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ABSTRACT

Multigrid methods, algebraic or geometric, commonly suffer from high fre-
quency residuals after prolongation. This paper develops a stable approach
to remove high frequency residuals for geometric multigrid methods for
solving nonlinear advection-diffusion problems with degenerate coeffi-
cients. Here, a local problem is treated by optimization on subdomains
with mesh refinements. Newton’s method is utilized in the procedure and
the iteration is completed when the residual in the subdomain is reduced
to the given magnitude, usually set to be the average of residuals in the
non-high-frequency domains. An oversampling technique is employed to
further improve the stability by providing a definite flow path in regions
where coefficients have high contrast and complex structures. Removing
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1. Introduction

Models describing complex phenomena involving multiple physical processes are often computation-
ally prohibitive, due to significant nonlinearities and problem size. The geometric multigrid method
improves the computational efficiency of such problems by providing more effective iteration updates
[1,2] and reducing problem sizes [3] if multiscale adaptivity is introduced. Early multigrid methods
mainly focused on spatial dimensions while Falgout et al. [4] recently extended such methods to
include the time dimension. Examples of space-time multigrid methods involving adaptivity include
elastodynamics [5], poroelasticity [6] and nonlinear multiphase flow in porous media [7].

Although providing substantial computational speedup, multigrid methods often suffer from high
frequency residuals. After grid refinement, the prolongation process uses linear interpolation to pro-
vide an update for the unknowns on the finer mesh, which is insufficient for nonlinear problems
with rough coefficients. The coarse solution used to produce the linear prolongation is acquired
using upscaled coeflicients calculated by numerical homogenization, which assumes the coefficient
smoothness to be at least C!. Consequently, such upscaling algorithm is inadequate to capture the
complex structures of rough coefficients in the coarse resolution. An example is shown in Figure 1.
Here a multiphase flow in porous media with channelized permeability coeflicients is presented.
The high contrast of permeability at the channel boundary causes the saturation solution to be dis-
continuous, leading to inaccurate linear interpolation. Here we observe high frequency residuals
appearing sporadically but mostly along the channel boundary. As the Newton method resumes, the
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Figure 1. High frequency residual after linear interpolation of the multigrid method for rough coefficient cases.

first few iterations focus on reducing such high frequency residuals while little effort is devoted to the
remaining system, resulting in suboptimal convergence behavior.

In this paper, we introduce a stable local residual minimization approach to enhance the prolon-
gation process which provides an opportunity for improving the numerical homogenization. We use
the multiphase flow in a porous media model for demonstration, while the idea is generally applicable
to other time-dependent nonlinear problems. In Section 2, we present a model problem followed by a
smoothing algorithm in Section 3. Results from numerical experiments using the proposed algorithm
are discussed in Section 4. The summary of our findings follows in Section 5.

2. Flow model problem

We consider the following two-phase flow in the porous media model. The phase mass conservation,
constitutive equations, boundary and initial conditions are as follows:

W‘Fv'ua:%x inQxJ, 1)
kra .
Uy = _K:Ooc'u_(vpa — peg) ML Xx], (2)
Uy, -v=0 onadQ xJ, (3)
_ .0
Pa=Pu axit=o), (4)
Su = S0

for « = nw,w. ] = (0, T] is the time domain of interest, while € is the spatial domain. Here, ¢ is
porosity and K is permeability. pg, s, #y and g are density, saturation, velocity and source/sink,
respectively, for each phase. The phase densities are defined by Equation (5) for slightly compressible
fluid

Po = Pa,ref * e PaPasry )’ (5)
with ¢, being the fluid compressibility and py s being the reference density at reference pressure
Pavref- In addition, kg, (o and py are the relative permeability, viscosity and pressure for each phase.
The relative permeability, often being the degenerate coefficient, is a function of saturation. Pressure
differs between a wetting phase and non-wetting phase in the presence of capillary pressure, which is
also a function of saturation:

kra = f(sa)s (6)
Pec= g(Sa) = Puw — Pw- (7)

The saturation of all phases obeys the following constraint:
D se =1 €)
o

We now provide the weak variational form in space-time setting, which is also valid for tradi-
tional time-stepping schemes with uniform timesteps. We solve the system with a mixed finite
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element method. Let V = H(div; Q), W = L*(Q2) with V;, and W}, being their respective finite-
dimensional subspaces. Let ], = (t;, t,+1] be the nth partition of the time domain of interest. Then

for each space-time slab J,, x €2, we define velocity and pressure/saturation spaces as, for any element
El‘ = T,' X F,’,

1
Vi = !v € L* Js H(div; Q) : v(-,%) |5, € Vh,v(t,-)]Ti = Zvat“ &v, € Vh} ,

a=1

1
W = {w € L (I L2 (Q) : w0 |5 € Wiy w(t, )|y, = D wat” & wa € Wh} :

a=1

Functions in Vj and W}’ along the time dimension are represented by polynomials with degrees

up to I. We formulate the space-time variational formulation as follows: find u), , € Vi, u, , € V},
sh o, € Wi, pl, € W such that

//Bt (¢pg’hsg,h)w+/ / (V‘”Zp,a,h>W=/fan Ywe W, 9)
Tn /2 Jn /2 Tn /2
//K_lﬁz)hm://pg’hv-v YveV, (10)
Jn /2 Jn IR
//ugh-v=//kaﬁ2h~v VveVy (11)
Q7 Jn JQ ’

The mobility ratio in A, is given as

Ay = , (12)

and the upwind velocity is calculated by

/]‘L"Zp,a,h'vzjl‘/g)‘;ﬁg,h"’ YveVy (13)

The additional auxiliary phase fluxes i, , are used to avoid inverting zero phase relative permeability
[8]. A} denotes the upwind mobility ratio and its calculation is done by using saturations from the
grid cell on the upwind direction of the pressure gradient.

3. Local residual minimization

Previous work regarding residual smoothing mainly involved linear problems with rough coefficients.
In [9], an energy minimization method was introduced, which solves for a coarse basis function
that minimizes the energy functional on the fine grid. However, the direct application of such an
approach on nonlinear transport is problematic since no energy functional can be constructed due
to the degenerate coefficients. Therefore, the local residual minimization approach is formulated.
Consider 7} as a coarse partition of J,, x €2 with elements E; y being refined into a finer partition
7, with elements E; . We define the linear interpolation of any piecewise constant function (pressure
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Figure 2. Four-point stencil on the coarse grid for boundary interpolation nodes (right plot).

and saturation) in space as f;. Then the local problem is constructed as follow:

/ (at (D05 pSin) +V Ui — qa>w =0 Ywe W, VEu= |J En (49
Ein Ej,CEin

subject to

on 0E; . (15)
Sa = Sa);-

{ Pa = Pay;

Figure 2 demonstrates the two partitions and boundary interpolation nodes necessary to solve
the local problem. If the interpolated pressure and saturation on the boundary are exact, then
Equation (14) is well posed and provides a unique solution that matches the global solution on the
local subdomain. However, providing exact boundary conditions by linear interpolation of the coarse
solution is hardly achievable in nonlinear transport, and thus, the local problem tends to be ill-posed.
Regarding the situation, we reformulate Equation (14) into a minimization problem as follows:

pn;isnh { / (E)t (¢,02,h52,h) 4+ V. uZp,oz,h — qo,)wH } Vwe W), VEg= U Ejp. (16)
o,h>a, Ei,H o0 Ej,h gEi,H

Similar to solving the global problem, we use Newton’s method for such optimization process. Note

that the residual functional for a nonlinear transport equation is non-convex. Therefore, to prevent

over-working the local problem and cause divergence issues on the global solution process after-

wards, the iteration is stopped once reaching the average background residual instead of the absolute

minimum.

Previous work [10] has shown promising results that the local residual minimization approach is
effective, even for complex models, in reducing high frequency residuals caused by inadequate sat-
uration interpolation. However, such an approach is suboptimal for regions with complex channel
structures. Due to the limited number of coefficients in the subdomain, the local problem can-
not determine a definite flow path, resulting in limited improvement on the initial guess, or even
optimization failure for more complicated models.

Oversampling techniques have been widely applied in numerical homogenization [11] to upscale
channelized permeability while maintaining proper inter-cell connectivity. We enhance this approach
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Figure 3. Nine-point stencil on the coarse grid for extended boundary interpolation nodes (right plot).

to local residual minimization as demonstrated in Figure 3. Here, the local problem has been extended
from E; p to E;,LH by an extra layer of fine elements. To accurately interpolate nodes on the extended
boundary, a 9-point stencil including diagonal direction gradients is necessary. Although increas-
ing the size of the local problem, this extra layer is essential for forming a definite flow path, which
facilitates optimization and prevents failure.

4, Numerical results

We use the space-time geometric multigrid algorithm introduced in [7] to solve the described system.
The procedure starts by solving the global problem at its coarsest resolution in the space-time domain
and then sequentially refines certain regions to its finest resolution. The coarsest time step is chosen
such that the numerical convergence is guaranteed on the coarsest spatial grid. During the sequential
refinement process, the solver first keeps the spatial mesh static at its coarsest level and searches for
regions to refine in time. Once the last level of temporal refinement is implemented, the temporal
discretization is finalized and the solver refines the mesh in space until reaching the finest resolution.
Afterward, the grid is restored to the coarsest resolution, the solver marches forward in time with the
coarsest time step and the whole process reiterates. The complete algorithm is illustrated in Figure 4.
As shown in the flowchart, the local residual minimization step follows local mesh refinement and
initial guess interpolation.

We apply the SPE10 dataset [12] bottom layer to conduct our numerical experiments. Figure 5
demonstrates the petrophysical properties. The fine-scale dimension is 56 x 216 elements of size
1ft x 1ft x 1ft. The coarsest and finest timestep size is 10 and 1.25 days, respectively. The simulation
continues for 600 days (water breakthrough). There are three levels of the coarse spatial grid with a
refinement ratio of 2 between them. The coarse scale properties are calculated by numerical homog-
enization introduced in [13]. For nonlinear advection, we use the Brooks—Corey model illustrated in
Figure 6 for both relative permeability and capillary pressure, which is described by

Ny
Sw — Swi
krw = k7, (%) :
Sor — Swirr i (17)
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Figure 4. Solution algorithm for sequential local mesh refinement solver with separate temporal and spatial adaptivity.

Figure 5. Fine-scale permeability and porosity of the numerical experiment.

1
1 — 5. cow
Pc(sw) = Pep,cow (ﬂ) . (18)

Sw — Swirr

The model parameter values are sor = Syirr = 0.2, k% =k = 1.0, nyy = 1y = 2, Pencow = 10 psi
and Iy = 0.2. The fluid data are listed in Table 1. We place a water injection well with a rate of
1ft> /day at the bottom left corner and a production well with the production pressure of 1000 psi at
the upper right corner. The initial pressure and saturation are set to be 1000 psi and 0.2, respectively.

We first present two snapshots generated during the simulation. As demonstrated in Figure 7,
the difference between the saturation initial guess and true solution is quantified. For initial guess
provided by direct linear interpolation (top plots), we observe a significant mismatch along the chan-
nel boundary and around low permeability spots inside the main channel. The notable variation of
permeability in such regions causes the saturation solution to be discontinuous, a behavior that is
not perceivable by linear interpolation. We then apply local residual minimization without oversam-
pling (middle plots) and as illustrated, the over-estimation of saturation in low permeability regions
is eliminated. However, there is still a noticeable mismatch, mainly in regions with complex channel
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Figure 6. Relative permeability (left) and capillary pressure (right) curve for the numerical experiment.

Table 1. Fluid data for the numerical experiment.

Parameter Value Unit
0il compressibility (c,) 1.0 x 1074 psi~!
Water compressibility (c,y) 3.0 x 107° psi~!
Oil viscosity (140) 3.0 cp

Water viscosity (ttw) 1.0 cp

Oil standard density (0,,st4) 53 Ib/ft3
Water standard density (poy,stq) 64 Ib/ft3

Saturation contrast without local smoothing at 250 days

%

Saturation contrast without local smoothing at 500 days

o J7

Saturation contrast with local smoothing at 250 days Saturation contrast with local smoothing at 500 days

Saturation contrast with oversample smoothing at 250 days Saturation contrast with oversample smoothing at 500 days

Figure 7. Saturation contrast between initial guess and true solution without local smoothing (top), with local smoothing (middle)
and with oversample local smoothing (bottom).

structures such as sharp corners and thin conduits. The results with oversampling (bottom plots)
show significant improvement. The complex structures possess less obstacles to the optimization
process. Therefore, most of the mismatch has been removed.

We now compare the computational behavior of the two local minimization methods. Figure 8
demonstrates the optimization iteration taken in each timestep and the cumulative CPU time to fin-
ish all the local problems. The iteration number increases for both methods during early timesteps,
due to the expanding saturation front which results in more refinement subdomains. With additional
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Figure 8. Stepwise iteration count and cumulative CPU time for a local residual minimization problem.
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Figure 9. Cumulative iteration count and CPU time for a global problem.

data provided by oversampling, the local system gains more constraints during the optimization. Con-
sequently, such an approach requires more iterations than the local problem without oversampling.
Also due to the increased problem sizes, the total CPU time to solve the oversampled problems is
increased by approximately 50%.

Regarding the computational behavior of the global problem, Figure 9 illustrates the cumulative
global iterations and the total CPU time to finish the simulation. Note that such cumulative time also
includes those spent on local residual minimization. We observe that the smoothing without oversam-
pling provides a slight improvement on the Newton convergence of the global problem. However, such
improvement is not substantial enough to counteract the additional time spent on local smoothing.
Consequently, there is very limited speedup on the total simulation time. On the other hand, the local
residual minimization with oversampling reduces the global iteration by approximately 25%. There-
fore, despite the increased computational load on the local problem, such approach still provides a
15% speedup on the total computing time.

5. Conclusions

In this paper, we present a stable local residual minimization algorithm for the geometric multigrid
method to remove high frequency residuals caused by the prolongation step. The minimization is
achieved by solving the global system restricted to each refinement subdomain with boundary con-
ditions provided by linear interpolation of the coarse solution. The local problem is solved in the sense
of optimization by Newton’s method and the iteration is terminated once reaching the background
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residual, to prevent over-working the ill-posed local problem. To improve algorithm stability and
minimization outcome, oversampling is applied by adding an extra layer of fine elements to the orig-
inal subdomain. Results from the numerical experiment using the two-phase slightly compressible
flow model with rough coefficients are presented. We observe that the local smoothing with over-
sampling erased the majority of the difference between the saturation initial guess and true solution,
regardless of coefficient structure complexity. The number of global iterations required for conver-
gence is reduced by 25% and the total CPU time is diminished by 15%. Considering the slightly
compressible immiscible system is fairly stable and the adaptive method already providing tremen-
dous computational speedup, there is naturally not much room for improving the computational
efficiency. However, based on the result, we do expect local residual minimization to be majorly ben-
eficial towards more complicated and chaotic systems, where an inadequate initial guess can easily
lead to convergence failure. And also towards uniformly high-resolution simulations, where multigrid
refinement occurs globally. Preliminary results indicate that oversampling is particularly advanta-
geous to local problems on complex models that include compressible phase, such as the black-oil
model, to prevent optimization failure.
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