems

[13]–[16]. STL has been a popular tool for analyzing time-

series data by learning STL formulas from data. The learning

This work was supported by the National Science Foundation under Grant
CNS-1618369 and Grant CNS-1936578. The authors would like to thank Dr.
Alexander Gray from IBM Research for the introduction of Logical Neural
Network (LNN) [1].

Fig. 1. Time-series data of the “Coffee” dataset with annotated time interval
learned by an STL formula φ = ♦[154,165]s ≤ −0.8017.

task is based on a notion of quantitative satisfaction of STL

formulas and is posed as an optimization problem with the

quantitative satisfaction in the objective function [11], [12].

For example, an STL formula that can classify the “Coffee”

dataset [17] in Fig. 1 is expressed as φ = ♦[154,165]s ≤
−0.8017 (details will be discussed in Section III), which

reads as “The signal s is smaller than or equal to −0.8017
at some time point between 154 and 165.” The quantitative

satisfaction of STL, as proposed in [18], uses max and min
functions, which are non-smooth functions. As pointed out in

[19], the traditional quantitative satisfaction has a limitation

that the satisfaction of parts of the formula other than the most

“significant” part has no contribution to the overall quantitative

satisfaction. The authors in [19] then proposed a weighted

STL (wSTL) that allows the expression of user preference on

STL specifications by encoding the preference of satisfaction

with weights. However, the quantitative satisfaction proposed

in [19] has two limitations: 1) subformulas with zero weights

are still influential in the overall quantitative satisfaction; 2) it

does not reflect that quantitative satisfaction of subformulas

with larger weights has a greater influence on the overall

quantitative satisfaction.

Combining neural networks and symbolic logic to perform

learning tasks has attracted lots of attention [1], [20]–[22] in

recent years, which produces modeling representations that
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are interpretable. Activation functions corresponding to truth

functions of logical operators in first-order logic have been

proposed in [1] such that the truth value bounds of formulas

can be learned from the neural network. Most of the existing

STL learning algorithms solve a non-convex optimization

problem to find the parameters in the formula [12], [23], [24],

where the loss function is not differentiable everywhere with

respect to the parameters which results in the learning process

being slow. Also, the learned STL formula cannot reflect the

importance of data at different time points in deciding the

property of interest. For instance, the STL formula learned

from the “Coffee” dataset, φ = ♦[154,165]s ≤ −0.8017, cannot

manifest which time points between 154 and 165 play a more

important role in classifying the two classes of data.

The problem of using neural networks to perform signal

temporal logic learning tasks has not been well studied.

The contributions of this paper are: 1) We define a novel

quantitative satisfaction for wSTL that has the properties of

non-influence of zero weights, ordering of influence, and

monotonicity (see Section IV for more details). 2) We con-

struct a novel neuro-symbolic framework called weighted

Signal Temporal lOgic Neural nEtwork (STONE) that com-

bines the characteristics of neural networks and wSTL to

perform TSC tasks and express the models as interpretable and

human-readable formulas. Each neuron in STONE represents

a predicate, a temporal or a logical operator, with weights on

the edges connecting the neurons. 3) We perform extensive

experiments on multiple benchmark time-series datasets to

compare the proposed STONE with the state-of-the-art TSC

models. We show that STONE is highly competitive to the

other models, and we compare STONE with the traditional

STL learning algorithm and show STONE has the benefit of

high computational efficiency.

II. RELATED WORK

Many existing time series classifiers can be generally di-

vided into distance-based, interval-based, dictionary-based,

frequency-based, Shapelet-based, and ensemble-based mod-

els. Distance-based models, such as the K-nearest neighbors

(KNN) algorithm have been used to perform TSC tasks by re-

placing Euclidean distance metric with dynamic time warping

(DTW) metric [5], which compares the similarity of two time-

evolving sequences of data. Interval-based approaches, such

as time series forest (TSF) [6], classify time-series data using

a random forest classifier, which splits the data into random

intervals and extracts statistical characteristics to complete the

classification task. TSF has been demonstrated to perform

better than KNN with DTW [6]. Supervised Time Series

Forest (STSF) is another interval-based approach that classifies

time-series data by examining groups of relevant intervals

using a tree-based structure [25]. Dictionary-based models,

such as Bag of Symbolic Fourier Approximation Symbols

(BOSS) [26], extract words (sub-series) from time-series data

and create features based on their frequency. The collected

features can then be used with any classifier. Frequency-based

models, such as random interval spectral ensemble (RISE) [7],

extract frequency-domain characteristics. RISE is a variant of

TSF in which the features taken from the original time-series

data are spectral rather than statistical. Shapelet-based methods

are designed to explore shapelets, which are subsequences

of time-series data used to find similarities between series

within the same class [27]. Shapelet Transform (ST) [28]

is one shapelet-based model that classifies time-series data

based on the similarity between the data and the extracted

shapelets. Ensemble-based models are ensembles of multiple

TSC models. Hierarchical vote collective of transformation-

based ensembles (HIVE-COTE) is one popular ensemble

model for TSC [7], whose prediction is a weighted average of

predictions from its base models. Nonetheless, these models

cannot express the temporal and logical properties of time-

series data as a natural-language form formula that is human-

readable and interpretable.

With the advancement of deep neural networks, end-to-end

neural network architectures also emerged for TSC. Fully con-

volutional neural networks (FCN), residual network (ResNet),

and Multi-scale Convolutional Neural Network (MCNN) have

been developed to classify time-series data [29], [30]. These

models are shown to achieve competitive results as the models

discussed earlier. However, these models also have the limita-

tions of interpretability.

STL has been applied to infer knowledge from time-series

data [12], [24] due to its expressivity of temporal properties in

a logical statement. STL inference refers to learning an STL

formula from a set of labeled data by performing a classifi-

cation task. The STL inference approach has the limitations

of a long training period and a formula that cannot describe

the importance of data at various time points in determining

quantitative satisfaction. The wSTL proposed in this paper

can tackle the above issues, and the STONE can learn wSTL

formulas efficiently due to its end-to-end differentiability.

III. PRELIMINARIES

A discrete l-dimensional time-series data is denoted as s =
s(0), s(1), ..., s(K), where l ∈ Z>0, s(k) ∈ R

l, k,K ∈ Z≥0

and k ≤ K. A time interval between k1 and k2 is denoted as

I = [k1, k2] = {k′|k1 ≤ k′ ≤ k2, k1, k2 ∈ Z≥0}, and k + I
denotes the time interval [k + k1, k + k2].

A. Signal Temporal Logic (STL)

In this paper, we consider a fragment of Signal Temporal

Logic (STL) proposed in [31], whose syntax is defined recur-

sively as follows:

φ := �|π|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|�Iφ|♦Iφ, (1)

where φ, φ1, φ2 are STL formulas, � is Boolean True, π :=
f(s) is a predicate defined over s, and f(s) = aT s ≤ c, a ∈
R

l, ‖a‖2 = 1, c ∈ R, ¬,∧,∨ are logical negation, conjunction,
and disjunction operators. Temporal operators �,♦ read as

“always” and “eventually”, respectively. I is a time interval,

and �Iφ is satisfied at k if φ is satisfied at all k′ ∈ k +
I , ♦Iφ is satisfied at k if φ is satisfied at least one k′ ∈
k + I . The Boolean semantics of STL measures whether s
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satisfies φ at k qualitatively, for example, (s, k) |= φ reads as

“s satisfies φ at k” and (s, k) �|= φ reads as “s violates φ at

k”. The quantitative semantics of STL measures the degree of

satisfaction or violation of φ over s at k.

Definition 1 The quantitative semantics (satisfaction) of STL
is defined as [18]:

r(s, π, k) = c− aT s(k),

r(s,¬φ, k) = −r(s, φ, k),

r(s, φ1 ∧ φ2, k) = min(r(s, φ1, k), r(s, φ2, k)),

r(s, φ1 ∨ φ2, k) = max(r(s, φ1, k), r(s, φ2, k)), (2)

r(s,�Iφ, k) = min
k′∈k+I

r(s, φ, k′),

r(s,♦Iφ, k) = max
k′∈k+I

r(s, φ, k′).

The quantitative satisfaction at k = 0 is simplified as r(s, φ).

B. Weighted Signal Temporal Logic (wSTL)

The quantitative satisfaction of the ∧,�,∨,♦ operators in

Definition 1 is the minimum or maximum of the quantitative

satisfaction of subformulas. This means the overall quantitative

satisfaction is determined by the quantitative satisfaction of

a single subformula. Furthermore, the traditional STL quan-

titative satisfaction cannot express importance over different

subformulas. In many circumstances, we need a quantitative

satisfaction that can account for the effects of different sub-

formulas.

Example 1 Consider the “Coffee” dataset presented in the
Introduction section, the STL formula learned by classifying
this dataset is expressed as φ = ♦[154,165]s ≤ −0.8017, which
means there is at least one time point between 154 and 165
such that s is smaller than or equal to −0.8017. Specifically,
the time-series data between k = 154 and k = 165 of the
“Coffee” dataset is shown in Fig. 2. The STL formula φ has
the drawback of not being informative enough to reflect which
time points in the interval [154, 165] play a more important
role in classifying these two classes of data. This is due to
the fact that the quantitative satisfaction of φ is determined
by the data at a single time point. We seek a more informative
formula that can reflect the significance of data at various
time points in classifying the dataset.

We introduce the notion of importance weights into STL, and

the novel STL is called weighted STL (wSTL) [19].

Definition 2 The syntax of wSTL is defined over s as [19]

φ̃ := �|π|¬φ̃|w1
φ̃1 ∧

w2
φ̃2|

w1
φ̃1 ∨

w2
φ̃2|�w

I φ̃|♦w
I φ̃, (3)

where �, π, and the logical and temporal operators are
the same as the ones in STL, w1 and w2 are non-negative
weights on the subformulas φ̃1 and φ̃2, respectively, and
w = [wk1

, wk1+1, ..., wk2
]T ∈ R

k2−k1+1
≥0 assigns a non-

negative weight wk′ to k′ ∈ [k1, k2] in the temporal operators.

With importance weights, wSTL can express more informa-

tive specifications. Throughout the paper, we use w to denote

Fig. 2. Time-series data between 154 and 165 of “Coffee” dataset.

weights associated with an operator and wφ̃ to denote weights

associated with a wSTL formula φ̃ that may have multiple

operators.

Definition 3 The quantitative semantics (satisfaction) of
wSTL is defined as [19]

rw(s, π, k) = c− aT s(k),

rw(s,¬φ̃, k) = −rw(s, φ̃, k),

rw(s,
w1

φ̃1 ∧
w2

φ̃2, k) = ⊗∧([wi, r
w(s, φ̃i, k)]i=1,2),

rw(s,
w1

φ̃1 ∨
w2

φ̃2, k) = ⊗∨([wi, r
w(s, φ̃i, k)]i=1,2),

rw(s,�w
I φ̃, k) = ⊗�(w, [rw(s, φ̃, k + k′)]k′∈[k1,k2]),

rw(s,♦w
I φ̃, k) = ⊗♦(w, [rw(s, φ̃, k + k′)]k′∈[k1,k2]), (4)

where ⊗∧,⊗∨ : R
2
≥0 × R

2 → R, ⊗�,⊗♦ : R
k2−k1+1
≥0 ×

R
k2−k1+1 → R are activation functions corresponding to

the ∧,∨,�,♦ operators, respectively. The concrete-form ac-
tivation functions for the ∧, ∨, �, and ♦ operators will be
presented in Section IV.

Remark 1 The double negation property holds for the
activation functions in (4) because rw(s,¬¬φ̃, k) =
−rw(s,¬φ̃, k) = rw(s, φ̃, k).

Remark 2 The quantitative satisfaction in (4) satisfies De-
morgan’s law if and only if the activation functions for the
∧,∨,�,♦ operators satisfy Demorgan’s law. For example,
we can show that Demorgan’s law holds for the ∧ and ∨
operators, and the validity of Demorgan’s law for the � and
♦ operators can be proved similarly. It follows that

r(s,¬(w1¬φ̃1∧
w2¬φ̃2), k) = −⊗∧ ([wi,−rw(s, φ̃i, k)]i=1,2).

(5)

As the aggregation function ⊗∧ satisfies Demorgan’s law, we
have

−⊗∧([wi,−rw(s, φ̃i, k)]i=1,2) = ⊗∨([wi, r
w(s, φ̃i, k)]i=1,2)

= rw(s,
w1

φ̃1 ∨
w1

φ̃2, k).
(6)
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C. Problem Statement

In this paper, we consider solving the following problems:

1) Design activation functions for the ∧,∨,�,♦ operators in

(4) such that subformulas with zero weights are not influential

in the overall quantitative satisfaction of a wSTL formula, and

subformulas with larger weights have a greater influence on

the overall quantitative satisfaction. 2) Given two sets of time-

series data DP and DN , where DP = {Di
P }p̃i=1 is a set of

positive data with label 1 and DN = {Di
N}ñi=1 is a set of

negative data with label −1, we aim to build a neuro-symbolic

model according to the design of the activation functions for

the ∧,∨,�,♦ operators. The neuro-symbolic model embodies

the characteristics of neural networks and wSTL, and can

classify DP and DN and produce a wSTL formula φ̃ that

is human-readable and interpretable. In the meantime, φ̃ is

satisfied by the data in DP and violated by the data in DN .

IV. OUR APPROACH

In this section, we define a new quantitative satisfaction for

wSTL such that subformulas with zero weights are not influ-

ential in the overall quantitative satisfaction and subformulas

with larger weights have a greater influence on the overall

quantitative satisfaction. In this manner, we can build a neural

network model in which a neuron has not only a corresponding

activation function but also a logical meaning. The proposed

neuro-symbolic model is called a weighted Signal Temporal

lOgic Neural nEtwork (STONE). Structurally, a STONE is

a graph composed of neurons representing predicates and

operators connected in the way determined by a wSTL for-

mula. Neurons representing predicates accept s at single time

points as inputs and have activation functions corresponding

to rw(s, π, k), whose outputs are quantitative satisfaction of

predicates. Neurons representing logical or temporal operators

accept quantitative satisfaction of subformulas as inputs and

have activation functions corresponding to the operators.

A. Activation Functions for Logical and Temporal Operators

Gradient-based neural learning of importance weights wφ̃

requires the activation functions to be smooth and differen-

tiable with respect to wφ̃, where wφ̃ denotes all the weights

in φ̃. Activation functions for the ∨,�,♦ operators are derived

from the activation function for the ∧ operator using DeMor-

gan’s law. A weighted version of the quantitative satisfaction

in (2) was proposed in [19], where the activation function for

the ∧ operator is expressed as

⊗∧ ([wi, ri]i=1:N ) = min
i=1:N

{(
(
1

2
− w̄i)sign(ri) +

1

2

)
ri

}
,

(7)

where ri = rw(s, φ̃i, k), and w̄i = wi/
∑N

j=1 wj is the

normalized weight, and sign denotes the sign function. The

activation function in (7) has two limitations: 1) If wi = 0,

then ri is still possible to be the one deciding the quantitative

satisfaction, for example, if N = 3, r1 = 1, r2 = r3 = 3,

and w̄1 = 0, w̄2 = 0.5, w̄3 = 0.5, then the overall quan-

titative satisfaction is ⊗∧([wi, ri]i=1:3) = r1. This means

even if the importance weight associated with φ̃1 is 0, it

can still determine the overall quantitative satisfaction. 2)

The quantitative satisfaction of φ̃ is still determined by the

data at a single time point. To address these limitations, we

propose several principles of the activation functions such that

subformulas with higher weights have a greater influence on

the overall quantitative satisfaction and the weights can be

learned by a neuro-symbolic framework. As the activation

functions for the ∨, �, and ♦ operators are derived from

the activation functions for the ∧ operator using DeMorgan’s

law, the principles designed for the ∧ operator also hold for

the activation functions for the ∨, �, and ♦ operators. For

simplicity, we only discuss the design principles for the ∧
operator as follows.

The choice of the activation functions for the ∧ operator

should obey the following principles:

• Non-influence of zero weights: rw(s, φ̃i, k) has no

influence on rw(s,
w1

φ̃1 ∧
w2

φ̃2, k) if wi = 0, i = 1, 2,

where w1 and w2 are the weights defined in (4).

• Ordering of influence: if rw(s, φ̃1, k) = rw(s, φ̃2, k)
and w1 > w2, then we have

∂rw(s,
w1

φ̃1 ∧
w2

φ̃2, k)

∂rw(s, φ̃1, k)
>

∂rw(s,
w1

φ̃1 ∧
w2

φ̃2, k)

∂rw(s, φ̃2, k)
,

where w1 and w2 are the weights defined in (4).

• Monotonicity: rw(s,
w1

φ̃1∧
w2

φ̃2, k) increases monoton-

ically over rw(s, φ̃i, k), i = 1, 2, i.e.

⊗∧([wi, r
w(s, φ̃i, k)]i=1,2) ≤ ⊗∧([wi, r

w(s, φ̃i, k)+d]i=1,2),

where d ≥ 0.

This paper develops a concrete activation function for the

∧ operator by introducing another variable σ, which is used

to define a softmin function that replaces the min function

in the traditional STL quantitative semantics. The activation

functions for the other operators are derived using DeMorgan’s

law.

Definition 4 The activation functions for the ∧,∨,�,♦ oper-
ators in (4) are defined as

⊗∧([wi, r
w(s, φ̃i, k)]i=1,2, σ) =

∑2
i=1 w̄isiri∑2
i=1 w̄isi

,

⊗∨ ([wi, r
w(s, φ̃i, k)]i=1,2, σ) = −

∑2
i=1 w̄isiri∑2
i=1 w̄isi

,

⊗� (w, [rw(s, φ̃, k + i)]i∈I , σ)=

∑k2

i=k1
w̄isiri∑k2

i=k1
w̄isi

,

⊗♦(w, [rw(s, φ̃, k + i)]i∈I , σ) = −
∑k2

i=k1
w̄isiri∑k2

i=k1
w̄isi

,

(8)

where w̄i is the normalized weight (w̄i = wi/
∑2

j=1 wj

in the ∧,∨ operators, w̄i = wi/
∑k2

j=k1
wj in the �,♦

operators), I = [k1, k2], ri = rw(s, φ̃i, k) in the ∧ operator,
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ri = −rw(s, φ̃i, k) in the ∨ operator. In the activation function
for the � operator, ri is defined as

ri =

{
rw(s, φ̃, k + i) if k + i ≤ K,

∞ otherwise.

In the activation function for the ♦ operator, ri is defined as

ri =

{
−rw(s, φ̃, k + i) if k + i ≤ K,

∞ otherwise.

Also,

si = e−
ri
σ /

2∑
j=1

e−
rj
σ

in the ∧ and ∨ operators, and

si = e−
ri
σ /

k2∑
j=k1

e−
rj
σ

in the �,♦ operators, σ > 0. Note that the activation function
for the ∨ operator is derived from the activation function
for the ∧ operator using DeMorgan’s law. To clarify the
notation, we use w to denote weights of an operator before
normalization and w̄ to denote weights of the same operator
after normalization. The activation functions for the � and ♦
operators are designed such that if k+ i > K, i.e., the length
of data is smaller than the time interval of a wSTL formula,
then the quantitative satisfaction beyond K does not affect the
overall quantitative satisfaction by setting ri = ∞ .

Proposition 1 The activation functions defined in (8) satisfy
the principles of non-influence of zero weights, ordering of
influence, and monotonicity.

Proof The proof of Proposition 1 is described as follows.
• Non-influence of zero weights

Without loss of generality, let w1 = 0, and w2 = 1, then
we have

rw(s,
w1

φ̃1 ∧
w2

φ̃2, k) =
s2r2
s2

= r2,

which shows r1 is not influential in rw(s,
w1

φ̃1∧
w2

φ̃2, k).
• Ordering of influence

Taking the derivative of rw(s,
w1

φ̃1 ∧ w2
φ̃2, k) with re-

spect to rw(s, φ̃1, k), we have

∂rw(s,
w1

φ̃1 ∧
w2

φ̃2, k)

∂rw(s, φ̃1, k)
=

(w̄1s1 + w̄1r1
∂s1
∂r1

)

(w̄1s1 + w̄2s2)2

(w̄1s1 + w̄2s2)−
(w̄1s1r1 + w̄2s2r2)w̄1

∂s1
∂r1

(w̄1s1 + w̄2s2)2
.

(9)

Taking the derivative of rw(s,
w1

φ̃1 ∧ w2
φ̃2, k) with re-

spect to rw(s, φ̃2, k), we have

∂rw(s,
w1

φ̃1 ∧
w2

φ̃2, k)

∂rw(s, φ̃2, k)
=

(w̄2s2 + w̄2r2
∂s2
∂r2

)

(w̄1s1 + w̄2s2)2

(w̄1s1 + w̄2s2)−
(w̄1s1r1 + w̄2s2r2)w̄2

∂s2
∂r2

(w̄1s1 + w̄2s2)2
.

(10)

As the denominator is positive and is the same in (9) and
(10), we only need to compare the numerator of (9) and
(10). If rw(s, φ̃1, k) = rw(s, φ̃2, k), w1 > w2, i.e. r1 =
r2 and w̄1 > w̄2, the difference between the numerator
is

(w̄1s1 + w̄1r1
∂s1
∂r1

)(w̄1s1 + w̄2s2)− (w̄1s1r1 + w̄2s2r2)

w̄1
∂s1
∂r1

− (w̄2s2 + w̄2r2
∂s2
∂r2

)(w̄1s1 + w̄2s2) + (w̄1s1r1

+ w̄2s2r2)w̄2
∂s2
∂r2

= (s1(w̄1 − w̄2) + r1
∂s1
r1

(w̄1 − w̄2))(w̄1s1 + w̄2s1)

+ (w̄1s1r1 + w̄2s1r1)
∂s1
∂r1

(w̄2 − w̄1)

= s1(w̄1 − w̄2)(w̄1s1 + w̄2s1) + w̄1s1r1
∂s1
∂r1

(w̄1 − w̄2)

+ w̄2s1r1
∂s1
∂r1

(w̄1 − w̄2) + w̄1s1r1
∂s1
∂r1

(w̄2 − w̄1)

+ w̄2s1r1
∂s1
∂r1

(w̄2 − w̄1)

= s21(w̄
2
1 − w̄2

2) > 0, (11)

which proves that if rw(s, φ̃1, k) = rw(s, φ̃2, k) and
w1 > w2, the following holds:

∂rw(s,
w1

φ̃1 ∧
w2

φ̃2, k)

∂rw(s, φ̃1, k)
>

∂rw(s,
w1

φ̃1 ∧
w2

φ̃2, k)

∂rw(s, φ̃2, k)
.

• Monotonicity
For ⊗∧([wi, r

w(s, φ̃i, k)]i=1,2), we have

⊗∧([wi, r
w(s, φ̃i, k)]i=1,2) =

w̄1s1r1 + w̄2s2r2
w̄1s1 + w̄2s2

,

and for ⊗∧([wi, r
w(s, φ̃i, k) + d]i=1,2), we have

⊗∧([wi, r
w(s, φ̃i, k) + d]i=1,2) =

w̄1s
′
1r

′
1 + w̄2s

′
2r

′
2

w̄1s′1 + w̄2s′2
,

where r′1 = r1 + d, r′2 = r2 + d. We can show that

s′i =
e−(ri+d)∑2
j=1 e

−(rj+d)

=
e−de−ri

e−d
∑2

j=1 e
−rj

,

=
e−ri∑2
j=1 e

−rj
= si, i = 1, 2.

As r1 + d ≥ r1, and r2 + d ≥ r2, we have

⊗∧ ([wi, r
w(s, φ̃i, k) + d]i=1,2)

=
w̄1s1(r1 + d) + w̄2s2(r2 + d)

w̄1s1 + w̄2s2

≥ w̄1s1r1 + w̄2s2r2
w̄1s1 + w̄2s2

= ⊗∧([wi, r
w(s, φ̃i, k)]i=1,2),

which proves the monotonicity holds.
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The connection between the quantitative satisfactions of

wSTL and STL is discussed in the following proposition.

Proposition 2 For sufficiently small σ and w1 = w2,
rw(s,

w1
φ̃1∧

w2
φ̃2, k) can be arbitrarily close to the traditional

STL quantitative satisfaction, i.e.

lim
σ→0

rw(s,
w1

φ̃1∧
w2

φ̃2, k) = min{rw(s, φ̃1, k), r
w(s, φ̃2, k)}.

Proof We know that r1 = r(s, φ̃1, k), r2 = r(s, φ̃2, k), and

si =
e−

ri
σ∑2

j=1 e
− rj

σ

. (12)

Without loss of generality, let r1 < r2, then for sufficiently
small σ, s1 will approximate 1, and s2 will approximate 0.
Hence the robustness becomes

lim
σ→0

rw(s,w1φ1 ∧ w2φ2, k) =
w̄1(s1 ↑1)r1 + w̄2(s2 ↑0)r2
w̄1(s1 ↑1) + w̄2(s2 ↑0) ,

= r1 = min{r(s, φ̃1, k), r(s, φ̃2, k)}.
With the activation functions defined in (8), we can design

neural networks for wSTL formulas by encoding the temporal

and logical operators as neurons. A particular STONE for φ̃ =
♦w1

[1,2]�w2

[0,3]π is shown in Fig 3.

B. Learning of wSTL Formulas with STONE

In this paper, wSTL learning for a given set of M formula

structure candidates refers to optimizing the parameters for

each formula candidate and selecting the wSTL formula that

can best classify the two sets of time-series data DP and DN .

The learned wSTL formula is satisfied by the data in DP and

violated by the data in DN . Suppose DC = DP ∪ DN that

has T = p̃+ ñ data. The overall learning process is shown in

Fig. 4.

The loss function should satisfy the requirements that the

loss is small when the learned formula is satisfied by the

positive data or violated by the negative data, and the loss is

large when these two conditions are not satisfied. A candidate

loss function that satisfies the above requirements is [24]

J(φ̃) =
T∑

j=1

h(lj , r
w(Dj

C , φ̃)), (13)

where Dj
C is the j-th data in DC , lj is the label of Dj

C , and

h(lj , r
w(Dj

C , φ̃))=

{
ζljr

w(Dj
C , φ̃) if ljr

w(Dj
C , φ̃)>0,

γ else,
(14)

where ζ > 0 is a tuning parameter, and γ is a positive large

number that penalizes the cases when φ̃ is violated by positive

data or satisfied by negative data. However, this loss function

is not differentiable everywhere with respect to wφ̃ and other

parameters in the STONE. An alternative loss function that is

differentiable is

J(φ̃) =
T∑

j=1

exp(−ζljr
w(Dj

C , φ̃)). (15)

Algorithm 1 wSTL Learning Algorithm

Input: Time-series data DC , a wSTL formula with specified

structure φ̃, number of iterations K, number of subformulas

J
Output: Learned wSTL formula φ̃

1: Construct a STONE based on the structure of φ̃, and

initialize wφ̃,a, c.
2: for k = 1, 2, ...,K do
3: Select a mini-batch data Dk

C from DC .

4: for j = 1, 2, ...,J do
5: Perform forward-propagation to compute the quanti-

tative satisfaction of the j-th subformula using (8).

6: end for
7: Compute the loss at the current iteration using (15).

8: Perform back-propagation to update the parameters in

the STONE.

9: end for
10: return φ̃

J(φ̃) is small when φ̃ is satisfied by positive data or violated

by negative data and grows exponentially when φ̃ is violated

by positive data or satisfied by negative data. Another issue

of (14) is that for a correctly predicted positive (negative)

example, the loss increases as the quantitative satisfaction

increases (decreases), but for very large (small) quantitative

satisfaction the loss can potentially be greater than the penalty

term γ. The loss function in (15) addresses this issue by taking

the negation. We use Pytorch to build the STONE and perform

the back-propagation to learn the formula. The wSTL learning

algorithm with STONE is illustrated in Algorithm 1.

C. Formula Structure Selection
In this paper, we consider six wSTL formula structures

that correspond to six common properties, which are also

commonly used in the learning of STL formulas. The formula

structures are described as follows.

(1) Multiple conjunctive patterns:

φ̃ =
w0

φ̃0 ∧
w1

φ̃1 ∧
w2

φ̃2... ∧
wK

φ̃K ,

where φ̃0, φ̃1, ..., φ̃K are subformulas that can be predi-

cates or wSTL formulas.

(2) Multiple disjunctive patterns:

φ̃ =
w0

φ̃0 ∨
w1

φ̃1 ∨
w2

φ̃2... ∨
wK

φ̃K .

(3) Consistent pattern:

φ̃ = �w
[0,K]φ̃0.

(4) Alternative pattern:

φ̃ = ♦w
[0,K]φ̃0.

(5) Consistently alternative pattern:

φ̃ = �w1

[0,K]♦w2

[0,K]φ̃0.

(6) Alternatively consistent pattern:

φ̃ = ♦w1

[0,K]�w2

[0,K]φ̃0.
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Weight parameters

Fig. 3. The neural network structure for φ̃ = ♦w1

[1,2]
�w2

[0,3]
π.

Time series data

…D஼ଵ

Formula Selection STONE Learning

Choose best ෨߶⋆…

Formula Candidate ෨߶ெିଵ

…

Formula Candidate ෨߶ெ

Formula Candidate ෨߶ଶ
Formula Candidate ෨߶ଵ Construct STONE for ෨߶ଵ

and optimize parameters

Construct STONE for ෨߶ெିଵ and optimize 
parameters

Construct STONE for ෨߶ଶ
and optimize parameters

Construct STONE for ෨߶ெ
and optimize parameters

D஼࣮

Fig. 4. Overview of the learning process of STONE.

V. EXPERIMENTS

In this section, we use two experiments to evaluate the

performance of the wSTL learning algorithm with STONE. In

the first experiment, we compare the classification accuracy

of STONE and other popular TSC models on 16 benchmark

datasets. In the second experiment, we compare the training

time of STONE and a traditional STL inference algorithm

[24]. For each experiment, we describe the experimental

setup and show the results. The experiments in the paper are

implemented on a Windows laptop with a 1.9GHz Intel i7-

8665U CPU and an 8 GB RAM.

Through the experiments, we aim to answer the following

questions: 1) Can STONE achieve a competitive classification

accuracy compared to the state-of-the-art models, and is there

any improvement in the accuracy? 2) Can the learned wSTL

formula provide insights into the temporal and logical proper-

ties that determine the problem of interest? 3) Can STONE

be more computationally efficient compared with the STL

learning algorithm?

A. Classification Accuracy

Experiment Setup: The datasets used in this experiment

are selected from the UCR Time Series Classification Archive

[17], which contains time-series data from different domains.

We select 16 binary classification datasets and present the

information about each dataset in Table I. The training and test

data are split according to the default split specified in the UCR

archive. For each dataset, we compare our model with 1NN-

DTW [5], TSF [6], HIVE-COTE [7], FCN [29], ResNet [29],

LSTM [32], and GRU [33] models. The formula structures

of STONE are given as the six commonly used structures

described in Section IV-C. The parameters in STONE are set

as σ = 1 and ζ = 1. We run the STONE for 100 epochs,

and in each epoch we train the model using all the training

data and evaluate the model using the test data. Since the

dataset archive was published, many machine learning (ML)

models have been applied to perform the classification task [3].

These ML models are less interpretable and human-readable

than the STONE classifier. The weights in these ML models

represent how much each feature in the model contributes

to the prediction, however, the model cannot be written as

a human-readable formula. The STONE classifier can not

only reflect the contribution of the features but also express

the model as a wSTL formula that is human-readable and

interpretable. The learned wSTL formula can tell us what kind

of temporal properties determine the problem of interest.

Results: The classification accuracy for STONE and other

competitive models on the test set is reported in Table I. The

accuracy of STONE is chosen as the best accuracy of the six

formula structures proposed in Section IV-C, and the number

(i) next to the accuracy means the i-th formula structure

in Section IV-C has the highest accuracy. The classification

accuracy for the other models is the same as their original

papers. The best result for each dataset is highlighted in bold
format. From Table I, we could observe STONE achieves

a better average classification accuracy on the 16 datasets.

Also, we compute the average rank of each classifier and

use a critical difference diagram [34] shown in Fig. V-A to

visualize this comparison, where a bold horizontal line denotes

a collection of classifiers that are statistically similar. On

average, STONE outperforms the other TSC models across

the 16 datasets. The above results demonstrate that STONE is

highly competitive to the state-of-the-art models.

B. Interpretability of STONE

The main advantage of STONE is its interpretability and

human-readability. For example, the wSTL formula learned
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Name #Train #Test Length 1NN-DTW TSF HIVE-COTE FCN ResNet LSTM GRU STONE
Coffee 28 28 286 100.00 100.00 100.00 100.00 100.00 71.42 71.42 100.00 / (4)

DistalPhalanxOutlineCorrect 600 276 80 72.46 77.17 77.17 76.00 77.10 78.00 72.82 80.16 / (2)
Earthquakes 322 139 512 72.66 74.82 74.82 72.70 71.20 79.85 78.41 79.85 / (5)

ECG200 100 100 96 88.00 85.50 85.00 88.90 87.40 82 81.00 90.00 / (1)
ECGFiveDays 23 861 136 79.67 93.69 100.00 98.70 97.50 94.54 95.81 95.65 / (4)

GunPoint 50 150 150 91.33 95.07 100.00 100.00 99.10 77.33 82.67 94.00 / (4)
Ham 109 105 431 60.00 74.29 66.67 71.80 75.70 66.67 63.81 82.85 / (1)

HandOutlines 1000 370 2709 87.84 91.89 93.24 80.60 91.10 70.81 69.72 90.00 / (2)
Herring 64 64 512 53.12 60.94 68.75 60.80 61.90 70.31 67.18 70.31 / (1)

ItalyPowerDemand 67 1029 24 95.53 97.00 96.30 96.10 96.30 96.30 96.89 97.08 / (5)
SonyAIBORobotSurface1 20 601 70 69.55 75.64 76.54 95.80 96.00 84.52 83.02 92.51 / (3)
SonyAIBORobotSurface2 27 953 65 85.94 81.86 92.76 97.90 97.80 75.65 81.63 84.57 / (3)

Strawberry 613 370 235 94.59 96.49 97.03 97.20 98.10 89.72 89.45 97.79 / (2)
TwoLeadECG 23 1139 82 86.83 90.39 99.65 100.00 100.00 66.63 67.60 100.00 / (2)

Wafer 1000 6164 152 99.59 99.50 99.94 99.90 99.70 98.23 98.92 96.70 / (1)
Wine 57 54 234 61.11 62.96 77.78 58.70 74.40 64.81 62.96 81.48 / (1)

Average accuracy 81.13 84.82 87.85 87.19 88.95 79.17 78.95 89.63

TABLE I
CLASSIFICATION ACCURACY (%) OF STONE AND OTHER TSC MODELS ON 16 BENCHMARK DATASETS.

captionCritical difference diagram showing average ranks of

STONE and other TSC models on 16 benchmark datasets.

by classifying the “Coffee” dataset is φ̃ = ♦w
[0,285]1.8975s ≤

−0.6531, where w is the 286-dimensional weight variable.

The three most important normalized weights are

w157 = 0.3227, w158 = 0.2691, w159 = 0.2070, (16)

which means the data at time points k = 157, 158, 159
are more important in classifying the two classes of data.

Correspondingly, the data belonging to time interval [150, 164]
is shown in Fig 5. We could observe that the difference

between the two classes of data is more significant during

k ∈ [157, 159] than at other time points. This temporal

information is more informative than the STL formula learned

from the STL learning algorithm, φ = ♦[154,165]s ≤ −0.8017

because φ̃ identifies the data at time points 157, 158, 159 are

more important than the other time points in the interval

[154, 165] in classifying the data. Another example is the

wSTL formula learned by classifying the “ItalyPowerDemand”

dataset, which is expressed as

φ̃ = �w1

[0,23]♦w2

[0,23]1.1493s ≤ 0.3569. (17)

The three most important normalized weights in w1 are

w1
17 = 0.5170, w1

6 = 0.2168, w1
16 = 0.2082, (18)

and the five most important normalized weights in w2 are

w2
1 = 0.1068, w2

2 = 0.1594, w2
12 = 0.1862,

w2
13 = 0.1880, w2

14 = 0.1618,
(19)

which implies the data at time points k = 7, 8, 17, 18, 19, 20
are more important in deciding the season of power usage. In

particular, we could observe an obvious difference between the

Fig. 5. Time-series data between 150 and 164 of “Coffee” dataset with
annotated time points k = 157, 158, 159.

Fig. 6. Time-series data of “ItalyPowerDemand” dataset with annotated time
interval 17 : 00− 20 : 00.

two classes happening during 17:00 and 20:00 in Fig. 6, which

corresponds to the fact that in summer, the power demands

start to decrease when evening comes as the weather gets cool,

while in winter, the power demands start to increase when

evening comes as the weather gets cold. The above experi-

mental results demonstrate that STONE could yield a formula

that is close to natural language and can reveal the temporal

and logical characteristics useful for the classification.

C. Computational Efficiency

Traditional STL learning algorithms in [12], [24] can also

express the model as a human-readable STL formula. How-
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ever, as mentioned earlier, the learned STL formula cannot

reflect the importance of data at different time points in deter-

mining the characteristics of interest. Instead, wSTL formulas

can express the importance of data at different time points

by introducing weights. In the meantime, wSTL learning

algorithm can also improve the computational efficiency, i.e.

reduce training time. We compare the training time for the

STL learning algorithm and the wSTL learning algorithm on

each of the 16 datasets. The formula structure used in the STL

learning algorithm is the same as the best formula structure

in STONE. For each dataset, the training time of STONE is

less than the training time of the STL learning algorithm.

The average training time for wSTL learning algorithm is

6.65 seconds, which is 45 times faster than the average

training time for STL learning algorithm (300.92 seconds).

Therefore, STONE is more computationally efficient than the

STL learning algorithm.

D. STONE with Weight Sparsification

As the structures of wSTL formulas become sophisticated,

the number of parameters in the STONE will grow. As a result,

the memory required for back-propagation will be intensive.

Sparsifying the weights of the STONE is one way to reduce

the memory footprint of the network. In the meantime, from

previous experimental results, we could observe that data at

certain time points play a more important role in determining

a property. Weight sparsification could refine the formula by

keeping the subformulas that are more important. A particular

weight sparsification approach is by thresholding the number

(s̄) of weights to keep, which is called top-s̄ sparsification, i.e.

w̃i =

{
w̄i if w̄i is one of the top-s̄ weights,

0 otherwise,
(20)

where w̃i is the i-th weight after sparsification.

The weight sparsification experiments are performed on

eight datasets in Fig. 7. We aim to explore the effect of

sparsification on classification accuracy. The sparsification

level s̄ is chosen as s̄ ∈ [1, 5], and the classification accuracy

for different sparsification levels is shown in Fig. 7. We could

observe generally with the decreasing of s̄, the classification

accuracy also decreases as the important subformulas are

neglected. In practice, we need to consider the trade-off

between the memory saved and the classification accuracy to

determine the sparsification level such that the requirements

for memory and classification accuracy are both satisfied.

E. Interpretability Comparison

Many interpretable TSC models such as Shapelet Trans-

form (ST) [28], Time Series Forest (TSF) [6], and Symbolic

Aggregate Approximation and Vector Space Model (SAX-

VSM) [35] have been developed to extract features from sub-

sequences of time-series data and identify the discriminatory

subsequences to represent a class. However, all these models

cannot provide a human-readable formula. In contrast, STONE

can both identify the discriminatory intervals and express

the discriminatory information as a logical formula that is

Fig. 7. Classification accuracy of STONE with different sparsification levels
on eight benchmark datasets.

human-readable. We use the “GunPoint” dataset to compare

the interpretability of STONE and SAX-VSM. For the “Gun”

class, an actor moves his hand above a hip-mounted holster,

and moves his hand down to grasp the gun, and moves the gun

up to point it at a target and returns the gun to the holster,

and returns his hand to the side. For the “Point” class, the

actor directly moves his finger up and points with his finger

to the target, and then returns his hand to the side. For both

classes, the x position (x-pos) of the centroid of the actor’s

hand is recorded. The discriminatory patterns identified by

STONE and SAX-VSM are shown in Fig. 8, in which patterns

from STONE are consistent with the patterns from SAX-VSM.

The extracted patterns correspond to the difference between

moving hand down to grasp the gun from the holster and

directly moving hand up to the shoulder level. More impor-

tantly, if we truncate the small weights, the discriminatory

patterns learned by STONE can be described by a human-

readable wSTL formula as φ̃ = (x(28) ≤ 0.2456)∨ (x(29) ≤
0.2093) ∨ (x(30) ≤ 0.2103) ∨ (x(31) ≤ 0.2207) ∨ (x(32) ≤
0.2311) ∨ (x(33) ≤ 0.2429) ∨ (x(34) ≤ 0.2495) ∨ (x(35) ≤
0.2612)∨ (x(36) ≤ 0.2831)∨ (x(37) ≤ 0.3695), which reads

as “x-pos at 28 s is smaller than 0.2456 or x-pos at 29 s is

smaller than 0.2093 or x-pos at 30 s is smaller than 0.2103

or x-pos at 31 s is smaller than 0.2207 or x-pos at 32 s is

smaller than 0.2311 or x-pos at 33 s is smaller than 0.2429 or

x-pos at 34 s is smaller than 0.2495 or x-pos at 35 s is smaller

than 0.2612 or x-pos at 36 s is smaller than 0.2831 or x-pos

at 37 s is smaller than 0.3695”. The patterns at 28 s and 29

s describe moving the hand down to grasp the gun and the

patterns from 29 s to 37 s correspond to moving the hand up

to the shoulder level. In summary, previous interpretable TSC

models cannot provide a human-readable formula to describe

the discriminatory patterns, while STONE can simultaneously

identify the discriminatory patterns and provide a human-

readable formula that describes the discriminatory patterns.

VI. CONCLUSION

We propose new semantics for wSTL, which extends STL

by incorporating weights into the specifications and whose

quantitative satisfaction enjoys three key properties: non-

influence of zero weights, ordering of influence, and mono-

tonicity. A novel framework called STONE combining the
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Fig. 8. Discriminatory patterns extracted by STONE and SAX-VSM on the
“GunPoint” dataset.

characteristics of neural networks and wSTL is presented,

where a neuron has not only a corresponding activation func-

tion but also a logical meaning. Due to the differentiable prop-

erty of the quantitative satisfaction of wSTL, the parameters of

wSTL can be learned from STONE in an end-to-end fashion,

and the task of TSC can be accomplished. STONE is shown

to be competitive against state-of-the-art TSC models with

a series of experiments on benchmark time-series datasets.

Moreover, the outcome of STONE can be expressed as a

logical formula that is interpretable and human-readable. Com-

parisons with a traditional STL learning approach demonstrate

that STONE is on average 45 times faster than the traditional

STL learning approach on the benchmark datasets.
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