

Multiregional Pb Isotopic Linear Patterns and Diagenesis: Isotopes from Ancient Animal Enamel Show Native American “Foreign War Trophies” Are Local Ancestors

John R. Samuelson^{1,2*} and Adriana Potra³

¹ Arkansas Archeological Survey, 2475 N Hatch AVE, Fayetteville, AR, 72704, USA

² Department of Anthropology, Old Main 330, University of Arkansas, Fayetteville, AR, 72701, USA

³ Department of Geosciences, 340 N. Campus Drive, 216 Gearhart Hall, University of Arkansas, Fayetteville, AR, 72701, USA

* Corresponding Author: jsamuel@uark.edu

Abstract

11 *Skull burials are found all over the world and often are interpreted to be foreigners,*
12 *sacrifices, or victims of warfare. The cause of ancient Native American skull deposits often leads*
13 *to disagreement among scholars torn between warfare and ancestor veneration. Most previous*
14 *research suggested a Caddo skull-and-mandible deposit (consisting of clusters of skulls and*
15 *clusters of isolated mandibles) in southwest Arkansas, USA contained foreign victims of*
16 *interregional warfare, representing at least 352 people (1253-1399 CE). While Sr isotopes are*
17 *commonly used in archaeology to investigate such issues, they did not provide a conclusive*
18 *answer to the geographic origin of the remains. This study advances the biologically available*
19 *Pb method by constructing a large-scale multiregional Pb isotopic background with ancient*
20 *animal tooth enamel and uses their associated linear patterns to evaluate human geographic*
21 *origins. Evaluation of Pb contamination through diagenesis in human tooth enamel is evaluated*

22 and advanced using correlation analysis of trace elemental data from teeth and burial soil. A
23 total of 180 animal teeth were processed from 28 ancient sites in the southcentral USA.
24 Combining Pb isotopic linear patterning analysis with the Sr isoscape, allows us to establish that
25 the skulls and mandibles are local to southwest Arkansas and indicate or strongly suggest they
26 are non-local to all other tested regions. This illustrates the importance of Pb isotopes in studies
27 of human geographic origins. It also provides one cautionary tale that interpretations about
28 violence related to detached skulls should be evaluated with appropriate methods and evidence
29 and with a critical eye for other explanations. This study was conducted in collaboration with the
30 Caddo Nation of Oklahoma and provided both the descendant community and researchers with
31 answers to the questions surrounding the remains, serving as one example of how stakeholders
32 can come together and produce positive outcomes.

33 Keywords: Pb, diagenesis, violence, isotopes, Caddo

34 1. Introduction

35 When deposits of severed heads and mandibles are discovered at an archaeological site,
36 warfare may first come to mind. Skull deposits are a worldwide phenomenon, the origins of
37 which are often contested by scholars (Barrett and Scherer 2005; Hodder 2009; Kuijt 2009;
38 Milner 1999; Schulting 2013; Testart 2008). Isotopic studies of skull deposits in ancient
39 Mesoamerica and South America often conclude they are foreign victims of warfare or sacrifices
40 (Moreiras Reynaga et al. 2021; Scaffidi et al. 2021). However, this is not necessarily applicable
41 to the treatment of the dead by ancient Native North Americans. One such large deposit
42 containing at least 352 skulls and mandibles at the Crenshaw site (3MI6) in southwest Arkansas,
43 USA led researchers to investigate the prevalence and extent of warfare at the intersection

44 between the Eastern Woodlands and the Southern Plains, ca. 1200 and 1500 CE, shortly before
45 European contact (Akridge 2014; Samuelsen 2014, 2016; Samuelsen and Potra 2020; Schambach
46 et al. 2011; Zabecki 2011). A new approach became necessary when strontium (Sr) isotopes
47 failed to regionally differentiate the skulls and mandibles (Samuelsen 2016; Samuelsen and Potra
48 2020). A large-scale, multiregional lead (Pb) and Sr isotopic background was constructed using
49 ancient non-migratory animal tooth enamel for comparison to the skull-and-mandible deposits at
50 Crenshaw (Fig. 1).

51 This study has three objectives. 1) It advances and exemplifies the biologically available
52 Pb method (Samuelsen and Potra 2020) by constructing a large-scale, multiregional Pb isotopic
53 backgrounds using ancient animal tooth enamel (180 animal teeth from 28 ancient sites),
54 illustrating regional differentiability and the ability of linear patterning analysis of Pb isotopes to
55 evaluate ancient human geographic origins. The application of Pb isotope geochemistry for
56 evaluating ancient human geographic origins is relatively new and underutilized compared to the
57 widely used Sr isotope technique, but it is becoming clear that Pb isotopes can be highly
58 sensitive to regional differences when Sr is not (Samuelsen and Potra 2020). This works because
59 ancient animal tooth enamel provides a preserved record of pre-anthropogenic Pb isotopes within
60 regions, mitigating the impact of modern Pb pollution. Including the 73 ancient human teeth
61 tested, 253 ancient tooth enamel samples have been processed for Pb and Sr isotopes. Previous
62 work includes comparisons to 99 Pb isotopes from whole rocks, rock leachates, and soil from
63 southwest Arkansas (Samuelsen and Potra 2020). This represents a large Pb isotope dataset with
64 enamel-to-enamel comparisons, providing future researchers with a replicable method and
65 model. 2) It evaluates the effectiveness of trace elemental methods (Kamenov et al. 2018) in

66 detecting Pb contamination in ancient human tooth enamel through correlation analysis. Pb
67 isotope geochemistry is still underutilized because some of the basic underpinnings of the
68 methods are still being developed and because there are significant challenges with obtaining
69 uncontaminated, good quality Pb isotope data from ancient remains (King et al. 2020; Samuels
70 and Potra 2020). Methods to confidently detect contamination are needed, as are studies that
71 demonstrate these methods are effective (Dudás et al. 2016; Kamenov et al. 2018; Simonetti et
72 al. 2021). Clearly and confidently identifying Pb contamination (or the lack thereof) in ancient
73 tooth enamel is critical for advancement of studies of ancient human and animal geographic
74 origins. The interpretations of Pb isotopic results (including in this study) are only as trustworthy
75 as the evidence that the tooth enamel is uncontaminated. 3) It combines the Pb and Sr isotopic
76 backgrounds with data from an ancient Caddo skull-and-mandible cemetery to evaluate their
77 geographic origins and determines if they reflect war trophies from other regions or a local burial
78 practice for revered ancestors.

79 **1.1. Ancient Human Geographic Origins and Isotopes**

80 Assessing the geographic origins of ancient human remains with geologically sensitive
81 isotopes (e.g. Sr and Pb) requires comparisons to some type of background value (Bentley 2006;
82 Price et al. 2002). Obtaining an isotopic value from human remains does not reveal their
83 geographic origin without first establishing the isotopic values that define the geographic areas
84 of investigation. The resultant data from large-area studies that construct these background
85 values in multiple geographic areas are often described as “isoscapes” (Bowen 2010). In studies
86 of ancient human geographic origins, the isotope ratios of individuals are compared to the
87 isotope ratios of a locality or region, as defined by the background. If the isotope ratios of the

88 individuals fall outside of the isotope ratios defined by the area of investigation, the individuals
89 are considered non-local to that area. This works because humans and animals deposit elements
90 like Sr and Pb in their tooth enamel as the teeth are formed. These elements are locked into the
91 enamel and reflect the Sr and Pb isotopes in the surrounding geology. Depending on the element
92 and pollution levels, the isotopes reflect the ingestion or inhalation of the food, soil, or dust
93 where the people grew up (Bentley 2006; Price et al. 2002; Samuelsen and Potra 2020; Scaffidi
94 et al. 2021). For ancient populations in the US, like the Caddo, this is most likely to reflect the
95 food and soil since anthropogenic Pb aerosol is not expected to be significant in this time and
96 place (Samuelsen and Potra 2020).

97 Studies of ancient humans using Pb isotopes have been greatly expanding in the last few
98 years (Beherec et al. 2016; Dudás et al. 2016; Eshel et al. 2020; Jones et al. 2017; King et al.
99 2020; Price et al. 2021; Samuelsen and Potra 2020; Scaffidi et al. 2021; Sharpe et al. 2016;
100 Simonetti et al. 2021; Tschetsch et al. 2020; Turner 2021). While many previous studies have
101 constructed Sr isoscapes (Hedman et al. 2018), no study has yet created a Pb isotopic
102 background at this scale from ancient animal tooth enamel. This study builds on previous work
103 by including multiple regions while creating backgrounds and by focusing on biological samples
104 rather than backgrounds created using rocks or ores (Jones et al. 2017; Price et al. 2021; Scaffidi
105 et al. 2021; Sharpe et al. 2016; Turner et al. 2009; Valentine et al. 2015). One recent study adds
106 to the literature by producing a large number of animal bone samples (not enamel) processed for
107 Pb and Sr isotopes in one region (Tschetsch et al. 2020). Another study outlined the biologically
108 available Pb method using ancient animal tooth enamel in a single region (Samuelsen and Potra
109 2020). The present study builds on these by utilizing the biologically available Pb method to

110 create multiregional backgrounds from animal Pb isotopes (180 animal teeth from 28 ancient
111 sites) and by validating the use of linear patterning analysis to robustly assess ancient human
112 geographic origins in multiple regions.

113 The multivariate and linear nature of Pb isotopes necessitate multiple samples from each
114 site and many sites to be sampled per region to construct a robust background signature
115 (Samuelson and Potra 2020). It is not the number of samples itself that is important, but larger
116 sample sizes of animal tooth enamel allow regionally defined linear patterns in Pb isotopes to be
117 used as a fingerprint to assess ancient human geographic origins. In most research, Sr isotope
118 analysis focuses only on the range of single isotope ratio, $^{87}\text{Sr}/^{86}\text{Sr}$. With Pb, a similar approach
119 may be appropriate for certain types of background samples (e.g., rock samples). Some Pb
120 isotope analyses use a range of Pb isotope ratios in a similar way to how Sr is analyzed or limit
121 the comparisons to only a subset of Pb isotope ratios. That type of Pb isotope analysis is common
122 for studies analyzing individuals exposed to Pb through metallurgy or pollution and when using
123 rocks to assess human geographic origins (Beherec et al. 2016; Scaffidi et al. 2021; Sharpe et al.
124 2016). However, ancient animal tooth enamel is directly comparable to ancient human tooth
125 enamel and enables linear patterning analysis using multiple Pb isotope ratios through enamel-to-
126 enamel comparisons (Samuelson and Potra 2020). The linear patterning of Pb isotopes from
127 human tooth enamel and non-migratory, ancient animal tooth enamel must match all in 15
128 unique bivariate comparisons using all six Pb isotope ratios ($^{208}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, $^{206}\text{Pb}/^{204}\text{Pb}$,
129 $^{208}\text{Pb}/^{206}\text{Pb}$, $^{207}\text{Pb}/^{206}\text{Pb}$, and $^{208}\text{Pb}/^{207}\text{Pb}$) for the humans to be considered local. Humans that do
130 not match the animals in all 15 bivariate graphs are considered non-local. It is in this linear
131 patterning comparison that Pb isotopes are most robust in detecting ancient human geographic

132 origins. Sr isotopes have no linear patterning and therefore do not necessarily require such large
133 sample sizes for backgrounds, but they may not provide as much clarity about geographic origins
134 if used alone.

135 There are two major factors preventing wide-spread adoption of Pb isotopes in studies of
136 ancient human geographic origins (Samuelson and Potra 2020). 1) Obtaining high-quality Pb
137 isotope data from tooth enamel is challenging because it is difficult to get enough Pb from tooth
138 enamel, unless the individual was exposed to a large amount of Pb during their formative years.
139 This can restrict studies by only enabling analysis of those individuals with high Pb
140 concentrations. To mitigate this issue, some research does not include the lowest abundance
141 isotope (^{204}Pb), but this can severely reduce the usefulness of the data and the significance of the
142 conclusions since this limits comparisons to only three Pb isotope ratios (Gulson et al. 2018).
143 This process is destructive and therefore lesser amounts of Pb in the tooth enamel requires either
144 more tooth enamel, better methods for extracting, and/or more expensive, sensitive, and accurate
145 instrumentation. By contrast, there is much more Sr in tooth enamel, so this is generally not an
146 issue for that element. 2) Pb in tooth enamel is much more likely to have issues with
147 contamination. Tooth enamel is generally thought to be more resistant to post-burial
148 contamination than bone, but this is mostly based on Sr research (Bentley 2006). There are
149 dueling potential problems with Pb isotope contamination (Samuelson and Potra 2020). First,
150 large amounts of anthropogenic Pb have been deposited in soils due to modern pollution and can
151 affect buried remains and materials. Second, even if there is no issue with anthropogenic Pb, the
152 elements naturally in soil can attach to or penetrate the surfaces of tooth enamel (Weber et al.
153 2021). Only recently have there been methods published to help assess this contamination with

154 Pb isotopes in mind (Dudás et al. 2016; Kamenov et al. 2018; Samuelsen and Potra 2020).
155 Relatedly, since Pb concentrations in human tooth enamel are often below 200 ppb, labs need to
156 be extremely clean to prevent laboratory contamination of samples from ambient Pb in the
157 environment and from reagents used in chemical processing and column chemistry.

158 **1.2. Pb Isotopes and Soil Contamination**

159 Pb concentrations in human tooth enamel are typically much lower than Sr concentrations
160 and Pb concentrations in soil can often be relatively high. Studies have repeatedly shown
161 evidence that Sr isotopes in tooth enamel are resistant to post-burial contamination (Bentley
162 2006; Pacheco-Forés et al. 2021). Pb contamination of tooth enamel is more common (Kamenov
163 et al. 2018; King et al. 2020; Simonetti et al. 2021). This makes post-burial contamination of
164 human tooth enamel a major issue for Pb isotope studies as it increases the likelihood of
165 anthropogenic or soil Pb contamination of the teeth (Kamenov et al. 2018; Samuelsen and Potra
166 2020). Therefore, assessing soil contamination of ancient human teeth is a critical element of
167 studies utilizing Pb isotopes. Not doing so could lead to heavily contaminated samples being
168 unknowingly presented as valid data. In cases where the contamination was due to anthropogenic
169 Pb, it could overestimate the number of non-locals since the non-local Pb isotopic signature of
170 anthropogenic Pb could overwhelm the ancient Pb in the sample. If the contamination is due to
171 soil Pb, then it could overestimate the number of locals by overwhelming the ancient Pb with
172 locally derived Pb isotope ratios.

173 The large number of remains placed in the same soil context and the lack of
174 anthropogenic Pb contamination (Samuelsen and Potra 2020) makes the Crenshaw skull-and-
175 mandible cemetery particularly well-suited for understanding soil contamination of ancient

176 human tooth enamel since it allows comparisons between ancient teeth without significantly
177 different burial soils affecting the analysis. This study follows the trace element analysis method
178 (Kamenov et al. 2018) that utilizes Maximum Threshold Concentrations (MTCs) for ancient
179 human tooth enamel. The method is robust because it detects excessive elemental concentrations
180 in ancient human tooth enamel using elements that have low concentrations in uncontaminated
181 modern human tooth enamel. Evidence of higher-than-expected concentrations of these elements
182 in ancient human tooth enamel suggests that soil or other contaminants were attached to or
183 penetrated the enamel, contaminating the Pb by proxy.

184 Three tests of the method are considered. 1) For particular elements to be confidently
185 used to detect Pb contamination, they should have a correlation between higher concentrations of
186 these elements and higher concentrations of Pb. Trace element data, Pb concentration data, and
187 Pb isotope data are analyzed for correlations to detect evidence of relationships between
188 particular elemental concentrations and Pb contamination. Pb isotopic data from tooth enamel
189 and soil leachates allow for a validation of these results. 2) MTCs are based on modern human
190 tooth enamel, so potential differences between modern and ancient indigenous peoples' exposure
191 to some elements may not be incorporated in the defined thresholds. While it is recognized that
192 modern humans have greater exposure to some elements like Pb, ancient indigenous people may
193 have greater exposure to other elements. For example, dietary difference can also affect the
194 concentrations of these elements, such as trophic level (Kohn et al. 2013). Correlations between
195 elemental concentrations are analyzed to detect hypothesized differences between *in-vivo*
196 concentrations in ancient human tooth enamel (deposited in teeth prior to death) and high
197 elemental concentrations related to direct soil addition. 3) The concentrations of some elements

198 in human tooth enamel may be different in other regions based on the natural concentrations of
199 these elements in the soil. Correlated elemental concentrations in ancient human tooth enamel
200 and soil from Crenshaw are compared to established MTCs to test if there is evidence that higher
201 concentrations of some elements may be related to *in-vivo* exposure instead of post-burial
202 contamination.

203 **1.3. Skull Deposits and Late Pre-Contact Warfare in the Southcentral US**

204 One thing is clear about skull deposits: the head or skull has special significance to
205 Native Americans, just as it does for many people all over the world (Bonogofsky 2011; Brown
206 1971; Charles and Buikstra 1983; Pluckhahn 2003; Schulting 2013). Whatever the context or
207 region, discoveries of skull deposits often result in significant disagreement among scholars, who
208 are torn between competing arguments of warfare and ancestor veneration (Barrett and Scherer
209 2005; Eerkens et al. 2016; Hodder 2009; McAnany 1998; Milner 1999; Pluckhahn 2003;
210 Schulting 2013; Schwitalla et al. 2014; Sears 1956; Seeman 1988, 2008; Webb and Snow 1945).
211 Some argue that ancient Native American cultures practiced warfare resulting in skull deposits
212 (Schambach et al. 2011; Schwitalla et al. 2014; Sears 1956; Seeman 1988, 2008). Others
213 proposed that such skulls represent locals, perhaps kept for the purposes of venerating and
214 honoring deceased ancestors (Brown 1971; Eerkens et al. 2016; McAnany 1998; Pluckhahn
215 2003; Samuelsen 2016; Webb and Snow 1945). To this point, many Native American tribes
216 carried their family's disarticulated remains over long distances for burial at places of
217 significance, sometimes with accompanying rituals affirming community identity (Brown 2012;
218 Charles and Buikstra 1983; Milner 2004; Pluckhahn 2003).

219 It is no surprise to archaeologists and bioarchaeologists studying ancient warfare and
220 peace that distinguishing between the two using archaeological data can be a struggle with
221 current methods (Chacon and Mendoza 2007; Dye 2009; Kintigh et al. 2014; Milner 1995,
222 1999). Archaeologists typically use a few key datasets to assess if warfare was affecting the lives
223 of ancient Native Americans; these include biological trauma, burned villages, fortifications, and
224 nucleated settlement patterns. Some researchers (Dye 2009; Milner 1995, 1999) have argued that
225 the best evidence for ancient violence can be found through skeletal trauma, burned villages, and
226 in the use of fortifications. Indirect evidence for peace and cooperation include community
227 rituals, exchange networks, dispersed settlement patterns, and political organization (Dye 2009).
228 Some (Chacon and Mendoza 2007) argue that warfare in ancient North America was ubiquitous
229 and that others view ancient Native Americans through a peacefully idealized lens. While it is
230 true that ancient warfare was ubiquitous, it is also clear that there are times and places where war
231 dominates and other times and places that are relatively peaceful. Each time and place should be
232 independently evaluated for the prevalence and extent of ancient warfare using the available
233 archaeological and bioarchaeological evidence.

234 ***1.3.1. Warfare in the Southern Plains and the Central and Lower Mississippi Valleys***

235 While there is little evidence before 950 CE, beginning around 1200 CE the Plains see a
236 great increase in the evidence of warfare (Bovee and Owsley 1994; Brooks 1994; Lambert 2007;
237 Owsley et al. 1994). Warfare in the Southern Plains is characterized as consisting of small-scale
238 raids and intertribal warfare, relatively light compared to the Northern Plains (Lambert 2007).
239 The evidence for large-scale warfare in the Southern Plains is lacking compared to the strong
240 evidence seen in the Northern Plains, where hundreds of people were killed, mutilated, and

241 buried in the Crow Creek massacre (Lambert 2007). Several areas in the Southern Plains are
242 typified by some sort of fortification (Brooks 1994). There are many sites in Texas and
243 Oklahoma that have some potential evidence of violence including embedded projectile points in
244 bone, isolated skulls, and fortification (Baugh and Blaine 2017; Bovee and Owsley 1994; Brooks
245 1994; Huff and Biggs 1963; Owsley et al. 1989; Owsley and Jantz 1989; Perttula 2001; Pillaert
246 1963; Potter 2005; Prewitt 2012; Reinhard et al. 1990; Rose, D. Gentry, et al. 1999; Ross-
247 Stallings 2008; Story et al. 1990). One site, the Nagle site (34OK4), has some evidence of
248 interregional warfare between the Caddo and the Wichita of the Southern Plains. Despite its
249 location in central Oklahoma, one study (Brooks and Cox 2011) argues that Nagle was occupied
250 by a group of Caddo people around 1200 CE. One individual buried there had evidence of
251 scalping and four Harrell and Wichita points in the thoracic cavity. The location of this site, well
252 outside of the typical delineation of the Caddo Area, and the evidence of violence does provide
253 some basis for the hypothesis that there may have been interregional warfare during this time.

254 The bioarchaeological record of the Lower Mississippi Valley seems to indicate that the
255 prevalence of warfare was different in the northern and southern portions. The bioarchaeology of
256 the Plaquemine culture in Arkansas and Louisiana remains relatively unknown due to a lack of
257 excavations and analyses (Harmon and Rose 1989). Limited bioarchaeological data is available
258 from Mississippi, although recent studies have begun to document what remains are available
259 (Danforth 2012; Davis 2015; Listi 2011). There is little evidence of fortification with the
260 exception of Lake George (22YZ557) in west Mississippi where one burned bundle burial was
261 missing a skull (Kidder 1998; Ross-Stallings 2008; Williams and Brian 1983). One study
262 (Kidder 1998) casts doubt on the idea that the earthworks at sites like Lake George reflect a

263 concern about warfare, instead it suggests they have functional or ceremonial significance. It also
264 notes that the dispersed settlement patterns in the southern portion of the area could preclude the
265 use of palisades given the lack of population nucleation. The more nucleated settlement patterns
266 in the northern portions, like the Yazoo Basin, could suggest some concern for violence, but
267 these sites still lack evidence for fortifications.

268 Evidence of violence is present in the Central Mississippi Valley and the northern portion
269 of the Lower Mississippi Valley. In Mississippi, one burial at the Austin site (22TU549) showed
270 evidence of being decapitated before burial (Ross-Stallings 2008). This site is located near a
271 double burial at Bonds Village which contained two individuals buried without their skulls
272 (Brookes 1999; Ross-Stallings 2008). Nucleation and fortification are common in the Central
273 Mississippi Valley and include sites like Zebree (3MS20), Old Town Ridge (3CG41), Nodena
274 (3MS3/4), and Parkin (3CS29) in northeast Arkansas; Kincaid in south Illinois; and Powers Fort
275 (23BU10), Snodgrass (23BU21B), and Towosahgy B (23MI2) in southeast Missouri (Krus 2016;
276 Milner 1999; Morse and Morse 1983; O'Brien 2001). One of the better examples of violence is
277 the Norris Farms #36 cemetery in west-central Illinois where one individual had a point lodged
278 in a bone and 11 individuals at the site were missing their skulls (Milner 1995; Milner et al.
279 1991).

280 ***1.3.2. The Crenshaw Skulls and Mandibles and Caddo Burial Practices***

281 The Crenshaw site, located along the Great Bend of the Red River in southwest Arkansas,
282 was a multiple-mound Caddo ceremonial center occupied between at least 900 and 1400 CE and
283 had clear ritual significance to the ancient Caddo (Samuelson 2009, 2014; Schambach 2014).
284 The skull-and-mandible cemetery has great importance as a baseline dataset for studying ancient

285 conflict and cooperation because the large number of people represented would imply a
286 substantial degree of interregional warfare was being practiced in the area prior to European
287 contact. Salvage excavations recovered these skulls and mandibles in two small areas
288 (Samuelson 2016:Figure 3), the West Skull Area (WSA) and North Skull Area (NSA). Collectors
289 had previously collected other skulls nearby, some of which were donated to the Arkansas
290 Archeological Survey (ARAS). These remains were deposited in clusters of complete skulls or
291 clusters of isolated mandibles, with a couple of exceptions. The skull clusters generally
292 contained from one to several people while the mandible clusters contained as many as 100
293 people (Zabecki 2011). The Caddo Nation of Oklahoma and researchers alike questioned if the
294 remains were Caddo ancestors or perhaps their former rivals. A collaborative project with the
295 Caddo Nation and the ARAS was developed to provide an evidence-based answer to these
296 questions and aid repatriation. While a large massacre may seem to be a possibility, direct dating
297 of the remains showed that the practice occurred over time between 1253 and 1399 CE, ruling
298 out single event interpretations (Samuelson 2014). Similarly, local warfare is very unlikely to be
299 the cause of these deposits. If local warfare were causing such large-scale acts of violence, it
300 would be expected to have great impacts on the rest of the cultural system (e.g.
301 fortification/nucleation). This does not occur among the ancient Caddo in southwest Arkansas
302 and neither does any strong evidence of violent trauma. The possibility that migrants translocated
303 their ancestor's remains is also rejected. Archaeological and bioarchaeological data have
304 consistently shown a lack of evidence for any large-scale migration in the Caddo Area (Rose et
305 al. 1998).

306 There are two plausible explanations for this deposit offered by previous studies
307 (Samuelson 2016; Schambach et al. 2011). First, these individuals represent victims of warfare
308 from other regions. If the victims were from distant communities, the Caddo may not have
309 suffered reprisals, needed fortifications, or needed to change their settlement patterns. Most
310 studies examining these remains infer identities of extra-local victims of warfare from places
311 such as the Southern Plains or Central and Lower Mississippi Valleys, suggesting the Caddo
312 participated in large-scale interregional warfare (Akridge 2014; Brookes 1999; Milner 1995:232;
313 Powell 1977; Schambach 2014; Schambach et al. 2011; Zabecki 2011). Analyses of osteological
314 and fortification data show that at the same time the skulls and mandibles appear at Crenshaw
315 there is increased evidence for warfare in the Plains and Central and Lower Mississippi Valleys
316 (see Supplementary Text). Radiocarbon analysis of palisades in the Eastern Woodlands (Krus
317 2016) and bioarchaeological evidence (Lambert 2007) illustrates that the skulls and mandibles at
318 Crenshaw appeared at the same time that palisades were becoming common across the Eastern
319 Woodlands (ca. 1200-1400 CE) and violence was occurring in the Plains. The historic record is
320 an important source of information about warfare. The Caddo are one of only a few tribes that
321 can be directly traced from the present into ancient times, making possible the cautious (Belfer-
322 Cohen and Goring-Morris 2009; Milner 1999) application of the direct historical approach.
323 Although internally peaceful, the historic Caddo were under threat of violence from other tribes
324 including the Wichita, Choctaw, Chickasaw, Osage, Tonkawan, and Apache (Barr 2007; John
325 1975; Smith 1994). Records indicate the Hasinai Caddo of northeast Texas took heads as war
326 trophies during historic times (Swanton 1942).

327 Second, the deposit reflects a Caddo ritual signifying Crenshaw as a place of regional
328 ritual significance through the deposition of ancestors' remains from outlying sites. A hasty
329 interpretation of the skull-and-mandible cemetery might be trophy taking as a result of
330 interregional warfare, but there is little archaeological evidence of warfare among the ancient
331 Caddo. There is also little evidence of violent trauma among the ancient Caddo and the
332 antecedent Woodland period Fourche Maline (Rose, Burnett, et al. 1999; Rose, D. Gentry, et al.
333 1999; Rose and Harmon 1999). However, a recent bioarchaeological analysis at the Akers site
334 (34LF32) in eastern Oklahoma shows that this was not universally the case (Rowe 2017). In the
335 rest of the Caddo Area, researchers have seen a lack of evidence for violence (Burnett 1990;
336 Rose, Burnett, et al. 1999; Rose, D. Gentry, et al. 1999; Rose et al. 1998; Rose and Harmon
337 1999). Outside of the Crenshaw skulls and mandibles, the few interpretations of ancient violence
338 in the Caddo Area mainly come from the presence of isolated skulls, which often lack any
339 justification for the interpretation they are trophy skulls (Harris 1953; Perino 1983; Story 1990).
340 No evidence of fortification has been found at Crenshaw (Samuelson 2010) and the Caddo are
341 not known for having fortified, nucleated villages after 1200 CE (Perttula and Walker 2012). The
342 lack of nucleated, fortified settlements in the Caddo Area suggests that their settlement patterns
343 may have been more influenced by food procurement strategies than violence. The Caddo
344 adopted maize as a staple during between 1200 and 1500 CE, which may have been more
345 productive with a dispersed settlement pattern (Wilson and Perttula 2013). In sum, the available
346 information from archaeological and bioarchaeological sources outside of Crenshaw generally
347 show a lack of evidence for warfare. While it is clear from the historic accounts that warfare was
348 not foreign to the Caddo after European contact (John 1975; Smith 1994:199; Swanton 1942),

349 1200-1500 CE may have been a time when the Caddo lacked a motivation to be involved in
350 violent conflicts with neighboring regions.

351 Caddo burial practices in the Southern Caddo Area are commonly defined by shaft
352 burials dug into mounds, often containing large numbers of associated objects. However, burials
353 in separate cemetery areas and in fields around mounds were also common. All of these can be
354 seen at Crenshaw (Samuelson 2009). Skull or mandible burials were generally not recognized as
355 a major form of burial among the Caddo until the Crenshaw remains were uncovered. However,
356 it is clear that it was practiced at other sites in southwest Arkansas, including Battle, Haley,
357 Miller's Crossing, and Mineral Springs, as well as in northeast Texas (Harris 1953; Samuelson
358 2016). Headless bodies have been found at Haley and Hardman in southwest Arkansas and there
359 are copious examples of remains in different stages of disarticulation in mound burials at
360 Crenshaw. One example even includes a cluster of skulls buried next to a large number of
361 disarticulated postcranial bones (Samuelson 2020). There are not many excavated cremations
362 from this time, but there are examples at Crenshaw and at Mineral Springs.

363 Ancestor veneration by the Caddo could be reflected in the care and complex suite of
364 burial practices and rituals that they performed. A finding that the skulls and mandibles represent
365 local ancestors would have important implications about Caddo burial rituals and practices given
366 the great expansion of this preexisting burial practice. For example, in the Northern Caddo Area,
367 the comingling of disarticulated burials, such as those in the Craig mound at Spiro, have led to
368 interpretations that such burial events represent expressions of collective or corporate identity
369 (Brown 2012). The large collection of individuals at Crenshaw could represent a similar
370 collective or corporate identity. However, there is biological trait and dietary reasons to suggest

371 that the clusters of skulls could represent family groupings while the mandibles represent a
372 collection of other individuals (Samuelson 2020). The possible family groupings and the
373 associated potential for the collection and display of family members for a period of time prior to
374 burial could reflect strong ties to particular family lineages and the veneration of these ancestors.
375 The adoption of maize as a staple and the potential dispersal of the population or incorporation of
376 surrounding sites in its ritual sphere of influence could provide another explanation for the
377 expansion of this practice. Incorporating larger numbers of people from greater distances would
378 create a functional challenge in the need to move large numbers of bodies over long distances.
379 Severing the skull or mandible would allow for burial at Crenshaw without the need to transport
380 entire bodies.

381 **2. Materials and Methods**

382 **2.1. Sample Selection**

383 Human teeth were selected from a cross section of skull and mandible clusters from both
384 the WSA and NSA, 50 m north-northeast of the WSA, on the southern edge of the site. This
385 included samples from WSA Clusters 1, 2, 5, 6, 17 and 25 and NSA Clusters 1, 2, and 8. Some
386 skull clusters were sampled because there was inter-observer error related to evidence of violent
387 trauma, with the most recent analysis (Zabecki 2011) unable to verify evidence of violent
388 trauma. These skull clusters were WSA Clusters 6, 17, and 25 and NSA Cluster 1, although
389 WSA Cluster 17 also included an isolated mandible. Some skull clusters were also sampled
390 because they had evidence of cranial modeling (modification of the shape of the skull during
391 childhood growth). Although cranial modeling was practiced by the Caddo, specific types of
392 cranial modeling were previously hypothesized to be a culturally foreign trait (Schambach et al.

393 2011), so evaluating these were a priority (see Samuelsen 2020). These skull clusters were WSA
394 Clusters 5 and 6 and NSA Clusters 1 and 2, although NSA Cluster 2 also contained an isolated
395 mandible. WSA Cluster 2 contained 112 mandibles and was sampled to investigate if mandibles
396 might be coming from different locations than skulls. WSA Cluster 1 and NSA Cluster 8 were
397 also sampled to provide a test of skull clusters that had been previously tested for Sr, carbon, and
398 nitrogen isotopes (Akridge 2014; Samuelsen 2016) and to provide a test of skulls that had no
399 suggested evidence of violence or cranial modeling. One duplicate sample from the Rayburn
400 Cluster previously analyzed by (Samuelsen and Potra 2020) was reanalyzed for trace element
401 concentrations and isotopes. Only Sr isotopes were taken from some human teeth from the
402 Rayburn Cluster, WSA Cluster 15 (mandibles), and WSA Cluster 18 (skulls). Trace element
403 analysis was only performed on samples analyzed for both Pb and Sr isotopes. Soil leachates are
404 all from previously processed cores from Crenshaw and from the soil surrounding the burials
405 themselves (Samuelsen and Potra 2020). These were all located greater than or equal to 25 cm
406 below the surface, with some as deep as 1.25 m. This previous research showed the lack of
407 evidence for anthropogenic Pb contamination at these depths.

408 Animal tooth samples were selected from key sites with evidence of violence from ca.
409 1200-1500 CE (Bovee and Owsley 1994; Brookes 1999; Brooks 1994; Brooks and Cox 2011;
410 Early 1993; Harmon and Rose 1989; Harris 1953; Huff and Biggs 1963; Krus 2016; Owsley et
411 al. 1989, 1994; Owsley and Jantz 1989; Pillaert 1963; Potter 2005; Prewitt 2012; Reinhard et al.
412 1990; Rose, D. Gentry, et al. 1999; Ross-Stallings 2008; Story 1990). While efforts were made to
413 sample specific sites with potential evidence of violence, sometimes ancient animal teeth were of
414 limited availability. In those cases, samples were obtained from nearby sites to provide an idea of

415 the regional isotopic signature. Samples from the Southern Plains were collected from sites in
416 central and west Oklahoma and in east Texas. Samples from the Central Mississippi Valley and
417 the upper portion of the Lower Mississippi Valley were sampled from south Illinois, southeast
418 Missouri, northeast Arkansas, and northwest Mississippi. To provide a test if a more proximal
419 area could be distinguished with Pb isotopes and to test the range of Crenshaw's ritual influence,
420 sites in northwest Louisiana were also sampled. Samples previously (Samuelsen and Potra 2020)
421 processed for Pb isotopes by were selected for Sr isotope analysis, further establishing the Sr
422 isotopic values in southwest Arkansas, northwest Louisiana, and northwest Mississippi. Animals
423 sampled included deer, rabbit/cottontail, opossum, squirrel, pocket gopher, raccoon, beaver,
424 ground hog, black bear, grey fox, skunk, dog, rat, and other small rodents.

425 Contamination of ancient animal tooth enamel is also potentially an issue, but it is
426 unclear if the trace element methods and MTCs created for human tooth enamel are applicable to
427 animal tooth enamel since animals may have biological or dietary differences (e.g. soil ingestion)
428 that result in different elemental concentrations in their tooth enamel, which may be different
429 depending on the species (Kohn et al. 2013; Samuelsen and Potra 2020). While developing such
430 a method for animal tooth enamel is viewed as important for future research, it is considered
431 beyond the scope of the present study. Some research (Giovas et al. 2016) has suggested Pb
432 isotopes could be problematic from some animals, such as smaller animals. However, as noted
433 previously (Samuelsen and Potra 2020), most of the samples with issues in that study were
434 modern animal teeth or snails, which are more likely to be contaminated with modern
435 anthropogenic Pb. This present study utilized only ancient animal tooth enamel to avoid these
436 issues and utilized acid leaching to clean the enamel.

437 Animal teeth were generally selected from ancient contexts greater than 20 cm below the
438 surface to limit the impact of anthropogenic Pb, which did not affect ancient animals in the US
439 and typically stays close to the surface (Samuelsen and Potra 2020). To avoid anthropogenic Pb,
440 animal teeth were selected from these deeper contexts. There are exceptions, particularly two
441 samples (AN174 and AN175) at Bonds Village site (22TU530) which are surface collections.
442 This was necessary due to the lack of collections of buried faunal material at the site. Sampling
443 this site was a top priority for this research since headless burials at the site had been previously
444 suggested to be victims of Caddo raids from Crenshaw (Brookes 1999). Including these samples
445 did not contradict the linear patterning defined by the other samples in northwest Mississippi. If
446 the animal teeth are contaminated by soil Pb, but not anthropogenic Pb, then their Pb isotope
447 values would still be an appropriate comparison to the human remains. If it is not impacted by
448 anthropogenic Pb, the labile portion of soil is considered a viable source of biologically available
449 Pb ratios for the geographic area under study (Eshel et al. 2020; Samuelsen and Potra 2020).
450 However, uncontaminated ancient animal teeth are the preferred comparison.

451 **2.2. Lab Methods**

452 **2.2.1. *Tooth Drilling and Pre-treatment***

453 The Caddo Nation of Oklahoma gave permission for destructive analysis on the human
454 teeth tested in this study. Each tooth was cleaned through sonication in ultra-pure water for 30
455 minutes and dried overnight (Samuelsen and Potra 2020). A microscope was used for high
456 accuracy drilling of the teeth and aided in the removal of dentin from enamel. The surface of the
457 human tooth enamel was entirely removed (animal teeth surfaces were abraded (Turner et al.
458 2009) with a drill bit to clean and remove any potential contaminants. Any areas of discoloration

459 were also entirely removed. A diamond wheel bit was used to cut approximately 50 mg of
460 enamel from each animal tooth. Any cracks in the enamel were physically broken and both sides
461 of the enamel along the cracks were removed with a drill bit. Small animal teeth often did not
462 have 50 mg of enamel present, so amounts closer to 20 mg were used for these samples. Human
463 enamel samples used smaller amounts of enamel (about 20 mg). Dentin was clearly removed
464 from all human, deer, beaver, and bear samples. Every effort was made to remove all dentin from
465 all samples, but in order to maximize enamel recovery, some small animal teeth may include
466 small amounts of dentin. As an additional precautionary step, the enamel was sonicated for 60
467 minutes in ultra-pure water, sonicated for 30 minutes in 0.1 M high-purity acetic acid, sonicated
468 in fresh acetic acid a second time for 5 minutes, and rinsed to a neutral pH with ultra-pure water.
469 Samples were generally processed in batches of 25 teeth with multiple blanks.

470 **2.2.2. *Column Chemistry***

471 Column chemistry (ion chromatography) was executed in a class 100 clean room at the
472 University of Arkansas Radiogenic Isotope Laboratory. The samples were digested in 1 N HBr
473 in acid-cleaned Teflon beakers. A portion of the sample was then removed for trace element
474 analysis. The columns, containing 80 μ l of Dowex 1X-8 Pb resin, were cleaned with 2 ml of 0.5
475 N HNO₃, followed by 2 ml of ultra-pure water. The columns were then conditioned with 2 ml of
476 6 N HCl. Each enamel sample was loaded and then the columns were washed three times with 1
477 ml of 1 N HBr. The Pb fraction from the sample was then eluted into a Teflon beaker using 2 ml
478 of 20% HNO₃ and subsequently dried down on a hot plate inside a class 10 laminar flow hood
479 for isotope analysis. The loaded sample and wash from the Pb column processing were collected
480 in a separate Teflon beaker. The liquid in these beakers was dried down at 80°C on a hotplate

481 and redigested in 1 ml of 3.5 N HNO₃ three times. Following the final digestion in 1 ml of 3.5 N
482 HNO₃, the sample was used for Sr column chemistry. This included the leftover portions of
483 samples previously processed for Pb isotopes (Samuelson and Potra 2020), providing Sr samples
484 from southwest Arkansas humans (HU1-HU36) and southwest Arkansas, Louisiana, and
485 Mississippi animals (AN1-AN72 and AN149-AN156). The columns, containing 0.1 ml of
486 Eichrom Sr resin, were cleaned with 2 ml of ultra-pure water. They were then conditioned with 1
487 ml of 3.5 N HNO₃ before being loaded with the sample digested in 1 ml of 3.5 N HNO₃. The
488 sample was then washed with four 100 µl aliquots of 3.5 N HNO₃, followed by 1 ml of the same
489 acid. Finally, the Sr fraction was eluted into an acid-cleaned vial using 1.8 ml of ultra-pure water.
490 An additional 0.2 ml of 20% HNO₃ was added to make the Sr fraction solution 2% HNO₃. The
491 sample and wash that passed through the column prior to elution was collected in a separate acid-
492 cleaned vial. The samples were generally processed in batches of 25 samples with both blanks
493 from the acid pretreatment step and column blanks for both Pb and Sr. Blanks from the acid
494 pretreatment went through all the same processes as the samples (post-drilling).

495 ***2.2.3. Trace Element Analysis***

496 Trace element analysis was performed on tooth enamel (including one modern tooth
497 enamel sample) by taking portions from the pre-column solutions, placing them in a vial, and
498 adding 2% HNO₃ until they were diluted 10,000 times. Trace element analysis focused on Pb
499 and the elements identified by in previous research (Kamenov et al. 2018) as useful for assessing
500 post-burial contamination: V, Mn, Fe, La, Ce, Nd, Dy, Yb, Th, and U. However, additional
501 elements (Li, B, Al, Cr, Co, Ni, Cu, Zn, Y, Mo, Ag, Cd, Ba, Pr, Sm, Eu, Gd, Tb, Ho, Er, Tm, and
502 Lu) were obtained (data S1). The trace element analysis was carried out on a Thermo Scientific

503 iCAP quadrupole inductively-coupled plasma mass spectrometer (Q ICP-MS) and corrected to
504 multiple concentrations of elemental standard ICP-MS-68A and corrected for drift using a
505 standard bracketing method for each element (drift peak was assigned based on peak Ca
506 concentrations within the samples). Replicate animal tooth enamel samples (n=3) tested
507 reproducibility for each element. Certain elements provided more reliable results, similar to
508 previous studies showing some elements in tooth enamel are more reproducible than others
509 (Kamenov et al. 2018; Kohn et al. 2013). Some had deviations of less than 10% of the average
510 concentration (V, Mn, Ni, Zn, Y, Ba, La, Pr, Ho, Yb, Pb, U), others were less than 15% (Ce, Nd,
511 Sm, Gd, Er), others were less than 25% (B, Fe, Co, Cu, Eu, Tb, Dy), others were less than 36%
512 (Al, Ag, Cd, and Tm), and the most unreliable (>36%) were Li, Cr, Mo, Lu, and Th (see data
513 S1). Th had variable concentrations in the first two animal enamel replicates which is likely
514 related to a known Th washout issue with the Q ICP-MS. This issue was fixed before the human
515 tooth enamel and the other replicate sample were run, so it is suspected that Th was more reliable
516 in the human enamel than suggested by this measure. Samples HU40, HU41, and HU43 were
517 excluded from analysis since the trace element portion of these samples was clearly lab
518 contaminated. The source (pipette) and timing (during trace element dilution) of this
519 contamination was obvious and did not affect the isotopic portion of the samples as it occurred
520 after the trace element portions were removed. HU42 was processed at a different time and
521 therefore was not contaminated. Additional trace elements on soil leachates from previous work
522 (Samuelson and Potra 2020) are also included. Despite the lab contamination of the trace element
523 samples, the Nd concentrations of HU40, HU41, and HU43 were above the Nd MTC but below

524 three times the Nd MTC and are therefore included in the above MTC group for Pb isotope
525 analysis.

526 ***2.2.4. Pb and Sr Isotope Ratio Analysis***

527 The Pb fraction was analyzed on a Nu Plasma MC-ICP-MS using a desolvating system at
528 the University of Arkansas' Trace Element and Radiogenic Isotope Laboratory (TRAIL). The
529 dried down Pb samples were redissolved in 2% HNO₃ spiked with a thallium (Tl) standard
530 created just before analysis (Kamenov et al. 2004). The Pb isotopes were corrected to NBS 981
531 Pb standard (Todt et al. 1996) values (²⁰⁸Pb/²⁰⁴Pb = 36.7006, ²⁰⁷Pb/²⁰⁴Pb = 15.4891, ²⁰⁶Pb/²⁰⁴Pb =
532 16.9356) using a time-based bracketing method. A standard was run after every fourth sample.
533 All standard and sample Pb data were normalized to ²⁰⁵Tl/²⁰³Tl = 2.38750 (Kamenov et al. 2004).
534 All standards used for correcting data throughout different runs had higher standard deviation
535 (²⁰⁸Pb/²⁰⁴Pb = 36.667±0.012 2 σ , ²⁰⁷Pb/²⁰⁴Pb = 15.482±0.003 2 σ , ²⁰⁶Pb/²⁰⁴Pb = 16.929±0.003 2 σ).
536 Samples were corrected to standards within runs and the standard deviation was lower within
537 runs (average, ²⁰⁸Pb/²⁰⁴Pb ±0.007 2 σ , ²⁰⁷Pb/²⁰⁴Pb ±0.002 2 σ , ²⁰⁶Pb/²⁰⁴Pb ±0.002 2 σ). Given the
538 small amount of Pb in many teeth, aiming to a consistent concentration in solution for all
539 samples is generally not possible. Samples with the lowest concentrations were analyzed using
540 time-resolved analysis. Given that for human teeth the entire surface of the tooth enamel wedge
541 was removed and a lower amount of enamel was used, some samples had very low
542 concentrations (data S1). The effect of lower concentrations was investigated on the Nu Plasma
543 by repeatedly running multiple concentrations (80 ppb, 8 ppb, and 0.8 ppb) of the Pb standards
544 as samples bracketed by 80 ppb Pb standard concentrations after every fourth sample. The Pb

545 standards run as samples were corrected to the 80 ppb Pb standard using a time-based bracketing
546 method.

547 The Sr fraction was similarly analyzed at TRAIL for all human and most animal samples
548 AN1-AN24 and AN57-AN180. Samples AN25-AN56 were analyzed at the University of Illinois
549 Urbana-Champaign also using a Nu Plasma HR (data S1). The analysis program used at both
550 locations corrected for any detected interference from Rb, Kr, and BaAr. The Sr isotopes were
551 corrected to SRM 987 standard value ($^{87}\text{Sr}/^{86}\text{Sr} = 0.71025$) using a time-based linear bracketing
552 method. All standard and sample Sr data were normalized to a ratio of $^{86}\text{Sr}/^{88}\text{Sr} = 0.1194$.
553 Samples were diluted in 2% HNO₃ until they matched the standard concentrations, which were
554 run at around 15v on ^{88}Sr . Blanks processed through all procedures and column blanks had Pb
555 concentrations that were less than 5‰ of human enamel samples (7.5‰ animal) used in linear
556 patterning analysis and less than 1‰ for all Sr samples.

557 **2.3. Selection of Low Pb Concentration Thresholds for Isotope Analysis**

558 Multiple concentration Pb standard runs showed that there were no significant problems
559 in accuracy or precision with the 80 ppb (~0.450 v on ^{204}Pb) and 8 ppb (~0.045 v on ^{204}Pb)
560 standards. However, the 0.8 ppb (~0.0045 v on ^{204}Pb) standard showed a dramatic decrease in
561 accuracy and precision (**Fig. S1**). This made it clear that low concentration samples would cause
562 local individuals to appear non-local in a patterned way. The pattern consisted of a trend that
563 directly affects linear patterning analysis because it is nearly perpendicular to the linear patterning
564 represented by the animals in southwest Arkansas (**Fig. S1b**). This would have great effects on
565 the human data, pushing otherwise local samples outside of the local range. In one bivariate
566 comparison (**Fig. S1b**), it would most likely result in samples appearing below the southwest

567 Arkansas animals, causing them to appear non-local and as though they originated from another
568 region. While the accuracy could potentially be corrected for, the great lack of precision would
569 undermine the reliability of any comparisons. It became apparent that human samples under
570 about 0.025v on ^{204}Pb had significantly decreased accuracy and precision. Given the potential for
571 incorrect interpretations during linear patterning analysis, a strict threshold of 0.025v on ^{204}Pb
572 was used for the humans. This was determined to be less of a factor for the animal teeth since the
573 increased variability would not affect interpretations, so a threshold of 0.015v on ^{204}Pb was used
574 for these samples. Few animals (n=13) fell below the thresholds because of the greater amount of
575 enamel used compared to human samples. Animal teeth between 0.025v and 0.015v did not
576 contradict the general patterns whereas some humans in that range did due to the patterned way
577 accuracy and precision were affected.

578 **3. Results**

579 **3.1. Linear Patterning Analysis of Pb and Sr Isotopes**

580 The results show that the skulls and mandibles are consistent with the local Pb isotope
581 fingerprint defined by the southwest Arkansas animal tooth enamel. Linear patterning analysis of
582 Pb isotopes (Fig. 2) from the skulls and mandibles (both above and below the Nd MTC) and
583 southwest Arkansas animals show that they are consistent with animals from surrounding sites in
584 all 15 bivariate graphs (**Fig. S2**), but generally not consistent with local Crenshaw humans and
585 animals. The fact that the skulls and mandibles mostly match the animals from surrounding sites
586 rather than the animals and articulated humans at Crenshaw is consistent with a dispersed
587 settlement pattern. This suggests the burial practice may reflect the ritual treatment of
588 surrounding populations' remains in a regional cemetery. The fact that the skulls and mandibles

589 don't match Crenshaw as well as surrounding sites also supports the conclusion that the Pb in the
590 ancient human tooth enamel is uncontaminated. One sample (HU62) is slightly outside the range
591 defined by the animals in one graph (Fig. 2), but this sample is at the lower end of the voltage
592 threshold (0.0273v on ^{204}Pb) and deviates the same way the lowest concentration standards do
593 for that ratio comparison. The difference is within two times the standard error of the sample,
594 making the difference insignificant. It is worth noting that no significant difference was seen
595 between the skulls and mandibles below the MTC and those up to 4.34 times the Nd MTC. The
596 samples below the MTC tended to have lower ratios, but this is an artifact of the higher voltage
597 threshold (0.025v). When a lower voltage threshold (e.g. 0.010v) is used, both samples above
598 and below the MTC have higher ratios. This suggests those samples have not been significantly
599 modified by contaminant Pb.

600 The results also show that the skulls and mandibles are definitively not from most other
601 tested regions. Comparisons between the skulls and mandibles and south Illinois animals show
602 that the skulls and mandibles are non-local to south Illinois (Fig. 3a). The linear patterning of
603 animal teeth from south Illinois is clearly different from the skulls and mandibles. Sampling in
604 southeast Missouri was limited to a single site (Powers Fort), so interpretations are limited.
605 However, the animals from southeast Missouri are separated from the skulls and mandibles and
606 show a much greater perpendicular range, suggesting the skulls and mandibles are non-local to
607 this area (Fig. 3b). Comparing the skulls and mandibles to Oklahoma animals very clearly shows
608 that the animals are extremely different from the skulls and mandibles (Fig. 3c). This indicates
609 the skulls and mandibles are non-local to Oklahoma and do not come from this portion of the
610 Southern Plains. Northwest Louisiana animals are also distinguished from the skulls and

611 mandibles except for a few samples that are close to each other (Fig. 3d). The differences,
612 however, are very strong and indicate the skulls and mandibles are not coming from northwest
613 Louisiana.

614 The results from other regions are sometimes less definitive, but the vast majority of
615 skulls and mandibles are inconsistent with their Pb isotope fingerprint. Northwest Mississippi
616 animals have a linear pattern that is close to the skulls and mandibles but is still differentiable
617 (Fig. 4a). One of these sites (Bonds Village) included headless burials that were previously
618 interpreted as possibly being victims of raids from Crenshaw (Brookes 1999). The Pb isotopes
619 strongly suggest they are not coming from this area. As might be expected given their very
620 similar geology, northeast Arkansas is similar to northwest Mississippi but does have some
621 overlap with the skulls and mandibles in some places (Fig. 4b). However, the linear patterning
622 shows the lower values are not represented in the skulls and mandibles suggesting they are not
623 coming from this area. This is further supported by the narrow range of the Sr isotope data.
624 Animal teeth from Texas show a different linear pattern than the skulls and mandibles and have
625 many Pb isotope ratios that are inconsistent with them (Fig. 4c). There is a significant area of
626 overlap. However, it is considered very unlikely that the skulls and mandibles were coming from
627 Texas since none of them have the lower isotope ratios represented among the Texas animals.
628 Still, this Pb data alone cannot conclusively show that at least some of the skulls and mandibles
629 were not coming from Texas. The addition of Sr data was very helpful in this case.

630 The Sr isotopic background developed in this study shows that the Sr isotope ratios in
631 Mississippi, northeast Arkansas, Oklahoma, and especially Texas (with many ratios below
632 0.708) are generally too low for most of the skulls and mandibles (Fig. 5). The Sr isotopes from

633 Illinois, Louisiana, and Missouri by contrast are too similar to distinguish these areas.
634 Fortunately, the Pb isotopes clearly distinguished the skulls and mandibles from these regions.
635 The southwest Arkansas animals clearly match the skulls and mandibles but have a slightly
636 higher range. This might be expected as humans have a broader diet that may lead to less
637 extreme ratios. It could also be because some of the sampled sites were too far away from
638 Crenshaw to be within its sphere of influence. Sr isotopes from previous research (Esker et al.
639 2019; Hedman et al. 2018) confirm these results where sampled areas overlap.

640 Combining the Pb and Sr isotopes of the animal tooth enamel suggests the skulls and
641 mandibles are not from any of these other regions. This provides a more definitive conclusion for
642 regions where Pb isotopes alone were less clear. A direct comparison of the skulls and mandibles
643 with Texas animals using both Sr isotopes and $^{208}\text{Pb}/^{204}\text{Pb}$ shows that they are clearly
644 differentiable using this method (Fig. 4d). Since this comparison does not require as high
645 accuracy and precision as the Pb isotope linear patterning analysis, it enabled many more skulls
646 and mandibles to be compared (those with thresholds above 0.010v). This allowed for most of
647 the skulls and mandibles (n=41) to be compared to Texas animals (also excluding the four
648 highest concentrated Nd samples). Similar comparisons with northwest Mississippi and northeast
649 Arkansas indicate the vast majority of the skulls and mandibles are non-local to those areas, but a
650 few individuals could not be definitively distinguished.

651 **3.2. Analysis of Soil Contamination**

652 Previous work (Samuelson and Potra 2020) showed that anthropogenic Pb contamination
653 at Crenshaw is not a significant factor. However, soil Pb contamination still needs to be
654 considered for each sample. This study focuses on Nd for two reasons. Nd had the strongest

655 correlations with the most elements and Nd had the highest concentration (C) relative to the
656 MTC, or C/MTC, (besides V) for almost every sample. The trace element concentrations of the
657 human tooth enamel samples ordered by Nd concentration show that about half of the samples
658 fall below all thresholds with the exception of V (Fig. 6a). The correlation analysis of trace
659 elemental concentrations suggests that most enamel samples were not impacted by Pb
660 contamination. Excluding the four samples with the highest Nd concentrations greatly decreased
661 or removed any correlation with Pb concentrations. Therefore, they are interpreted to be the most
662 likely samples to have been contaminated by the soil.

663 While the thresholds outlined in previous research (Kamenov et al. 2018) were useful, it
664 became apparent that certain elements correlated with each other and that when stricter MTCs
665 for Fe (60 ppm), Yb (0.005 ppm), and Th (0.005 ppm) were used, this correlation became more
666 visually apparent (Fig. 6b). Some figures use modified MTCs, but these are always lower than
667 previously established MTCs, are only used for display purposes, and the MTCs used are noted
668 in the captions. Some elements clearly correlated with each other while others did not. Three
669 groups of correlated elements are defined here because they more closely correlated with each
670 other in the human tooth enamel: V and U; Fe, Mn, and Th; and the rare earth elements (REE)
671 Nd, La, Ce, Dy, and Yb. While this grouping and analysis may prove to be useful elsewhere, it is
672 important to note that other locations may not follow these same patterns with more complex
673 chemical compositions and contaminants or where diagenesis is caused by particular chemical
674 reactions. In this case, Pb correlated with every other element in the soil leachates except Ag and
675 Mo ($R^2 < 0.2$), although some more than others (data S1). Some elements may be more or less
676 likely to penetrate enamel during diagenesis, so lack of correlation could be caused by elemental

677 differences. However, we saw little evidence of this with most elements in this study as they
678 generally correlated with Pb in the contaminated samples. The elements that did not strongly
679 correlate with Pb in those samples ($R^2 < 0.5$) are Li, B, Al, V, Co, Ni, Cu, Zn, Ag, Ba, and Th.

680 **3.2.1. *V and U***

681 The first correlation group is V and U (**Fig. S3**). V correlated better with U than with any
682 other element ($R^2=0.33$) and vice versa when the four highest concentrated Nd enamel samples
683 (HU44, HU49, HU38, and HU45) were excluded. The results indicate that a V MTC of 0.11 ppm
684 was not useful for detecting diagenesis in tooth enamel. V does not seem to have any relation to
685 the other elements (Fig. 6). In addition, V and U seem to have little to no relation to Pb
686 concentrations. When the four highest concentrated Nd samples are excluded, there is no
687 correlation with U ($R^2=0.00$) or V ($R^2=0.00$).

688 **3.2.2. *Fe, Mn, and Th***

689 The second correlation group is Fe, Mn, and Th. Fe moderately correlated with Mn and
690 Th, although Mn and Th did not correlate well (Fig. 7). This is also visible when comparing them
691 on an MTC graph where they increase at similar rates (**Fig. S4**). Fe, Mn, and Th were placed in a
692 correlation group despite Fe and Th correlating well with REEs in enamel. This is because they
693 increased at a different rate than REEs (similar to Mn) and they correlate less well than REEs do
694 with each other. Enamel Fe, Mn, and Th correlations of with REEs were significantly reduced
695 when excluding the four highest concentrated Nd samples (Fe $R^2 \approx 0.10$, Mn $R^2 \approx 0.10$, and Th
696 $R^2 \approx 0.40$). Correlations between Fe, Mn, and Th are similar in soil and when all enamel samples
697 are included but drop when the four highest Nd concentration enamel samples are excluded (Fig.
698 7). Similar to U and V, these three elements correlated moderately well with Pb concentrations

699 (R²≈0.45), but once the four highest Nd samples were excluded, the correlations dropped
700 considerably (R²≈0.10). This lack of correlation with Pb concentrations in the remaining samples
701 suggests they lack significant Pb contamination.

702 **3.2.3. Rare Earth Elements: Nd, La, Ce, Dy, and Yb**

703 The third correlation group is Nd, La, Ce, Dy, and Yb (Fig. 8). These elements are
704 commonly used in studies evaluating diagenesis in fossils (Kohn et al. 2013). The correlation
705 between these elements in soil leachates (R²≈0.99) and tooth enamel samples (R²≈0.96) is
706 extremely strong and can be explained by them all being REEs with similar atomic masses (Fig.
707 9). This correlation is only slightly reduced when the four highest concentrated Nd samples are
708 excluded, but Dy and Yb correlations are significantly lower. This is consistent with REE
709 correlation comparisons to modern uncontaminated Idaho bear and carnivore tooth enamel (Fig.
710 S5), where Nd, La, and Ce (LREE) correlate less well with Dy and Yb (MREE-HREE). The
711 similarly very high correlations between all REEs in soil leachates and the four contaminated
712 ancient human tooth enamel samples suggest that soil has affected those four teeth. By contrast,
713 the lower correlations between LREE and MREE-HREE in the “uncontaminated” ancient human
714 tooth enamel and the modern animal tooth enamel suggest that those samples have retained their
715 biological *in-vivo* concentrations. Unfortunately, the biological processes that result in these
716 elements being deposited in tooth enamel are not yet well understood (Kohn et al. 2013). This
717 aspect of the data, if verified further, could serve as a check on the validity of higher MTCs.

718 When the MTCs for all other REEs are adjusted, they follow Nd very closely (Fig. 8b).
719 Another similarity between these REEs is that they are expected to have very low concentrations
720 in tooth enamel (Kamenov et al. 2018), so any appearance of soil contamination is likely to have

721 a major effect on the concentrations of these elements. By contrast, Fe and Mn can have high,
722 naturally occurring concentrations in tooth enamel. Therefore, contamination from the soil may
723 be less evident as the increased concentrations may not be discernably different from the natural
724 variation within a population. For example, Fe and Mn concentrations in soil leachates were less
725 than 9 and 11 times the MTC for tooth enamel, respectively, while Nd concentrations in soil
726 leachates were sometimes greater than 125 times the MTC (**Fig. S6**).

727 A linear comparison with adjusted MTCs clearly shows where concentrations surge (Fig.
728 8d). When plotted on a linear scale, the gradual increases of concentrations show that soil
729 contamination was not clearly apparent until Nd passed five times the MTC. At that point,
730 several elements had passed the thresholds and concentrations drastically increased for the three
731 samples with the most Nd. Considering the minuscule amounts of some of these elements in tooth
732 enamel and the relatively large concentrations of some of these elements in the soil, the
733 drastically increased concentrations for these last three samples display the clearest evidence of
734 post-burial soil contamination. Strong increases of La and Ce in the fourth sample hint that it was
735 affected as well.

736 The only elements that have any clear correlation with Pb concentrations in tooth enamel
737 are REEs (Fig. 9). They generally correlate strongly in soil leachates ($R^2 \approx 0.62$) and tooth enamel
738 ($R^2 \approx 0.70$), but this correlation is severely reduced when the four highest concentrated Nd
739 samples are excluded ($R^2 \approx 0.29$). Excluding additional high concentration Nd samples (even all
740 those above the MTC) sometimes reduces this correlation in some elements, but also increases
741 the correlation in other elements. It is therefore interpreted that the low correlation between the
742 REEs and Pb concentrations is likely due to *in-vivo* caused correlation while the higher

743 correlation is more suggestive of soil contaminants. This suggests samples below an Nd MTC of
744 4.34 (0.25 ppm) have not been subjected to significant Pb contamination.

745 **3.2.4. Other Elements**

746 While not included in the correlation grouping analysis, Y and most other REEs (Pr, Sm,
747 Eu, Gd, Tb, Ho, Er, and Tm) behaved similarly to Nd and should be similarly useful for
748 detecting contamination (**Error! Reference source not found.**). Concentrations of Li, B, Al, Cr,
749 Co, Ni, Cu, Zn, Mo, Ag, Cd, Ba, and Lu were also measured (**Fig. S8**). These elements did not
750 generally have a strong relationship with contamination, although some of these elements also
751 had poor reproducibility in animal enamel replicates. While concentrations did increase for some
752 of these elements for the four highest concentrated Nd samples (like V, Mn, Fe, and U), they
753 generally had many other samples with similar or higher concentrations of these same elements.
754 This is of particular importance for Ba, which some research has used to assess contamination
755 related to Pb isotopes (Beherec et al. 2016; Eshel et al. 2020). The use of these elemental
756 concentrations alone could cause preserved samples to be identified as contaminated and
757 contaminated samples to be identified as preserved. However, this is based only on the evidence
758 at the Crenshaw site. Sites containing particular contaminants (e.g. a nickel mine) or chemicals
759 could make these elements more useful (Kamenov et al. 2018). There are a few samples with
760 high peaks of individual elements (like Al, Co, Ni, and Cu) which could indicate contamination,
761 but since they contradict the rest of the elements, there may be a reason for these peaks outside
762 of post-burial contamination (e.g. *in-vivo* exposure or lab contamination). For example, exposure
763 to Cu could relate to *in-vivo* exposure to copper objects like those deposited in burials at the site.

764 **3.3. Validation with Pb Isotopes from Enamel and Soil Leachates**

765 When the Pb isotope data is compared with the analysis of contamination using trace
766 element data, several points suggest the correlation analysis was successful at identifying
767 contamination and the lack thereof. A 0.010v on ^{204}Pb threshold was used in this analysis as it
768 did not involve linear patterning analysis of Pb isotope ratios. A simple comparison between the
769 skulls and mandibles above and below the Nd MTC, excluding the four highest concentrated Nd
770 samples, shows strong consistency in Pb isotope ratios (Fig. 10a). This suggests there is little
771 reason on the basis of Pb isotopes to suspect those samples up to 4.34 times the Nd MTC have
772 been significantly affected by contaminant Pb.

773 A Pb isotope comparison of soil leachates and the skulls and mandibles from the WSA
774 suggests that the thresholds identified in the correlation analysis of trace elements successfully
775 identified samples most likely to be affected by contamination (Fig. 10b). Both samples above
776 the MTC and below the MTC do not generally look like the WSA soil average. The large
777 differences within clusters suggest that the *in-vivo* Pb isotopes are being preserved, verifying that
778 using a higher Nd MTC (4.34 times the original MTC) seems to be identifying uncontaminated
779 samples. Given that the sample of modern human tooth enamel is very limited (Kamenov et al.
780 2018), it is worth noting that modern omnivore tooth enamel has previously been shown to have
781 Nd concentrations as high as five times the original Nd MTC (Kohn et al. 2013). However, direct
782 comparison between trace elements in human and animal tooth enamel should be made with
783 caution until the differences are better understood. Many of the samples furthest from the soil
784 average (both above and below the soil average) include those above the Nd MTC. The results
785 show that the samples with Nd concentrations greater than 4.34 times the Nd MTC are generally

786 close to the WSA soil average. This suggests this threshold is appropriately identifying the
787 samples most likely to have been contaminated. However, these samples are not very different
788 from uncontaminated samples from the same cluster, suggesting that Pb contamination may not
789 be significantly modifying the potentially contaminated samples' *in-vivo* values. This is also
790 supported by HU44 B, the highest concentrated Nd sample, which has a high Pb isotope ratio
791 compared to the soil average. It is interpreted that this sample has an even higher *in-vivo* isotope
792 ratio. Despite it having the clearest evidence of contamination, it appears that not enough
793 contaminant Pb was added to overwhelm the original isotope ratio. It was likely moved
794 downward to a lower ratio through the addition of lower ratio soil Pb contamination. This
795 suggests that the other samples, with much less evidence of contamination, are unlikely to have
796 been heavily modified from their *in-vivo* values.

797 The Pb isotope ratios from the NSA show a similar pattern (Fig. 10c). The skulls and
798 mandibles from both NSA 2 and NSA 8 maintain different Pb isotope ratios from the soil for
799 samples above and below the MTC. None of these samples were over four times the Nd MTC.
800 NSA 1 was buried immediately next to NSA 2, allowing it to be compared to soil from NSA 2.
801 NSA 1 also has ratios that are consistently different from this soil and includes samples from
802 both above and below the MTC.

803 The similarity between the WSA skulls and mandibles and the WSA soil average might
804 suggest general contamination of the samples, but this is contradicted when comparing the WSA
805 to the NSA (Fig. 10d). The skulls and mandibles from both areas have ratios similar to the WSA
806 soil average despite the NSA having higher ratio soil. In fact, the NSA remains match the WSA
807 soil better than the WSA remains. What this suggests is that the WSA and NSA remains were

808 coming from places with ratios that happen to be similar to the WSA soil. This is supported by
809 the comparisons to southwest Arkansas animal teeth (Fig. 2), as many of the surrounding sites
810 have similar Pb isotope ratios to the WSA soil.

811 **4. Discussion**

812 **4.1. Geographic Origins of the Crenshaw Skull-and-Mandible Cemetery**

813 The multiregional Pb isotopic background constructed using ancient animal tooth enamel
814 illustrates that Pb isotopes are regionally sensitive, and that linear patterning analysis can
815 successfully identify non-locals where Sr alone could not. Similarly, the Sr isotopic data were
816 able to aid the Pb isotopic data in distinguishing additional individuals from the animal enamel
817 isotopes of other regions. Illustrating this facilitates future research by providing a method and
818 model that has been shown to successfully distinguish the geographic origins of ancient human
819 remains when other approaches failed (e.g. Sr alone or using whole rock backgrounds). This
820 encourages future studies to utilize Pb isotopes from ancient animal tooth enamel and linear
821 patterning analysis so they can be successful at distinguishing human remains from different
822 regions. Using limited sample sizes within sites or over large areas may distort the Pb isotope
823 linear patterning and lead to the lack of any such patterning being evident. Therefore, sampling
824 multiple samples per site and multiple sites per region is recommended to properly document the
825 linear patterning within regions.

826 The results of this study indicate or strongly suggest that the skull-and-mandible
827 cemetery is made up of individuals who did not come from the Southern Plains (Texas and
828 Oklahoma), the Mississippi Valley (Northeast Arkansas, Northwest Mississippi, Southeast
829 Missouri, and South Illinois), or Northwest Louisiana. The biologically available Pb method and

830 the Pb isotopic background produced were successful at distinguishing the skulls and mandibles
831 from most other regions. The Sr isotopes complemented the Pb isotopes in some cases where the
832 Sr isotopes of the animals in other states were generally too low for the skulls and mandibles. By
833 contrast, the skulls and mandibles have both Pb and Sr isotope ratios that are consistent with
834 animals from sites that surround Crenshaw. Since the background sampling was limited to
835 certain areas, the data are not able to uniquely identify an area of origin. However, the skulls and
836 mandibles were determined to be local to southwest Arkansas and were interpreted to be non-
837 local in all other tested regions.

838 Given this finding and other archaeological information (Samuelson 2020), it is clear that
839 the skull-and-mandible cemetery represented a great expansion of a preexisting burial practice
840 between 1200 and 1400 CE. The Caddo had a suite of burial practices reflecting a larger
841 population than can be described by only focusing on shaft burials in mounds. This included
842 articulated burials, burials in various states of disarticulation, and at least a few cremations. The
843 evidence shows that there was a co-occurrence of the skull-and-mandible cemetery at Crenshaw,
844 the adoption of maize, public building-oriented ceremonialism, potential charnel houses or
845 crematoriums, and the lack of burials at occupied surrounding sites. There is much evidence that
846 other types of secondary burials were occurring in this region which could be related to the
847 transfer of the dead to sacred locations for final burial, such as Crenshaw or Mineral Springs.
848 The data also suggest that while the practice of skull burial seems to have become dominant at
849 this time, examples can be seen during earlier periods and at multiple sites, including Crenshaw
850 itself. More ornate shaft burials in mounds and in the surrounding fields also increased during
851 this period. Therefore, the practice of skull and mandible burial was simply expanded at this time

852 as part of a larger set of changes in the Caddo cultural system, including changes in diet,
853 settlement patterns, ceremonialism, and the area of ritual influence.

854 The dietary data and biological traits (Samuelson 2020) could suggest that the skulls
855 represent family groupings while the mandibles represent a large cross section of the population.
856 This is reinforced by the Pb and Sr isotopic data where the isotopes are more alike within skull
857 clusters than between them. This is consistent with the collection and potential display of the
858 remains of particular lineages within the community for some time prior to burial. Structures
859 with skull pieces, teeth, and ash pits could represent places where these remains were collected,
860 processed, or displayed, including one such structure excavated in the proximity of the skulls and
861 mandibles (Samuelson 2020). The collection, processing, and potential display of these remains
862 suggest the Caddo were participating in a form of ancestor veneration that emphasized the
863 importance of certain families within the community, at least within those family lineages
864 themselves. While ancestor veneration, ritual, and ceremony all played major roles in the
865 expansion of this burial practice, the expansion of the practice likely also had a functional
866 reason. The severing of the head or mandible allowed for a larger and more geographically
867 dispersed community to have their remains buried at Crenshaw, without having to transport
868 entire bodies over long distances.

869 **4.2. Correlation Analysis: *In-vivo* or Soil Contamination**

870 Correlation analysis between trace elemental concentrations and Pb concentrations
871 indicated the four highest concentrated Nd samples are contaminated. The lowest of the four
872 contaminated samples has a Nd C/MTC value of 4.34. Samples below this value do not show
873 evidence of significant modification of Pb concentrations in tooth enamel because the samples

874 show little evidence of the strong correlations that would be expected from post-burial
875 contamination. This was validated by comparisons of Pb isotope data from enamel and soil
876 leachates. It is hypothesized that soil contamination should result in stronger correlations within
877 and between correlation groups, while *in-vivo* exposure (biological processes) should result in
878 weaker correlations, particularly between correlation groups.

879 The data generally support this hypothesis. The contaminated enamel samples have
880 correlated increases of elements within correlation groups and are consistent with the
881 correlations seen in the soil leachates. Soil leachate and enamel comparisons suggest that clear
882 evidence of post-burial soil contamination is reflected by major increases to most elements
883 across different correlation groups because soil has significantly higher concentrations of these
884 elements than enamel. Soil contamination, resulting in strong correlations within and between
885 correlation groups, can be clearly seen by comparing REE and Pb concentrations when only
886 including the four highest concentrated Nd samples (**Fig. S9**). The R^2 values are as high as 1.00
887 for some elements and similarly high correlations are seen between Pb concentrations and Fe,
888 Mn, and U. All of these, except for Yb, are statistically significant ($p < 0.05$) despite representing
889 only four samples. Correlations are not very strong with V or Th. However, the fact that Pb
890 correlates and there are very strong correlations within and between different correlation groups
891 (REEs, Fe, Mn, and U) is very suggestive that this relates to post-burial contamination of Pb.
892 While it is noted that some elements may be more or less likely to penetrate enamel during
893 diagenesis, there was little evidence of this with the elements highlighted in this study as all
894 elements (excluding Th) correlated strongly with Pb in the samples identified as contaminated

895 (Fig. S9). Other elements that correlated strongly ($R^2 > 0.8$) include Cr, Mo, Y, Cd, Pr, Sm, Gd,
896 Tb, Ho, Er, Tm, and Lu.

897 This contrasts with *in-vivo* exposure where correlation may be expected to be restricted to
898 within correlation groups. This may be due to common natural occurrences of these elements or
899 because of the way the body deposits these elements in tooth enamel, although how the body
900 does this for some elements is not yet well understood (Kohn et al. 2013). When excluding the
901 four contaminated human tooth enamel samples, the correlations are weaker and appear very
902 similar to uncontaminated modern Idaho bear and carnivore tooth enamel (Fig. S5). With *in-vivo*
903 exposure, Pb and other elements go through a variety of biological processes before being
904 deposited in tooth enamel (Gulson et al. 1998). Therefore, correlations may still be expected but
905 may be weaker. However, exposure to Pb pollution or metals during a person's lifetime could
906 have an effect on *in-vivo* correlations between Pb and other elements.

907 **4.3. Indigenous Maximum Threshold Concentrations**

908 The results suggest that higher thresholds may be appropriate for different populations.
909 While the analysis concludes that the Nd MTC for this population should be about four times the
910 values expected in modern human tooth enamel, it is concluded that the V MTC should be more
911 than an order of magnitude higher. This would mean that this ancient indigenous population had
912 greater *in-vivo* exposure to many elements than has been shown among modern populations or
913 ancient indigenous populations from Florida (at least those documented thus far). It is
914 hypothesized that this is due to two factors: 1) different elemental exposure for modern and
915 ancient indigenous populations and 2) different elemental exposure for different indigenous
916 populations based on the soil content where the people grew up.

917 This may be particularly true for ancient populations in the US if they were significantly
918 exposed to some type of soil ingestion or leaching of these elements from pottery vessels or other
919 sources. Indigenous populations around the world are known to be much more likely to directly
920 ingest soil either through intentional (geophagia) or unintentional means (Simon 1998).
921 Intentional soil ingestion can be practiced in rituals, soil can be used as an ingredient in food
922 preparation, and soil can be consumed for social reasons. These behaviors can be more prevalent
923 among pregnant mothers and young children. Indigenous populations, particularly children, can
924 also be more exposed to accidental soil exposure through clay floors in houses and many outdoor
925 activities (Simon 1998). Many of these factors do not apply to most modern populations. The
926 interiors of pottery vessels in the Caddo Area are often very rough and porous and are expected
927 to be a potential source of exposure to some of these elements. Laser ablation of cross sections of
928 ancient sherds has shown a depletion of V on the surface (Stoner and Shaulis 2021), which could
929 be related to post-burial leaching, but may also be occurring during food preparation. While this
930 is a relatively under-investigated topic in ancient wares, elemental exposure through leaching has
931 been demonstrated with some modern and much less porous ceramic wares (Dinh et al. 2018).

932 The high concentrations of V in the ancient human tooth enamel and the lack of
933 correlations for most elements related to V are interpreted to be for one of two potential reasons.
934 1) V was high *in-vivo* in this ancient population and the contamination of V is indistinguishable
935 from the variability within the population (i.e., signal-to-noise ratio). For this to be the case, the
936 population at Crenshaw must have had significantly more exposure to V than the previously
937 studied modern populations (Kamenov et al. 2018). The lack of V correlation with other
938 elements is highly suspected to be due to high *in-vivo* concentrations in V. If this is the case, then

939 a V MTC could potentially be more useful in other studies if populations had significantly less
940 exposure to V *in-vivo*. The difference in V concentrations between ancient Florida populations
941 and those at Crenshaw can potentially be explained by the higher content of V in southwest
942 Arkansas soils (Smith et al. 2019). Florida soils have unusually low V concentrations compared
943 to the rest of the US. 2) The contamination of V has no discernible relationship to the
944 contamination of other elements and therefore cannot be used as a reliable predictor of Pb
945 contamination. If this is the cause, then V might not be useful in any study. Regardless, this does
946 suggest that eliminating samples from analysis based solely on a V MTC may result in many
947 uncontaminated samples being excluded and some contaminated samples being included, even in
948 other studies.

949 The difference in V and REE concentrations between ancient Florida populations and
950 those at Crenshaw can potentially be explained by the higher content of V and REE in southwest
951 Arkansas soils compared to Florida soils (Smith et al. 2019). Modern animal tooth enamel has
952 been shown to have V concentrations above the established MTC in some places where V
953 concentrations are higher in the soil, but still well below what is reflected in some human tooth
954 enamel at Crenshaw (Kohn et al. 2013). Therefore, there is evidence that the MTCs defined by
955 previous research (Kamenov et al. 2018) may be appropriate for many areas, but some ancient
956 populations may need higher MTCs for some elements.

957 If an MTC is modified, it should be done with evidence, like the evidence of correlations
958 presented here. In the case of V, it is recommended that it not be used for assessing
959 contamination of Pb, V, Mn, Fe, U, and many other elements were found to not be useful if they
960 were used alone to assess contamination. Many studies have focused on V, U, and Ba in

961 particular in bone and other materials and this analysis may bolster caution with relying on these
962 elements alone (Kohn et al. 2013). However, this analysis studied human tooth enamel
963 specifically and there are potential differences with bone and animal tooth enamel. The results
964 and interpretations about trace element analysis' usability in detecting contamination of Pb in
965 ancient tooth enamel may be applicable to other localities, but the present results are limited to
966 Crenshaw. Therefore, other studies (Simonetti et al. 2021) may have related, but different
967 findings related to which elements are most useful for identifying contamination depending on
968 the soil contents and contaminants present at the site.

969 It is also possible that lower MTCs might be appropriate, like the lower thresholds used
970 here for Fe, Yb, and Th. However, caution should be exercised if lowering thresholds would
971 cause samples to be classified as contaminated when they would have otherwise been identified
972 as uncontaminated. Modification of the MTCs without evidence could be dangerous as it could
973 force samples to be included or excluded from analysis and greatly affect interpretations. A
974 secondary variable to determine MTCs at particular sites may be needed, but a clear method for
975 this has not yet been established beyond the correlation analysis utilized here. However, the
976 results show different correlative expectations for Nd, La, and Ce (LREE) with Dy and Yb
977 (MREE-HREE) for 1) soil leachates/contaminated samples (very high correlations) and 2)
978 uncontaminated ancient human tooth enamel and modern animal tooth enamel (moderate-high
979 correlations). This signature may be a validation that higher MTCs are justified and could be
980 useful for future researchers to evaluate post-burial contamination of ancient human tooth
981 enamel, possibly with some applicability to particular animal species as well. However, this

982 needs to be verified with additional data so that the biological processes that result in the
983 deposition of these elements in tooth enamel can be better understood.

984 **5. Conclusions**

985 This study evaluated the geographic origins of the Crenshaw skull-and-mandible
986 cemetery to test if the ancient Caddo were committing large-scale acts of violence against
987 neighboring regions. The inability to answer the questions surrounding the origins of this skull-
988 and-mandible cemetery created starkly contrasting interpretations about the prevalence and
989 extent of ancient warfare in the intersection between the Eastern Woodlands and the Southern
990 Plains. The increased levels of violence in the Southern Plains and the Central and Lower
991 Mississippi Valleys could have been related to interregional warfare with the Caddo. However,
992 the evidence indicates that the skull-and-mandible cemetery represents a local or regional burial
993 practice associated with Crenshaw's increasing ritual influence over surrounding areas. This,
994 combined with the lack of other evidence of violence, suggests that 1200-1500 CE in the Caddo
995 Area presents a contrast with neighboring regions as a time and place of relative peace. The
996 evidence of warfare seen in these other regions is not the result of Caddo raiding parties. If
997 interregional warfare was occurring at all, it does not appear to have involved the Caddo. This
998 clearly changed sometime around European contact when tensions between the Caddo and other
999 tribes boiled over. Instead, the practice of skull and mandible burial and potential storage or
1000 display of the remains in charnel structures is consistent with Native American practices related
1001 to ancestor veneration.

1002 This study also provides scholars and the Caddo Nation of Oklahoma with a clear,
1003 research-based answer to the questions surrounding the cultural affiliation of the remains. Such

1004 positive collaborative relationships between tribes and archaeologists are critical for continued
1005 research in the US, particularly for isotopic studies which require destructive analysis on human
1006 remains. This study is one such example where the questions the tribe and researchers alike had
1007 about the remains drove the research and resulted in positive outcomes for all stakeholders.

1008 Some studies have challenged the use of tooth enamel and the MTC method for isotopic
1009 studies (Tschetsch et al. 2020). However, the current results here suggest that the previously
1010 established (Kamenov et al. 2018) trace elemental MTC method (with modifications) was largely
1011 successful at verifying that ancient human tooth samples were uncontaminated. With correlation
1012 analysis, this study is able to successfully identify samples most likely to be contaminated. More
1013 research in identifying contamination in ancient tooth enamel is needed for Pb isotopes to be
1014 reliably used to evaluate ancient human geographic origins.

1015 **Acknowledgements**

1016 This study was possible thanks to the support of the Caddo Nation of Oklahoma in
1017 evaluating the cultural affiliation of the remains from the Crenshaw site. George Sabo III
1018 provided valuable input as did many others at the Arkansas Archeological Survey (ARAS). Erik
1019 Pollock and Barry Shaulis of the UA Stable Isotope Laboratory and Trace-element and
1020 Radiogenic Isotope Laboratory assisted by ensuring that the Nu Plasma ICP-MS and iCAP ICP-
1021 MS were functioning properly so that high-resolution Pb isotope, Sr isotope, and trace element
1022 data could be collected. Barry Shaulis also helped collect the trace element data on the iCAP
1023 ICP-MS. Some Sr isotopes (AN25-AN56) were analyzed on the Nu Plasma ICP-MS at the
1024 University of Illinois Urbana-Champaign with the help of Gideon Bartov and Thomas Johnson.
1025 Celina Suarez provided helpful advice and enabled accurate tooth drilling with the use of her

1026 Leica M80 microscope. Kenneth Kvamme, Ann Early, Jami Lockhart, and Jerome Rose also
1027 supplied support at various steps. George Kamenov and John Krigbaum supplied useful advice
1028 about sample processing and analysis. Gary McAdams and the Wichita and Affiliated Tribes
1029 facilitated the analysis of animal teeth in Oklahoma. Samples were obtained from Mary Suter of
1030 the University of Arkansas Museum, Mary-Beth Trubitt from ARAS Arkadelphia Research
1031 Station, Jeff Mitchem and Faye Futch from the ARAS Parkin Research Station, Juliet Morrow,
1032 Sarah Stuckey, and Brandy Dacus from the ARAS Arkansas State University Research Station,
1033 Carol Colaninno-Meeks and Carl Drexler from the ARAS Southern Arkansas University Station,
1034 Megan Cook of the Mississippi Department of Archives and History, Tamira Brennan of the
1035 Center for Archaeological Investigations at Southern Illinois University Carbondale, Pete
1036 Gregory and Jeffrey Girard of Northwestern State University, Susie Fishman-Armstrong of the
1037 Sam Noble Museum, Marybeth Tomka and Lauren Bussiere at the Texas Archeological
1038 Research Lab, and Jessica Boldt of the Museum of Anthropology at the University of Missouri.
1039 Soil cores at Crenshaw were originally collected with the help of Margaret Guccione and her
1040 students. Heidi Davis, Ashley Shidner, Nicole Smith-Guzmán, and Teresa Wilson aided with the
1041 referenced biological trait data which is intended for separate publication.

1042

1043 Funding:

1044 National Science Foundation grant 1830438 (JS)

1045 University of Arkansas Department of Anthropology Hester Davis grant 2015 (JS)

1046 University of Arkansas Department of Anthropology McGimsey grant 2015 (JS)

1047 Arkansas Archeological Society ARF grant (JS)

1048 Competing interests: None.

1049 **Author Contributions:** Conceptualization (JRS), Data curation (JRS), Formal Analysis
1050 (JRS), Funding acquisition (JRS), Investigation (JRS), Methodology (JRS, AP), Project
1051 administration (JRS), Resources (JRS, AP), Validation (JRS), Visualization (JRS), Writing –
1052 original draft (JRS), Writing – review & editing (JRS, AP)

1053 **Data and materials availability:** All data are available in the main text or the
1054 supplementary materials.

1055

1056 **References**

1057
1058 Akridge, Glen D.
1059 2014 Stable Isotope Characteristics of the Skull and Mandible Remains from the Crenshaw
1060 Site, Miller County, Arkansas. *The Arkansas Archeologist* 52:37–63.
1061
1062 Barr, Juliana
1063 2007 *Peace Came in the Form of a Woman: Indians and Spaniards in the Texas Borderlands*.
1064 University of North Carolina Press, Chapel Hill.
1065
1066 Barrett, Jason W., and Andrew K. Scherer
1067 2005 Stones, Bones, and Crowded Plazas: Evidence for Terminal Classic Maya warfare at
1068 Colha, Belize. *Ancient Mesoamerica* 16(1):101–118. DOI:10.1017/S0956536105050091.
1069
1070 Baugh, Timothy G., and Jay C. Blaine
1071 2017 Enduring the violence: Four centuries of *Kirikir'i-s* warfare. *Plains Anthropologist*
1072 62(242):99–132. DOI:10.1080/00320447.2016.1254311.
1073
1074 Beherec, Marc A., Thomas E. Levy, Ofir Tirosh, Mohammad Najjar, Kyle A. Knabb, and Yigal
1075 Erel
1076 2016 Iron Age Nomads and their relation to copper smelting in Faynan (Jordan): Trace metal
1077 and Pb and Sr isotopic measurements from the Wadi Fidan 40 cemetery. *Journal of*
1078 *Archaeological Science* 65:70–83. DOI:10.1016/j.jas.2015.10.006.
1079
1080 Belfer-Cohen, Anna, and A. Nigel Goring-Morris
1081 2009 The Tyranny of the Ethnographic Record, Revisited. *Paléorient* 35(1):107–108.
1082 DOI:10.3406/paleo.2009.5282.
1083
1084 Bentley, Alexander R.
1085 2006 Strontium Isotopes from the Earth to the Archaeological Skeleton: A Review. *Journal of*
1086 *Archaeological Method and Theory* 13(3):135–187. DOI:10.1007/s10816-006-9009-x.
1087
1088 Bonogofsky, Michelle
1089 2011 *The Bioarchaeology of the Human Head: Decapitation, Decoration, and Deformation*.
1090 University Press of Florida, Gainesville.
1091
1092 Bovee, Dana L., and Douglas W. Owsley
1093 1994 Evidence of Warfare at the Heerwald Site. In *Skeletal Biology in the Great Plains:*
1094 *Migration, Warfare, Health, and Subsistence*, edited by Douglas W. Owsley and Richard L.
1095 Jantz, pp. 355–362. Smithsonian Institution Press, Washington DC.
1096
1097 Bowen, Gabriel J.

1098 2010 Isoscapes: Spatial Pattern in Isotopic Biogeochemistry. *Annual Review of Earth and*
1099 *Planetary Sciences* 38(1):161–187. DOI:10.1146/annurev-earth-040809-152429.

1100

1101 Brookes, Samuel O.

1102 1999 Prehistoric Exchange in Mississippi, 10,000 B.C.-A.D. 1600. In *Raw Materials and*
1103 *Exchange in the Mid-South, Proceedings of the 16th Annual Mid-South Archaeological*
1104 *Conference, Jackson, Mississippi—June 3 and 4, 1995*, edited by Evan Peacock and Samuel O.

1105 Brookes, pp. 86–94. Archaeological Report 29. Mississippi Department of Archives and History,
1106 Jackson, Jackson.

1107

1108 Brooks, Robert L.

1109 1994 Warfare on the Southern Plains. In *Skeletal Biology in the Great Plains: Migration,*
1110 *Warfare, Health, and Subsistence*. In *Skeletal Biology in the Great Plains: Migration, Warfare,*
1111 *Health, and Subsistence*, edited by Douglas W. Owsley and Richard L. Jantz, pp. 317–323.

1112 Smithsonian Institution Press, Washington DC.

1113

1114 Brooks, Robert L., and James E. Cox

1115 2011 The Allcorn (34ML1) and Nagle (340K4) Sites in Central Oklahoma and Their
1116 Relationships to the Arkansas River Caddoan Area. *Plains Anthropologist* 56(218):121–141.

1117 DOI:10.1179/pan.2011.012.

1118

1119 Brown, James A.

1120 1971 The Dimensions of Status in the Burials at Spiro. *Memoirs of the Society for American*
1121 *Archaeology* 25:92–92. DOI:10.1017/S0008439500103583.

1122 2012 Spiro Reconsidered: Sacred Economy at the Western Frontier of the Eastern
1123 Woodlands. In *The Archaeology of the Caddo*, pp. 117–138. University of Nebraska Press.

1124

1125 Burnett, Barbara A.

1126 1990 The Bioarcheological Synthesis of the Eastern Portion of the Gulf Coastal Plain: Part 1.
1127 In *The Archeology and Bioarcheology of the Gulf Coastal Plain*, edited by Dee Ann Story,
1128 Janice A. Guy, Barbara A. Burnett, Martha Doty Freeman, Jerome C. Rose, D. Gentry Steele,
1129 Ben W. Olive, and Karl J. Reinhard, 2:pp. 385–418. Research Series 38. Arkansas Archeological
1130 Survey, Fayetteville.

1131

1132 Chacon, Richard J., and Rubén G. Mendoza

1133 2007 North American Indigenous Warfare and Ritual Violence. In . The University of Arizona
1134 Press, Tuscon.

1135

1136 Charles, Douglas K., and Jane E. Buikstra

1137 1983 Archaic Mortuary Sites in the Central Mississippi Drainage: Distribution, Structure, and
1138 Behavioral Implications. In *Archaic Hunters and Gatherers in the American Midwest*, edited by
1139 James L. Phillips and James A. Brown, pp. 117–145. Academic Press, New York.

1140

1141 Danforth, Marie E.

1142 2012 A Compilation of Bioarchaeological Studies of Prehistoric and Early Historic Sites from
1143 Mississippi. *Mississippi Archaeology* 42:105–174.

1144

1145 Davis, Christopher B.

1146 2015 Paleopathology at the Shady Grove Site (22QU525): A Study of Health in the Upper
1147 Yazoo Basin during the Middle Mississippian Period. Unpublished Master's Thesis, Department
1148 of Anthropology and Sociology, University of Southern Mississippi.

1149

1150 Dinh, Nathan NL., Luke T. DiPasquale, Michael C. Leopold, and Ryan H. Coppage
1151 2018 A multi-size study of gold nanoparticle degradation and reformation in ceramic glazes.
1152 *Gold Bulletin* 51(3):75–83. DOI:10.1007/s13404-018-0230-7.

1153

1154 Dudás, F.Ö., S.A. LeBlanc, S.W. Carter, and S.A. Bowring
1155 2016 Pb and Sr concentrations and isotopic compositions in prehistoric North American teeth:
1156 A methodological study. *Chemical Geology* 429:21–32. DOI:10.1016/j.chemgeo.2016.03.003.

1157

1158 Dye, David H.

1159 2009 *War Paths, Peace Paths: An Archaeology of Cooperation and Conflict in Native Eastern*
1160 *North America*. AltaMira Press, Lanham, Maryland.

1161

1162 Early, Ann M.

1163 1993 Mortuary Features. In *Caddoan Saltmakers in the Ouachita Valley*, edited by Ann M.
1164 Early, pp. 49–62. Research Series 43. Arkansas Archeological Survey, Fayetteville.

1165

1166 Eerkens, Jelmer W., Eric J. Bartelink, Laura Brink, Richard T. Fitzgerald, Ramona Garibay,
1167 Gina A. Jorgenson, and Randy S. Wiberg
1168 2016 Trophy Heads or Ancestor Veneration? A Stable Isotope Perspective on Disassociated
1169 and Modified Crania in Precontact Central California. *American Antiquity* 81(1):114–131.
1170 DOI:10.7183/0002-7316.81.1.114.

1171

1172 Eshel, Tzilla, Naama Yahalom-Mack, Ofir Tirosh, Aren M. Maeir, Yehudit Harlavan, Ayelet
1173 Gilboa, and Yigal Erel
1174 2020 Pollution and human mobility in the southern Levant during the Iron Age using chemical
1175 and isotopic analysis of human tooth enamel. *Journal of Archaeological Science* 124:105262.
1176 DOI:10.1016/j.jas.2020.105262.

1177

1178 Esker, D., S.L. Forman, C. Widga, J.D. Walker, and J.E. Andrew
1179 2019 Home range of the Columbian mammoths (*Mammuthus columbi*) and grazing herbivores
1180 from the Waco Mammoth National Monument, (Texas, USA) based on strontium isotope ratios
1181 from tooth enamel bioapatite. *Palaeogeography, Palaeoclimatology, Palaeoecology* 534:109291.
1182 DOI:10.1016/j.palaeo.2019.109291.

1183

1184 Giovas, Christina M., George D. Kamenov, Scott M. Fitzpatrick, and John Krigbaum
1185 2016 Sr and Pb isotopic investigation of mammal introductions: Pre-Columbian zoogeographic

1186 records from the Lesser Antilles, West Indies. *Journal of Archaeological Science* 69:39–53.
1187 DOI:10.1016/j.jas.2016.03.006.

1188

1189 Gulson, B L, C W Jameson, K R Mahaffey, K J Mizon, N Patison, A J Law, M J Korsch, and M
1190 A Salter
1191 1998 Relationships of lead in breast milk to lead in blood, urine, and diet of the infant and
1192 mother. *Environmental Health Perspectives* 106(10):667–674. DOI:10.1289/ehp.98106667.

1193

1194 Gulson, Brian, George Kamenov, William Manton, and Michael Rabinowitz
1195 2018 Concerns about Quadrupole ICP-MS Lead Isotopic Data and Interpretations in the
1196 Environment and Health Fields. *International Journal of Environmental Research and Public*
1197 *Health* 15(4):723. DOI:10.3390/ijerph15040723.

1198

1199 Harmon, Anna M., and Jerome C. Rose
1200 1989 Bioarcheology of the Louisiana and Arkansas Study Area. In *Archeology and*
1201 *Bioarcheology of the Lower Mississippi Valley and Trans-Mississippi South in Arkansas and*
1202 *Louisiana*, edited by Marvin D. Jeter, Jerome C. Rose, G. Ishmael Williams Jr., and Anna M.
1203 Harmon, pp. 323–354. Research Series 37. Arkansas Archeological Survey, Fayetteville.

1204

1205 Harris, R. K.
1206 1953 The Sam Kaufman Site, Red River County, Texas. *Bulletin of the Texas Archeological*
1207 *Society* 24:43–68.

1208

1209 Hedman, Kristin M., Philip A. Slater, Matthew A. Fort, Thomas E. Emerson, and John M.
1210 Lambert
1211 2018 Expanding the strontium isoscape for the American midcontinent: Identifying potential
1212 places of origin for Cahokian and Pre-Columbian migrants. *Journal of Archaeological Science: Reports* 22:202–213. DOI:10.1016/j.jasrep.2018.09.027.

1213

1214

1215 Hodder, Ian
1216 2009 An Archaeological Response. *Paléorient* 35(1):109–111. DOI:10.3406/paleo.2009.5282.

1217

1218 Huff, Mark E., and Norman Biggs
1219 1963 Human Pathology of the Wylie Focus. In *An appraisal of the Archeological Resources of*
1220 *Forney Reservoir, Collin, Dallas, Kaufman, and Rockwall Counties, Texas*, edited by R. K.
1221 Harris and Dee Ann Suhm, pp. 39–45. Texas Archeological Salvage Project. University of Texas
1222 at Austin.

1223

1224 John, Elizabeth A. H.
1225 1975 *Storms Brewed in Other Men's Worlds: The Confrontation of Indians, Spanish, and*
1226 *French in the Southwest, 1540-1795*. Texas A&M University Press, College Station.

1227

1228 Jones, Daniel S., Bethany L. Turner, Jane E. Buikstra, and George D. Kamenov
1229 2017 Investigating the identities of isolated crania in the Lower Illinois River Valley through

1230 multi-isotopic analysis. *Journal of Archaeological Science: Reports* 13:312–321.
1231 DOI:10.1016/j.jasrep.2017.02.030.

1232

1233 Kamenov, George D., Ellen M. Lofaro, Gennifer Goad, and John Krigbaum
1234 2018 Trace elements in modern and archaeological human teeth: Implications for human metal
1235 exposure and enamel diagenetic changes. *Journal of Archaeological Science* 99:27–34.
1236 DOI:10.1016/j.jas.2018.09.002.

1237

1238 Kamenov, George D., Paul A. Mueller, and Michael R. Perfit
1239 2004 Optimization of mixed Pb–Tl solutions for high precision isotopic analyses by MC-ICP-
1240 MS. *J. Anal. At. Spectrom.* 19(9):1262–1267. DOI:10.1039/B403222E.

1241

1242 Kidder, Tristram R.
1243 1998 Mississippi Period Mound Groups and Communities in the Lower Mississippi Valley. In
1244 *Mississippian Towns and Sacred Spaces: Searching for an Architectural Grammar*, edited by R.
1245 Barry Lewis and Charles Stout, pp. 123–150. University of Alabama Press, Tuscaloosa.

1246

1247 King, Charlotte L., Peter Petchey, Hallie R. Buckley, Elizabeth Girvan, Rebecca Kinaston, and
1248 Geoff M. Nowell
1249 2020 Lead astray: The potentials and pitfalls of lead isotopes in a New Zealand colonial burial
1250 context. *Journal of Archaeological Science: Reports* 30:102213.
1251 DOI:10.1016/j.jasrep.2020.102213.

1252

1253 Kintigh, Keith W., Jeffrey H. Altschul, Mary C. Beaudry, Robert D. Drennan, Ann P. Kinzig,
1254 Timothy A. Kohler, W. Fredrick Limp, Herbert D. G. Maschner, William K. Michener, Timothy
1255 R. Pauketat, Peter Peregrine, Jeremy A. Sabloff, Tony J. Wilkinson, Henry T. Wright, and
1256 Melinda A. Zeder
1257 2014 Grand Challenges for Archaeology. *American Antiquity* 79(1):5–24. DOI:10.7183/0002-
1258 7316.79.1.5.

1259

1260 Kohn, Matthew J., Jennifer Morris, and Paul Olin
1261 2013 Trace element concentrations in teeth – a modern Idaho baseline with implications for
1262 archeometry, forensics, and palaeontology. *Journal of Archaeological Science* 40(4):1689–1699.
1263 DOI:10.1016/j.jas.2012.11.012.

1264

1265 Krus, Anthony M.
1266 2016 The Timing of Precolumbian Militarization in the U.S. Midwest and Southeast. *American
1267 Antiquity* 81(2):375–388. DOI:10.7183/0002-7316.81.2.375.

1268

1269 Kuijt, Ian
1270 2009 Neolithic Skull Removal: Enemies, Ancestors, and Memory. *Paléorient* 35(1):117–120.
1271 DOI:10.3406/paleo.2009.5285.

1272

1273 Lambert, Patricia M.

1274 2007 The Osteological Evidence for Indigenous Warfare in North America. In *North American*
1275 *Indigenous Warfare and Ritual Violence*, edited by Richard J. Chacon and Rubén G. Mendoza,
1276 pp. 202–221. University of Alabama Press, Tuscaloosa.

1277

1278 Listi, Ginesse A.

1279 2011 Bioarchaeological analysis of diet during the Coles Creek period in the southern Lower
1280 Mississippi Valley. *American Journal of Physical Anthropology* 144(1):30–40.
1281 DOI:10.1002/ajpa.21364.

1282

1283 McAnany, Patricia A.

1284 1998 Ancestors and the Classic Maya Built Environment. In *Function and Meaning in Classic*
1285 *Maya Architecture*, edited by Stephen D. Houston, pp. 271–298. Dumbarton Oaks, Washington
1286 DC.

1287

1288 Milner, George R.

1289 1995 An Osteological Perspective on Prehistoric Warfare. In *Regional Approaches to*
1290 *Mortuary Analysis*, edited by Lane A. Beck, pp. 221–246. Plenum Press, New York.

1291 1999 Warfare in Prehistoric and Early Historic Eastern North America. *Journal of*
1292 *Archaeological Research* 7(2):105–151. DOI:10.1007/s10814-005-0001-x.

1293 2004 *The Moundbuilders: Ancient Peoples of Eastern North America*. Thames &
1294 Hudson, London.

1295

1296 Milner, George R., Eve Anderson, and Virginia G. Smith

1297 1991 Warfare in Late Prehistoric West-Central Illinois. *American Antiquity* 56(4):581–603.
1298 DOI:10.2307/281538.

1299

1300 Moreiras Reynaga, Diana K., Jean-François Millaire, Ximena Chávez Balderas, Juan A. Román
1301 Berrelleza, Leonardo López Luján, and Fred J. Longstaffe

1302 2021 Residential patterns of Mexica human sacrifices at Mexico-Tenochtitlan and Mexico-
1303 Tlatelolco: Evidence from phosphate oxygen isotopes. *Journal of Anthropological Archaeology*
1304 62:101296. DOI:10.1016/j.jaa.2021.101296.

1305

1306 Morse, Dan F., and Phyllis A. Morse

1307 1983 *Archaeology of the Central Mississippi Valley*. Academic Press, New York.

1308

1309 O'Brien, Michael J.

1310 2001 *Mississippian Community Organization: The Powers Phase in Southeastern Missouri*.
1311 Kluwer Academic/Plenum Publishers, New York.

1312

1313 Owsley, Douglas W., and Richard L. Jantz

1314 1989 A Systematic Approach to the Skeletal Biology of the Southern Plains. In *From Clovis to*
1315 *Comanchero: Archeological Overview of the Southern Great Plains*, edited by Jack L. Hofman,
1316 Robert L. Brooks, Joe S. Hays, Douglas W. Owsley, Richard L. Jantz, Murray K. Marks, and

1317 Mary H. Manhein, pp. 137–156. Research Series 35. Arkansas Archeological Survey,
1318 Fayetteville.

1319

1320 Owsley, Douglas W., Robert W. Mann, and Timothy G. Baugh
1321 1994 Culturally Modified Human Bones from the Edwards I Site. In *Skeletal Biology in the*
1322 *Great Plains: Migration, Warfare, Health, and Subsistence*, edited by Douglas W. Owsley and
1323 Richard L. Jantz, pp. 363–375. Smithsonian Institution Press, Washington DC.

1324

1325 Owsley, Douglas W., Murray K. Marks, and Mary H. Manhein
1326 1989 Human Skeletal Samples in the Southern Great Plains. In *From Clovis to Comanchero:*
1327 *Archeological Overview of the Southern Great Plains*, edited by Jack L. Hofman, Robert L.
1328 Brooks, Joe S. Hays, Douglas W. Owsley, Richard L. Jantz, Murray K. Marks, and Mary H.
1329 Manhein, pp. 111–122. Research Series 35. Arkansas Archeological Survey, Fayetteville.

1330

1331 Pacheco-Forés, Sofia I., Christopher T. Morehart, Jane E. Buikstra, Gwyneth W. Gordon, and
1332 Kelly J. Knudson
1333 2021 Migration, violence, and the “other”: A biogeochemical approach to identity-based
1334 violence in the Epiclassic Basin of Mexico. *Journal of Anthropological Archaeology* 61:101263.
1335 DOI:10.1016/j.jaa.2020.101263.

1336

1337 Perino, Gregory
1338 1983 *Archaeological Research at the Bob Williams Site (41RR16), Red River County, Texas*.
1339 Potsherd Press, Idabel, Oklahoma.

1340

1341 Perttula, Timothy K.
1342 2001 Hunter-Gatherer Mortuary Practices in the Rio Grande Plains and Central Coastal Plains
1343 Archeological Regions of Texas. *La Tierra* 28(3–4):2–83.

1344

1345 Perttula, Timothy K., and Chester P. Walker (editors)
1346 2012 *The Archaeology of the Caddo*. UNP - Nebraska Paperback.

1347

1348 Pillaert, E. Elizabeth
1349 1963 The McLemore Site of the Washita River Focus. *Bulletin of the Oklahoma*
1350 *Anthropological Society* 11:1–114.

1351

1352 Pluckhahn, Thomas J.
1353 2003 *Kolomoki: Settlement, Ceremony, and Status in the Deep South A.D. 350 to 750*. The
1354 University of Alabama Press, Tuscaloosa.

1355

1356 Potter, Daniel R.
1357 2005 Salvage Excavations at the Coleman Cemetery Site. *La Tierra* 32:1–12.

1358

1359 Powell, Mary Lucas

1360 1977 Prehistoric Ritual Skull Burials at the Crenshaw Site (3MI6), Southwest Arkansas.
1361 *Bulletin of the Texas Archeological Society* 48:111–118.

1362

1363 Prewitt, Elton R.

1364 2012 Toyah: Reflections on Evolving Perceptions. In *Toyah Phase of Central Texas*, edited by
1365 Nancy Adele Kenmotsu, pp. 181–203. Texas A&M University Press, College Station.

1366

1367 Price, T. D., J. H. Burton, and R. A. Bentley

1368 2002 The Characterization of Biologically Available Strontium Isotope Ratios for the Study of
1369 Prehistoric Migration. *Archaeometry* 44(1):117–135. DOI:10.1111/1475-4754.00047.

1370

1371 Price, T. Douglas, Lutz Klassen, and Karl-Göran Sjögren

1372 2021 Pitted ware culture: Isotopic evidence for contact between Sweden and Denmark across
1373 the Kattegat in the Middle Neolithic, ca. 3000 BC. *Journal of Anthropological Archaeology*
1374 61:101254. DOI:10.1016/j.jaa.2020.101254.

1375

1376 Reinhard, Karl J., Ben W. Olive, and D. Gentry Steele

1377 1990 The Bioarcheological Synthesis of the Eastern Portion of the Gulf Coastal Plain: Part 2.
1378 In *The Archeology and Bioarcheology of the Gulf Coastal Plain*, edited by Dee Ann Story,
1379 Janice A. Guy, Barbara A. Burnett, Martha Doty Freeman, Jerome C. Rose, D. Gentry Steele,
1380 Ben W. Olive, and Karl J. Reinhard, 2:pp. 419–434. Research Series 38. Arkansas Archeological
1381 Survey, Fayetteville.

1382

1383 Rose, Jerome C., Barbara A. Burnett, and James P. Harcourt

1384 1999 Ouachita Mountains, Arkansas River Valley and Ozark Mountains. In *Bioarcheology of*
1385 *the South Central United States*, edited by Jerome C. Rose, pp. 1–34. Research Series 55.
1386 Arkansas Archeological Survey, Fayetteville.

1387

1388 Rose, Jerome C., Steele D. Gentry, Barbara A. Burnett, Karl J. Reinhard, and Ben W. Olive

1389 1999 Gulf Coastal Plain. In *Bioarcheology of the South Central United States*, edited by
1390 Jerome C. Rose, pp. 83–132. Research Series 55. Arkansas Archeological Survey, Fayetteville.

1391

1392 Rose, Jerome C., and Anna M. Harmon

1393 1999 Louisiana and South and Eastern Arkansas. In *Bioarcheology of the South Central United*
1394 *States*, edited by Jerome C. Rose, pp. 35–82. Research Series 55. Arkansas Archeological
1395 Survey, Fayetteville.

1396

1397 Rose, Jerome C., Michael P. Hoffman, Barbara A. Burnett, Anna M. Harmon, and James E.
1398 Barnes

1399 1998 Skeletal Biology of the Prehistoric Caddo. In *The Native History of the Caddo: Their*
1400 *Place in Southeastern Archeology and Ethnohistory*, edited by Timothy K. Perttula and James E.
1401 Bruseth, pp. 113–126. Studies in Archeology 30. Texas Archeological Research Laboratory, the
1402 University of Texas at Austin.

1403
1404 Ross-Stallings, Nancy A.
1405 2008 Trophy Taking in the Central and Lower Mississippi Valley. In *The Taking and*
1406 *Displaying of Human Body Parts as Trophies by Amerindians*, edited by Richard J. Chacon and
1407 David H. Dye, pp. 339–370. Springer Press, New York.
1408
1409 Rowe, Simone
1410 2017 Patterns of Cranial Trauma at the Akers Site (34LF32) of Southeastern Oklahoma. *Caddo*
1411 *Archeology Journal* 27:20–26.
1412
1413 Samuelsen, John R.
1414 2009 Archaeogeophysical Investigations of Early Caddo Settlement Patterning at the Crenshaw
1415 Site (3MI6). Unpublished Master's thesis, Department of Anthropology, University of Arkansas,
1416 Fayetteville.
1417 2010 Geophysical Investigations of Late Fourche Maline and Early Caddo Settlement
1418 Patterning at the Crenshaw Site (3MI6). *Southeastern Archaeology* 29(2):261–278.
1419 DOI:10.1179/sea.2010.29.2.004.
1420 2014 AMS and Radiocarbon Dating of the Crenshaw Site (3MI6). *The Arkansas*
1421 *Archeologist* 52:17–35.
1422 2016 A reanalysis of strontium isotopes from a skull and mandible cemetery at the
1423 Crenshaw site: Implications for Caddo interregional warfare. *Journal of Archaeological Science: Reports* 5:119–134. DOI:10.1016/j.jasrep.2015.11.012.
1425 2020 An Isotopic Assessment of Late Prehistoric Interregional Warfare in the
1426 Southcentral US. Unpublished PhD Dissertation, University of Arkansas, Fayetteville.
1427
1428 Samuelsen, John R., and Adriana Potra
1429 2020 Biologically available Pb: A method for ancient human sourcing using Pb isotopes from
1430 prehistoric animal tooth enamel. *Journal of Archaeological Science* 115:105079.
1431 DOI:10.1016/j.jas.2020.105079.
1432
1433 Scaffidi, Beth K., George D. Kamenov, Ashley E. Sharpe, and John Krigbaum
1434 2021 Non-Local Enemies or Local Subjects of Violence?: Using Strontium (87Sr/86Sr) and
1435 Lead (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) Isobiographies to Reconstruct Geographic
1436 Origins and Early Childhood Mobility of Decapitated Male Heads from the Majes Valley, Peru.
1437 *Journal of Archaeological Method and Theory*. DOI:10.1007/s10816-021-09519-5, accessed
1438 August 12, 2021.
1439
1440 Schambach, Frank F.
1441 2014 Introduction to the Crenshaw Bioanthropological Project. *The Arkansas Archeologist*
1442 52:1–15.
1443
1444 Schambach, Frank F., Melissa Zabecki, Glen Akridge, and John R. Samuelsen
1445 2011 Determining the Cultural Affiliation of Detached Crania and Mandibles at the Crenshaw
1446 Site, Miller County, Arkansas. Arkansas Archeological Survey, Fayetteville.

1447
1448 Schulting, Rick J.
1449 2013 Mesolithic Skull Cults? In *Ancient Death Ways: Proceedings of the workshop on*
1450 *archaeology and mortuary practices*, edited by Kim von Hackwitz and Rita Peyroteo-Stjerna,
1451 pp. 19–46. Uppsala, Sweden.
1452
1453 Schwitalla, Al W., Terry L. Jones, Marin A. Pilloud, Brian F. Codding, and Randy S. Wiberg
1454 2014 Violence among foragers: The bioarchaeological record from central California. *Journal*
1455 *of Anthropological Archaeology* 33:66–83. DOI:10.1016/j.jaa.2013.11.004.
1456
1457 Sears, William H.
1458 1956 *Excavations at Kolomoki: Final Report*. University of Georgia Series in Anthropology 5.
1459 University of Georgia Press, Athens.
1460
1461 Seeman, Mark F.
1462 1988 Ohio Hopewell Trophy-Skull Artifacts as Evidence for Competition in Middle Woodland
1463 Societies Circa 50 B.C.. A.D. 350. *American Antiquity* 53(3):565–577. DOI:10.2307/281217.
1464 2008 Predatory War and Hopewell Trophies. In *The Taking and Displaying of Human*
1465 *Body Parts as Trophies by Amerindians*, edited by Richard J. Chacon and David H. Dye, pp.
1466 167–189. Springer Press, New York.
1467
1468 Sharpe, Ashley E., George D. Kamenov, Adrian Gilli, David A. Hodell, Kitty F. Emery, Mark
1469 Brenner, and John Krigbaum
1470 2016 Lead (Pb) Isotope Baselines for Studies of Ancient Human Migration and Trade in the
1471 Maya Region. Edited by John P. Hart. *PLOS ONE* 11(11):e0164871.
1472 DOI:10.1371/journal.pone.0164871.
1473
1474 Simon, Steven L.
1475 1998 Soil Ingestion by Humans: A Review of History, Data, and Etiology with Application to
1476 Risk Assessment of Radioactively Contaminated Soil. *Health Physics* 74(6):647–672.
1477 DOI:10.1097/00004032-199806000-00003.
1478
1479 Simonetti, Antonio, Michele R. Buzon, Loretta Corcoran, Abigail M. Breidenstein, and Geoff
1480 Emberling
1481 2021 Trace element and Pb and Sr isotope investigation of tooth enamel from archaeological
1482 remains at El-Kurru, Sudan: Evaluating the role of groundwater-related diagenetic alteration.
1483 *Applied Geochemistry* 132:105068. DOI:10.1016/j.apgeochem.2021.105068.
1484
1485 Smith, David B., Frederico Solano, Laurel G. Woodruff, William F. Cannon, and Karl J. Ellefsen
1486 2019 *Geochemical and Mineralogical Maps, with Interpretation, for Soils of the Conterminous*
1487 *United States*. Scientific Investigations Report.
1488
1489 Smith, Todd F.

1490 1994 The Red River Caddos: A Historical Overview to 1835. *Bulletin of the Texas*
1491 *Archeological Society* 65:115-127.

1492

1493 Stoner, Wesley D., and Barry J. Shaulis

1494 2021 Chemical Mapping to Evaluate Post-Depositional Diagenesis among the Earliest

1495 Ceramics in the Teotihuacan Valley, Mexico. *Minerals* 11(4):384. DOI:10.3390/min11040384.

1496

1497 Story, Dee Ann

1498 1990 Culture History of the Native Americans. In *The Archeology and Bioarcheology of the*
1499 *Gulf Coastal Plain*, edited by Dee Ann Story, Janice A. Guy, Barbara A. Burnett, Martha Doty

1500 Freeman, Jerome C. Rose, D. Gentry Steele, Ben W. Olive, and Karl J. Reinhard, pp. 163–366.

1501 Research Series 38. Arkansas Archeological Survey, Fayetteville.

1502

1503 Story, Dee Ann, Janice A. Guy, Barbara A. Burnett, Martha Doty Freeman, Jerome C. Rose, D.

1504 Gentry Steele, Ben W. Olive, and Karl J. Reinhard (editors)

1505 1990 *The Archeology and Bioarcheology of the Gulf Coastal Plain*. Vol. 2. Research Series 38.

1506 Arkansas Archeological Survey, Fayetteville.

1507

1508 Swanton, John R.

1509 1942 *Source Material on the History and Ethnography of the Caddo Indians*. Bureau of
1510 American Ethnology Bulletin 132. Smithsonian Institution, Washington DC.

1511

1512 Testart, Alain

1513 2008 Des crânes et des vautours ou la guerre oubliée. *Paléorient* 34(1):33–58.

1514 DOI:10.3406/paleo.2008.5232.

1515

1516 Todt, W., R.A. Cliff, A. Hanser, and A.W. Hofmann

1517 1996 Evaluation of a ^{202}Pb - ^{205}Pb Double Spike for High - Precision Lead Isotope Analysis. *.
1518 In *Geophysical Monograph Series*, edited by A. Basu and S. Hart, pp. 429–437. American
1519 Geophysical Union, Washington, D. C.

1520

1521 Tschetsch, L., A. Mussauer, M. Mauder, J. Lohrer, P. Kröger, C. Mayr, F. Söllner, and G. Grupe

1522 2020 Multi-isotope fingerprints (O, Sr and Pb) in archaeological animal bone bioapatite:
1523 Similarity search and the suitability for provenance analysis in a geologically complex Alpine
1524 region. *Archaeometry* 62(S1):35–52. DOI:10.1111/arcm.12550.

1525

1526 Turner, Bethany L.

1527 2021 Residential mobility in the Inka sacred valley: Oxygen, strontium, and lead isotopic
1528 analysis at Patallaqta, Peru. *Journal of Archaeological Science: Reports* 37:102930.

1529 DOI:10.1016/j.jasrep.2021.102930.

1530

1531 Turner, Bethany L., George D. Kamenov, John D. Kingston, and George J. Armelagos

1532 2009 Insights into immigration and social class at Machu Picchu, Peru based on oxygen,

1533 strontium, and lead isotopic analysis. *Journal of Archaeological Science* 36(2):317–332.
1534 DOI:10.1016/j.jas.2008.09.018.

1535

1536 Valentine, Benjamin, George D. Kamenov, Jonathan Mark Kenoyer, Vasant Shinde, Veena
1537 Mushrif-Tripathy, Erik Otarola-Castillo, and John Krigbaum
1538 2015 Evidence for Patterns of Selective Urban Migration in the Greater Indus Valley (2600–
1539 1900 BC): A Lead and Strontium Isotope Mortuary Analysis. Edited by John P. Hart. *PLOS
1540 ONE* 10(4):e0123103. DOI:10.1371/journal.pone.0123103.

1541

1542 Webb, William S., and Charles E. Snow
1543 1945 *The Adena People*. Reports in Anthropology and Archaeology 6. University of Kentucky
1544 Press, Lexington.

1545

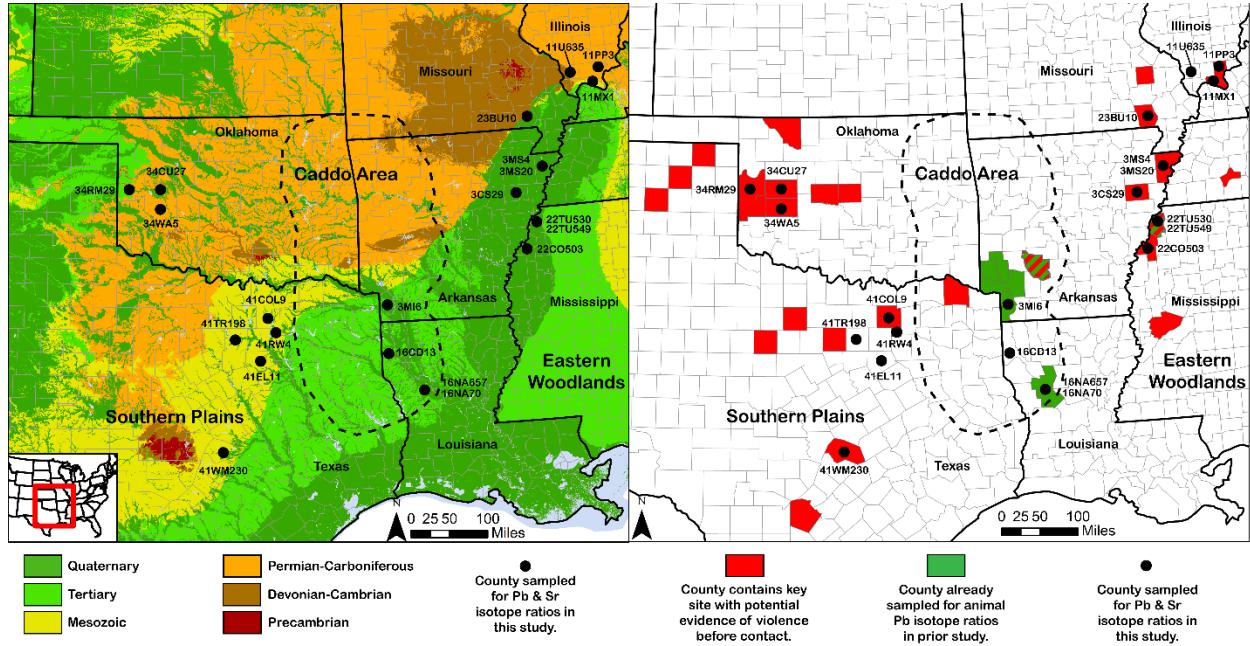
1546 Weber, Katrin, Michael Weber, Martina Menneken, Anna G. Kral, Regina Mertz-Kraus,
1547 Thorsten Geisler, Jochen Vogl, and Thomas Tütken
1548 2021 Diagenetic stability of non-traditional stable isotope systems (Ca, Sr, Mg, Zn) in teeth –
1549 An in-vitro alteration experiment of biogenic apatite in isotopically enriched tracer solution.
1550 *Chemical Geology* 572:120196. DOI:10.1016/j.chemgeo.2021.120196.

1551

1552 Williams, Stephen, and Jeffery P. Brian
1553 1983 *Excavations at the Lake George Site, Yazoo County, Mississippi, 1958–1960*. Vol. 74.
1554 Papers of the Peabody Museum of Archaeology and Ethnology. Harvard University Press.

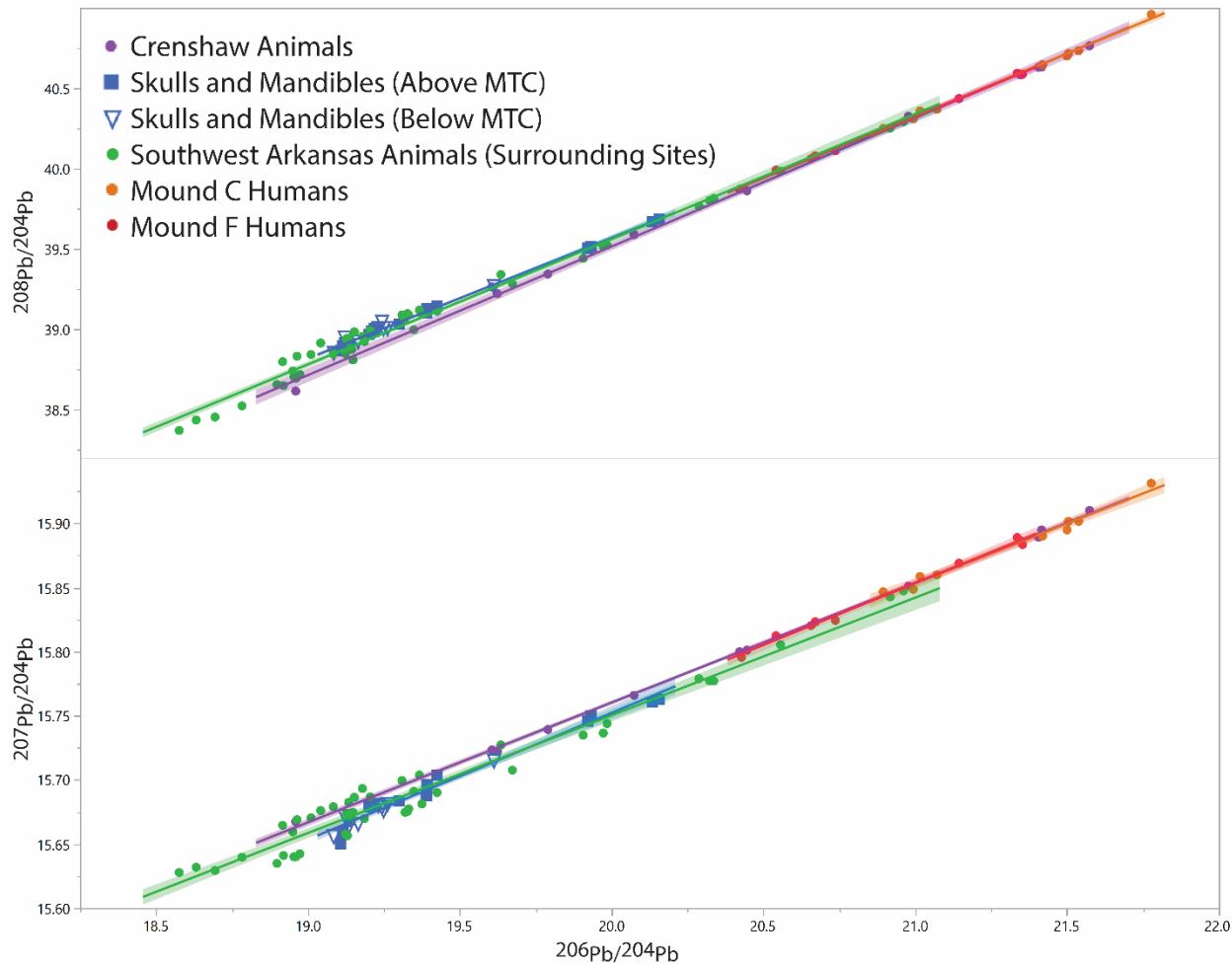
1555

1556 Wilson, Diane, and Timothy K. Perttula
1557 2013 Reconstructing the Paleodiet of the Caddo through Stable Isotopes. *American Antiquity*
1558 78(4):702–723. DOI:10.2307/43184969.

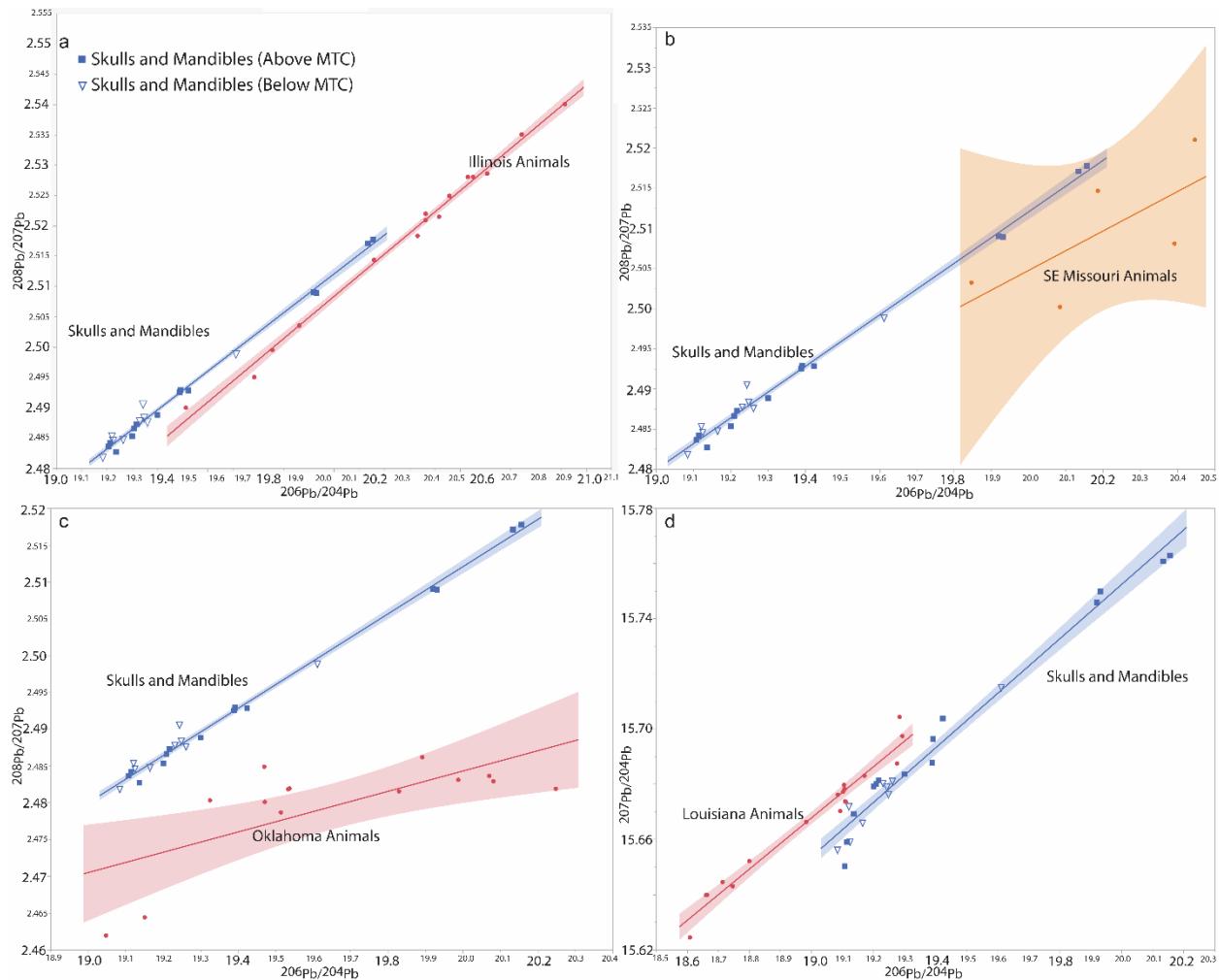

1559

1560 Zabecki, Maelissa
1561 2011 Bioarchaeology of Crenshaw. In *Determining the Cultural Affiliation of Detached Crania
1562 and Mandibles at the Crenshaw Site, Miller County, Arkansas*, edited by Frank Schambach,
1563 Melissa Zabecki, D. Glen Akridge, and John Samuelsen, pp. 39–48. Arkansas Archeological
1564 Survey, Fayetteville.

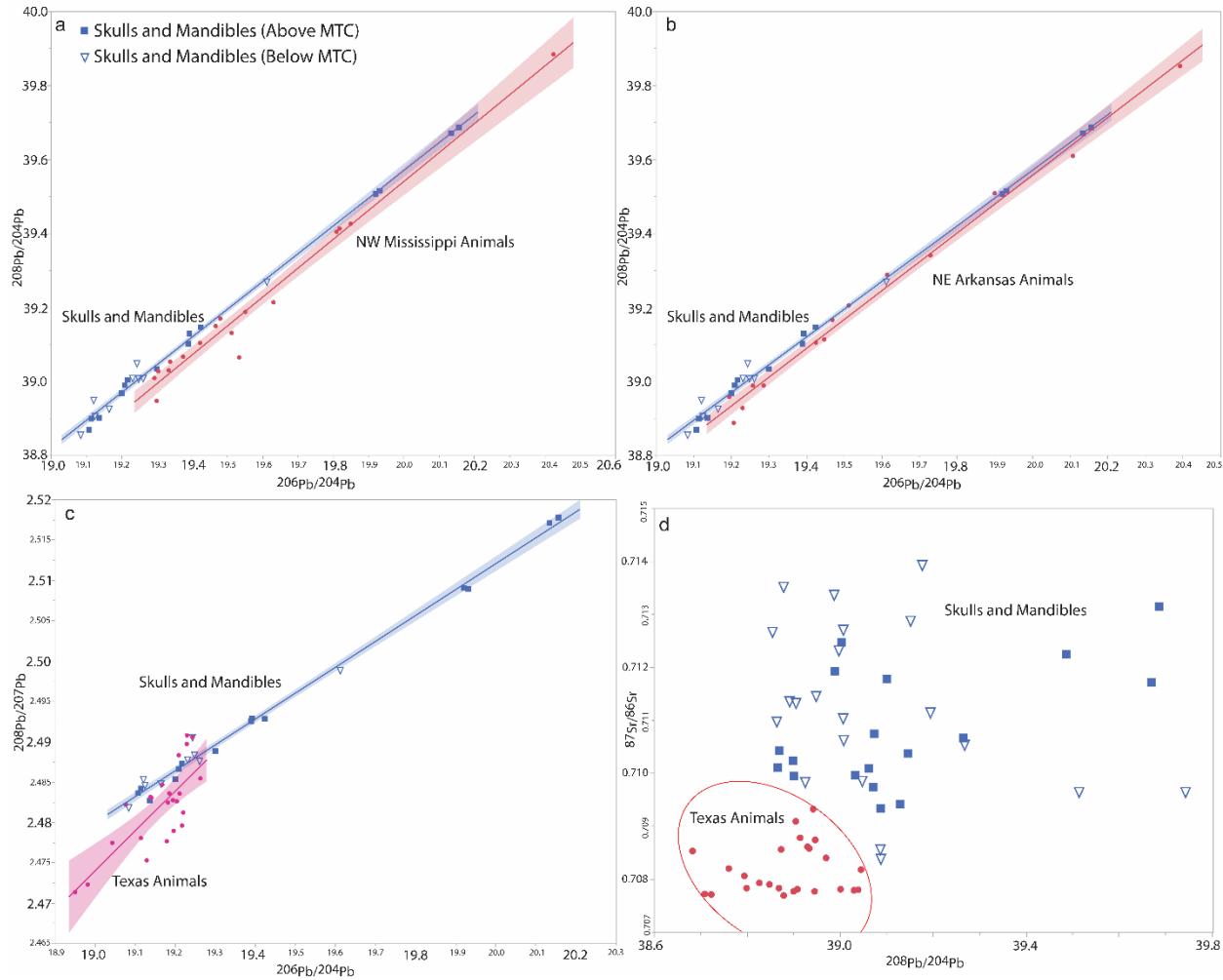
1565


1566

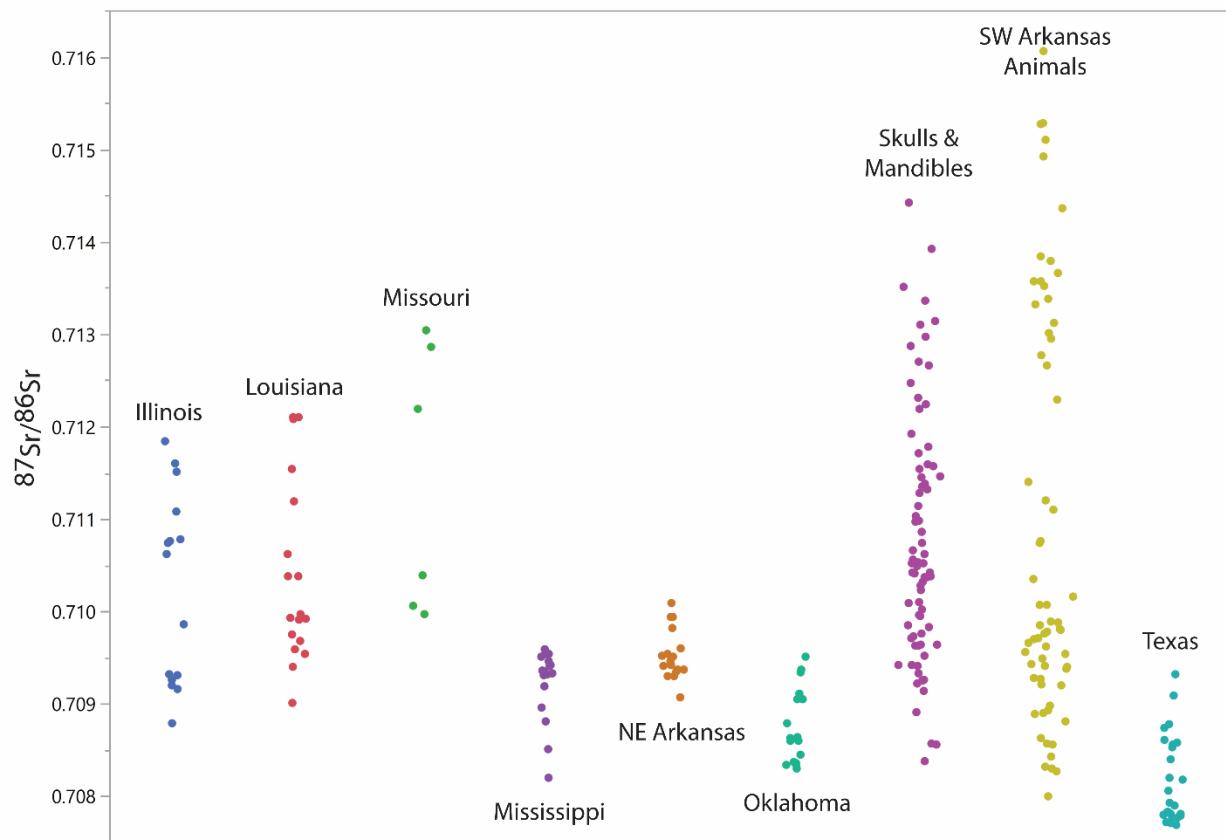
1567 **Figures and Tables**


1568

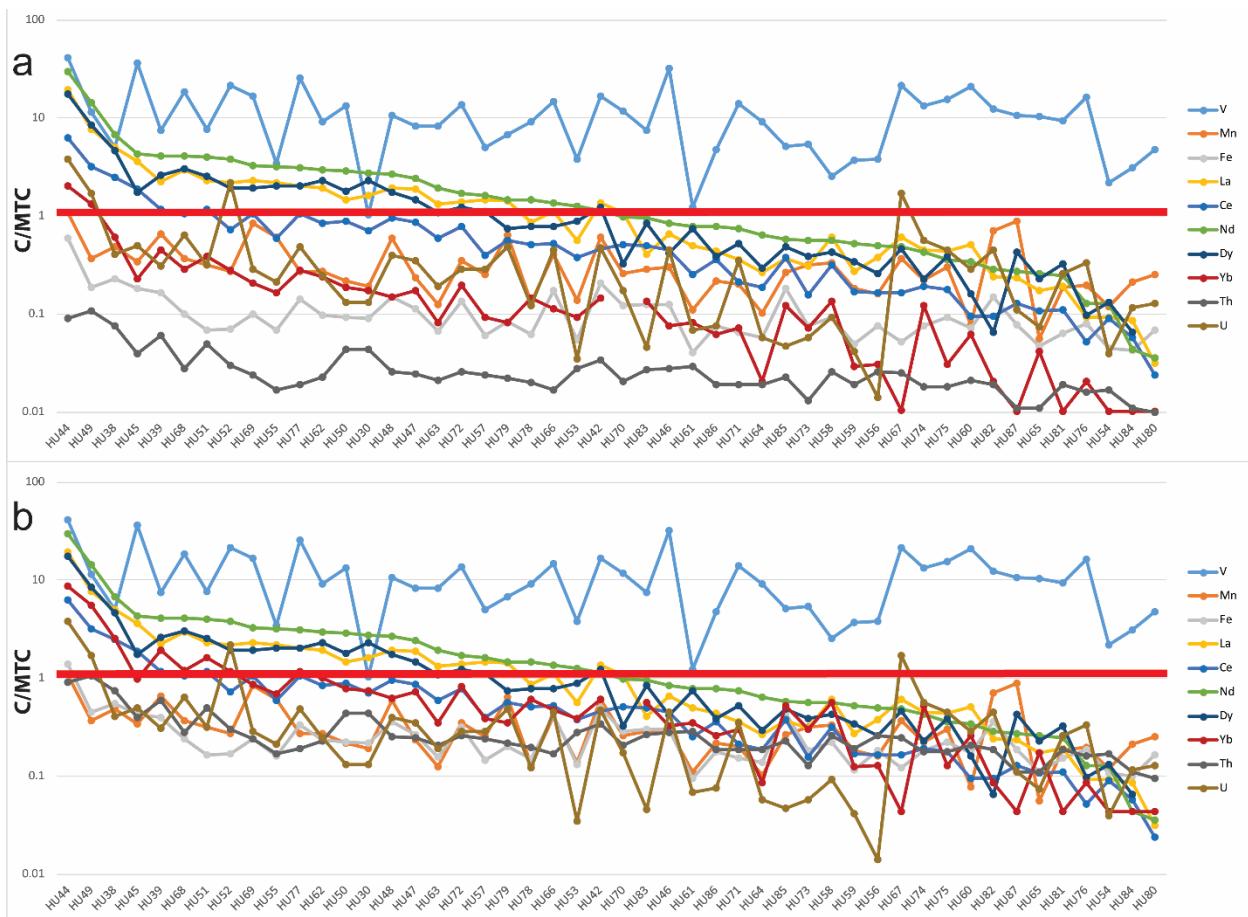
1569 **Fig. 1. Crenshaw and warfare in the southcentral US.** Crenshaw is located in the Caddo Area
 1570 on the edge of the Eastern Woodlands and the Southern Plains. (left) Geologies of sampled areas
 1571 are shown. Counties sampled are marked with a black dot. (right) Counties with key sites having
 1572 evidence of violence from the same time period as the skulls and mandibles are highlighted in
 1573 red (see Supplementary Material). Counties previously sampled for Pb isotopes by Samuelsen
 1574 and Potra (2020) are highlighted in green. Samples for Sr isotopes came from the both the newly
 1575 sampled sites and those previously (7) sampled for Pb isotopes (green).


1576

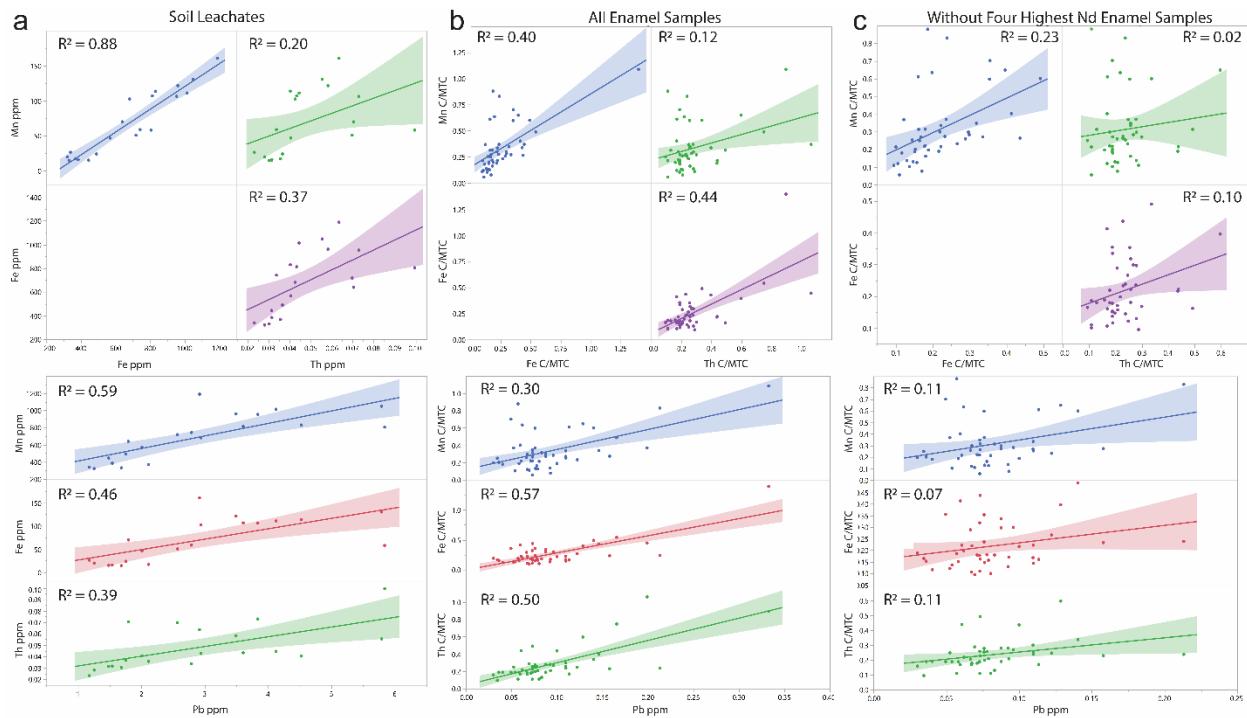
1577 **Fig. 2. Skulls and mandibles: local to southwest Arkansas.** Linear patterning analysis of all 15
 1578 Pb isotope bivariate comparisons (two examples selected) shows the skulls and mandibles match
 1579 southwest Arkansas sites in all comparisons. They generally match southwest Arkansas animals
 1580 from surrounding sites better than the animals from the Crenshaw site itself. One sample slightly
 1581 extends below the animals, but this is within two times the standard error, making the difference
 1582 insignificant. The contamination analysis indicates that at least half the samples from the skull-
 1583 and-mandible cemetery were not significantly contaminated by anthropogenic or soil Pb (see
 1584 Analysis of Soil Contamination). This analysis suggests that the four highest concentrated Nd
 1585 samples were contaminated, and less concentrated samples were not. Since the samples with Nd
 1586 concentrations over the MTC are less clear, they are included in Pb isotope analysis with
 1587 different symbols so that differences could be detected between the samples above and below the
 1588 MTC.


1589

1590 **Fig. 3. Pb Isotopic Linear Patterns for Illinois, Missouri, Oklahoma, and Louisiana.** Linear
 1591 patterning analysis shows the skulls and mandibles have a different linear pattern than Illinois,
 1592 Missouri, Oklahoma, and Louisiana animals. The Illinois animals also tend to have higher ratios.
 1593 Missouri animals are a limited sample but are different from the humans. Oklahoma animals are
 1594 clearly different. Louisiana animals maintain a different line, indicating they are not from this
 1595 area. These results indicate the skulls and mandibles are not from these areas. An isoscape
 1596 utilizing linear patterning analysis cannot be represented on a typical isoscape map since it is the
 1597 linear pattern rather than a particular range or average isotope ratio that is used to assess the data.


1598

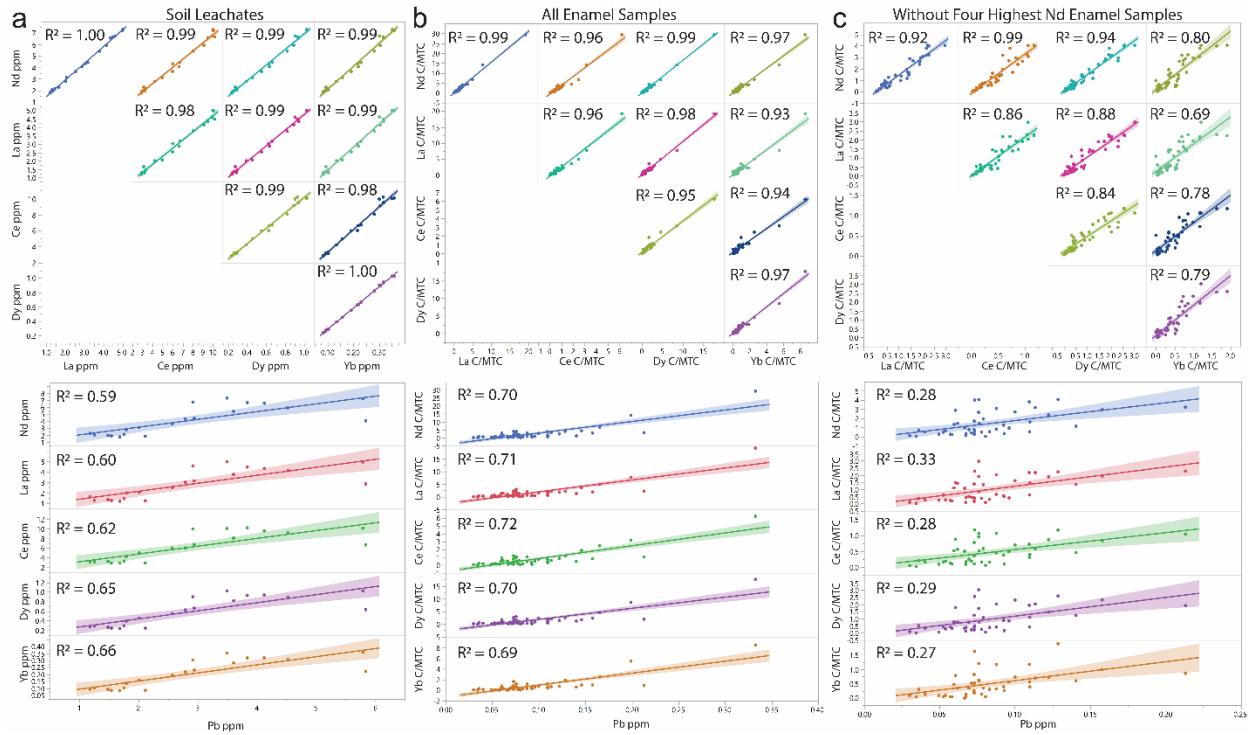
1599 **Fig. 4 Pb Isotopic Linear Patterns for Mississippi, NE Arkansas, and Texas.** Linear
 1600 patterning analysis of the skulls and mandibles with northwest Mississippi animals show they are
 1601 similar, but the linear patterning and values are generally distinguishable. The NE Arkansas
 1602 animals are similar and there is some overlap, but the linear patterning and lack of lower values
 1603 among the skulls and mandibles suggest they are not coming from the same region. This is
 1604 further supported by the Sr isotopes from northeast Arkansas having a very restricted range.
 1605 (lower left) There is some significant overlap in the Texas animal Pb isotopic data. It is
 1606 considered very unlikely that the skulls and mandibles would be coming from Texas and none of
 1607 them have the lower values represented by the Texas animals. (lower right) Pb and Sr isotope
 1608 comparisons to Texas animals. This definitively shows the skulls and mandibles should be
 1609 classified as non-local to Texas. Since this comparison is not linear patterning analysis, a
 1610 threshold of 0.010v on ^{204}Pb was used for both humans and animals. It is important to note that
 1611 the skulls and mandibles would not have been differentiable in many cases without using the
 1612 linear patterning analysis.


1613

1614 **Fig. 5. Sr isoscape from ancient animal tooth enamel.** The Sr isoscape is based on animal
 1615 tooth enamel from south Illinois, northwest Louisiana, southeast Missouri, northwest
 1616 Mississippi, northeast Arkansas, west Oklahoma, east Texas, and southwest Arkansas. The skulls
 1617 and mandibles best match southwest Arkansas animals, but cannot be distinguished from Illinois,
 1618 Louisiana, or Missouri. The Sr isotopes from Mississippi, northeast Arkansas, Oklahoma, and
 1619 Texas are generally too low for the skulls and mandibles, particularly Texas with many values
 1620 below 0.708.

1621
1622 **Fig. 6. Trace element concentrations of enamel.** (a) Trace element concentrations, ordered by
1623 Nd concentrations, represented by concentration (C) over maximum threshold concentration
1624 (MTC) of each element. The MTCs used are those previously defined (13). (b) Trace element
1625 concentrations, ordered by Nd concentrations, with modified MTCs (Fe=60 ppm, Yb=0.005
1626 ppm, Th=0.005 ppm) for display purposes. In general, REEs increase at similar rates and Fe, Mn,
1627 Th, and U increase at similar rates. V seems to have almost no relationship with the other
1628 elements.

1629
1630
1631
1632
1633


1634

1635 **Fig. 7. Fe, Mn, Th, and Pb correlations.** (a) Correlations between Fe, Mn, Th, and Pb in soil
 1636 leachates from Crenshaw. (b) Correlation between Fe, Mn, Th, and Pb with all ancient human
 1637 tooth enamel samples. (c) Correlation between Fe, Mn, Th, and Pb in ancient human tooth
 1638 enamel with four highest concentrated Nd samples excluded. Comparisons show that correlations
 1639 between all elements are very low when the four highest concentrated Nd samples are excluded.

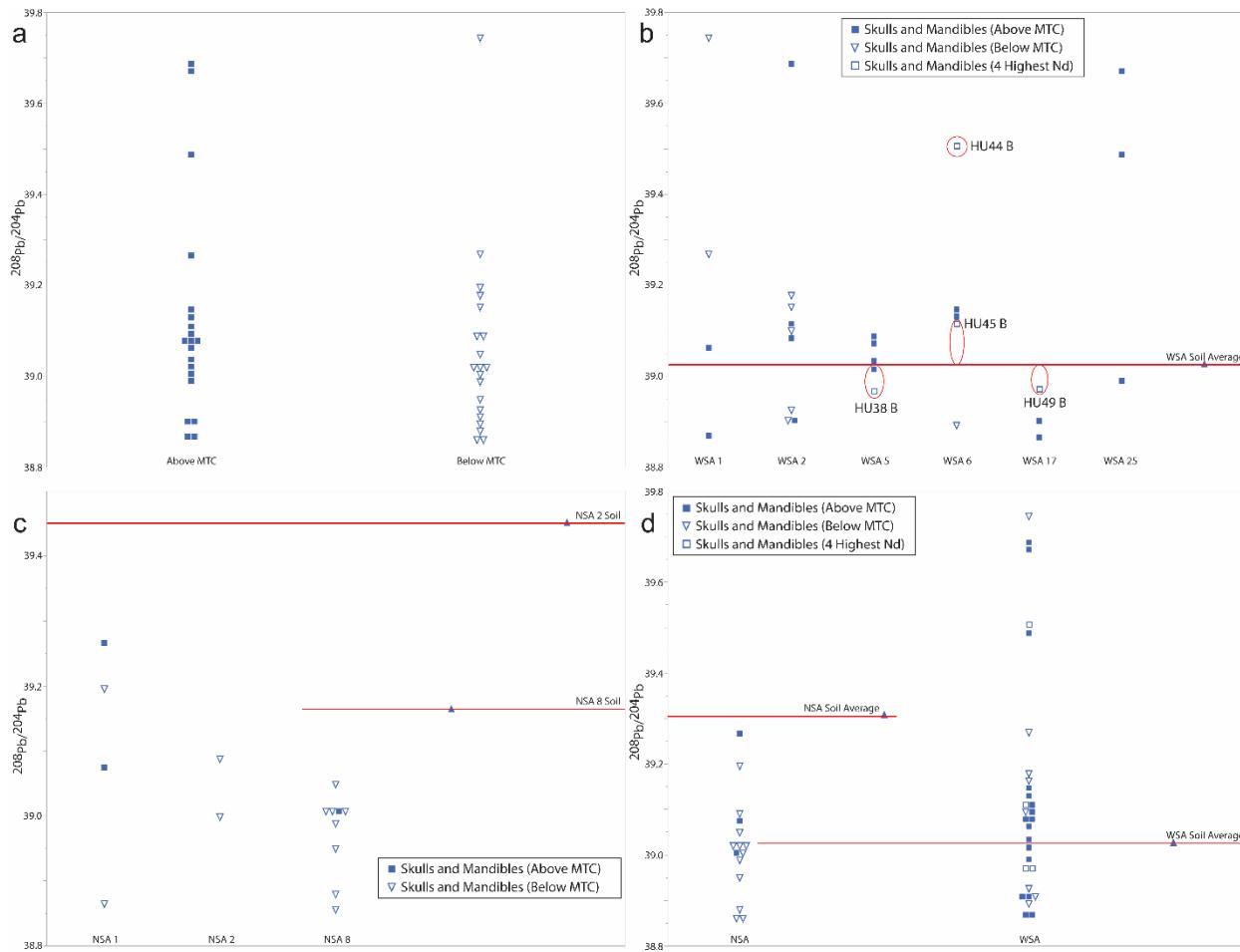

1640
1641
1642
1643
1644
1645
1646

Fig. 8. REE C/MTC charts. (a) REE C/MTCs ordered by Nd concentrations and using original MTCs (13). (b) REE C/MTCs ordered by Nd concentrations and using modified MTCs (La=0.075 ppm, Ce=0.04 ppm, Dy=0.0064 ppm, Yb=0.0018 ppm). (c) REE and Pb C/MTCs ordered by Nd concentrations and using modified MTCs. Pb increases at a different rate than REE. (d) REE C/MTCs on a linear scale, ordered by Nd concentrations, and using modified MTCs.

1647

1648 **Fig. 9. Nd, La, Ce, Dy, Yb, and Pb correlations.** (a) Correlations between Nd, La, Ce, Dy, Yb,
1649 and Pb in soil leachates from Crenshaw. (b) Correlation between Nd, La, Ce, Dy, Yb, and Pb
1650 with all ancient human tooth enamel samples. (c) Correlation between Nd, La, Ce, Dy, Yb, and
1651 Pb in ancient human tooth enamel with four highest concentrated Nd samples excluded.
1652 Correlations for soil leachates and all enamel samples are similar. Comparisons show that
1653 correlations between all elements are lower when the four highest concentrated Nd samples are
1654 excluded. They also show a weaker correlation between Nd, La, and Ce (LREE) and Dy and Yb
1655 (MREE-HREE).

1656

1657 **Fig. 10. Pb Isotopes Validate the Contamination Analysis.** (a) Pb isotopes of samples above
1658 and below Nd MTC. Comparing skulls and mandibles above the Nd MTC and below the Nd MTC
1659 show that there is no detectable difference in ranges using Pb isotope ratios, excluding the four
1660 highest concentrated Nd samples. (b) Comparison of enamel Pb isotopes from the WSA to the
1661 WSA soil average. Both samples above and below the MTC do not generally look like the WSA
1662 soil average. A 0.010v on ^{204}Pb threshold was used in this analysis. Despite being identified as the
1663 most contaminated sample, HU44 B seems to have maintained a significant portion of *in-vivo* Pb
1664 signature since it is still much higher than the soil average. (c) Pb isotopes of enamel and soil
1665 leachates by NSA context. Comparisons of enamel Pb isotopes from the NSA show that they
1666 generally do not match the soil from their respective clusters. This is the case regardless of whether
1667 they are above or below the MTC. (d) Comparisons of Pb isotopes from the NSA and WSA skulls
1668 and mandibles to the soil averages from each location. WSA skulls and mandibles being similar
1669 to the soil average is likely a coincidence as the NSA skulls and mandibles match the WSA soil
1670 better than the WSA skulls and mandibles or the soil from the NSA.

1671

1672

Supplementary Materials

1673

1674 Multiregional Pb Isotopic Linear Patterns and Diagenesis: Isotopes from Ancient Animal Enamel
1675 Show Native American “Foreign War Trophies” Are Local Ancestors

1676

1677 John R. Samuelsen* and Adriana Potra

1678

1679 *Corresponding author. Email: jsamuel@uark.edu

1680

1681

1682

1683

1684

1685 **This PDF file includes:**

1686

1687 Figs. S1 to S9

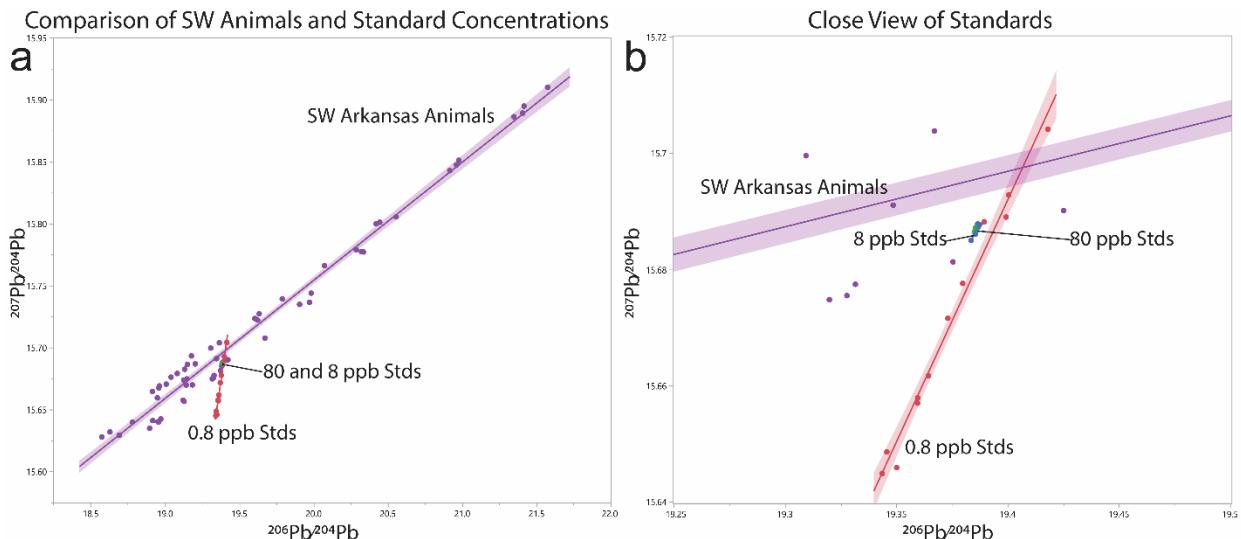
1688

Data S1

1689

1690 **Other Supplementary Materials for this manuscript include the following:**

1691


Data S1

1692

1693

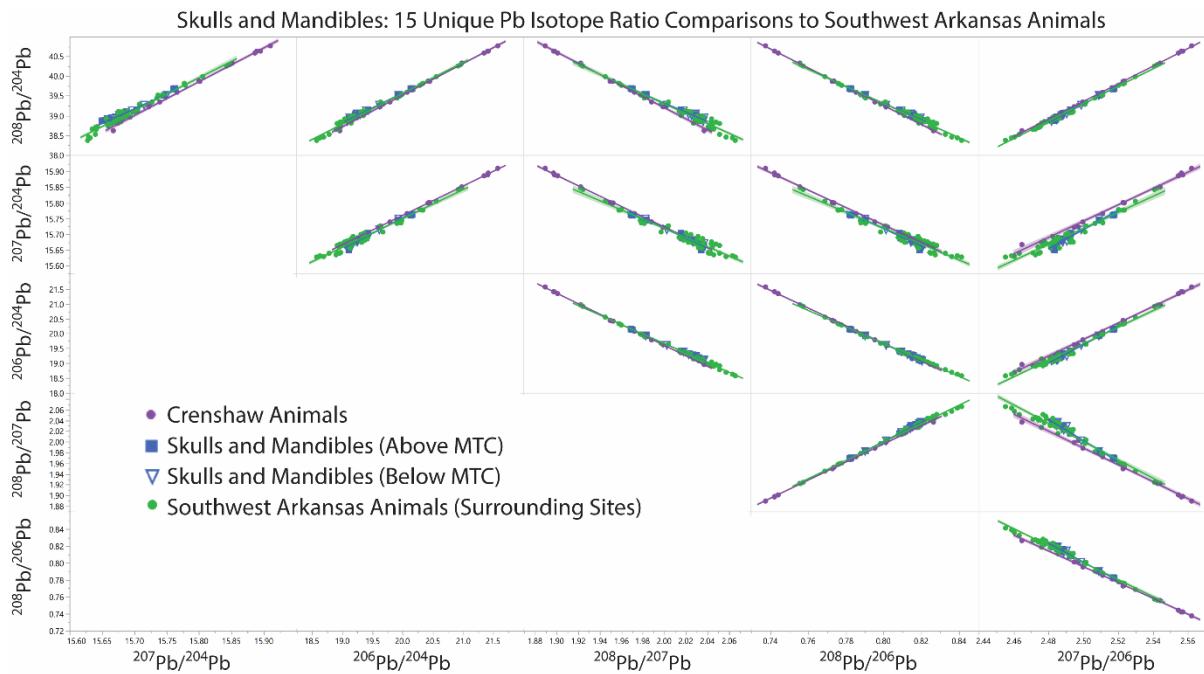
1694

1695

1696

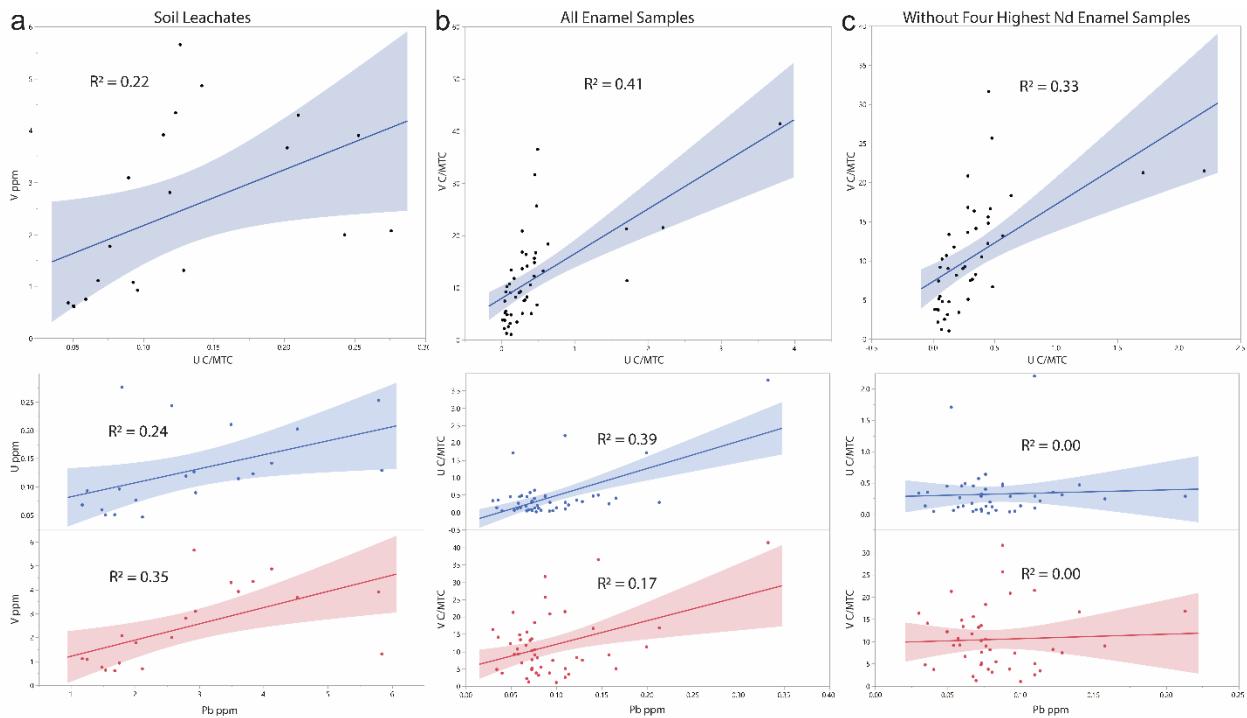
1697 **Fig. S1. Low Pb concentration tests.**

1698 Comparison of southwest Arkansas animal data with multiple concentration Pb standards (80
 1699 ppb, 8 ppb, and 0.8 ppb). Results show that lower ($<0.045v$ on ^{204}Pb) could have significant
 1700 effects on interpretations. However, the exact threshold is unclear with these data as the 8 ppb
 1701 standard was accurate with only a small reduction in precision. Therefore, a threshold between
 1702 the 8 ppb and 0.8 ppb standard was used based on the ^{204}Pb voltage and the potential to affect
 1703 interpretations. Comparisons between animals and standards were made possible by adding a
 1704 constant value to each standard ratio ($^{208}\text{Pb}/^{204}\text{Pb} = +2.39$, $^{207}\text{Pb}/^{204}\text{Pb} = +0.198$, and $^{206}\text{Pb}/^{204}\text{Pb}$
 1705 = +2.45).
 1706


1707

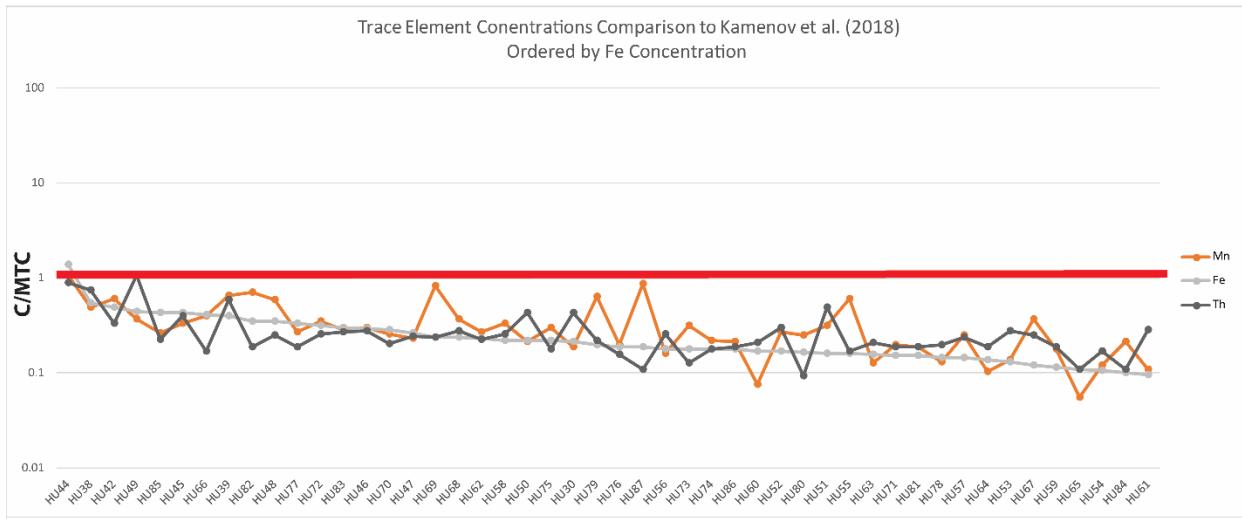
1708

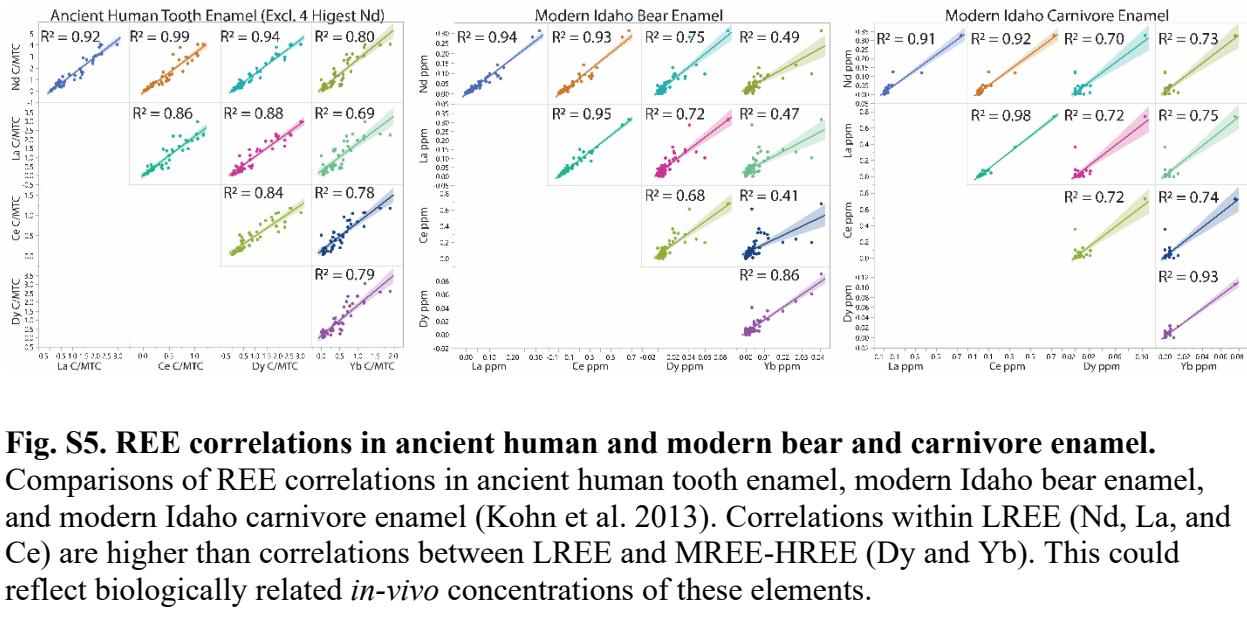
1709

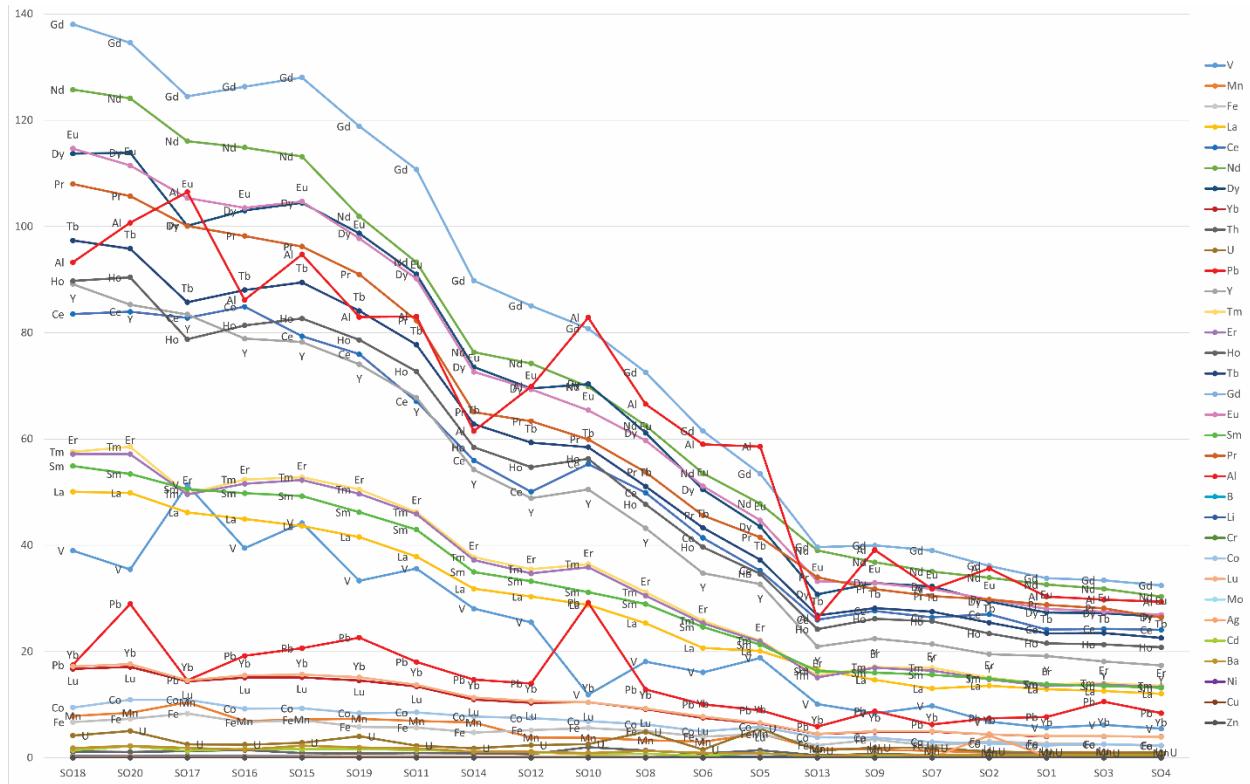

1710

1711

1712


1713 **Fig. S2. Skulls and mandibles match all Pb linear patterns.**
 1714 Linear patterning analysis of all 15 Pb isotope bivariate comparisons shows the skulls and
 1715 mandibles match southwest Arkansas sites in all comparisons. They generally match southwest
 1716 Arkansas animals from surrounding sites better than the animals from the Crenshaw site itself.
 1717




1718

1719 **Fig. S3. V, U, and Pb correlations.**

1720 (a) Correlations between V, U, and Pb in soil leachates from Crenshaw. (b) Correlation between
 1721 V, U, and Pb with all ancient human tooth enamel samples. (c) Correlation between V, U, and Pb
 1722 in ancient human tooth enamel with four highest concentrated Nd samples excluded.
 1723 Comparisons show that correlations between Pb and the other elements disappear when the four
 1724 highest concentrated Nd samples are excluded.
 1725

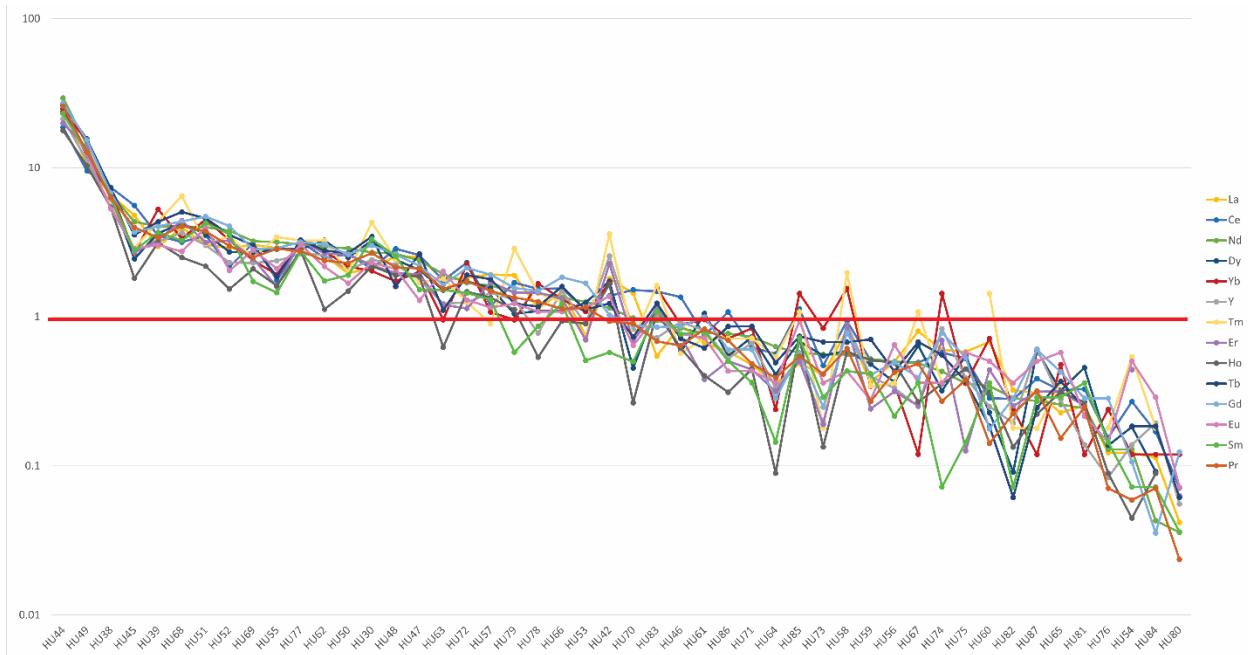
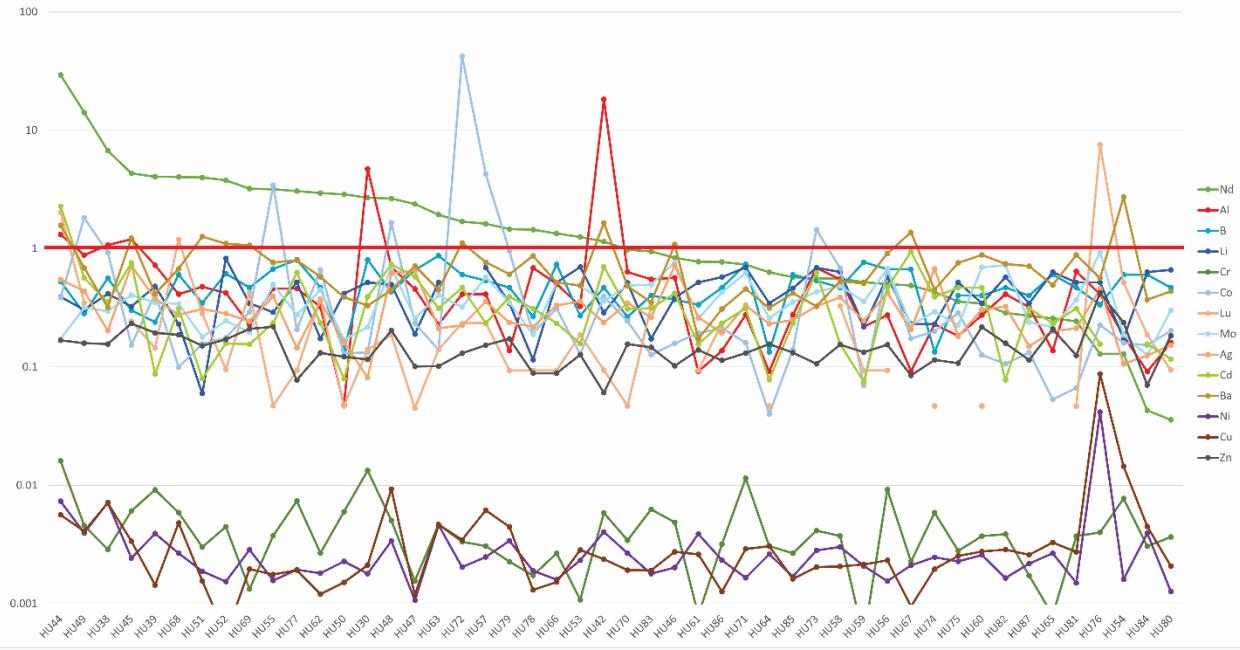


Fig. S6. C/MTCs of all elements in soil leachates.

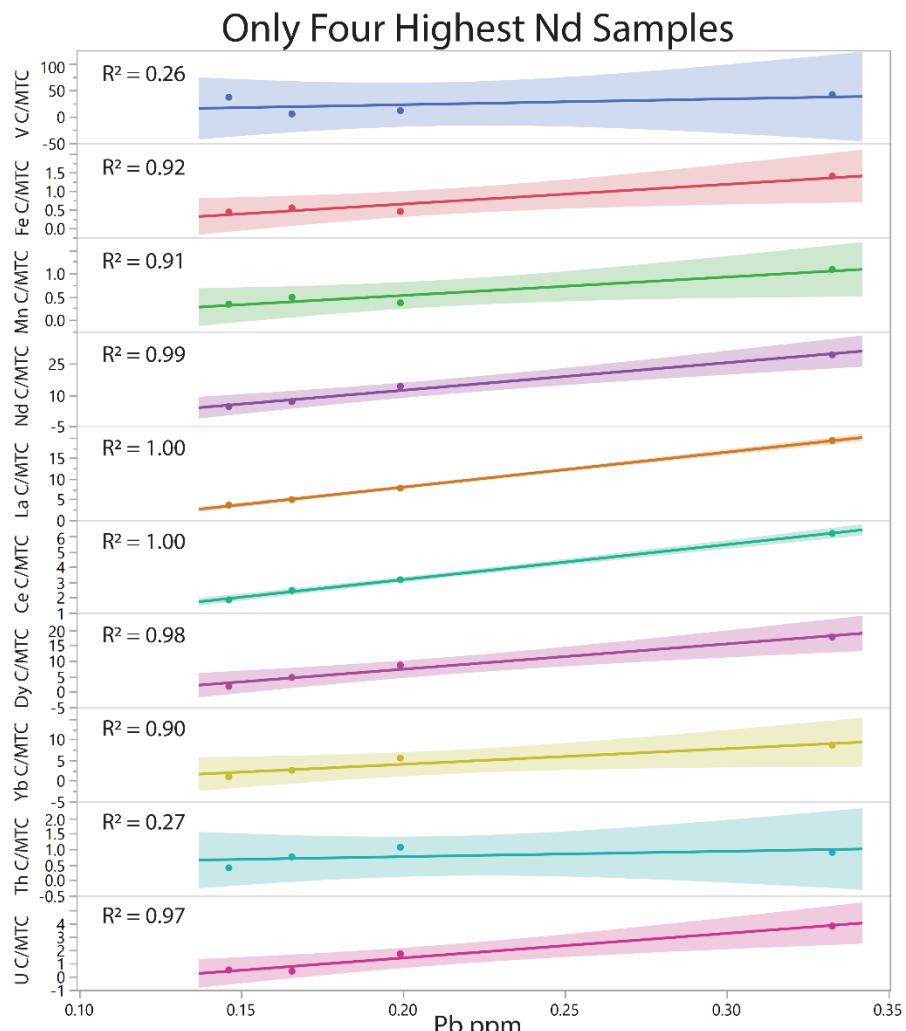
The C/MTCs of all elements (ordered by Nd concentrations) in soil leachates using the previously defined MTCs for human tooth enamel (Kamenov et al. 2018). However, some elements use previously undefined MTCs for display purposes (Li=4 ppm, B=10 ppm, Al=10 ppm, Co=0.1 ppm, Mo= 2.5 ppm, Ag=0.1 ppm, Cd=0.03 ppm, Y=0.05 ppm, Eu=0.003 ppm, Gd= 0.01 ppm, Pb=0.2 ppb). These were based off the comparable elements in tooth enamel. This shows that some elements have far greater concentrations relative to other elements in the soil leachates compared to the expected (<1 C/MTC) for ancient human tooth enamel, particularly REEs.



1751

Fig. S7. C/MTCs of Y and extended list of REEs.

1752 Uses modified MTCs for some elements for visual comparison of correlation and rate of increase
 1753 (La=0.075 ppm, Ce=0.04 ppm, Pr=0.015 ppm, Nd=0.058 ppm, Sm=0.013 ppm, Tb=0.0012 ppm,
 1754 Dy=0.0064 ppm, Ho=0.0015 ppm, Er=0.003 ppm, Tm=0.0003 ppm, Yb=0.0018 ppm). Some
 1755 elements have no MTC previously defined and use the following MTCs (Y=0.05 ppm, Eu=0.003
 1756 ppm, Gd= 0.01 ppm). These are for display purposes only. This shows that Y and REE correlate
 1757 and increase at similar rates. It is worth noting that one modern human tooth enamel sample was
 1758 run for trace elements and, unlike previous research (Kamenov et al. 2018), concentrations were
 1759 detected for Eu (0.0006 ppm) and Gd (0.001 ppm).
 1760


1761

1762

Fig. S8. C/MTCs of other elements in enamel.

The C/MTCs of other elements include Al, B, Li, Cr, Co, Lu, Mo, Ag, Cd, Ba, Ni, Cu, Zn, and Nd for comparison (ordered by Nd concentrations). MTCs used are those previously established (Kamenov et al. 2018), but some have no established MTC. In order to display those, new values were used (Li=4 ppm, B=10 ppm, Al=10 ppm, Co=0.1 ppm, Mo=2.5 ppm, Ag=0.1 ppm, Cd=0.03 ppm), for display purposes only. All of these elements (including Lu) do not correlate well with Nd and increase at different rates than Y and other REEs. It is notable that the four highest concentrated Nd samples do show a perceptible increase in some of these elements. However, they are often not higher than samples with lower Nd concentrations. Some of these elements had poor reproducibility, which would cause higher variability and lower correlations.

1775 **Fig. S9. Pb correlations for four highest Nd samples.**
1776 Correlation between trace elements and Pb concentrations in human tooth enamel only including
1777 the four highest concentrated Nd samples. The correlations are extremely strong for most
1778 elements. Lower correlated elements include V and Th. V does not correlate well with any other
1779 elements, so this is consistent with the rest of the analysis. Th may have a lower correlation
1780 because it has relatively high variability in Crenshaw's soil.
1781

1782 **Data S1.**

1783 All Pb and Sr isotopic data and trace elemental data are included.

1784

1785

1786

Pb isotope ratios from human second molar enamel at Crenshaw (3MI6).

Lab ID	Accession	Cluster	Tooth Side	$^{208}\text{Pb}/^{204}\text{Pb}$	Std Error	$^{207}\text{Pb}/^{204}\text{Pb}$	Std Error	$^{206}\text{Pb}/^{204}\text{Pb}$	Std Error	$v^{204}\text{Pb}$
HU30 B	69-66-589-1	Rayburn	Mand L	39.515	0.003	15.750	0.001	19.932	0.002	0.0279
HU38 B	83-377-6-1	WSA 5	Mand L	38.968	0.003	15.679	0.001	19.201	0.002	0.0506
HU39 B	83-377-6-2	WSA 5	Mand L	39.016	0.006	15.684	0.002	19.284	0.003	0.0245
HU40 B	83-377-6-3	WSA 5	Mand L	39.087	0.009	15.697	0.004	19.383	0.005	0.0086
HU41 B	83-377-6-4	WSA 5	Mand L	39.033	0.002	15.684	0.001	19.301	0.001	0.0616
HU42 B	83-377-6-5	WSA 5	Max R	39.072	0.007	15.684	0.003	19.354	0.003	0.0138
HU43 B	83-377-7-1	WSA 6	Mand R	39.129	0.001	15.696	0.001	19.393	0.001	0.0984
HU44 B	83-377-7-2	WSA 6	Mand L	39.507	0.001	15.746	0.001	19.921	0.001	0.1484
HU45 B	83-377-7-4	WSA 6	Mand L	39.116	0.004	15.681	0.001	19.421	0.002	0.0218
HU46 B	83-377-7-5	WSA 6	Mand	38.892	0.006	15.664	0.002	19.100	0.003	0.0106
HU47 B	83-377-7-6	WSA 6	Mand R	39.147	0.008	15.704	0.002	19.425	0.007	0.0367
HU48 B	83-377-29-1	WSA 17	Mand L	38.866	0.010	15.658	0.003	19.135	0.009	0.0130
HU49 B	83-377-29-2	WSA 17	Mand L	38.972	0.005	15.669	0.002	19.258	0.004	0.0172
HU50 B	83-377-29-3	WSA 17	Mand R	38.902	0.003	15.669	0.001	19.137	0.003	0.0420
HU51 B	83-377-61-1	WSA 25	Mand R	38.990	0.004	15.680	0.002	19.210	0.002	0.0318
HU52 B	83-377-61-2	WSA 25	Mand L	39.671	0.004	15.761	0.002	20.135	0.003	0.0338
HU53 B	83-377-61-3	WSA 25	Mand R	39.487	0.010	15.740	0.003	19.932	0.007	0.0156
HU54 B	83-377-24-1	NSA 1	Max R	39.195	0.005	15.698	0.002	19.475	0.003	0.0199
HU55 B	83-377-24-2	NSA 1	Mand R	39.266	0.007	15.696	0.003	19.639	0.004	0.0127
HU56 B	83-377-24-3	NSA 1	Mand R	38.780	0.022	15.667	0.009	18.997	0.018	0.0051
HU57 B	83-377-24-4	NSA 1	Mand R	39.074	0.024	15.665	0.005	19.469	0.021	0.0133
HU58 B	83-377-24-5	NSA 1	Mand R	38.864	0.008	15.651	0.003	19.097	0.004	0.0128
HU59 B	83-377-25-1	NSA 2	Max	38.998	0.008	15.678	0.003	19.239	0.005	0.0139
HU60 B	83-377-25-2	NSA 2	Mand L	38.917	0.025	15.699	0.010	19.251	0.016	0.0039
HU61 B	83-377-25-3	NSA 2	Mand R	39.087	0.006	15.675	0.002	19.392	0.003	0.0146
HU62 B	83-377-2-4	WSA 1	Mand L	38.869	0.005	15.650	0.002	19.108	0.003	0.0273
HU63 B	83-377-2-5	WSA 1	Mand R	38.964	0.010	15.656	0.004	19.270	0.007	0.0083
HU64 B	83-377-2-6	WSA 1	Mand R	39.744	0.005	15.765	0.002	20.291	0.002	0.0225
HU65 B	83-377-2-7	WSA 1	Mand L	39.269	0.005	15.715	0.002	19.613	0.003	0.0277
HU66 B	83-377-2-8	WSA 1	Mand R	39.062	0.011	15.699	0.004	19.405	0.007	0.0108
HU67 B	83-377-3-3	WSA 2	Mand L	39.177	0.005	15.696	0.002	19.459	0.002	0.0210
HU68 B	83-377-3-5	WSA 2	Mand L	39.084	0.004	15.697	0.002	19.352	0.002	0.0234
HU69 B	83-377-3-15	WSA 2	Mand R	39.687	0.002	15.763	0.001	20.157	0.001	0.0962
HU70 B	83-377-3-33	WSA 2	Mand R	39.088	0.012	15.676	0.005	19.433	0.006	0.0108
HU71 B	83-377-3-35	WSA 2	Mand L	38.944	0.019	15.654	0.009	19.254	0.009	0.0049
HU72 B	83-377-3-41	WSA 2	Mand L	39.090	0.010	15.670	0.004	19.442	0.007	0.0094
HU73 B	83-377-3-61	WSA 2	Mand R	39.152	0.008	15.688	0.003	19.487	0.004	0.0118
HU74 B	83-377-3-81	WSA 2	Mand R	38.925	0.003	15.666	0.001	19.166	0.002	0.0424
HU75 B	83-377-3-89	WSA 2	Mand R	38.906	0.003	15.659	0.001	19.125	0.002	0.0387
HU76 B	83-377-3-96	WSA 2	Mand L	38.633	0.020	15.615	0.009	18.814	0.010	0.0050
HU77 B	83-377-3-101	WSA 2	Mand L	39.102	0.002	15.688	0.001	19.390	0.001	0.0662
HU78 B	83-377-3-108	WSA 2	Mand L	38.900	0.003	15.659	0.001	19.115	0.001	0.1860
HU79 B	83-377-41-1-1	NSA 8	Mand R	39.004	0.006	15.681	0.002	19.217	0.003	0.0299
HU80 B	83-377-41-1-2	NSA 8	Max L	38.879	0.009	15.649	0.004	19.083	0.005	0.0132
HU81 B	83-377-41-1-3	NSA 8	Max L	38.855	0.004	15.656	0.002	19.085	0.002	0.0282
HU82 B	83-377-41-1-4	NSA 8	Max	38.988	0.008	15.681	0.003	19.215	0.005	0.0110
HU83 B	83-377-41-1-5	NSA 8	Mand R	39.007	0.004	15.676	0.002	19.249	0.002	0.0376
HU84 B	83-377-41-1-6	NSA 8	Mand L	39.048	0.002	15.679	0.001	19.244	0.001	0.1062
HU85 B	83-377-41-1-7	NSA 8	Mand R	39.008	0.005	15.681	0.002	19.262	0.002	0.0311
HU86 B	83-377-41-1-8	NSA 8	Mand L	39.008	0.004	15.680	0.001	19.232	0.002	0.0324
HU87 B	83-377-41-1-9	NSA 8	Max R	38.949	0.004	15.672	0.002	19.122	0.002	0.0385

Pb isotope ratios from animal tooth enamel.

Lab ID	State/Area	Site Number	Animal	Accession/Context	$^{208}\text{Pb}/^{204}\text{Pb}$	Std Error	$^{207}\text{Pb}/^{204}\text{Pb}$	Std Error	$^{206}\text{Pb}/^{204}\text{Pb}$	Std Error	v^{204}Pb
AN73	Illinois	11U635	Deer	95.002 Bag 101	39.0683	0.0030	15.6902	0.0013	19.4143	0.0015	0.0399
AN74	Illinois	11U635	Ground Hog	95.002 Bag 21	40.2480	0.0010	15.8456	0.0005	20.9156	0.0004	0.1982
AN75	Illinois	11U635	Squirrel	95.002 Bag 24	39.8888	0.0013	15.7982	0.0005	20.4580	0.0007	0.0959
AN76	Illinois	11U635	Squirrel	95.002 Bag 30	40.1223	0.0017	15.8271	0.0006	20.7448	0.0011	0.0999
AN77	Illinois	11U635	Squirrel	95.002 Bag 100	39.8299	0.0410	15.7964	0.0052	20.4170	0.0460	0.0224
AN78	Illinois	11U635	Raccoon	95.002 Bag 100	39.9483	0.0020	15.8022	0.0006	20.5306	0.0012	0.1020
AN79	Illinois	11U635	Deer	95.002 Bag 577	39.9625	0.0013	15.8079	0.0005	20.5523	0.0008	0.1343
AN80	Illinois	11Pp3	Beaver	14.003 Bag 162	39.3903	0.0035	15.7340	0.0014	19.8629	0.0017	0.0283
AN81	Illinois	11Pp3	Squirrel	14.002 TU26 L2	39.2317	0.0014	15.7241	0.0005	19.6850	0.0005	0.0966
AN82	Illinois	11Pp3	Raccoon	14.002 N224.5	39.8228	0.0012	15.7904	0.0005	20.3639	0.0006	0.1593
AN83	Illinois	11Pp3	Opossum	14.002 Bag 53	39.9751	0.0016	15.8093	0.0007	20.6077	0.0010	0.0601
AN84	Illinois	11Pp3	Deer	14.002 TU26 L3	39.3094	0.0048	15.7270	0.0019	19.7569	0.0026	0.0303
AN85	Illinois	11Pp3	Deer	14.002 TU26 L2	39.7994	0.0008	15.7876	0.0003	20.3642	0.0004	0.2070
AN86	Illinois	11Mx1	Black Bear	1-115	39.6665	0.0009	15.7759	0.0004	20.1596	0.0004	0.2200
AN87	Illinois	11Mx1	Deer	1-95	39.7626	0.0009	15.7894	0.0004	20.3321	0.0005	0.1800
AN88	Texas	41RW4	Rabbit	Lot 120	38.9085	0.0091	15.6482	0.0035	19.1808	0.0049	0.0101
AN89	Texas	41RW4	Squirrel	Lot 33	39.0394	0.0022	15.6750	0.0009	19.2440	0.0010	0.0696
AN90	Texas	41RW4	Beaver	Lot 118	38.9006	0.0023	15.6667	0.0009	19.1413	0.0012	0.0422
AN91	Texas	41RW4	Beaver	Lot 117	38.9456	0.0004	15.6744	0.0002	19.1684	0.0002	0.3990
AN92	Texas	41RW4	Beaver	Lot 115	39.0303	0.0022	15.6768	0.0010	19.2298	0.0015	0.0551
AN93	Texas	41RW4	Raccoon	Lot 115	39.0015	0.0012	15.6740	0.0004	19.2097	0.0006	0.1480
AN94	Texas	41RW4	Deer	Lot 119	38.8738	0.0014	15.6611	0.0006	19.0773	0.0006	0.1277
AN95	Texas	41WM230	S. Rodent	Lot 597	38.8267	0.0012	15.6708	0.0004	19.1796	0.0006	0.1130
AN96	Texas	41WM230	P. Gopher	XU3	38.8690	0.0014	15.6755	0.0005	19.2179	0.0007	0.1255
AN97	Texas	41WM230	Raccoon	Lot 141-7	38.7612	0.0023	15.6593	0.0009	19.1298	0.0012	0.0605
AN98	Texas	41WM230	S. Rodent	Lot 637	38.7946	0.0052	15.6553	0.0034	19.1152	0.0026	0.0215
AN99	Texas	41WM230	S. Rodent	Lot 619	38.8486	0.0007	15.6714	0.0002	19.1969	0.0003	0.2700
AN100	Texas	41TR198	P. Gopher	Lot 445	38.9144	0.0009	15.6758	0.0004	19.1826	0.0005	0.1240
AN101	Texas	41TR198	S. Rodent	Lot 461	38.9306	0.0013	15.6815	0.0005	19.2049	0.0007	0.1000
AN102	Texas	41TR198	P. Gopher	Lot 462	38.9343	0.0012	15.6819	0.0004	19.1950	0.0005	0.1320
AN103	Texas	41TR198	S. Rodent	Lot 435	38.9471	0.0006	15.6820	0.0002	19.2121	0.0004	0.3540
AN104	Texas	41TR198	Deer	Lot 408	38.9425	0.0009	15.6799	0.0004	19.1860	0.0004	0.1580
AN105	Texas	41TR198	Deer	Lot 456	38.9052	0.0036	15.6678	0.0013	19.1388	0.0023	0.0281
AN106	Texas	41COL9	Deer	41-18C9-2	38.7994	0.0041	15.6609	0.0017	19.0440	0.0023	0.0289
AN107	Texas	41COL9	Beaver	41-18C9-2	38.6832	0.0007	15.6527	0.0003	18.9513	0.0004	0.1830
AN108	Texas	41COL9	Rabbit	41-18C9-2	38.7233	0.0078	15.6459	0.0035	19.0673	0.0048	0.0133
AN109	Texas	41COL9	P. Gopher	41-18C9-2	38.7091	0.0018	15.6572	0.0006	18.9827	0.0009	0.1811
AN110	Texas	41EL11	Raccoon	Lot 120	38.8793	0.0025	15.6696	0.0010	19.2207	0.0013	0.0625
AN111	Texas	41EL11	P. Gopher	Lot 240	38.9703	0.0017	15.6795	0.0010	19.2637	0.0010	0.0600
AN112	Texas	41EL11	P. Gopher	Lot 240	39.0455	0.0018	15.6761	0.0009	19.2303	0.0009	0.0744
AN113	Oklahoma	34Cu27	Rabbit	83.002	38.9917	0.0250	15.6951	0.0092	19.4252	0.0160	0.0050
AN114	Oklahoma	34Cu27	S. Rodent	101.011	39.0500	0.0017	15.7276	0.0005	20.0824	0.0011	0.1481
AN115	Oklahoma	34Cu27	Deer	101.011	39.0729	0.0025	15.7162	0.0010	19.8924	0.0013	0.0417
AN116	Oklahoma	34Cu27	S. Rodent	101.011	38.9805	0.0031	15.7084	0.0011	19.8301	0.0019	0.0323
AN117	Oklahoma	34Cu27	S. Rodent	101.011	39.0515	0.0013	15.7348	0.0007	20.2487	0.0009	0.0997

AN118	Oklahoma	34Cu27	S. Rodent	101.011	39.0325	0.0021	15.7194	0.0008	19.9884	0.0014	0.0995
AN119	Oklahoma	34Cu27	S. Rodent	101.011	39.0288	0.0038	15.7145	0.0018	20.0711	0.0031	0.0190
AN120	Oklahoma	34Rm29	Deer	026-A/1980/20	39.0174	0.0110	15.6939	0.0042	19.4819	0.0065	0.0099
AN121	Oklahoma	34Rm29	Rabbit	026-A/1980/20	38.9879	0.0024	15.6902	0.0010	19.4704	0.0017	0.0572
AN122	Oklahoma	34Rm29	S. Rodent	026-A/1980/20	38.8837	0.0064	15.6771	0.0023	19.3258	0.0038	0.0167
AN123	Oklahoma	34Wa5	Rabbit	26.007	39.0127	0.0092	15.6959	0.0044	19.5645	0.0047	0.0124
AN124	Oklahoma	34Wa5	P. Gopher	654.006	38.9253	0.0010	15.6953	0.0005	19.4720	0.0007	0.1232
AN125	Oklahoma	34Wa5	P. Gopher	690.004	38.9081	0.0018	15.6973	0.0007	19.5150	0.0010	0.0883
AN126	Oklahoma	34Wa5	P. Gopher	42.005	38.5201	0.0042	15.6463	0.0020	19.0484	0.0021	0.0290
AN127	Oklahoma	34Wa5	P. Gopher	97.008	38.9655	0.0017	15.6998	0.0008	19.5379	0.0021	0.1010
AN128	Oklahoma	34Wa5	P. Gopher	97.008	38.9671	0.0033	15.7012	0.0017	19.5345	0.0023	0.0415
AN129	Oklahoma	34Wa5	Deer	640	38.6047	0.0073	15.6650	0.0027	19.1514	0.0043	0.0167
AN130	Mississippi	22TU530	Raccoon	Feat. 34	38.9471	0.0010	15.6861	0.0006	19.3003	0.0005	0.1648
AN131	Mississippi	22TU530	Grey Fox	Feat. 34	39.0271	0.0024	15.6868	0.0014	19.3045	0.0013	0.0315
AN132	NE Arkansas	3CS29	Raccoon	1522094	39.2884	0.0035	15.7128	0.0013	19.6150	0.0018	0.0346
AN133	NE Arkansas	3CS29	Beaver	777	38.9746	0.0074	15.6510	0.0034	19.3295	0.0035	0.0124
AN134	NE Arkansas	3CS29	Raccoon	777	39.1661	0.0017	15.6957	0.0008	19.4690	0.0009	0.0888
AN135	NE Arkansas	3CS29	Beaver	780	38.8882	0.0012	15.6857	0.0005	19.2072	0.0005	0.1518
AN136	NE Arkansas	3CS29	Rabbit	774	39.2048	0.0034	15.6953	0.0014	19.5126	0.0020	0.0476
AN137	NE Arkansas	3CS29	Deer	737	39.5083	0.0009	15.7407	0.0004	19.9005	0.0005	0.1770
AN138	NE Arkansas	3CS29	Deer	777	39.3405	0.0046	15.7141	0.0018	19.7297	0.0025	0.0318
AN139	NE Arkansas	3MS20	Skunk	75-671-6145	39.6091	0.0027	15.7584	0.0016	20.1082	0.0014	0.0551
AN140	NE Arkansas	3MS20	Raccoon	75-671-3277	39.1136	0.0023	15.6904	0.0009	19.4478	0.0011	0.0420
AN141	NE Arkansas	3MS20	Deer	76-1247-297	39.8523	0.0022	15.7961	0.0009	20.3932	0.0012	0.0368
AN142	NE Arkansas	3MS20	Deer	75-671-1520	39.1133	0.0230	15.6562	0.0100	19.5799	0.0120	0.0043
AN143	NE Arkansas	3MS4	Raccoon	73-432-130	39.1049	0.0033	15.6907	0.0011	19.4255	0.0016	0.0458
AN144	NE Arkansas	3MS4	Raccoon	73-432-10	38.9580	0.0014	15.6739	0.0006	19.1952	0.0007	0.0923
AN145	NE Arkansas	3MS4	Raccoon	73-361	38.9887	0.0013	15.6802	0.0006	19.2865	0.0007	0.1066
AN146	NE Arkansas	3MS4	Raccoon	73-432-30	38.9885	0.0014	15.6814	0.0006	19.2583	0.0008	0.0914
AN147	NE Arkansas	3MS4	Deer	73-430-221	38.9280	0.0023	15.6757	0.0009	19.2309	0.0012	0.0556
AN148	NE Arkansas	3MS4	Deer	73-432-358	39.4876	0.0840	15.7576	0.0320	19.6495	0.0580	0.0019
AN157	Louisiana	16CD13	Squirrel	House 5	38.4291	0.0009	15.6521	0.0004	18.8004	0.0005	0.2671
AN158	Louisiana	16CD13	Squirrel	House 5	38.3432	0.0009	15.6398	0.0003	18.6645	0.0004	0.1770
AN159	Louisiana	16CD13	Squirrel	House 5	38.3518	0.0008	15.6445	0.0003	18.7147	0.0005	0.3063
AN160	Louisiana	16CD13	Deer	House 6	38.5307	0.0022	15.6430	0.0008	18.7471	0.0013	0.0658
AN161	Louisiana	16CD13	Deer	House 6	38.4289	0.0013	15.6398	0.0005	18.6608	0.0006	0.1319
AN162	Louisiana	16CD13	Deer	House 6	38.3723	0.0016	15.6244	0.0007	18.6092	0.0010	0.0927
AN163	Louisiana	16NA657	Opossum	16NA657-10	39.0758	0.0006	15.6974	0.0002	19.2938	0.0004	0.3100
AN164	Louisiana	16NA657	Deer	16NA657-4	38.9810	0.0024	15.6830	0.0011	19.1716	0.0014	0.0844
AN165	Louisiana	16NA657	Deer	Feat. 1	39.0282	0.0048	15.6875	0.0020	19.2769	0.0023	0.0216
AN166	Louisiana	16NA657	Deer	Feat. 1	39.1039	0.0010	15.7043	0.0003	19.2852	0.0004	0.2240
AN167	Missouri	23BU10	Opossum	FS 292	39.5685	0.0030	15.7764	0.0013	20.3925	0.0017	0.0429
AN168	Missouri	23BU10	Raccoon	FS 799	38.5653	0.0880	15.4853	0.0360	19.4329	0.0560	0.0010
AN169	Missouri	23BU10	Raccoon	FS 288	39.8407	0.0023	15.8035	0.0009	20.4474	0.0015	0.0721
AN170	Missouri	23BU10	Deer	FS 4	39.6710	0.0013	15.7760	0.0005	20.1867	0.0006	0.1731
AN171	Missouri	23BU10	Deer	FS 218	39.3721	0.0033	15.7286	0.0013	19.8470	0.0018	0.0205
AN172	Missouri	23BU10	Deer	FS 1	39.4851	0.0082	15.7929	0.0028	20.0848	0.0075	0.0205
AN173	Mississippi	22TU530	Squirrel	L1.2018.8	39.0649	0.0025	15.7084	0.0014	19.5341	0.0013	0.0580

AN174	Mississippi	22TU530	Raccoon	L1.2019.7	39.1306	0.0008	15.7059	0.0004	19.5124	0.0005	0.1424
AN175	Mississippi	22TU530	Dog	L1.2019.6	39.1496	0.0030	15.6936	0.0012	19.4673	0.0017	0.0580
AN176	Mississippi	22CO503	Raccoon	L1.2019.5	39.6054	0.0170	15.7586	0.0060	20.1051	0.0130	0.0066
AN177	Mississippi	22CO503	Beaver	L1.2019.2	39.2135	0.0009	15.7233	0.0004	19.6310	0.0005	0.1432
AN178	Mississippi	22CO503	Deer	L1.2019.4	39.1036	0.0072	15.6842	0.0026	19.4228	0.0041	0.0229
AN179	Mississippi	22CO503	Deer	L1.2019.3	39.8836	0.0013	15.7923	0.0004	20.4246	0.0008	0.1363
AN180	Mississippi	22CO503	Deer	L1.2019.1	39.0532	0.0020	15.6826	0.0011	19.3378	0.0013	0.0386

Sr isotope ratios from human second molar enamel at Crenshaw (3MI6).

Lab ID	Accession	Cluster	Tooth Side	$^{87}\text{Sr}/^{86}\text{Sr}$	2*Std. Error
HU30	69-66-589-1	Rayburn	Mand L	0.70964	0.00001
HU31	69-66-598-2	Rayburn	Mand R	0.71138	0.00001
HU32	69-66-598-3	Rayburn	Mand L	0.71049	0.00001
HU33	69-66-598-4	Rayburn	Max R	0.71297	0.00001
HU34	69-66-598-5	Rayburn	Max L	0.70925	0.00001
HU35	69-66-598-6	Rayburn	Mand L	0.70976	0.00001
HU36	69-66-598-7	Rayburn	Mand R	0.70913	0.00001
HU37	69-66-598-8	Rayburn	Mand R	0.70942	0.00001
HU38	83-377-6-1	WSA 5	Mand L	0.70952	0.00001
HU39	83-377-6-2	WSA 5	Mand L	0.70941	0.00001
HU40	83-377-6-3	WSA 5	Mand L	0.70933	0.00001
HU41	83-377-6-4	WSA 5	Mand L	0.70996	0.00001
HU42	83-377-6-5	WSA 5	Max R	0.70973	0.00001
HU43	83-377-7-1	WSA 6	Mand R	0.70942	0.00001
HU44	83-377-7-2	WSA 6	Mand L	0.71056	0.00001
HU45	83-377-7-4	WSA 6	Mand L	0.70922	0.00001
HU46	83-377-7-5	WSA 6	Mand	0.71135	0.00001
HU47	83-377-7-6	WSA 6	Mand R	0.71037	0.00001
HU48	83-377-29-1	WSA 17	Mand L	0.71010	0.00001
HU49	83-377-29-2	WSA 17	Mand L	0.70926	0.00001
HU50	83-377-29-3	WSA 17	Mand R	0.70995	0.00001
HU51	83-377-61-1	WSA 25	Mand R	0.71192	0.00001
HU52	83-377-61-2	WSA 25	Mand L	0.71171	0.00001
HU53	83-377-61-3	WSA 25	Mand R	0.71224	0.00001
HU54	83-377-24-1	NSA 1	Max R	0.71114	0.00001
HU55	83-377-24-2	NSA 1	Mand R	0.71066	0.00001
HU56	83-377-24-3	NSA 1	Mand R	0.71098	0.00001
HU57	83-377-24-4	NSA 1	Mand R	0.71074	0.00001
HU58	83-377-24-5	NSA 1	Mand R	0.71097	0.00001
HU59	83-377-25-1	NSA 2	Max	0.71231	0.00001
HU60	83-377-25-2	NSA 2	Mand L	0.70857	0.00001
HU61	83-377-25-3	NSA 2	Mand R	0.70856	0.00001
HU62	83-377-2-4	WSA 1	Mand L	0.71042	0.00001
HU63	83-377-2-5	WSA 1	Mand R	0.71052	0.00001
HU64	83-377-2-6	WSA 1	Mand R	0.70964	0.00001
HU65	83-377-2-7	WSA 1	Mand L	0.71053	0.00001
HU66	83-377-2-8	WSA 1	Mand R	0.71009	0.00001
HU67	83-377-3-3	WSA 2	Mand L	0.71392	0.00001
HU68	83-377-3-5	WSA 2	Mand L	0.71038	0.00001
HU69	83-377-3-15	WSA 2	Mand R	0.71314	0.00001
HU70	83-377-3-33	WSA 2	Mand R	0.70838	0.00001
HU71	83-377-3-35	WSA 2	Mand L	0.70963	0.00001
HU72	83-377-3-41	WSA 2	Mand L	0.71219	0.00001
HU73	83-377-3-61	WSA 2	Mand R	0.71287	0.00001

HU74	83-377-3-81	WSA 2	Mand R	0.70983	0.00001
HU75	83-377-3-89	WSA 2	Mand R	0.71132	0.00001
HU76	83-377-3-96	WSA 2	Mand L	0.71310	0.00001
HU77	83-377-3-101	WSA 2	Mand L	0.71178	0.00002
HU78	83-377-3-108	WSA 2	Mand L	0.71023	0.00001
HU79	83-377-41-1-1	NSA 8	Mand R	0.71247	0.00001
HU80	83-377-41-1-2	NSA 8	Max L	0.71351	0.00001
HU81	83-377-41-1-3	NSA 8	Max L	0.71266	0.00001
HU82	83-377-41-1-4	NSA 8	Max	0.71336	0.00001
HU83	83-377-41-1-5	NSA 8	Mand R	0.71103	0.00001
HU84	83-377-41-1-6	NSA 8	Mand L	0.70985	0.00001
HU85	83-377-41-1-7	NSA 8	Mand R	0.71270	0.00001
HU86	83-377-41-1-8	NSA 8	Mand L	0.71062	0.00001
HU87	83-377-41-1-9	NSA 8	Max R	0.71145	0.00001
HU88	83-377-23-1	WSA 15	Mand L	0.71146	0.00001
HU89	83-377-23-4	WSA 15	Mand L	0.71002	0.00001
HU90	83-377-23-5	WSA 15	Mand R	0.71042	0.00001
HU91	83-377-23-11	WSA 15	Mand R	0.71128	0.00001
HU92	83-377-23-18A	WSA 15	Mand R	0.70971	0.00001
HU93	83-377-23-18B	WSA 15	Mand R	0.70891	0.00001
HU94	83-377-23-31	WSA 15	Mand L	0.71442	0.00001
HU95	83-377-23-36	WSA 15	Mand R	0.71037	0.00001
HU96	83-377-32-1	WSA 18	Mand L	0.71032	0.00001
HU97	83-377-32-2	WSA 18	Mand L	0.71086	0.00001
HU98	83-377-32-3	WSA 18	Mand R	0.71028	0.00001
HU99	83-377-32-5	WSA 18	Max L	0.71041	0.00001
HU100	83-377-32-6	WSA 18	Mand L	0.71157	0.00001
HU101	83-377-32-7	WSA 18	Mand R	0.71159	0.00001
HU102	83-377-32-8	WSA 18	Mand L	0.71052	0.00001
HU103	83-377-32-9	WSA 18	Mand L	0.71154	0.00001
HU104	83-377-32-10	WSA 18	Mand L	0.70963	0.00001

Strontium isotope ratios from animal tooth enamel.

Lab ID	State/Area	Site Number	Animal	Accession/Context	$^{87}\text{Sr}/^{86}\text{Sr}$	2*Std. Error
AN1	SW Arkansas	3MI6	Deer	69-66-591	0.71434	0.00001
AN2	SW Arkansas	3MI6	Rabbit	69-66-587	0.70925	0.00001
AN3	SW Arkansas	3MI6	Opossum	69-66-261	0.70955	0.00001
AN4	SW Arkansas	3MI6	Cottontail	69-66-317	0.70963	0.00001
AN5	SW Arkansas	3MI6	Wood Rat	69-66-230	0.70968	0.00001
AN6	SW Arkansas	3MI6	Swamp Rabbit	69-66-389	0.70941	0.00001
AN7	SW Arkansas	3MI6	Deer	69-66-469	0.71119	0.00001
AN8	SW Arkansas	3MI6	Deer	69-66-389	0.71529	0.00002
AN9	SW Arkansas	3MI6	Deer	90-634	0.71297	0.00001
AN10	SW Arkansas	3MI6	Deer	90-634	0.71513	0.00001
AN11	SW Arkansas	3MI6	Cottontail	95-449	0.70950	0.00001
AN12	SW Arkansas	3MI6	Swamp Rabbit	90-634	0.70974	0.00001
AN13	SW Arkansas	3HE92	Squirrel	83-379-114	0.70977	0.00001
AN14	SW Arkansas	3HE92	Pocket Gopher	82-450-20	0.70978	0.00001
AN15	SW Arkansas	3HE92	Rabbit	83-379-264	0.70943	0.00001
AN16	SW Arkansas	3HE92	Rabbit	83-379-101	0.70930	0.00001
AN17	SW Arkansas	3HE92	Rabbit	83-379-141	0.70927	0.00001
AN18	SW Arkansas	3HE92	Rabbit	83-379-281	0.70919	0.00001
AN19	SW Arkansas	3HE92	Pocket Gopher	84-380-158	0.71007	0.00001
AN20	SW Arkansas	3HE40	Squirrel	2002-700-76	0.71526	0.00001
AN21	SW Arkansas	3HE40	Squirrel	2002-700-345	0.70979	0.00001
AN22	SW Arkansas	3HE40	Squirrel	2003-685-84	0.70985	0.00002
AN23	SW Arkansas	3HE40	Squirrel	2002-700-34-5	0.70980	0.00001
AN24	SW Arkansas	3HE40	Squirrel	2002-700-34-5	0.70976	0.00001
AN25	SW Arkansas	3HO11	Raccoon	61-114-4686	0.70961	0.00001
AN26	SW Arkansas	3HO11	Opossum	61-114-4686	0.70826	0.00001
AN27	SW Arkansas	3HO11	Small Rodent	61-114-607	0.70830	0.00001
AN28	SW Arkansas	3HO11	Rabbit	61-114-685	0.70832	0.00002
AN29	SW Arkansas	3HO11	Opossum	61-114-473	0.70855	0.00001
AN30	SW Arkansas	3HO11	Deer	61-114-676	0.70890	0.00001
AN31	SW Arkansas	3HO11	Deer	61-114-694	0.70880	0.00001
AN32	SW Arkansas	3HO11	Deer	61-114-638	0.71076	0.00001
AN33	SW Arkansas	3HO11	Deer	61-114-468a	0.70842	0.00001
AN34	SW Arkansas	3HO11	Deer	61-114-554	0.70889	0.00001
AN35	SW Arkansas	3SV20	Deer	64-51-1	none	
AN36	SW Arkansas	3SV20	Rabbit	64-51-1	0.70856	0.00002
AN37	SW Arkansas	3SV20	Opossum	64-51-1	0.70862	0.00002
AN38	SW Arkansas	3SV20	Small Rodent	64-51-1	0.71073	0.00001
AN39	SW Arkansas	3SV20	Raccoon	64-51-1	0.70800	0.00001
AN40	SW Arkansas	3LR49	Rabbit	63-39-278	0.71301	0.00001
AN41	SW Arkansas	3LR49	Raccoon	63-39-33	0.71365	0.00001
AN42	SW Arkansas	3LR49	Raccoon	63-39-57	0.71332	0.00001
AN43	SW Arkansas	3LR49	Opossum	63-39-51	0.71338	0.00001
AN44	SW Arkansas	3LR49	Rabbit	63-39-40	0.71357	0.00001

AN45	SW Arkansas	3LR49	Deer	63-39-45	0.71383	0.00001
AN46	SW Arkansas	3LR49	Deer	63-39-43	0.71379	0.00002
AN47	SW Arkansas	3LR49	Deer	63-39-63	0.71276	0.00001
AN48	SW Arkansas	3LR49	Deer	63-39-49	0.71109	0.00002
AN49	SW Arkansas	3SV15	Deer	64-50-3196	0.70987	0.00001
AN50	SW Arkansas	3SV15	Deer	64-50-252	0.71016	0.00001
AN51	SW Arkansas	3SV15	Deer	64-50-203	0.70898	0.00001
AN52	SW Arkansas	3SV15	Deer	64-50-341	0.71139	0.00001
AN53	SW Arkansas	3SV15	Deer	64-50-325	0.70893	0.00002
AN54	SW Arkansas	3SV15	Opossum	64-50-231	0.70956	0.00002
AN55	SW Arkansas	3SV15	Rabbit	64-50-319a	0.70940	0.00001
AN56	SW Arkansas	3SV15	Rabbit	64-50-437	0.70920	0.00001
AN57	Mississippi	22TU549	Raccoon	F-944	0.70951	0.00001
AN58	Mississippi	22TU549	Opossum	F-2300	0.70896	0.00001
AN59	Mississippi	22TU549	Raccoon	F-2300	0.70932	0.00001
AN60	Mississippi	22TU549	Raccoon	F-2300	0.70919	0.00001
AN61	Mississippi	22TU549	Deer	F-799	0.70851	0.00001
AN62	Mississippi	22TU549	Deer	F-2300	0.70820	0.00001
AN63	Mississippi	22TU549	Deer	F-2300	0.70881	0.00001
AN64	Mississippi	22TU549	Deer	F-1611	0.70933	0.00001
AN65	Louisiana	16NA70	Deer	16NA70-41	0.70975	0.00001
AN66	Louisiana	16NA70	Deer	16NA70-63	0.71038	0.00001
AN67	Louisiana	16NA70	Deer	16NA70-77	0.70997	0.00001
AN68	Louisiana	16NA70	Deer	16NA70-Nat_F	0.71208	0.00001
AN69	Louisiana	16NA70	Rabbit	16NA70-27	0.70991	0.00002
AN70	Louisiana	16NA70	Rabbit	16NA70-115	0.70940	0.00002
AN71	Louisiana	16NA70	Beaver	16NA70-104	0.70954	0.00001
AN72	Louisiana	16NA70	Rabbit	16NA70-404	0.70968	0.00001
AN73	Illinois	11U635	Deer	95.002 Bag 101	0.71108	0.00001
AN74	Illinois	11U635	Ground Hog	95.002 Bag 21	0.70932	0.00001
AN75	Illinois	11U635	Squirrel	95.002 Bag 24	0.70920	0.00001
AN76	Illinois	11U635	Squirrel	95.002 Bag 30	0.70916	0.00001
AN77	Illinois	11U635	Squirrel	95.002 Bag 100	0.70931	0.00001
AN78	Illinois	11U635	Raccoon	95.002 Bag 100	0.70926	0.00001
AN79	Illinois	11U635	Deer	95.002 Bag 577	0.70879	0.00001
AN80	Illinois	11Pp3	Beaver	14.003 Bag 162	0.70986	0.00001
AN81	Illinois	11Pp3	Squirrel	14.002 TU26 L2	0.71078	0.00001
AN82	Illinois	11Pp3	Raccoon	14.002 N224.5	0.71160	0.00001
AN83	Illinois	11Pp3	Opossum	14.002 Bag 53	0.71074	0.00001
AN84	Illinois	11Pp3	Deer	14.002 TU26 L3	0.71076	0.00001
AN85	Illinois	11Pp3	Deer	14.002 TU26 L2	0.71062	0.00001
AN86	Illinois	11Mx1	Black Bear	1-115	0.71151	0.00001
AN87	Illinois	11Mx1	Deer	1-95	0.71184	0.00001
AN88	Texas	41RW4	Rabbit	Lot 120	0.70781	0.00001
AN89	Texas	41RW4	Squirrel	Lot 33	0.70780	0.00001
AN90	Texas	41RW4	Beaver	Lot 118	0.70777	0.00001
AN91	Texas	41RW4	Beaver	Lot 117	0.70777	0.00001

AN92	Texas	41RW4	Beaver	Lot 115	0.70779	0.00001
AN93	Texas	41RW4	Raccoon	Lot 115	0.70781	0.00001
AN94	Texas	41RW4	Deer	Lot 119	0.70856	0.00001
AN95	Texas	41WM230	Small Rodent	Lot 597	0.70793	0.00001
AN96	Texas	41WM230	Pocket Gopher	XU3	0.70783	0.00001
AN97	Texas	41WM230	Raccoon	Lot 141-7	0.70820	0.00001
AN98	Texas	41WM230	Small Rodent	Lot 637	0.70806	0.00001
AN99	Texas	41WM230	Small Rodent	Lot 619	0.70790	0.00001
AN100	Texas	41TR198	Pocket Gopher	Lot 445	0.70878	0.00001
AN101	Texas	41TR198	Small Rodent	Lot 461	0.70861	0.00001
AN102	Texas	41TR198	Pocket Gopher	Lot 462	0.70858	0.00001
AN103	Texas	41TR198	Small Rodent	Lot 435	0.70874	0.00001
AN104	Texas	41TR198	Deer	Lot 408	0.70932	0.00001
AN105	Texas	41TR198	Deer	Lot 456	0.70909	0.00001
AN106	Texas	41COL9	Deer	41-18C9-2	0.70783	0.00001
AN107	Texas	41COL9	Beaver	41-18C9-2	0.70853	0.00001
AN108	Texas	41COL9	Rabbit	41-18C9-2	0.70771	0.00001
AN109	Texas	41COL9	Pocket Gopher	41-18C9-2	0.70772	0.00001
AN110	Texas	41EL11	Raccoon	Lot 120	0.70769	0.00001
AN111	Texas	41EL11	Pocket Gopher	Lot 240	0.70840	0.00001
AN112	Texas	41EL11	Pocket Gopher	Lot 240	0.70818	0.00001
AN113	Oklahoma	34Cu27	Rabbit	83.002	0.70864	0.00001
AN114	Oklahoma	34Cu27	Small Rodent	101.011	0.70837	0.00001
AN115	Oklahoma	34Cu27	Deer	101.011	0.70834	0.00001
AN116	Oklahoma	34Cu27	Small Rodent	101.011	0.70830	0.00001
AN117	Oklahoma	34Cu27	Small Rodent	101.011	0.70860	0.00001
AN118	Oklahoma	34Cu27	Small Rodent	101.011	0.70845	0.00001
AN119	Oklahoma	34Cu27	Small Rodent	101.011	0.70863	0.00001
AN120	Oklahoma	34Rm29	Deer	026-A/1980/20	0.70836	0.00001
AN121	Oklahoma	34Rm29	Rabbit	026-A/1980/20	0.70860	0.00001
AN122	Oklahoma	34Rm29	Small Rodent	026-A/1980/20	0.70834	0.00001
AN123	Oklahoma	34Wa5	Rabbit	26.007	0.70905	0.00001
AN124	Oklahoma	34Wa5	Pocket Gopher	654.006	0.70905	0.00001
AN125	Oklahoma	34Wa5	Pocket Gopher	690.004	0.70879	0.00001
AN126	Oklahoma	34Wa5	Pocket Gopher	42.005	0.70911	0.00001
AN127	Oklahoma	34Wa5	Pocket Gopher	97.008	0.70937	0.00001
AN128	Oklahoma	34Wa5	Pocket Gopher	97.008	0.70951	0.00001
AN129	Oklahoma	34Wa5	Deer	640	0.70934	0.00001
AN130	Mississippi	22TU530	Raccoon	Feat. 34	0.70933	0.00001
AN131	Mississippi	22TU530	Grey Fox	Feat. 34	0.70935	0.00001
AN132	NE Arkansas	3CS29	Raccoon	1522094	0.70942	0.00001
AN133	NE Arkansas	3CS29	Beaver	777	0.70937	0.00002
AN134	NE Arkansas	3CS29	Raccoon	777	0.70951	0.00001
AN135	NE Arkansas	3CS29	Beaver	780	0.70954	0.00001
AN136	NE Arkansas	3CS29	Rabbit	774	0.70930	0.00001
AN137	NE Arkansas	3CS29	Deer	737	0.70937	0.00001
AN138	NE Arkansas	3CS29	Deer	777	0.70960	0.00001

AN139	NE Arkansas	3MS20	Skunk	75-671-6145	0.70994	0.00001
AN140	NE Arkansas	3MS20	Raccoon	75-671-3277	0.70952	0.00001
AN141	NE Arkansas	3MS20	Deer	76-1247-297	0.71009	0.00001
AN142	NE Arkansas	3MS20	Deer	75-671-1520	0.70982	0.00001
AN143	NE Arkansas	3MS4	Raccoon	73-432-130	0.70930	0.00001
AN144	NE Arkansas	3MS4	Raccoon	73-432-10	0.70994	0.00018
AN145	NE Arkansas	3MS4	Raccoon	73-361	0.70935	0.00002
AN146	NE Arkansas	3MS4	Raccoon	73-432-30	0.70941	0.00002
AN147	NE Arkansas	3MS4	Deer	73-430-221	0.70946	0.00002
AN148	NE Arkansas	3MS4	Deer	73-432-358	0.70907	0.00002
AN149	Ouachita - SW AR	3CL418	Deer	87-710-954	0.71357	0.00001
AN150	Ouachita - SW AR	3CL418	Deer	87-710-647	0.71266	0.00001
AN151	Ouachita - SW AR	3CL418	Deer	87-710-95	0.71007	0.00001
AN152	Ouachita - SW AR	3CL418	Squirrel	87-710-417	0.71229	0.00001
AN153	Ouachita - SW AR	3CL418	Squirrel	87-710-86	0.71352	0.00001
AN154	Ouachita - SW AR	3HS60	Deer	74-746-14	0.71312	0.00001
AN155	Ouachita - SW AR	3HS60	Deer	74-746-27	0.71606	0.00001
AN156	Ouachita - SW AR	3HS60	Opossum	74-746-28	0.71492	0.00001
AN157	Louisiana	16CD13	Squirrel	House 5	0.70993	0.00001
AN158	Louisiana	16CD13	Squirrel	House 5	0.71154	0.00001
AN159	Louisiana	16CD13	Squirrel	House 5	0.70992	0.00001
AN160	Louisiana	16CD13	Deer	House 6	0.71062	0.00001
AN161	Louisiana	16CD13	Deer	House 6	0.71038	0.00001
AN162	Louisiana	16CD13	Deer	House 6	0.70901	0.00001
AN163	Louisiana	16NA657	Opossum	16NA657-10	0.71210	0.00001
AN164	Louisiana	16NA657	Deer	16NA657-4	0.71210	0.00001
AN165	Louisiana	16NA657	Deer	Feat. 1	0.70959	0.00001
AN166	Louisiana	16NA657	Deer	Feat. 1	0.71119	0.00001
AN167	Missouri	23BU10	Opossum	FS 292	0.71219	0.00001
AN168	Missouri	23BU10	Raccoon	FS 799	0.71286	0.00001
AN169	Missouri	23BU10	Raccoon	FS 288	0.71039	0.00001
AN170	Missouri	23BU10	Deer	FS 4	0.70997	0.00001
AN171	Missouri	23BU10	Deer	FS 218	0.71006	0.00001
AN172	Missouri	23BU10	Deer	FS 1	0.71304	0.00001
AN173	Mississippi	22TU530	Squirrel	L1.2018.8	0.70931	0.00001
AN174	Mississippi	22TU530	Raccoon	L1.2019.7	0.70946	0.00001
AN175	Mississippi	22TU530	Dog	L1.2019.6	0.70941	0.00001
AN176	Mississippi	22CO503	Raccoon	L1.2019.5	0.70954	0.00001
AN177	Mississippi	22CO503	Beaver	L1.2019.2	0.70959	0.00001
AN178	Mississippi	22CO503	Deer	L1.2019.4	0.70954	0.00001
AN179	Mississippi	22CO503	Deer	L1.2019.3	0.70936	0.00001
AN180	Mississippi	22CO503	Deer	L1.2019.1	0.70942	0.00001

Sample	Sample Letter	Context	Catalog Number	Material	Li (ppm)	B	Al	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Y	Mo	Ag	Cd	Ba	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Th	U	Pb	
HU44	B	WSA Cl 6	83-377-2	enamel	1.566	5.307	13.176	4.555	0.224	16.738	83.863	0.039	0.338	0.271	105.635	1.064	0.431	0.055	0.069	63.184	1.925	0.746	0.388	1.707	0.005	0.070	0.272	0.032	0.159	0.027	0.060	0.008	0.043	0.006	0.004	0.333	0.150	0.059
HU49	B	WSA Cl 17	83-377-2	enamel	1.221	4.803	8.035	2.46	0.053	5.693	10.021	0.039	0.338	0.259	100.202	0.990	0.017	0.031	0.073	0.773	0.381	0.473	0.029	0.019	0.019	0.005	0.008	0.005	0.008	0.005	0.008	0.005	0.008	0.005	0.008	0.005		
HU53	B	WSA Cl 6	83-377-2	enamel	1.605	5.965	10.321	3.040	0.040	1.545	10.547	0.031	0.329	0.259	0.285	0.191	0.020	0.021	0.021	12.774	0.957	0.390	0.390	0.045	0.058	0.004	0.041	0.015	0.015	0.013	0.000	0.004	0.000	0.000	0.000	0.000	0.000	
HU45	B	WSA Cl 6	83-377-2	enamel	1.399	3.017	12.044	4.014	0.085	5.203	25.745	0.015	0.112	0.163	146.366	1.399	0.104	0.023	0.023	0.227	0.360	0.213	0.060	0.252	0.036	0.004	0.016	0.003	0.008	0.001	0.005	0.002	0.005	0.003	0.005	0.000		
HU39	B	WSA Cl 5	83-377-2	enamel	1.905	2.394	7.257	0.822	0.128	9.991	23.780	0.042	0.181	0.069	122.433	0.160	0.878	0.038	0.003	16.671	0.223	0.140	0.051	0.235	0.048	0.009	0.040	0.005	0.023	0.010	0.001	0.009	0.000	0.003	0.003	0.015	0.029	
HU68	B	WSA Cl 2	83-377-3	enamel	0.923	6.036	4.130	2.016	0.082	5.696	14.195	0.010	0.123	0.232	17.537	0.184	0.855	0.028	0.009	27.040	0.297	0.127	0.061	0.234	0.042	0.008	0.044	0.006	0.027	0.004	0.013	0.002	0.006	0.004	0.001	0.032	0.076	
HU51	B	WSA Cl 25	83-377-3	enamel	0.239	3.471	4.773	0.838	0.042	4.833	9.743	0.016	0.086	0.075	44.884	0.151	0.448	0.031	0.002	50.629	0.228	0.141	0.056	0.232	0.056	0.012	0.047	0.005	0.023	0.003	0.009	0.001	0.001	0.002	0.016	0.073		
HU52	B	WSA Cl 25	83-377-3	enamel	3.804	4.751	4.252	2.366	0.047	1.517	10.000	0.007	0.070	0.074	0.151	0.015	0.448	0.024	0.005	46.729	0.228	0.141	0.056	0.232	0.056	0.012	0.047	0.005	0.023	0.003	0.009	0.001	0.001	0.010	0.010			
HU69	B	WSA Cl 2	83-377-3	enamel	1.381	4.063	2.288	0.569	0.019	12.44	23.336	0.029	0.132	0.094	0.151	0.049	0.024	0.005	0.072	0.172	0.125	0.039	0.187	0.023	0.008	0.028	0.006	0.017	0.003	0.007	0.004	0.001	0.001	0.013				
HU55	B	WSA Cl 1	83-377-2	enamel	1.161	6.745	4.615	0.373	0.052	9.398	9.660	0.034	0.072	0.085	137.791	0.119	1.243	0.040	0.007	30.477	0.217	0.071	0.043	0.184	0.019	0.006	0.029	0.002	0.018	0.002	0.005	0.003	0.000	0.001	0.011	0.013		
HU77	B	WSA Cl 2	83-377-3	enamel	2.085	8.079	4.607	2.822	0.102	4.179	20.137	0.021	0.089	0.092	48.790	0.133	0.689	0.014	0.015	31.937	0.203	0.127	0.041	0.178	0.036	0.009	0.031	0.004	0.018	0.006	0.000	0.001	0.024	0.088				
HU62	B	WSA Cl 1	83-377-2	enamel	0.695	4.716	3.227	0.990	0.037	4.213	14.003	0.066	0.083	0.058	82.839	0.130	1.125	0.039	0.007	23.088	0.194	0.100	0.036	0.171	0.023	0.007	0.031	0.002	0.005	0.005	0.001	0.001	0.012	0.158				
HU50	B	WSA Cl 17	83-377-2	enamel	1.670	1.836	0.477	0.476	0.081	3.313	13.326	0.013	0.052	0.073	76.694	0.103	0.426	0.026	0.007	15.614	0.147	0.105	0.034	0.172	0.025	0.005	0.033	0.016	0.002	0.000	0.000	0.000	0.000	0.001	0.005			
HU53	B	WSA Cl 25	83-377-2	enamel	2.078	8.079	4.607	2.822	0.102	4.179	20.137	0.021	0.089	0.092	48.790	0.133	1.125	0.039	0.007	23.088	0.194	0.100	0.036	0.171	0.023	0.007	0.031	0.002	0.005	0.005	0.000	0.000	0.000	0.000	0.000			
HU48	B	WSA Cl 17	83-377-2	enamel	1.987	4.229	6.988	1.155	0.070	19.99	21.219	0.164	0.156	0.146	128.150	0.112	1.730	0.062	0.032	17.876	0.190	0.115	0.032	0.154	0.033	0.006	0.026	0.016	0.003	0.003	0.001	0.001	0.003	0.020	0.076			
HU47	B	WSA Cl 6	83-377-2	enamel	0.757	6.598	4.569	0.900	0.022	3.575	15.980	0.013	0.023	0.049	63.752	0.089	0.648	0.065	0.017	26.856	0.189	0.104	0.032	0.138	0.020	0.004	0.022	0.003	0.013	0.003	0.005	0.004	0.000	0.001	0.017	0.122		
HU63	B	WSA Cl 1	83-377-2	enamel	2.079	8.272	4.279	0.898	0.065	1.943	9.443	0.014	0.212	0.224	64.021	0.061	1.024	0.021	0.005	17.996	0.133	0.070	0.023	0.112	0.020	0.006	0.022	0.016	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000		
HU72	B	WSA Cl 2	83-377-3	enamel	0.069	6.033	4.128	1.497	0.046	5.358	19.114	0.014	0.233	0.244	62.196	0.081	0.023	0.014	0.041	44.816	0.138	0.079	0.026	0.098	0.019	0.004	0.021	0.016	0.001	0.000	0.004	0.000	0.000	0.000	0.000	0.000		
HU57	B	WSA Cl 1	83-377-2	enamel	2.771	6.380	4.128	1.497	0.046	5.358	19.114	0.014	0.233	0.244	62.196	0.081	0.023	0.014	0.041	44.816	0.138	0.079	0.026	0.098	0.019	0.004	0.021	0.016	0.001	0.000	0.004	0.000	0.000	0.000	0.000			
HU59	B	WSA Cl 8	83-377-4	enamel	1.386	4.686	1.377	1.734	0.032	3.771	10.807	0.014	0.157	0.164	168.114	0.083	0.024	0.012	0.294	0.043	0.008	0.016	0.068	0.008	0.004	0.004	0.024	0.004	0.000	0.000	0.000	0.000	0.000					
HU78	B	WSA Cl 2	83-377-3	enamel	0.461	2.680	6.876	0.991	0.024	2.004	8.830	0.019	0.087	0.063	55.865	0.039	0.072	0.022	0.009	34.858	0.086	0.062	0.019	0.084	0.011	0.003	0.015	0.001	0.000	0.003	0.000	0.000	0.000	0.006				
HU66	B	WSA Cl 1	83-377-2	enamel	2.075	7.369	5.042	1.627	0.037	6.193	24.791	0.031	0.074	0.073	55.852	0.075	1.300	0.030	0.007	20.643	0.111	0.062	0.017	0.078	0.016	0.003	0.020	0.002	0.001	0.000	0.000	0.000	0.000	0.000	0.000			
HU53	B	WSA Cl 25	83-377-3	enamel	2.806	2.718	3.260	4.016	0.015	2.103	7.808	0.013	0.070	0.027	80.247	0.137	1.200	0.036	0.005	19.535	0.165	0.045	0.017	0.073	0.007	0.003	0.017	0.001	0.000	0.002	0.000	0.000	0.000	0.000	0.000			
HU42	B	WSA Cl 7	83-377-2	enamel	1.533	4.690	180.260	0.833	0.024	1.049	18.030	0.016	0.074	0.073	57.949	0.061	0.025	0.005	0.001	12.774	0.131	0.062	0.016	0.069	0.015	0.003	0.009	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
HU79	B	WSA Cl 2	83-377-3	enamel	0.075	6.719	0.191	2.238	0.032	6.576	7.232	0.017	0.067	0.046	52.320	0.013	0.058	0.021	0.018	55.058	0.060	0.020	0.007	0.038	0.005	0.003	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
HU74	B	WSA Cl 2	83-377-3	enamel	0.923	1.341	2.293	1.450	0.082	3.890	10.790	0.014	0.114	0.094	72.418	0.024	0.075	0.023	0.008	10.020	0.043	0.024	0.005	0.020	0.001	0.001	0.007	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
HU75	B	WSA Cl 2	83-377-3	enamel	2.077	4.023	1.835	1.716	0.039	4.604	13.737	0.029	0.105	0.122	67.845	0.045	0.055	0.022	0.001	10.741	0.019	0.061	0.010	0.044	0.043	0.007	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
HU60	B	WSA Cl 2	83-377-2	enamel	1.382	4.015	2.747	2.292	0.052	1.182	10.263	0.013	0.071	0.073	136.983	0.021	1.743	0.031	0.014	35.614	0.051	0.011	0.006	0.020	0.005	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
HU82	B	WSA Cl 8	83-377-4	enamel	2.005	4.608	4.268	4.126	0.041	10.083	21.000	0.014	0.076	0.075	99.509	0.021	1.744	0.031	0.014	35.614	0.051	0.011	0.006	0.020	0.005	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
HU57	B	WSA Cl 8	83-377-4	enamel	1.381	4.015	2.747	2.292	0.052	1.182	10.263																											