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Abstract—Threat detection and forensics have become an
imperative objective for any digital forensic triage. Supervised
approaches have been proposed for inferring system and net-
work anomalies; including anomaly detection contributions using
syslogs. Nevertheless, most works downplay the importance of
the interpretability of a model’s decision-making process. In this
research, we are among the first to propose an interpretable
federated transformer log learning model for threat detection
supporting explainable cyber forensics. The proposed model is
generated by training a local transformer-based threat detection
model at each client in an organizational unit. Local models learn
the system’s normal behavior from the syslogs which keep records
of execution flows. Subsequently, a federated learning server
aggregates the learned model parameters from local models
to generate a global federated learning model. Log time-series
capturing normal behavior are expected to differ from those
possessing cyber threat activity. We demonstrate this difference
through a goodness of fit test based on Karl-Pearson’s Chi-square
statistic. To provide insights on actions triggering this difference,
we integrate an attention-based interpretability module.

We implement and evaluate our proposed model using HDFS,
a publicly available log dataset, and an in-house collected and
publicly-released dataset named CTDD, which consists of more
than 8 million syslogs representing cloud collaboration services
and systems compromised by different classes of cyber threats.
Moreover, through different experiments, we demonstrate the
log agnostic capability and applicability of our approach on real-
world operational settings such as edge computing systems. Our
interpretability module manifests significant attention difference
between normal and abnormal logs which provide insightful
interpretability of the model’s decision-making process. Finally,
we deem the obtained results as a validation for the appropriate
adoption of our approach in achieving threat forensics in the real
world.

I. INTRODUCTION

The fast-paced digital transformation compelled various
sectors, including business and governments, to gradually
shift their activities from conventional manual operations to

digitally provisioned modalities to cope with the ever increased
volume of demands in services. This shift was enabled by
the radical advancement of communication technology, online
software services, and increased bandwidth services. Despite
the flexible benefits, this revised modality introduces new cyber
security threats to computing systems and infrastructures used
by corporations and individuals [54].

Most recently, cyber attacks targeting healthcare organiza-
tions increased by 45% and by 22% across all other industries
around the world [1]. Cyber attacks such as the one launched
against Britain’s National Health Service [14], Brno University
Hospital (Czech Republic) [9], and the University of Düsseldorf
(UKD) (Germany) demonstrated a diverse range of employed
attack vectors including ransomware, Distributed Denial of
Service (DDoS), botnets [42], and other malicious misdemeanor
(e.g., probing activities [7, 48] and Cyber Physical Systems
(CPS) related attacks [6, 25]). In response to these attacks, a
joint cyber security advisory was issued by the Cyber Security
and Infrastructure Security Agency (CISA), the Federal Bureau
of Investigation (FBI), and the Department of Health and
Human Services (HHS) advising on an increased and imminent
cybercrime threat towards U.S. critical infrastructure and other
assets [2].

That said, one important aspect of threat forensics is to
acquire attack provenance. For instance, a ransomware attack on
a particular organizational machine provokes system behavior
changes in which the attack openly notifies the user of the
infection [24]. By employing advanced deep learning-based
threat detection models on system logs (syslogs), cyber security
analysts can better differentiate normal and abnormal system
behaviors to develop anomaly detection [16, 36, 52]. Indeed,
syslog analysis is highly necessary to understand the inner
working and behavior differences of an Operating System
(OS). Such logs offer valuable information about significant
occurrences that explain how the system operates in terms of
software, hardware, system processes, and system components
which all can be leveraged to detect a plethora of abnormal
activity occurring within a system.

Nevertheless, syslogs contain sensitive information hidden
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from outside scans and may disclose information about vulnera-
ble targets, login credentials, and security associations between
entities [45]. Therefore, exposing syslogs containing sensitive
information compromises data privacy. To address this liability,
various anonymization techniques such as generalization and
suppression have been employed by the industry to safeguard
the user’s data privacy and system security. A drawback of
applying such techniques is the decreased data usefulness for
analysis and understanding the system’s behavior. Maintaining
a balance between data usefulness and privacy preservation
remains an important challenge when dealing with syslogs.

In addition, most proposed works fail to include imperative
elements for the development of effective threat detection mod-
els. These include: (1) producing, collecting, and open-sourcing
novel representative datasets, (2) adopting training techniques
to ensure user data privacy in accordance with jurisdiction [47]
[31], and (3) provide visibility to the model’s decision making
process for identifying system activity triggering post-incident
detection.

To address this gap, we propose the first interpretable
federated transformer log learning model for threat forensics.
Unlike other works that exclusively focus on anomaly detection
in syslogs, our proposed model incorporates the concept of
Federated Learning (FL), a machine learning setting where
multiple entities collaborate in solving a machine learning
problem under the coordination of a federated server. We
leverage the distributed nature of this concept to generate a
robust model that offers a privacy preserving solution with a
high level of security [4].

The proposed model is segmented into two main stages. In
the first stage, a local transformer-based model is trained at
each client using the system’s local dataset composed of syslog
files. Log event sequences are mapped to log key sequences
using a parser. The mapped time-series are then embedded and
fed to a local model using stochastic gradient descent (SGD) for
learning the underlying patterns of each given sequence. In the
second stage, the learned parameters from all local models are
passed to the FL server, then aggregated to generate a global
federated learning model. The global FL model is then shared
with all participating clients. Multiple rounds of this cycle are
executed for improving the performance of threat detection.
In the last cycle, the interpretability module at each client
computes the interpretability weights using the latest global
FL model. Clients then share the weights with the FL server
who aggregates them to generate the federated interpretability
weights. All clients receive an updated version of the global FL
model for inference and the federated interpretability weights
used for comparing it’s attention distribution against the one
from a specific log sample. In addition, the interpretability
module provides forensic investigators the means to backtrack
the log keys triggering a cyber threat detection. To the best of
our knowledge, our work is the first to offer this benefit for
cyber forensics and digital triage in a federated setting.

In summary, this work makes the following contributions:
• We designed and implemented the first interpretable

federated transformer log learning model for cyber threat

detection in syslog with the capability of revealing
actionable information triggering the model’s outcome.

• We validated our model’s performance by training it using
two datasets while comparing it against State-Of-The-Art
(SOTA) works.

• We discovered a strong correlation between log messages
carrying indicators of the executed threat sample and
the attention given to the corresponding mapped input
sequence triggering the threat detection.

• We generated a cyber threat detection dataset consisting
of 8,448,715 syslogs collected during the second half of
2020 from a production-level environment comprised of
62 instances running uncompromised cloud collaboration
services and 16 cloud instances running threat samples.

The rest of this paper is organized as follows: In Section
II, we present the background and related work. Section III
covers our proposed model design. Section IV presents our
experimental evaluation. Section V explores the capabilities of
the model’s interpretability module. We present our discussion
in Section VI. Finally in Section VII, we offer concluding
remarks and opportunities for a few future endeavors.

II. BACKGROUND AND RELATED WORK

In this section, we introduce existing approaches adopted in
syslog analysis and their corresponding limitations. In addition,
we discuss the concept of federated learning and attention-based
interpretability in the field of cyber security. Furthermore, we
present a brief overview of the datasets used for threat and
anomaly detection.

A. Existing Approaches for Syslog Analysis

During routine system operations, syslogs are generated
from various sources in a computer system and consist of
textual messages describing the activity throughout the global
system. Such messages provide an abundance of information
linked to the system’s behavior. That said, threat forensics
rely on periodic syslog scrutiny to unveil abnormal system
behavior originating from suspected attacks. Due to the large
number of generated logs, the examination of syslogs is not
a trivial task and can be hard (if not impossible) to manually
track, analyze, detect, and diagnose system problems. In the
following section, we highlight previous and emerging log-
based analysis approaches adopted in the literature and discuss
their limitations along with the newly adopted approaches.

Rule-based approaches: Early research on log-based analy-
sis proposed rule-based detection techniques. Such approaches
rely on predefined rule-sets or dynamic rules which can be
created, superseded, or deleted by existing rules at run time to
accommodate for system behavior changes and thus limit and
avoid unnecessary alert reporting. More precisely, rule-based
approaches employ regular expressions to parse and recognize
events and trigger predefined actions based on matched rules
[19, 43, 44]. For instance, Swatch [19] is a monitoring log
file system that filters unwanted data and takes predefined
actions based on detected log patterns. Swatch can ignore
duplicate entries and perform rule changes based on the time
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of arrival. Moreover, Logsurfer [43], a log file analysis software,
is designed to detect signatures of complex interactions and is
capable of updating its rule-set at run-time and act accordingly.

However, two main foreseen pitfalls of rule-based approaches
are the need for continuous rule-sets maintenance and their
significant specificity to application scenarios. Such ongoing
maintenance requires domain expertise to define rules that
describe system behaviors. Nonetheless, possible bottlenecks
could occur during expert involvement in defining the rules.
Accordingly, the literature has taken new directions and
proposed further approaches to perform log analysis, which
we discuss in the sequel.

Causality-based approaches: Causality analysis on logs
gained attention for comprehending system activities and
detecting potential risks. These approaches leverage backward
and forward causal graphs to identify multi-hop attacks [29].
In addition, causality analysis utilizes dependency graphs [28]
and action history graphs [27], which provide a detailed graph
describing the system execution sequences that occur during
an intrusion. Moreover, provenance-aware system approaches
are introduced in [39] and [41] to facilitate the integration of
provenance across multiple levels of abstraction. For example,
such approaches can help determine malware existence and find
the source of anomalies. Moreover, whole system simulation,
like TaintBochs [13, 18], is being used to analyze sensitive data
handling at a holistic level while helping recover legitimate
file system data after an attack.

Despite the many credits of causality analysis in time series
problems, many concerns were related to the non-trivial lifetime
and iterative input and output processing, which can cause
the well-known problem of dependency explosion [32]. Many
researchers addressed the problem of dependency explosion
by adopting data reduction techniques [18, 29, 32]. These
approaches include binary-based execution partitioning and
TaintBochs simulation. However, it is not certain that reducing
the data volume of irrelevant dependencies can lead to a
decrease in attack investigation time [35]. In addition, such
data reduction [5] can unintentionally eliminate important data
and hinder the efficacy of the analysis.

AI-based approaches: Current literature presents two main
approaches for log analysis that make use of AI models
namely, (1) log event indices-based approaches and (2) log
template semantics-based approaches. In this paper, we follow
the log event indices-based approach. Both approaches first
employ a log parser to identify log templates from a time-
series of log events. Each log templates is assigned a unique
numerical identifier (whole number) called log key which
substitutes each matching log from the original time-series. In
contrast, semantics-based approaches employ word embeddings
to convert the identified log templates into vectors.The sequence
of vectors representing the original time-seriesis then used for
training supervised and unsupervised AI-based models. These
models learn the underlying patterns within the vector time-
series using different methods. Such methods include Principal
Component Analysis (PCA) [56], Support Vector Machine
(SVM) [20], Bi-LSTM [59], LSTM [16, 38], and Transformers

[22, 53]. These works incorporate methods to control previously
unseen log events during the model’s training phase via human
intervention or by applying semantic vectorization techniques
such as Term Frequency-Inverse Document Frequency (TF-
IDF).

Nonetheless, SOTA methods fail to preserve user data privacy,
as they are based on centralized training approaches, and lack
methods for revealing the level of influence that each element
in the time-series had over the model’s prediction.

B. Federated Learning and Attention-based Interpretability

Federated learning [37] addresses the fundamental problems
of privacy, ownership, and data locality. Federated Stochastic
Gradient Descent (FedSGD) and Federated averaging (FedAVG)
[37] are two methods used for aggregating the parameters of
local models trained at each client. Previous works on federated
learning has been applied in the cyber security domain. These
include (1) a multi-task deep neural network in federated
learning (MT-DNN-FL) for network anomaly detection, traffic
recognition, and traffic classification [60], (2) an autonomous
self-learning distributed system for detecting anomalies in IoT
devices [40], and (3) DeepFeed [33], which applies federated
deep learning to detect cyber threats against industrial cyber
physical systems. To the best of our knowledge, no works in
the cyber forensic space have integrated federated learning and
interpretability for threat inference using syslogs.

Model interpretability in cyber forensic applications has
been explored using LSTM-based models [8] by calculating
the weighted sum over the attention value vectors. Other
LSTM works, in which no attention mechanisms are used,
have employed anomaly score decomposition [50] to provide
visibility on the model’s decision making process. Such works
do not integrate interpretability in a federated learning setting.

C. Datasets for Threat and Anomaly Detection

Most cyber security datasets focus on network traffic [17,
26] while the few public datasets which consist of syslogs
[57] are mostly collected from distributed systems [55] or
high performance computing infrastructure with a relatively
low number of unique log messages and data structure, in
contrast to those seen in OS logs. On the other hand, datasets
for cyber threat analysis have been created using synthetic
data generators [34] or using real systems but are limited to
authentication events in Windows-based systems [23].

Different from these works, our Cyber Threat Detection
Dataset (CTDD) [3] is the first publicly available dataset
consisting of syslogs produced by real user activity and
synthetic threat scenarios in a modern cloud-based operational
system. The syslogs were captured from 62 Virtual Machines
(VMs) running uncompromised cloud collaboration services.
Synthetic threat scenarios were simulated in 16 additional VMs.
Our approach facilitate the incorporation of additional real or
synthetic threat samples using the same cloud image which is
publicly available in Jetstream Cloud [46, 49]. Our framework’s
environment deployment was secured by enabling IP-based
access for ingress traffic, restricted port access, and log data
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sanitization throughout our pipeline to ensure a negligible
uncertainty in the collected logs from uncompromised systems
presented in the CTDD dataset.

III. PROPOSED MODEL DESIGN

In this section, we present the proposed interpretable
federated transformer log learning model supporting threat
forensics. The proposed model is designed under the following
assumptions: (1) federated servers and clients are trusted;
(2) The FL model is implemented without additional privacy
protection or security mechanisms beyond preserving data
locally at each client and the inherited privacy benefits of
FL; (3) only offline learning is considered for training the
proposed model with homogeneous Independent and Identically
Distributed (IID) data; (4) distributed optimization follows a
synchronous approach in which all clients are available at
all times; and (5) a typical horizontal FL architecture [58]
is followed in which local datasets present different samples
but share the same feature space. The training process of our
interpretable federated transformer log learning model for threat
forensics is presented in Algorithm 1.

The starting point of our proposed model’s training process,
presented in Fig. 1, takes place at client devices from each
organization unit producing log files (i.e., auth.log, syslog,
kernel, and audit.log). Log messages are processed using a
log parser that maps the time-series of log messages into
a sequence of log keys. These sequences are embedded into
vectors used for training a local model at each client that learns
the underlying patterns from the log key sequence. Each client
passes the local model’s learned parameters to the FL server.
The FL server aggregates the parameters from the participating
clients to generate the global FL model which is shared back
to the clients. Finally, an interpretability module is offered
to provide insights to the model’s decision making process
by aggregating the calculated attention given to each unique
element in the input sequence. Details of each component are
described in the following.

A. Distributed Federated Learning Architecture

In Algorithm 1, we integrate the FedAvg algorithm presented
by [37]. More specifically, we leverage this algorithm on the
federated learning server depicted in Fig. 1. In this process,
the FL server collaborates with Φ clients c1, . . . , cΦ−1, cΦ
for generating an updated global FL model. Each client
trains a local model using local data and shares only the
locally computed gradients or learned model parameters
∆w1

t+1, . . . ,∆w
Φ−1
t+1 ,∆w

Φ
t+1 with the FL server.

Initial hyperparameters and model parameters W0 are passed
by the FL server to each client. FederatedSGD (FedSGD) is
an algorithm used for generating a global model in a federated
setting. In this process, the client computes the average gradient
gφ = ∇fφ(wφt ) using its local data at the current model wφt ,
as seen in Algorithm 1−I. Then, clients pass gφ to the FL
server that aggregates them ∇F (Wt) =

∑Φ
φ=1(

nφ
n )gφ. The

aggregated average gradients are used for computing an updated
global FL model Wt+1 ←Wt − η∇F (Wt) where nφ denotes

Algorithm 1: Interpretable Federated Transformer Log
Learning Algorithm.
Input: Hyperparameters for local models defined by

the federated server, number of clients Φ, and
number of rounds R.

Output: Updated Federated Transformer Log Learning
Model Wt+1 and Interpretability weights ZSΦ
and ZSΥ

Φ .
Initialization:

1 FL server defines the hyperparameters for the federated
model including encoder/decoder layers N , attention
heads H , and clients Φ.

Procedure:
2 while Round 6= 0 do

(I). For clients in business unit:
for all φ ∈Φ do

Local Transformer-based Model Training:
Log parser maps all log messages M to log
sequences Sj :
Sj ←M
Log key sequences Sj are embedded:
Xj ← Sj
Compute the average gradients with current
model wφt :
gφ = ∇fφ(wφt )
Update the model parameters:
∆wφt+1 ← wφt − ηgφ
Send the learned model parameters ∆wφt+1 to
the Federated Learning (FL) server.
Interpretability Module:
Compute interpretability weights by ZSφ and
ZSΥ
φ and share them with the FL server.

end
(II). For Federated Learning Server:
Global Model Update:
Wt+1 ←

∑Φ
φ=1(

nφ
n )∆wφt+1

Interpretability Module:
Generate the federated interpretability weights:
ZSφ =

∑H
h=1 Zh,κ

ZSΥ
φ =

∑H
h=1 Zh,κ,Υυ

Share ZSΥ
Φ with clients.

(III). For clients in business unit:
for all φ ∈Φ do

Update local model:
wφt = Wt+1 ← FederatedServer(φ,Wt+1)
Compute goodness of fit test for ZSΥ

φ :

Di =
∑υ
i=1

∑K
k=1

Z
SΥi
φ −ZSΥi

Φ

Z
SΥi
Φ

Update interpretability weights:
ZSΥ
φ ← ZSΥ

Φ

end
3 end

4



Federated Attention-Based 
Interpretability

Client 1 Attention-Based 
Interpretability

Client 3 Attention-Based 
Interpretability

𝒁𝟑𝑺𝜰 𝒁𝟏𝑺𝜰

Interpretability weights
𝒁𝟑
𝑺𝜰

Federated Learning 
Server

Transformer 
Network

Transformer 
Network

Transformer 
Network

Local System 
Logs

Local System 
Logs

Local System 
Logs

Interpretability weights
𝒁𝟏𝑺𝜰

𝑊%&'∆𝑤%&'(

𝑊%&'∆𝑤%&'(
𝑊%&' ∆𝑤%&'(

∇𝑓% 𝑤&
% =

1
𝑚
(
'()

*

𝐿(𝑥'
% , 𝑦'

% , 𝑤&
%)

Learned Parameters Aggregation

𝑊%&' ← #
)*'

(
𝑛)
𝑛 ∆𝑤%&'

)

Federated Interpretability weights
𝑍(+,

∆𝑤&+)
% = 𝑤&

% − 𝜂∇𝑓% 𝑤&
%

Local Transformer-Based Model Training per Client

Fig. 1. The architecture of the proposed Interpretable Federated Transformer Log Learning for Cloud Threat Detection. A set of clients Φ contributing to
the global FL model receive a set of hyperparameters and initial model parameters W0 for training local transformer-based models using their local data.
Additionally, the interpretability module uses the model’s calculated attention by key to compute ZSΥ

φ . ZSΥ
φ for normal and cyber threat case scenarios. Each

client sends the learned model parameters ∆wφt+1 and their computed interpretability weights ZSΥ
φ to the FL server. The FL server aggregates the learned

parameters to generate an updated global FL model Wt+1. Afterwards, the interpretability module at the FL server aggregates ZSΥ
φ to generate the federated

interpretability weights ZSΥ
Φ . Finally the FL server shares Wt+1 and ZSΥ

Φ .

the number of data points for client φ. FedAvg is an equivalent
algorithm used for updating the global FL model. In this
approach, the learned model parameters from each client are
aggregated by the FL server. Given that ∀φ,∆wφt+1 ← wφt −
ηgφ, the updated global FL model can be computed as Wt+1 ←∑Φ
φ=1(

nφ
n )∆wφt+1 , as seen in Algorithm 1−II. Afterwards,

the updated global FL model is sent to all clients.

B. Log Parser

Our decentralized federated transformer log learning model
requires vector representation for the time-series of log
messages to learn the extensive and convoluted patterns and
correlations embedded within log sequences. Spell, a public
log parser [15, 21], is used for identifying log templates within
a log time-series. Given a subset of log files l where l ∈ L,
each log file (i.e., audit.log, auth.log, kernel.log, sys.log) is
composed of a finite unstructured sequence of log messages
l = {mi : mi ∈ M, i = 1, 2, . . .} where mi denotes the
message at index position i, and M denotes all the log messages
in l.

Mapping log messages to log keys requires the log parser to
first identify the event template and variable elements from each
log message. The mathematical representation of the mapping
function is β : mi → (ei, vi)∀i, ei ∈ E, i = 1, 2, . . . where

E = e1, e2, . . . , en represents all the identified distinct event
templates in the log file l, ei represents the event template
identified in mi, and vi is the corresponding list of variables.
Each distinct template in E is assigned a unique log key κi
using the mapping function ψ : ei → κi∀i, ei ∈ E, κi ∈
K, i = 1, . . . , n, where K represents the set of all unique key
values. The time-series of the mapped log keys S is presented
in the formula below:

S = {κ1, κ2, . . . , κn} ← ψ(ei)← ei ← β(mi)∀i,
mi ∈M, ei ∈ E, κi ∈ K

(1)

After all parsing operations are finished, S is segmented
into sub-sequences Sj based on defined window frames Λ as
presented in the following equations:

Sj = ((κ(j−1)Λ+p)p=1,...,Λ)j=1,...,n/Λ

= ((κ(j−1)Λ+p)
Λ
p=1)

n/Λ
j=1

= {S1, . . . , Sn/Λ}
(2)

C. Local Log Learning: Transformer-Based Model

Our proposed model integrates the work presented by
Vaswani et al. in [51]. Local models are composed of a set of
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stacked encoder modules, a set of stacked decoder modules,
and the interconnections between them.

Encoder: The encoder is composed of a multi-head attention
and a feed-forward sub-layer. A residual connection is em-
ployed for each sub-layer followed by layer-normalization. The
elements in log key sequence are embedded to form a vector
list X = (x1, x2, . . . , xn) where the vector size is defined
as dm. A positional encoding vector is added to each input
embedding to provide context of their corresponding position
in the sequence. The resulting vector list is passed to the
self-attention layer.

Self-attention, used to define the relationships between every
key and the other elements in the sequence, is calculated using
3 vectors, namely, query(Q), key(K), and value(V) generated
by multiplying every vector xi with 3 matrices WQ,WK ,WV .
The resulting vectors Q,K, V have the corresponding dimen-
sions dq, dk, dv; all being smaller than dm. The output of the
self-attention layer Zs is calculated as follows:

Zs = Attention(Q,K, V ) = softmax(Q·KT /
√
dk)V (3)

To improve the performance of the attention layer, we
implement the multi-headed attention mechanism which linearly
projects the Q, K, and V matrices H times, where H represents
the number of attention heads to be used. This approach
allows the model to jointly address information from log
keys from different representation sub-spaces at different
positions in the sequence. The resulting process is a multi-
head Zcn = Concat(Z1, Z2, ..., ZH) matrix generated by the
concatenator of individual Zh matrices resulting from each
attention-head. The Zcn matrix is then multiplied with a weight
matrix WO, trained jointly with the model, resulting in a matrix
Z that captures the information from all attention heads. The
output matrix Z is finally passed to the feed-forward sub-layer
and then to the input of the next encoder in the stack.

Z = Multi− head(Q,K, V )

= Concat(Z1, Z2, ..., ZH)WO

where

Zh = Attention(QWQ
h ,KW

K
h , V W

V
h ),

h = 1, . . . ,H

(4)

Decoder: Similar to the encoder module, the decoder module
is composed of a stack of decoders. The decoder shares the
same components of the encoder with the addition of an
encoder-decoder attention sub-layer positioned between the
self-attention and feed-forward sub-layers. Matrices K and V
result from the encoder’s module output. The Q matrix is shared
by the previous decoder in the stack. These three matrices allow
every position in the decoder to attend all positions in the log
key input sequence. In addition, the auto-regressive decoder
module adds the output of each step, the predicted log key,
and a positional encoding. In contrast with the encoder, the
self-attention layer of the decoder is only permitted to attend
earlier positions in the output sequence; this is achieved by

masking future positions before the softmax calculation takes
place.

After the multi-head attention, each encoder and decoder
has a pointwise feed-forward layer. This is applied separately
and identically to each element in the log key sequence. The
feed-forward layer consists of two linear transformation which
use ReLu activation function and is formally expressed as:

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

The logits vector is ingested by a softmax layer that
transforms the logits vector into probabilities. The element
in the vector with the highest probability is selected and the
associated log key becomes the output of this specific time
step.

The training data consists of sequences of mapped keys from
syslogs collected from uncompromised systems. Sequences of
log keys within a window frames Λ are used for training the
local model. The local model is trained to predict a list of
candidate log keys given previous log keys. The transformer
neural network architecture creates a multi-classification model,
each type of log key representing a class. As stated before, this
SOTA architecture uses attention to gain context from previous
inputs when predicting the next log key. With structured data
and a built model, the log key anomaly detection model is
trained to predict the next log key, representing the next log
entry. The generated prediction is fed to the model to continue
generating predictions.

After training the model, new logs are processed to generate
a new prediction of log keys. First, a log key sequence, based
on a window frame Λ, is fed to the model. Based on this input,
the model predicts the top g candidates. If the ground truth
key Gj (which follows the input sub-sequence Sj) matches
one of the top g candidates, then Sj is classified as a normal
sequence. Otherwise, the input sub-sequence Sj is classified
as abnormal. A sequence S is classified as a cyber threat if
the number of sub-sequences classified as abnormal is greater
than or equal to a threshold τ defined by the user.

In order to backtrace the source of detected anomalies, the
interpretability module presents the sequence of log keys that
triggered the detection of an anomaly and the attention for
each key in the input sequence. If a log key is classified as
abnormal, the sequence of log keys that initiated the incident
can be tracked down. The sequence that triggered that anomaly
is considered a risk pattern. Risk patterns are then extracted
from the sequence to generate new test cases.

D. Model Interpretability

The interpretability module at each client provides insight
to the level of influence each unique log key κ ∈ K has in a
particular sequence of log keys S. The federated transformer
log learning model Wt+1 is used by the interpretability module
to evaluate a given sequence S. While the federated transformer
log learning model is trained using log key sequences S from
uncompromised systems, the interpretability module at each
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client and at the FL server can be used for log key sequences
collected from compromised or uncompromised systems.

Initially, each client uses their currently available data from
their uncompromised systems. As the federated model ingests
each sub-sequence Sj ∈ S, it calculates the attention for each
key ki ∈ Sj . After processing all sub-sequences Sj ∈ S, the
interpretability module aggregates the attention of each unique
log key κ ∈ K across all Sj . We refer to this influence as
the interpretability weights. This operation is reflected in the
following equation:

ZSφ =
H∑
h=1

Zh,κ, ∀κ ∈ K, ∀Sj ∈ S (6)

Furthermore, the interpretability module provides additional
granularity by aggregating the attention of every unique key
κ ∈ K across all input sequences Sj for each ground truth
key Gj . Gj is also an element of Υ which denotes the list of
unique ground truth keys |Gj | from all clients. We denote υ
as the index for each unique key in Υ. The weight calculated
by aggregating the attention of every unique key κ for all
sequences Sj influencing each Υυ is denoted by the following
equation:

ZSΥ
φ =

H∑
h=1

Zh,κ,Υυ , ∀κ ∈ K, ∀Sj ∈ S, ∀Υυ ∈ Υ (7)

Each client sends the interpretability weights ZSφ and ZSΥ
φ

to the FL server. The FL server aggregates the computed
weights from each client φ. Afterwards, the FL server shares
the federated interpretability weights ZSΦ and ZSΥ

Φ with each
client. The same process is followed for logs from compromised
systems. As an example, multiple users can send to the FL
server the ZSφ and ZSΥ

φ computed from log sequences S from
compromised systems to generate federated interpretability
weights for cyber threats ZSΦ and ZSΥ

Φ .
After the client receives ZSΦ and ZSΥ

Φ for uncompromised
and/or compromised systems from the FL server, the inter-
pretability module conducts a multinomial distribution good-
ness of fit test on compromised and/or uncompromised systems
based on chi-square for ZSΥ

φ with respect to ZSΥ
Φ to quantify

their statistical distribution difference. The interpretability
module tests if the interpretability weights for a sequence
of interest ZSΥ

φ has a specific distribution by computing the
Karl Pearson’s chi-square statistic as follows:

Di =
υ∑
i=1

K∑
k=1

(
ZSΥi
φ − ZSΥi

Φ

)2

ZSΥi
Φ

, ∀υ ∈ Υ, ∀κ ∈ K (8)

Using the multinomial, we can then test if the given sample
ZSΥ
φ has a similar distribution to ZSΥ

Φ by testing:

H0 : ZSΥ
φ = ZSΥ1

φ , . . . , ZSΥυ
φ = ZSΥ

Φ V S

H1 : ZSΥ
φ 6= ZSΥ

Φ

(9)

TABLE I
STATISTICS OF HDFS AND CTDD DATASETS.

Datasets Duration # of logs # of Anomalies
HDFS 38.7 hours 11,175,629 16,838 (blocks)
CTDD 235 days 8,448,715 2,501 (logs)

Given an observation
(
ZSΥ
φ = ZSΥ1

φ . . . ZSΥυ
φ

)
, the valid

p-values are calculated:

p− value = P

(
χ2(υ − 1) >

υ∑
i=1

K∑
k=1

(
ZSΥi
φ − ZSΥi

Φ

)2

ZSΥi
Φ

)
(10)

The interpretability module uses the p-value to fail to
reject the hypothesis H0 or reject the hypothesis H1 that the
distribution of the interpretability weights for the given sample
ZSΥυ
φ shares the same distribution as ZSΥυ

Φ . The test rejects the
null hypothesis because the cyber threat induces a perturbation
in the space from the joint distribution point of view, making
the test statistics able to account for the difference between
both cases as Chacon et al. [12] [11] exhibited in his research.

IV. EXPERIMENTAL EVALUATION

A. Datasets Considered

Our experiments were conducted using the two datasets
summarized in Table I. The HDFS dataset [55] is composed
of 11,175,629 logs collected from a cluster of 200 Amazon
virtual machines running Hadoop-based jobs that can easily be
obtained from Zenodo [10]. The original work labeled all logs
in this dataset using handcrafted rules to classify them between
normal and abnormal. Abnormal samples in this dataset are
identified by matching a set of block ids listed as abnormal
to their appearance in the log messages. The list of abnormal
logs amount to 16,838 blocks ids.

Our CTDD dataset is composed of logs registering system
activity running uncompromised cloud collaboration services.
This environment consists of a cluster of virtual machines
deployed across multiple networks in the Jetstream educational
cloud that offer interactive computing in the cloud such as
Jupyter Lab. The normal operation syslog samples presented
in this dataset were collected from 62 VMs, each operated by
different users. No user was allowed to access a VM assigned
to another user. The threat samples from our dataset were
collected from 16 VMs running malicious software samples.

Syslogs from uncompromised VMs running cloud col-
laboration services were collected from 3 clusters, all of
them hosting Ubuntu 18.04 operating systems. Each VM was
assigned to a student to perform a variety of data analytics and
machine learning activities. “Sudo” privileges were restricted
for “Ubuntu” user in the Practicum 2020 cluster while the
IS 7033 and ITESM 2020 clusters had unrestricted “root”
privileges. Furthermore, VMs in the IS 7033 clusters were
safeguarded by a firewall that allowed access exclusively to
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TABLE II
MALICIOUS SAMPLES OF CYBER THREAT DETECTION DATASET.

Attack Case Description of Scenario References # of logs
GonnaCry GonnaCry is an academic ransomware program which allows users to infect a client by

encrypting files, peripheral devices, and destroy original files. It does not have all the
features of WannaCry2.0

S0366 129

ech0raix A ransomware family that targets QNAP Network Attached Storage (NAS) devices.
Devices are compromised by bruteforce attacks or by exploiting known vulnerabilities.
The ransomware executes a malicious payload that encrypts targeted file extensions on
the NAS.

T1486 27

ACK Flood An attack that exhausts OS finite TCP connections by sending a flood of ACK packets
for nonexistent connections while leveraging the stateful nature of the TCP protocol.

T1499.001 114

NTP DDoS Am-
plification

A DoS Reflection Amplification Attack. The attack sends packets to a third-party server
with a spoofed source IP address.

T1498 406

SYN Flood An attack that exhausts OS finite TCP connections by sending large quantities of SYN
packets where the 3-way TCP handshake is never completed

T1499.001 132

malaria An injection attack that injects malicious code via trace system calls. The trace system
call injection is usually executed by writing arbitrary code into a running process.

T1055-008 182

nemox A half-virus for infecting any ELF files in a specific directory. T1027-001 109
nf3ct0r A virus for infecting ELF files. Also know as an ELF infector. T1027-001 135
utrojan Universal Trojan for accessing an unauthorized system. T1036-004 221
Lin Blackhole A malicious program created using C programming language which upon infecting the

client provides a backdoor to the attacker.
T1587-001 and T1588-001 74

Lin Ovason A malicious program created using C programming language which upon infecting the
client provides a password protected backdoor to the attacker.

T1587-001 and T1588-001 101

Python Backdoor A malicious program written using Python programming language infects the client to
serve a backdoor to the attacker. The attacker can obtain a simple reverse shell using
tools like netcat or socat

T1587-001 and T1588-001 179

Binom ASM A computer virus that is written using assembly language searches for ELF files in the
victim client and injects malicious payload. This computer virus requires admin-level
access for successful infection. It targets the files located in the bin directory in the
victim’s machine

T1027-001 292

Eternity ASM A computer virus that is written using assembly language that infects a target ELF file
in the victim’s machine.

T1027-001 152

Dataseg Code In-
jector

A malware that injects unwanted/malicious code into the data segment of the binaries
mainly for defense evasion purposes.

T1027-001 202

Bash Spyware A simple bash script that uses built-in tools for harvesting internal system data and
sends it to a compromised mail server.

T1119 46

Ransomware At-
tack

A low footprint ransomware attack based on Data Encryption Standard (DES) that target
Linux-based systems.

T1486 45

each user’s IP addresses while the Practicum 2020 and ITESM
2020 clusters were assigned to security groups that restricted
ingress traffic to most network ports. In addition, a total of
2,501 syslogs were collected from 16 compromised VMs
running malicious threat samples presented in Table II. The
compromised VMs were deployed using the same cloud image
used in the Practicum 2020 environment.

Compared to HDFS, our CTDD dataset presents a greater
variety of log templates and a more complex relationship
between log sequences in the time-series. This observation was
validated by manually generating strict rules to parse each log
in the HDFS dataset were we discovered a total of 50 different
unique log templates. We validated that the only elements that
varied in each template were the parameter values such as block
IDs, IPs, port numbers, etc. In the pareto presented in Fig. 2 we
can further observe that the top 10 templates with the highest
count in the HDFS dataset match 99.63% of the data points.
We performed a similar study with the logs obtained from the
Practicum 2020 cluster and malicious environments that form
part of our dataset. Different from the strict rule generation
applied in the HDFS dataset, we identified 446 unique log
templates using the spell parser. It is important to note that

this data subset only represents 31.47% of the CTDD dataset
where the top 10 log templates with the highest count match
69.37% of our data points.

In our experimentation, we make use of the 2, 657, 112
syslogs collected from the Practicum 2020 environment and
the 2, 501 syslogs collected from the 16 malicious environments
presented in Table II. These logs come from a much larger set of
syslog files that included information that were simultaneously
collected in separate log files (e.g., kernel and collection agents
logs), large error logs produced by Jupyter notebook, and
malformed logs which were removed.

B. Training and Testing Details

Local models at each client are based on the transformer-
model architecture presented in [51]. Local log files are parsed
with Spell [15] to map the sequence M of log messages
into multiple log keys sequences Sj using a sliding window
frame approach of size Λ. The embedded vector representation
Xj of log key sequences Sj are fed to the corresponding
client’s local model for training. In our study, we train the
interpretable federated transformer log learning model for threat
detection using the datasets in Table I. In our experiments, the
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(a) CTDD Log Keys Pareto, showing top 15 log template keys and the remaining
431 log template keys classified as “Other”.
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(b) HDFS Log Keys Pareto, showing top 15 log template keys and the remaining
35 log template keys classified as “Other”.

Fig. 2. Distribution of Log Key Templates by Dataset CTDD vs. HDFS.

following hyper-parameters were set to the following fixed
values: model size d model = 512 for each hidden layer,
epochs = 5, dropout = 0.2, confidence interval g = 10,
window size Λ = 10, and number of rounds R = 10. Given
that the learning rate does not present much variance as a
function of other parameters, as shown in [37], we fixed the
learning rate η = 0.01. We experimented by varying the number
of layers in the encoder and decoder stacks N = {1, 4, 6}, the
number of attention heads H = {1, 2}, and the number of
clients contributing to the update of the global FL model
Φ = {1, 2, 4, 8, 10}.

After finishing training the global FL model, we tested
the model using previously unseen non-malicious samples
and the logs collected from the compromised systems. Cyber
threats are detected by comparing the ground truth key G (the
key following currently input sequence Sj) against the top
g = 10 predicted candidates. In the event where G is not
listed within the top g predicted candidates, the model labels
the prediction as an anomaly else it labels it a normal event.
The user dictates the maximum anomaly threshold (number
of sequences Sj labeled as abnormal) to classify S as a cyber
threat. In our experiments, we set maximum anomaly threshold

to 1, instructing the model to classify S as a cyber threat in
the event that a single sequence Sj with S is labeled as an
anomaly by the model.

All training and testing tasks were implemented using
Pytorch 1.7.1+cu110, Python 3.6.9, and OpenNMT [30] base
model implementation. The model was trained in a virtual
machine with a V100 GPU (CUDA 11.0) provided by Jetstream
Cloud [46, 49].

C. Experimental Results

We are motivated by the existing model’s performance
and interpretability features for cyber threat detection tasks.
Although each training run for an individual client local model
is relatively small, we trained over 1,200 individual models
in this experiment. In this subsection, we will first present
the results obtained with the HDFS dataset. Afterwards, we
present our proposed model’s performance with our CTDD
dataset. We compare the experimental results achieved by our
proposed model with those presented by SOTA unsupervised
centralized methods, namely, LogRobust [59], DeepLog [16],
LogAnomaly [38], and HitAnomaly [22]. As SOTA methods
used a centralized training approach, we used standard stochas-
tic gradient descent training on the full training dataset with
no client partitioning (a model built by a central entity) Φ = 1
to make the intended comparison.

First, with the HDFS dataset, our model’s parsing process
identified 31 distinct event templates from the full dataset.
Table III shows that our model’s best performance, achieving
an F-score of 0.9384 with one encoder layer, one decoder
layer, and 2 attention heads. Deeplog, which identified E = 29
distinct event templates, showed a better performance as the
model learns from log event templates and parameter values.
LogRobust identified E = 29 distinct event templates and
showed to benefit from learning semantic information from log
events and contextual information from log sequences. While
their F-score performance was slightly better than ours (0.9500
and 0.9384 respectively), it shows the lowest recall between
all the compared works. On the other hand, LogAnomaly
which learns the semantic and syntax information from log

TABLE III
PERFORMANCE OF SOTA MODELS ON HDFS AND CTDD DATASETS.

Methods Dataset Precision Recall F-score
DeepLog HDFS 0.9500 0.9600 0.9600
DeepLog CTDD 0.7631 0.7733 0.7682
LogAnomaly HDFS 0.8400 0.9700 0.9000
HitAnomaly HDFS 0.9910 0.9850 0.9970
LogRobust HDFS 1.0000 0.9100 0.9500
Proposed Method
Centralized HDFS 0.9375 0.9393 0.9384

Proposed Method
Federated HDFS 0.8867 0.9706 0.9268

Proposed Method
Centralized CTDD 0.7733 0.7733 0.7733

Proposed Method
Federated CTDD 0.7922 0.8133 0.8026
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templates, achieved an F-score of 0.9000. With an F-score
of 0.9970, HitAnomaly achieved the best performance of
all compared models. We attribute this achievement to the
larger number of identified event templates (E = 46 event
templates parsed with Drain). The approach taken for learning
from sequences of event templates and parameter values.
HitAnomaly, LogAnomaly, and LogRobust also introduce auto-
matic approaches to deal with unstable log data while DeepLog
require human intervention to deal with new templates.

The second set of experiments was also performed with
the HDFS dataset using a federated learning setting. The
federated model was evaluated using a range of different clients
Φ = 2, 4, 8, 10, number of layers N = 1, 4, 6, and attention
heads H = 1, 2. Given the lack of integration of Federated
Learning in SOTA works, we were only able to perform such
an experiment using our proposed model. The experiments
demonstrated that the proposed model outperforms models
built by a central entity Φ = 1 for most cases. Moreover, we
note that the performance stabilizes as the number of rounds
R is increased from 1 to 10. We also note that when fixing the
number of rounds R, the performance improves as the number
of clients contributing to the global FL model is increased. In
other words, the model converges faster with a lower number
of rounds R as the number of contributing clients Φ increases.
This trend is also observed in [37]. As shown in Table IV,
our model achieved its peak performance (accuracy=0.9307,
precision=0.8867, recall=0.9706, F-score=0.9268) when setting
the hyperparameters to Φ = 10, N = 4, H = 1, and 10 epochs.
We also observed a stable increase in performance when using
2 attention heads instead of 1. The exception was observed
when setting the number of encoder/decoder layers to 6.

The third set of experiments were performed with the CTDD
dataset. In this dataset, the parser identified 446 unique event
templates E. The higher log diversity is an indicator of the
increased complexity of our dataset over the HDFS dataset.
We can observe that this complexity impacts our model’s
performance across all metrics. Yet, it shows our model’s
capability to detect cyber threats in a real-world operational
setting. We also used a standard stochastic gradient descent
training on the full training dataset with no client partitioning
Φ = 1 to show the transformer model’s performance in a
centralized training approach. In contrast with our findings
in the HDFS dataset, the performance achieved with one
or two clients showed a similar performance for all cases.
The peak performance (accuracy=0.7939, precision=0.7733,
recall=0.7733, F-score=0.7733) in a centralized setting was
achieved with 1 encoder/decoder layer and 1 attention head.
Furthermore, upon source code availability, we reproduced one
of the SOTA works (i.e., DeepLog1) with the CTDD dataset.
The proposed model presented in DeepLog was implemented,
trained, and tested with the CTDD dataset. From the pre-
processed log data, we removed the parameter values and
trained the model with sequences of log keys only to provide
a proper comparison with our model. A drastic performance

1DeepLog: the only publicly available code and reproducible model.

difference was observed in DeepLog given a F-score of 0.9600
with the HDFS dataset compared to a F-score of 0.7682 with
the CTDD dataset. This is a direct impact from the increased
complexity in the CTDD dataset as previously discussed and
revealed in Fig. 2.

Finally, the fourth set of experiments were performed using a
federated learning approach with the CTDD dataset. Throughout
these experiments, we observed an improved performance
stability as the number of contributing clients increased. We
also observed a greater performance with 2 attention heads
and a slight improvement when increasing the number of
encoder/decoder layers with Φ = 10 clients contributing to the
global model. The best performance using a federated learning
setting (accuracy=0.8181, precision=0.7922, recall=0.8133, F-
score=0.8026) was achieved with 4 and 6 encoder/decoder
layers, 10 clients, and 2 attention heads. The experimental
results are shown in detail in Table IV.
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Fig. 3. Aggregated attention for each log key influencing the prediction of
true positives and false positives in the CTDD dataset.
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TABLE IV
EXPERIMENTAL RESULTS USING THE HDFS AND CTDD DATASETS. HYPERPARAMETERS USED FOR THIS STUDY INCLUDE: N = {1, 4, 6}

ENCODER/DECODER LAYERS, H = {1, 2} ATTENTION HEADS, AND Φ = {1, 2, 4, 8, 10} CLIENTS. OUR MODEL’S TOP PERFORMANCE ON THE HDFS
DATASET WAS ACHIEVED WITH 10 CLIENTS, 4 ENCODER LAYERS, 4 DECODER LAYERS, AND 1 ATTENTION HEAD. ON OUR CTDD DATASET, THE MODEL’S

TOP PERFORMANCE WAS ACHIEVED WITH 10 CLIENTS, 2 ATTENTION HEADS, AND WITH 4 AND 6 ENCODER AND DECODER LAYERS.

Φ N H HDFS CTDD
Accuracy Precision Recall F-score Accuracy Precision Recall F-score

1

1

1

83.986 92.524 70.240 79.857 79.394 77.333 77.333 77.333
2 90.508 84.219 97.211 90.250 73.939 74.242 65.333 69.504
4 89.642 83.063 96.823 89.417 78.788 77.027 76.000 76.510
8 83.054 87.229 73.223 79.615 80.606 77.922 80.000 78.947
10 85.487 76.612 97.720 85.888 80.606 76.543 82.667 79.487
1

2

94.432 93.755 93.936 93.845 79.394 78.873 74.667 76.712
2 83.986 92.524 70.240 79.857 78.788 77.778 74.667 76.190
4 89.685 83.938 95.440 89.320 79.394 77.333 77.333 77.333
8 91.242 89.143 91.802 90.453 81.212 77.500 82.667 80.000
10 92.634 88.285 96.507 92.213 80.606 77.215 81.333 79.221
1

4

1

89.883 85.492 93.476 89.306 78.788 72.000 65.333 75.524
2 93.051 90.788 94.179 92.452 78.182 76.712 74.667 75.676
4 88.096 80.063 98.084 88.162 78.788 77.027 76.000 76.510
8 93.072 88.711 97.017 92.678 80.606 78.667 78.667 78.667
10 93.072 88.677 97.065 92.682 78.788 77.027 76.000 76.510
1

2

92.820 89.249 95.634 92.331 78.182 78.261 72.000 75.000
2 91.209 85.504 96.992 90.886 74.545 76.190 64.000 69.565
4 89.762 82.534 98.108 89.650 79.394 78.873 74.667 76.712
8 92.776 88.285 96.871 92.379 80.000 79.167 76.000 77.551
10 92.842 88.300 97.017 92.453 81.818 79.221 81.333 80.263
1

6

1

92.152 92.344 90.104 91.210 78.788 79.412 72.000 75.52
2 89.291 84.480 93.476 88.751 78.182 78.261 72.000 75.000
4 88.600 84.339 91.826 87.924 78.182 76.712 74.667 75.676
8 90.606 86.017 94.591 90.100 79.394 76.623 78.667 77.632
10 91.560 86.296 96.677 91.192 81.212 78.205 81.333 79.739
1

2

92.568 91.697 91.875 91.786 78.788 78.571 73.333 75.862
2 88.677 81.531 96.895 88.551 77.576 77.143 72.000 74.483
4 82.670 89.570 69.779 78.446 77.576 77.941 70.667 74.126
8 85.630 79.813 91.293 85.168 80.606 78.667 78.667 78.667
10 79.830 76.660 90.420 82.974 81.818 79.221 81.333 80.263

In addition, an analysis on the log keys (ground truths)
labeled as true positives and true negatives was made. In Fig. 3a
each colored bar represents one of the top 10 log keys (ground
truth) labeled as false positive during the inference of all the
logs from uncompromised clients. The x-axis presents the 24
log keys that had the highest contribution to this classification.
Similarly, in Fig. 3b each colored bar represents one of the
top 10 log keys (ground truth) labeled as false positive during
the inference of all the logs from compromised systems. The
x-axis presents the 21 log keys that had the highest contribution
to this classification. These graphs share three common log
keys (K0011, K012, and K003) classified as false positive and
true positive for each corresponding case.

We found that the log key K011 “ens3 Configured” was
often preceded by the keys K005 “ens3 DHCP lease lost” and
K010 “ens3 DHCPv4 address” which are all related to the linux
network manager “systemd-networkd” that assigns a defined IP
address to the interface. Such sequece of operations is a normal
behaviour commonly seen as normal. The log key K087 ”High
aggregate context switch rate” appears in the syslogs when
the average number of context switches per CPU per second
exceeded threshold over the past sample interval. This log is
often preceded by activity from Jupyter Lab where intensive
computing processes where executed by the user during short

periods of time. Therefore, the model learns that 19/20 times the
K011 is preceded by logs generated by the network manager
and 1/20 the preceded keys will include syslogs generated
by Jupyter Lab and the Linux performance co-pilot. For this
reason, the model in 1/20 cases will opt to identify K011 as
anomaly (true positive) if the key K087 is observed within
the input sequence even when log keys linked to the network
manager are also observed. For the true positives cases, the
log key K011 is labeled as a true positive when it is preceded
by K426 “proto precision”, K443 “callbacks suppressed”, and
K444 “nf conntrack table full dropping packet” which are
related to the precision time protocol, network connectivity,
limits on syslog messages posted by the kernel. Because K011
in most cases preceded by “systemd-networkd”, the model
predicts other keys than K011 and considers this as an anomaly
(true positive).

V. MODEL INTERPRETABILITY

The attention mechanism used in the presented transformer
model allows us to deal with problems emerging from time-
varying data (sequences) and provide an interpretation of the
model’s behavior. The attention mechanism looks at all the
different log keys at the same time and learn to “pay attention”
to the correct ones to successfully predict a log key (top g
candidates) that has the highest probability to follow the given
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input sequence. In this context, attention is simply a notion of
memory gained from attending at multiple inputs through time.
During the training phase, attention weights store the memory
that is gained through time of the relationship between log
keys in the input sequence and the corresponding successful
predictions. By inspecting the distribution of attention weights
for all keys in a given input sequence, we can gain insights
into the behavior of the model, as well as to understand its
limitations.

The attention-based interpretability module aggregates atten-
tion calculated in the transformer model, as shown in Section V,
and generates visualizations presenting the difference attention
distribution between normal operations and cyber threats. To
demonstrate the applicability of our proposed model and the
use case of our interpretability module, we present two case
scenarios: (1) A real-world operational setting in which multiple
business units connecting multiple uncompromised systems are
contributing to the generation of a global federated model, and
(2) An organization being attacked with a DoS attack.

A. Cyber Threat Forensics in a Real-World Operational Setting

For a real-world example, let us imagine an American
healthcare system with a network of providers and health
facilities offering a full range of healthcare services from
preventative to post-acute care. The American healthcare system
seeks to integrate a novel cyber threat detection system into the
existing Security Information and Event Management (SIEM).
The security analysts have identified specific facilities that
have not been previously compromised by threat actors. The
healthcare system has maintained HIPAA compliance and has
stored system, event, and audit logs from the past 6 years.
Training a module for cyber threat detection in a centralized
setting would require aggregating data from each provider
and health facility into a single server. Nevertheless, as log
files contain workforce members login, failed login attempts,
software updates, downloaded programs, change of passwords,
EHR logins, patient data access, changes to eHPI, among
other information, sharing logs to a central entity poses high
security risks and potential violations to HIPAA. To prevent
such a scenario and facilitate model learning from log data for
multiple health facilities, the security administrators decide to
use our interpretable federated transformer log learning model
for threat forensics.

After each care facility trains a local model using exclusively
their local data, they use the interpretability module to identify
the log keys (from a set of input sequences) that had the highest
influence to the model’s correct or erroneous predictions. As
the model was trained with data from uncompromised systems,
the initial saliency map computed by the interpretability module
provides a representation of the attention distribution during
normal operations for all log keys identified across all input
sequences with respect to each evaluated ground truth label.
In Fig. 4 the interpretability module breaks down the attention
of every key in the input sequence influencing each correctly

Fig. 4. Interpretability weights ZSΥ
φ computed by the client’s corresponding

interpretability module with their uncompromised data.

predicted log key (ground truth). The saliency map shows that
lower keys highly influence most correctly predicted log keys
(ground truths) following all input sequences. Different from
client 1, we can observe that the model’s predictions for client
2 had a higher influence from log keys plotted in the right-hand
side of the subplot. Yet, for both clients, we can observe that
log keys plotted in the left-hand side of each plot had the
highest influence to the model’s prediction.

B. Attack Scenario

In this scenario, an organization contracts a hacker to
launch a cyber attack on its competitor with a motive to
bring operational disruption and distraction. In this case, the
hacker/attacker intends to launch a volumetric DDoS attack
against the target organization’s web server. The attacker uses
a popular scanning tool in the reconnaissance phase to find
that the victim’s organization is running Ubuntu 18.04 and is
protected with a simple firewall. The attacker notices that an
NTP amplification DDoS attack would be a perfect protocol to
exploit as the victim’s web server had its UDP port 123 open
and the server seems to be an open resolver. As the attacker
understands that the victim’s organization is unable to detect the

Log Key − Log Templa te

268 <*> <*> c t n e t l i n k v0.<*> r e g i s t e r i n g . . .
269 l i n k c o n f i g a u t o n e g o t i a t i o n i s u n s e t . . .
270 Warning Unknown i n d e x <*> s een r e l o a d . . .
271 <*> Link UP
164 t ime <*> <*>”” l e v e l i n f o msg ”” Loadi . . .
168 t ime <*> <*>”” l e v e l i n f o msg ”” Docke . . .
169 t ime <*> <*>”” l e v e l i n f o msg ””Daemo . . .
171 t ime <*> <*>”” l e v e l i n f o msg ”” API l . . .
170 S t a r t e d Docker A p p l i c a t i o n C o n t a i n e r . . .

11 ens3 C o n f i g u r e d
9 S t a r t e d ntp −systemd − n e t i f . s e r v i c e .

420 S t o p p i n g Network Time S e r v i c e
421 n tpd e x i t i n g on s i g n a l <*> T e r m i n a t e d

Fig. 5. Corresponding log templates of each key in evaluated sequence of
NTP DDoS attack.
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Fig. 6. Log key sub-sequences of NTP DDoS attack in sequence S processed by the federated model for predicting the g candidates. The “Ground Truth Keys”
following sub-sequences {S1, S2, S3} ∈ S are compared against the corresponding predicted list of g candidates for identifying anomalies leading to cyber
threats. The number of log keys for each sub-sequence is determined by the window frame parameter Λ. For every sub-sequence Sj , attention is calculated for
every key in Sj . In the proposed transformer-based model, attention is ultimately passed to a fully connected layer and subsequently to a Softmax layer for
predicting the top g candidates and the probability for each of them. For this case scenario, in sub-sequence S1 the attention concentrates highly in keys 164,
168, and 11 to correctly predict the log key 9 that follows the sub-sequence. In contrast, the following two sub-sequences S2 and S3 show the attention
concentrated in keys 164, 169, and 11. This last log key showed an attention 3 to 4 times larger than in S1. This difference in attention across generates
predictions of top g candidates that do not match the following ground truth keys, indicating a deviation from the normal system behavior that leads to the
detection of this cyber threat.

source of the attack, the attacker decides to carry out the NTP
amplification DDoS attack rather than other volumetric DDoS
attacks. The attacker aims to send high amounts of spoofed
requests to the NTP servers that has the monlist command
enabled with the response pointing the victim organization’s
web server. The attacker now controls the NTP server and
sends out large amounts of UDP responses back to the victim’s
web server. This consumes the victim’s network bandwidth,
disrupting normal operation and service availability to the
victim organization’s clients. The successful attack allows the
attacker to disrupt the victim organization and its clients for a
desired amount of time.

The organization’s forensic investigators use the interpretabil-
ity module to backtrace the system activity, recorded in the
syslogs, that triggered the detection of a cyber threat. Fig. 6
presents a series of sub-sequences Sj from the victim’s syslog.
The associated templates to each key κ in Sj is presented in Fig.
5. Each sub-sequence Sj is evaluated by the model to compute
the attention for each log key and predict the top g candidates.
We can observe that the predicted candidates for sub-sequences
S2 and S3 do not match their corresponding ground truth keys
Gj , which are subsequently labeled as anomalies.

Additionally, forensic investigators can compare the saliency
map of the NTP attack with the ones computed from inter-
pretability weights computed for other attacks. In this case, the
saliency map for previously known SYN Flood and BT DDoS
attacks is shown in Fig. 7. By comparing the saliency maps of

the NTP DDoS and SYN Flood attacks, we can observe their
shared attention distribution. Further, the distribution similarity
of each attack can be compared against a saliency map of
the federated interpretability weights ZSΥ

Φ of the previously
mentioned attacks. In Fig. 7, we present the interpretability
weights of the NTP DDoS, BT DDoS, SYN Flood, and
the federated interpretability weights aggregating these. This
feature, along with the previous features presented, provides
forensic investigators with actionable information that leads to
an efficient analysis of system operation.

C. Hidden attacks and Negative Cases

In order to explore the limitations of our proposed model,
we investigated two different case studies that includes hidden
attacks (i.e, low syslogs footprint attacks) and negative cases
(i.e., failed anomaly detection cases). That said, we developed
a low footprint Ransomware Attack (Table II) that encrypts and
decrypts both “/opt/” and “/proc/” directories on a Linux-based
system. The ransomware attack posted a very low number of
syslogs demonstrating its low footprint. Nonetheless, our model
was able to detect its activities as malicious with high precision.
On the other hand, one of the attack cases that we considered
in Table II, namely, ech0raix manifested as a negative case. In
this instance, our proposed model failed to detect any malicious
activity linked to ech0raix. After investigating the logs, we
associated this failed case to the fact that all ech0raix network
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Fig. 7. Top Left: Aggregated attention by input log key of NTP DoS attack.
Top Right: Aggregated attention by input log key of SYN Flood attack. Bottom
Left: Aggregated attention by input log key of BT DoS attack. Bottom Right:
Federated attention of NTP DDoS, SYN Flood, and BT DDoS attacks.

traffic activities where posted to the kernel logs (detected by
UFW), while our study only focuses on syslogs.

To that extent, we can confidently state that our proposed
model is able to detect hidden attacks, while possible negative
cases may still occur due to distinct log posting (e.g., kernel
logs, auth logs).

VI. DISCUSSION

In the scenario presented in the previous section, we used the
interpretability module to generate a saliency map from logs
of a system targeted by a NTP DDoS attack and the saliency
map from logs collected from uncompromised client systems.
The same approach was followed to evaluate all log sequences
from uncompromised and compromised systems included in
our CTDD dataset. The saliency map presented in Fig. 8 (left)
shows the aggregated attention for each log key observed
across all input sequences (obtained from uncompromised
client logs) where the log key (ground truth) following the
input sequence was correctly predicted. Similarly, the saliency
map presented in Fig. 8 (right) shows the aggregated attention
for each log key observed across all input sequences (obtained
from compromised client logs) where the log key (ground
truth) following the input sequence did not match any of the
top g candidates predicted by the model.

When comparing the two saliency maps, we can observe the
attention distribution difference across all log keys. Also, we
can observe that most of the attention in uncompromised sys-
tems concentrates in log keys with lower value while attention
in compromised systems, shown in Fig. 8 (right), concentrate

Fig. 8. On the left: Saliency map of aggregated attention of Clients 1 and 2
computed by the FL interpretability module. On the right: The saliency maps
show a clear difference in the distribution of attention from independent sample
data points representing different case scenarios (normal non-compromised
environment and NTP DDoS cyber threat). The attention of client systems
shows a higher concentration on ki ∈ K, i = 1, . . . , 26 while the attention
of the NTP DDoS cyber threat concentrates on ki ∈ K, i = 424, . . . , 444.

in log keys with higher value. From this information, we can
note that log keys in the input sequence with high values highly
influence the detection of anomalies (true positives) and the
correct prediction for true negatives.

To measure the distribution difference for a specific sample,
the interpretability module performs a goodness of fit test for
the corresponding ZSΥ

φ with respect to a given federated ZSΥ
Φ .

We computed ZSΥ
φ for the syslogs of the cyber threats listed

previously in Table II. We calculated the chi-square statistic for
each ZSΥ

φ with respect to the federated ZSΥ
Φ of all cyber threats,

shown in Fig. 8 (right). We performed the same comparison
with respect to the federated ZSΥ

Φ of uncompromised systems,
shown in Fig. 8 (left).

The chi-square statistic ZSΥ
φ of each cyber threat with respect

to the federated ZSΥ
Φ of compromised systems, shown in Fig.

9 (left), computed to an average of 42.664 and a p−value = 1.
Given these results, we can confidently state that the attention
obtained from the cyber threats logs share the same distribution
as the federated ZSΥ

Φ of compromised systems. On the other

Fig. 9. Box plot of Chi-Square statistic computed for ZSΥ
φ of each cyberattack

in the CTDD dataset with respect to the federatedZSΥ
Φ of all cyber threats

(left) and ZSΥ
Φ of all uncompromsed systems.
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hand, the chi-square statistic of each cyber threat with respect
to federated ZSΥ

Φ of uncompromised systems, shown in Fig.
9 (right), computed to an average of 66452.6871 and a p −
value = 0. The chi-square statistics for the latter comparison
were far greater than the range within the chi-square statistic
with 445 degrees of freedom. Given these results, we can note
that the attention distribution in ZSΥ

φ for any cyber threat differs
from the distribution of federated ZSΥ

Φ of uncompromised
systems.

VII. CONCLUSION

We proposed an interpretable federated transformer log
learning model for detecting cyber threats with interpretability
capabilities useful for threat forensics. Existing approaches
consist of centralized anomaly detection models that overlook
data privacy and data jurisdiction laws. As of now, none of
the existing works explore the interpretability of the model’s
predicted outcomes, obscuring the user’s visibility into the
model’s decision-making factors. In this way, the techniques
presented in this paper are an improvement over SOTA works.
The proposed approach constructs a time-series vector from log
sequences extracted from syslogs, in order to capture system
operational activity and user activity. Using an unsupervised
approach, a transformer-based model at each client learns the
underlying patterns of the time series. In addition, it integrates a
federated learning approach for aggregating the learned patterns
from local models to produce an updated global FL model.
Furthermore, it uses the attention values to provide visibility to
the model’s decision-making process and highlights differences
in attention between normal sequences and threat sequences.

Our approach demonstrated its log agnostic capability and
applicability on high-dimensional time series. Our model’s peak
F-score (93.84%) in the HDFS dataset was achieved using two
encoder and decoder layers, and 1 attention head. Moreover,
our work outclasses SOTA works by integrating data privacy
and interpretability that reveal indicators, as well as, main
contributor’s for a model’s decision-making process. In future
work, we will be exploring the applicability of our approach
on different types of multivariate time-series data including
network and audit logs.
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