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Complex models involving numerous coupled physical processes create substantial compu-

tational challenge. This paper introduces a solver algorithm that maintains a locally fully 
coupled system in the subdomains in which individual physical process interacts with other 
processes strongly. Meanwhile, the solutions in the other regions are treated in a decoupled 
fashion. The fully coupled regions are updated dynamically by either different timesteps 
or iterations. Global coupling of multiple physics generally results in systems with large 
number of unknowns that are computationally unfeasible. On the other hand, decoupling 
strategies alleviates the computational load, but results in stability issues, especially for 
nonlinear problems and sometimes encounters divergence during the solution process. The 
local coupling strategy applies error estimators to determine the strength of interaction 
between the physical processes in subdomains. By maintaining the system in fully coupled 
form within critical regions, the stability issue from the decoupling strategies is avoided 
while the computational load is significantly reduced as compared to a global coupling 
strategy.

 2022 Elsevier Inc. All rights reserved.

1. Introduction

Complex model problems such as fluid-structure interaction and multiphase reactive transport involve numerous cou-
pled physical processes. Attempting to approach the solution of these models in a monolithic fashion generates enormous 
linear systems that are computationally demanding even in parallel computing environments. To reduce the computational 
load, many algorithms aim to decouple the physics and solve the processes sequentially and iteratively until some conver-
gence criterion is satisfied. Such strategy reduces the linear system size of each iteration significantly and thus improves 
computational efficiency.

Many decoupling algorithms regarding different model problems have been proposed. To mention a few works, for cou-
pled flow and geomechanics problem, [10,11] investigated the accuracy and stability of different strategies of splitting the 
full Biot system. Lu and Wheeler [19] further improves current geomechanics decoupling schemes by avoiding unnecessary 
updates on the mechanic system during iterations. Wong et al. [26] applied sequential Newton method to transport problem 
with thermodynamics effects and [1] proposed a sequential solution algorithm for reactive transport. Although improving 
computational efficiency, the decoupled schemes naturally possess stability issues. For coupled flow and geomechanics prob-
lem, only fixed stress and undrained splitting algorithms have rigorous proof provided by [20] to be a contraction mapping 
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Fig. 1. Pressure and saturation updates during Newton iterations for a typical timestep. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

and thus admits a unique solution. Although each sequential iteration requires a lot less computation to resolve, decoupling 
thermodynamics and reactive transport problems results in a lot more iterations to achieve convergence.

Regarding multiphase flow problems, implicit pressure explicit saturation (IMPES) method is successful in two phase 
slightly-compressible fluid models, since the total mobility ratio stays fairly constant as saturation changes and therefore the 
advection decouples naturally from the diffusion process. As fluid behavior becomes more complicated, such method starts 
to show stability and divergence issues. To mitigate the problem, the adaptive implicit formulation was proposed [5,7,22,27]
such that only the subdomains with significant variation in saturation/concentration are solved fully implicitly. Although 
resolving the stability issue, such algorithms do not provide significant computational speedup. To be more specific, since 
the regions with less variation are embedded explicitly, the adaptive implicit and fully implicit formulation have the same 
system size. Meanwhile, such embedding destroys the banded and symmetric structure of the Jacobian matrix which makes 
the performance of iterative solvers such as GMRES suboptimal. The explicit part of the system also imposes a limit on the 
timestep size for stable Newtonian convergence.

The transport process in the multiphase flow model is mainly governed by the Buckley-Leverett equation as follows

∂ S

∂t
+ ∇ · ( f (S)u) = 0, (1.1)

which is a first order hyperbolic system. Unlike the parabolic diffusion process which occurs on a global scale, the hyperbolic 
transport exists locally. Fig. 1 illustrates the pressure and saturation updates of a two-phase flow model during Newton 
iterations of a typical timestep. We observe the pressure updates throughout the entire domain while the saturation updates 
are mainly concentrated at the saturation front. Keeping the saturation front regions in a fully coupled formulation while 
decoupling the saturation unknowns in other domains can reduce the computational load without adding convergence 
bottlenecks.

In this paper, we introduce a dynamic local coupling method for solving multiphase flow problems. In Section 2 we 
present the model problem followed by a local coupling algorithm in Section 4. Results from both slightly-compressible and 
fully compressible fluid are presented in Section 5. We will then discuss the application of such algorithm to a space-time 
geometric multigrid method in Section 6. Conclusions follow in Section 7.

2. Flow model problem

We consider the following two-phase flow in porous media model. The phase mass conservation, constitutive equations, 
boundary and initial conditions are as follows:

∂(φραsα)

∂t
+ ∇ · uα = qα in � × J , (2.1)

uα = −Kρα
krα

μα
(∇pα − ρα g) in � × J , (2.2)

uα · ν = 0 on ∂� × J , (2.3)
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{

pα = p0
α

sα = s0α
at � × {t = 0}. (2.4)

Here, φ is porosity and K is permeability tensor. ρα , sα , uα and qα are density, saturation, velocity and source/sink, respec-
tively for each phase. The phase densities are calculated by Eqn. (2.5) and (2.6) depending on whether they are slightly or 
fully compressible

ρα = ρα,ref · ecα(pα−pα,ref ), (2.5)

ρα = ρα,ref · cα pα . (2.6)

cα is the fluid compressibility and ρα,ref is the reference density at reference pressure pα,ref . In addition, krα , μα and 
pα are the relative permeability, viscosity and pressure for each phase. The relative permeability is a function of saturation. 
Pressure differs between wetting phase and non-wetting phase in the presence of capillary pressure, which is also a function 
of saturation:

krα = f (sα), (2.7)

pc = g(sα) = pnw − pw . (2.8)

The saturation of all phases obeys the following constraint:
∑

α

sα = 1. (2.9)

We use mixed finite element method to resolve the system. The functional spaces for pressure/saturation and velocity 
are

V = H(div;�) =

{

v ∈
(

L2(�)
)d

: ∇ · v ∈ L2(�)

}

, W = L2(�),

with finite dimensional subspaces as V h and Wh . Let J = (0, T ] be partitioned in to a number of coarse time intervals 
{tn}

N
n=1 where 0 = t1 < t2 < · · · < tN = T . Jn = (tn, tn+1] is the nth partition of the time domain of interest. Then the mixed 

method weak formulation of Eqn. (2.1) and (2.2) are: find un
α,h

∈ V h , ũ
n
α,h ∈ V h , snα,h

∈ Wh , pnα,h
∈ Wh such that

∫

Jn

∫

�

∂t

(

φρn
α,hs

n
α,h

)

w +

∫

Jn

∫

�

(

∇ · un
up,α,h

)

w =

∫

Jn

∫

�

qαw ∀w ∈ Wh, (2.10)

∫

Jn

∫

�

K−1ũ
n
α,h · v =

∫

Jn

∫

�

pnα,h∇ · v ∀v ∈ V h, (2.11)

∫

Jn

∫

�

un
α,h · v =

∫

Jn

∫

�

λα ũ
n
α,h · v ∀v ∈ V h. (2.12)

The mobility ratio in λα is defined as

λα =
krαρα

μα
, (2.13)

and the upwind velocity is calculated by
∫

Jn

∫

�

un
up,α,h · v =

∫

Jn

∫

�

λ∗
α ũ

n
α,h · v ∀v ∈ V h. (2.14)

The additional auxiliary phase fluxes ũn
α,h is used to avoid inverting zero phase relative permeability [21]. Calculation of the 

upwind mobility ratio is done by using saturations from the grid cell on the upwind direction of the pressure gradient.

3. Coupling strength

In multiphase flow problems, the subdomains with strong transport-diffusion coupling are characterized by a dramatic 
saturation change in time. In such regions, the fluid flow is not dominated by a single phase and therefore the solution 
is strongly dependent upon both pressure and saturation. It is also the main source of nonlinearity that requires multiple 
Newton iterations for convergence, while the remaining regions behave near linearly. Here, we use temporal error estimators 
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Fig. 2. Temporal residual and flux error estimators for determining coupling regions.

ηn
E,t,r,α and ηn

E,t, f ,α introduced in [14], which characterize the discretization error in time, to determine the subdomains 
with strong coupling:

ηn
E,t,r,α =

∣

∣T i

∣

∣

(

∫

E i

∣

∣

∣
∂t

(

φρn
α,hs

n
α,h

)

+ ∇ · un
up,α,h − qα

∣

∣

∣

2
)

1
2

, (3.1)

ηn
E,t, f ,α =

(

∫

E i

K−1
∣

∣

∣
un

α,h − un
α,hτ

∣

∣

∣

2
)

1
2

. (3.2)

These are element-wise estimators for each E i = T i × F i in partition T n
h

of � × Jn . Similar error estimators are also derived 
in [23,24]. The subscript τ indicates the affine globally continuous function in each interval Jn for 1 ≤ n ≤ N defined as

f nτ = f n−1 +
t − tn−1


t
( f n − f n−1) t ∈ Jn, (3.3)

for any discrete function in time f n . As illustrated in Fig. 2, the error estimators outline the critical regions that require 
fully coupled formulation for stable numerical solution.

We now show that the two error indicators mentioned above provide a measure of coupling strength between the 
advection and the diffusion. Let us define the phase residual at each Newton iteration as

R
n,l
α,h

=

∫

Jn

∫

�

(

∂t(φρn,l
α,h

s
n,l
α,h

) + ∇ · u
n,l
α,h

− qα

)

w, (3.4)

with its absolute value measuring the proximity of the current state {p
n,l
α,h

, sn,l
α,h

, un,l
α,h

} to the converged solution 
{pnα,h

, snα,h
, un

α,h
}. We assume the iterations approaches convergence monotonically such that the residual at each itera-

tion has the same sign. Let k denote the number of iterations required for Newton’s method to converge and assume the 
iterations produce a set of increments {δpn,l

α,h
, δsn,l

α,h
, δun,l

α,h
}k
l=1

. We now define {δtn,l} be a set of artificial incremental time 
defined such that

δtn,l∂tu
n
α,hτ = δu

n,l
α,h

. (3.5)

Since 
∑k

l=1 δu
n,l
α,h

= un
α,h

− u
n−1
α,h

, then

un
α,h − u

n−1
α,h

=

k
∑

l=1

δtn,l∂tuα,hτ =
un

α,h
− u

n−1
α,h


t

k
∑

l=1

δtn,l ⇒

k
∑

l=1

δtn,l = 
t = | Jn|.

It stems from Eq. (3.4) that the “distance” traveled during each iteration is defined as

r
n,l
α,h

=
δtn,l

2| Jn|

(

R
n,l
α,h

+ R
n,l−1
α,h

)

=
δtn,l

2| Jn|

∫

Jn

∫

�

(

∂t(φρn,l
α,h

s
n,l
α,h

)+ ∂t(φρn,l−1
α,h

s
n,l−1
α,h

)+∇ · u
n,l
α,h

+∇ · u
n,l−1
α,h

−2qα

)

w. (3.6)

We also have
∫

Jn

∫

�

(

∂t(φρn
α,hs

n
α,h) + ∇ · un

α,h − qα

)

w = 0. (3.7)

Then we have the total “distance” traveled during the iteration process as

∣

∣

∣

∣

k
∑

l=1

r
n,l
α,h

∣

∣

∣

∣

=

∣

∣

∣

∣

k
∑

l=1

δtn,l

2

∫

�

(

φ
ρn,l

α,h
s
n,l
α,h

+ ρn,l−1
α,h

s
n,l−1
α,h

− 2ρn
α,h

snα,h

| Jn|
+ ∇ · u

n,l
α,h

+ ∇ · u
n,l−1
α,h

− 2∇ · un
α,h

)

w

∣

∣

∣

∣

≤ I1 + I2.

(3.8)

4
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By trapezoidal rule, we take the following

I1 =

∣

∣

∣

∣

k
∑

l=1

δtn,l

2

∫

�

(

∇ · u
n,l
α,h

+ ∇ · u
n,l−1
α,h

− 2∇ · un
α,h

)

w

∣

∣

∣

∣

=

∣

∣

∣

∣

k
∑

l=1

δtn,l

2

∫

�

(

∇ · u
n,l
α,h

+ ∇ · u
n,l−1
α,h

)

w −

∫

Jn

∫

�

∇ · un
α,hw

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Jn

∫

�

∇ ·
(

un
α,hτ − un

α,h

)

w

∣

∣

∣

∣

.

(3.9)

With the relation
∫

E

∇ ·
(

un
α,hτ − un

α,h

)

=

∫

∂E

(

un
α,hτ − un

α,h

)

· n, (3.10)

we obtain

I1 =

∣

∣

∣

∣

∑

E∈T n
h

∫

E

∇ ·
(

un
α,hτ − un

α,h

)

w

∣

∣

∣

∣

≤
∑

E∈T n
h

∫

∂E

∣

∣w
(

un
α,hτ − un

α,h

)

· n
∣

∣ ≤
∑

E∈T n
h

∫

E

∣

∣

(

un
α,hτ − un

α,h

)

w
∣

∣

≤ C‖w‖L2(�)

(

∑

E∈T n
h

(ηn
E,t, f ,α)2

)
1
2
.

(3.11)

For the remaining part, we also have

I2 =

∣

∣

∣

∣

k
∑

l=1

δtn,l

2

∫

�

φ
ρn,l

α,h
s
n,l
α,h

+ ρn,l−1
α,h

s
n,l−1
α,h

| Jn|
w −

∫

�

φρn
α,hs

n
α,hw

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

�

φ(ρn
α,hs

n
α,h − ρn−1

α,h
sn−1
α,h

)w

∣

∣

∣

∣

≤ C‖w‖L2(�)

(

∑

E∈T n
h

∫

E

∣

∣φ(ρn
α,hs

n
α,h − ρn−1

α,h
sn−1
α,h

)
∣

∣

2
)

1
2
.

(3.12)

As demonstrated, the coupling strength includes contributions from both nonlinear phase advection and phase accumu-

lation. Since accumulation changes mostly coincide with the variations in phase flux, therefore determining the coupling 
strength with the flux error indicator is sufficient. Meanwhile, due to the close resemblance between ηE,t,r,α and Rn,l

α,h
, 

the residual error indicator naturally provides a rough estimate for the coupling strength at each iteration, by measuring 
the “distance” between the current state and the converged solution. However, the coupling strength computed in such a 
fashion requires to be updated at each Newton iteration.

4. Dynamic local coupling algorithm

Unlike the two methods, namely the adaptive implicit method that treats certain domains explicitly and the IMPES 
method that solves pressure and saturation in separate systems, the dynamic local coupling method first determines the 
subdomains where transport is strongly coupled with diffusion. Then, the saturation unknowns in strong coupling regions 
are merged with the global pressure unknowns to be solved monolithically. An example of such a strategy is illustrated 
in Fig. 3. On the left is a sample 2D grid with red index indicating strong transport-diffusion coupling. The corresponding 
Jacobian matrix is presented on the right. Unlike the fully implicit monolithic system, such matrix is not banded but is still 
symmetric.

We propose two dynamic local coupling algorithms to separate the difference in convergence behavior. The first type is 
a timestep dynamic. We evaluate the error estimators of the fluid phases at the beginning of each timestep to determine 
the locally coupled system and a remainder system that consists of all saturation unknowns that are decoupled. Then the 
two systems are solved iteratively and implicitly until convergence. During the iterations of a given timestep, the structure 
of the two systems are fixed. The algorithm is described in Algorithm 1. Unlike the IMPES approach or sequential method 
for compositional simulation [17], we do not require internal loops for either systems to converge to a required tolerance 
before continuing to the other. An example of the coupling subdomain map for early and late simulation time is illustrated 
in Fig. 4.
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Fig. 3. Sample grid (red index cells use fully coupled formulation) and the structure of the corresponding Jacobian matrix.

Algorithm 1 Timestep dynamic local coupling.
while tn ≤ T do

Calculate ηn
E,t,r,α

if ηn
E,t,r,α > ηn

t,r,thresh
or ηn

E,t, f ,α > ηn
t, f ,thresh

then

Set E i in local coupling map

end if

⊲ threshold values are the logarithmic mode of the data
while ‖Rn,k‖∞ > εNewton do

Solve locally coupled system
Solve remainder system
Calculate Rn,k+1 and check convergence
k ← k + 1

end while

Calculate ηn
E,t, f ,α

n ← n + 1

ηn
E,t, f ,α ← ηn−1

E,t, f ,α

end while

Fig. 4. Local coupling subdomain determined for left: a early timestep and right: a late time timestep.

The second type is iteration dynamic. Before each Newton iteration, error estimators are reevaluated to update the local 
coupling map while the first iteration of any timestep couples the entire domain. During the reevaluation, subdomains 
that already satisfies a convergence criterion for the advection process are excluded from the map. Consequently once 
excluded, saturation unknowns in the decoupled region are no longer updated for the remaining iterations of a timestep. 
The algorithm is described in Algorithm 2. An example of the coupling subdomain map for each iteration is illustrated 
in Fig. 5. The colored region rapidly converges to the saturation front which is only a small portion of the global system. 
To update the map for each iteration efficiently, only the coupled regions of the previous iteration are evaluated for the 
error estimators, instead of the global domain. For more efficient convergence behavior, a phase scaling [18] formulation is 
applied to all the decoupled regions.

5. Numerical results

We apply the SPE10 dataset [3] layer 52 to demonstrate our numerical algorithms. The petrophysical property is shown 
in Fig. 6. We choose a channelized distribution since such type illustrates more severe computational bottleneck. The global 
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Algorithm 2 Iteration dynamic local coupling.
while tn ≤ T do

Set local coupling domain to global
while ‖Rn,k‖∞ > εNewton do

Solve locally coupled system
Calculate Rn,k+1 and check convergence
Calculate ηn,k+1

E,t,r,α, ηn,k+1
E,t, f α in local coupling domain of iteration k

if ηn,k+1
E,t,r,α > εNewton or ηn,k+1

E,t, f α > ηn,k+1
t, f ,thresh

then

Keep E in local coupling map

else

Remove E from local coupling map

end if

k ← k + 1

end while

n ← n + 1

end while

Fig. 5. Local coupling subdomain determined for each Newton iteration (the first iteration with global coupling is not omitted).

Fig. 6. Fine scale permeability (left) and porosity (right) for numerical experiment.

Fig. 7. Relative permeability (left) and capillary pressure (right) curve for numerical experiment.

domain has the dimension of 56 × 216 elements with the element size of 1 f t × 1 f t × 1 f t . For nonlinear transport, we use 
Brooks-Corey model plotted in Fig. 7 for both relative permeability and capillary pressure described by:

7
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Table 1

Fluid data for numerical experiment.

Parameter Value Unit

Gas compressibility (cg ) 5.0× 10−2 psi−1

Oil compressibility (co) 1.0× 10−4 psi−1

Water compressibility (cw ) 3.0× 10−6 psi−1

Gas viscosity (μg ) 0.03 cp

Oil viscosity (μo) 3.0 cp

Water viscosity (μw ) 1.0 cp

Gas standard density (ρg,std) 0.1 lb/ft3

Oil standard density (ρo,std) 53 lb/ft3

Water standard density (ρw,std) 64 lb/ft3

Fig. 8. Convergence behavior of difference methods at timesteps with strong nonlinearity for slightly compressible flow.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

krw = k0rw

(

sw − swirr

1− sor − swirr

)nw

kro = k0ro

(

so − sor

1− sor − swirr

)no
, (5.1)

pc(sw) = Pen,cow

(

1− swirr

sw − swirr

)lcow

. (5.2)

The model parameter values are sor = swirr = 0.2, k0ro = k0rw = 1.0, nw = no = 2, pen,cow = 10 psi and lcow = 0.2. For the fully 
compressible flow experiment, the gas phase takes the water phase relative permeability behavior. The capillary pressure 
relation stays the same, however with gas being the non-wetting phase. The fluid data are listed in Table 1.

5.1. Slightly compressible fluid

The oil-water system is used for slightly compressible numerical experiment. The initial pressure and water saturation 
are set at 1000 psi and 0.2 respectively. A rate specified water injection well is placed at the bottom left corner with an 
injection rate of 1 f t3/day and a pressure specified production well is placed at the upper right corner with a production 
pressure of 1000 psi. The simulation stops at 500 days (water breakthrough) with the time step size of 1.25 days.

We first investigate the nonlinear convergence behavior of the different methods. Fig. 8 illustrates the maximum resid-
ual during Newton iterations for two sample timesteps with slow nonlinear convergence. Here we observe that both local 
coupling methods capture the same behavior as the fully implicit method. The residual reduction paths are almost identi-
cal. However, note that the residual in decoupled regions is calculated by phase scaling, and thus represents overall fluid 
mass balance instead of individual phases. Therefore, the decoupling schemes can be considered as indirectly loosening the 
convergence criterion.

With stepwise convergence behavior captured, the total iteration count, as demonstrated in Fig. 9, from iteration dynamic 
approach and fully implicit method are almost identical, while the count from timestep dynamic strategy is slightly higher. 
The iteration count for the timestep dynamic method is normalized by global domain, meaning that a solution for both 
locally coupled system and remainder system together counts as one full iteration. Regarding the computation time, the 
timestep dynamic approach provides about 50% speedup while the iteration dynamic method delivers 75%. The main reason 
for such difference is that the timestep dynamic method sweeps through the entire domain every Newton iteration while 
the iteration dynamic strategy reduces the system size gradually as it reaches final convergence. Also, the coupling region 
for timestep dynamic method during late simulation time is significantly larger, making the solution for the locally coupled 

8
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Fig. 9. Cumulative Newton iteration and CPU time comparison for slightly compressible fluid model.

Fig. 10. Pressure and saturation error of timestep dynamic and iteration dynamic method for slightly compressible fluid model.

system more costly. Therefore we see the CPU time increases more sharply during late time for such algorithm while the 
increase stays fairly linear for the iteration dynamic method. However, a timestep dynamic algorithm is still a valuable 
approach for multi-physics models. For example for flow coupled with geomechanics, solving the monolithic system of 
a engineering scale model, even for just one iteration, is computationally infeasible. The timestep dynamic strategy can 
still provide considerable speedup while not adding severe stability issues that either increase the number of iterations to 
achieve convergence or cause divergence.

We confirm the accuracy of the local coupling methods by calculating the ‖ · ‖l∞ of ep and es , the difference in pressure 
and saturation against the fully implicit solution in the global domain. The results are presented in Fig. 10. The solution 
error from the iteration dynamic method is generally 4 orders of magnitude larger than the error from the timestep dynamic 
strategy. This is due to the iteration dynamic approach skipping the saturation update for the decoupled regions. Although 
not causing any macroscopic effects in the system, there still exists extremely small updates on saturation unknowns if 
the remainder system is solved, which will in return affect the pressure equation. Despite such deficiency, the errors are 
generally minimum. The largest pressure error is in the 10−4 range and the largest saturation error is in the 10−6 range. 
One could combine both methods for accuracy and scalable computational speedup during late time.

5.2. Fully compressible fluid

The gas-oil system is used for fully compressible numerical experiment. The initial pressure and gas saturation are set at 
2500 psi and 0.2 respectively. A rate specified gas injection well is placed at the bottom left corner with an injection rate 
of 10 f t3/day and a pressure specified production well is placed at the upper right corner with a production pressure of 
2500 psi. The simulation stops at 300 days (gas breakthrough) with the time step size of 1.25 days.

The decoupled region maintains steady flowing state which results in minimum accumulation. However for fully com-

pressible fluid, there may still be saturation change due to pressure fluctuations. Let Cα = ραsα = const , then we have

dCα = dραsα + ραdsα = sα
dρα

dpα
dpα + ραdsα = 0 ⇒ dsα = −

sα

ρα

dρα

dpα
dpα . (5.3)

Such correction on saturation is essential for regions with no compressible phase flow when using iteration dynamic 
method, since the saturation is not explicitly updated after a subdomain is decoupled from the main system. The non-
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Fig. 11. Convergence behavior of difference methods at timesteps with strong nonlinearity for fully compressible flow.

Fig. 12. Cumulative Newton iteration and CPU time comparison for fully compressible fluid model.

linear convergence behavior of two sample timesteps is illustrated in Fig. 11. Here we observe the decoupled methods 
follow the path of fully implicit method during early iterations but deviates toward final convergence. The number of it-
erations to achieve convergence may also vary for certain timesteps, even with corrections made by Eqn. (5.3). The error 
estimators utilized mainly quantify the nonlinearities caused by the transport process instead of diffusion. Consequently, 
regions with steady flow but large pressure disturbance are decoupled. Such pressure alteration can still cause noticeable 
effect on the saturation solution of the compressible phase and thus slows the convergence. Implementing additional error 
estimators that measures the nonlinearity caused by compressibility may alleviate such problem.

Despite the slower convergence at certain timesteps, the decoupling methods still provide considerable speedup for the 
compressible model. As demonstrated in Fig. 12, similar to the slightly compressible case, the cumulative Newton iteration 
count of the decoupling algorithms is still fairly close to the one from fully implicit approach. There’s around 50% and 75% 
speedup using the timestep dynamic and the iteration dynamic approach respectively. Here we do not see a sharper increase 
in CPU time for the timestep dynamic method during late simulation time. Due to low viscosity, the gas phase behaves more 
diffusively. Consequently, the saturation solution behind the front stabilizes quickly and thus the local coupling domain size 
stays fairly constant during the simulation.

Again, we confirm the accuracy of the pressure and saturation solution. As illustrated in Fig. 13, due to strong compres-

sion effects tightening the connection between pressure and saturation, the error in this model is slightly higher than the 
slightly compressible case. The error from the timestep dynamic method remains low, approximately the 10−6 mark, and 
stable throughout the simulation. On the other hand, the error from the iteration dynamic approach is approximately 2 or-
ders of magnitude larger and increases slightly over time. For the later method, the saturation in the decoupled subdomain 
is updated by the approximation using Eqn. (5.3) instead of solving a linear system, causing increased error in the solution. 
The strong compressibility also creates errors into the pressure solution. These errors propagate and expand as simulation 
continues and thus increase over time. Such behavior also indicates that combining the two decoupling strategies is bene-
ficial for both accuracy and computational efficiency. Feedbacks from preliminary experiment combining the two methods 
suggests that a more detailed algorithm to update the local coupling regions is needed. Small “islands” in the decoupled 
region or “holes” in the coupling domain can hinder the nonlinear convergence significantly. An error estimator measuring 
the coupling strength [8] may be greatly beneficial.
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Fig. 13. Pressure and saturation error of timestep dynamic and iteration dynamic method for fully compressible fluid model.

6. Application to space-time algorithm

Space-time algorithms has shown promising results for improving computational efficiency of different problems 
[2,9,12,13]. The sequential refinement solver algorithm was introduced in [14] for slightly compressible and fully compress-

ible two phase flow models that provides up to 25 times speedup. It has been further extended to black-oil model in 3D 
[15] for testing its accuracy and scalability for more complicated models. Despite computational improvements, the sequen-
tial refinement procedure can be viewed as a geometric multigrid method, which commonly suffers from high frequency 
residuals that originates from the linear interpolation of a coarse solution onto fine unknowns. In response, smoothing al-
gorithms are implemented to remove the high frequency residuals prior to solving the system. For linear problems, [25]
introduced an energy minimization method which solves for a coarse basis function that minimizes the energy functional 
on the fine grid. Li and Wheeler [16] extended such idea to nonlinear problems as local residual minimization by solving a 
local problem on the refinement domain with boundary conditions provided by linear interpolation of the coarse solution. 
The local residual minimization mainly removes high frequency residuals caused by saturations while the ones caused by 
pressure are yet to be resolved. In this section, we will introduce the local coupling formulation to the space-time algorithm 
for global pressure smoothing. Before that, we will first present some recent improvement on local saturation smoothing 
for a more stable performance, which in return facilitates global smoothing efficiencies. The results presented below are 
obtained with slightly compressible flow model.

6.1. Local residual minimization

Previous work [16] has indicated that local residual minimization method is effective in removing high frequency residu-
als caused by inaccurate saturation initial guess. Such residuals often appear at the channel boundary where the significant 
contrast in permeability causes the saturation distribution to be discontinuous and the linear interpolation fails to capture 
such behavior. Here, a local problem is solved by optimization on the refinement domain as follows:

min
pnα,h

,snα,h

{

∥

∥

∥

∥

∫

E i,H

(

∂t

(

φρn
α,hs

n
α,h

)

+ ∇ · un
up,α,h − qα

)

w

∥

∥

∥

∥

∞

}

∀E i,H = ∪E j,h�E i,H
E j,h , (6.1)

subject to
{

pα = pα,ζ

sα = sα,ζ
on ∂E i,H . (6.2)

E i,H is any element in the coarse partition T n
H being refined into elements E j,h of a finer partition T n

h
. The subscript ζ

denotes linear interpolation in space. Although improving the initial guess, the local problem solution process sometimes 
encounters stability issues due to the inexact boundary conditions. More importantly, the local system cannot establish a 
definite flow path in subdomains with complex channel structures providing very limited coefficients.

An oversampling technique has been introduced in numerical homogenization algorithms [4,6] for more accurate up-
scaling of problems with discontinuous coefficients, namely channelized permeability in our case. We apply a similar idea 
to local residual minimization as demonstrated in Fig. 14. Here, a coarse grid with underlying fine mesh is illustrated. The 
original local domain E i,H is extended to E+

i,H
by oversampling. To solve the local problem on the original domain, a 5 point 

stencil (left plot: red arrows) is sufficient to interpolate the boundary nodes (right plot: red circles). However, to solve such 
a problem on the oversampled domain, a 9 point stencil (left plot: red and blue arrows) is required to accurately interpolate 
the extended boundary nodes (right plot: blue circles).
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Fig. 14. 5 point stencil (red arrows) and 9 point stencil (all arrows) to interpolate original domain boundary nodes (red circles) and oversampled domain 
boundary nodes (blue circles).

Fig. 15. Pressure and saturation difference between initial guess and converged solution with and without local smoothing.

Fig. 16. Pressure and saturation difference between initial guess and converged solution with and without local and global smoothing.

The improvement on the initial guess is illustrated in Fig. 15. We observe significant mismatch between the saturation 
initial guess and final solution along the channel boundary since the linear interpolation is unable to capture the discontin-
uous behavior of the solution in such region. Fortunately, after local residual minimization, most of the major discrepancies 
have been eliminated with some minor ones remaining in the front region. Although improving saturation initial guess, 
we do not perceive noticeable remediation on pressure mismatch other than removing the oscillations. Therefore, further 
smoothing is still necessary.

6.2. Global smoothing

Preliminary experiments attempted to reduce the pressure discrepancies by simply solving the pressure system with sat-
urations fixed. While making improvements in the steady state domains, such approach augments the mismatch in the front 
region and sometimes can cause divergence, since the solution in such domain also depends heavily on the saturations. We 
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Fig. 17. l∞ and l2 norm of initial residual with and without smoothing.

Fig. 18. Cumulative Newton iteration and CPU time comparison for space-time algorithm with and without smoothing.

now use a local coupling approach to provide global pressure smoothing. The space-time algorithm already outlined sub-
domains with strong transport-diffusion coupling by applying temporal refinements and thus saturation unknowns in the 
regions with local timesteps are attached to the pressure system. The mismatch in pressure and saturation after global 
smoothing is plotted in Fig. 16. Note that the color scale for pressure difference after global smoothing is reduced signifi-
cantly to illustrate the minor discrepancies. We observe that the pressure mismatch have been reduced to under 1 psi and 
the saturation initial guess in the front region is also further enhanced.

We quantify the improvement made on the initial guess using the initial residual before the Newton iterations. The result 
is presented in Fig. 17. We observe that the maximum and average residual has been reduced by approximately 3 orders 
of magnitude. With the adequate initial guess, the cumulative nonlinear iterations for the space-time algorithm has been 
reduced by 40%, as illustrated in Fig. 18. There is also 20% saving on the total CPU time.

7. Conclusions

In this paper, we propose a local coupling strategy with two variant algorithms to solve the advection-diffusion equation 
in decoupled fashion without causing any increase in nonlinear iterations or divergence issues. The saturation unknowns 
in the outlined subdomain is coupled with the global pressure system to be solved monolithically. The timestep dynamic 
method determines a coupling subdomain for each timestep and the region is unchanged during the Newton iterations 
of the timestep. The iteration dynamic approach on the other hand updates the local coupling domain every iteration. 
Regions with achieved mass balance are excluded from the main system and the saturations within are no longer updated. 
We use the proposed algorithms to conduct numerical experiments with slightly compressible and fully compressible fluid 
models. The results demonstrate that local coupling schemes generally follow the same nonlinear convergence path as the 
fully implicit method. Therefore, there is no noticeable increase in total iterations to solve the system. The CPU time is 
reduced by 50% to 75%. However, we do observe a sharper increase in CPU time of the timestep dynamic algorithm during 
late simulation time for the slightly compressible case due to the growing size of the coupling subdomains. The error of 
pressure and saturation solution is generally minimal. The error from the iteration dynamic method is larger since the 
saturation is no longer updated once a region is decoupled. Such effect is more noticeable in the fully compressible model. 
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These results suggest that combining both decoupling schemes can resolve the sharp increase in CPU time during later time 
while ensuring solution accuracy. Preliminary experiment attempted such strategy indicates that a more detailed algorithm 
to update the local coupling subdomain is necessary to avoid unstable nonlinear convergence. We also applied the local 
coupling concept to the space-time geometric multigrid method as a global pressure smoother. The initial residual after 
multigrid prolongation is reduced by approximately 3 orders of magnitude and the nonlinear iteration count is decreased 
by 40%, providing a 20% saving on CPU time. Although originated from advection-diffusion problems, the local coupling 
strategy provides a possible solution to resolve more complex multi-physics system such as fluid-structure interaction and 
non-isothermal flow.
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