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Abstract

Recently, the accurate modeling of flow-structure interac-
tions has gained more attention and importance for both
petroleum and environmental engineering applications. Of
particular interest is the coupling between subsurface flow
and reservoir geomechanics. Different single rate and mul-
tirate iterative and explicit coupling schemes have been
proposed and analyzed in the past. In addition, Banach
fixed point contraction results were obtained for iterative
coupling schemes, and conditionally stable results were
obtained for explicit coupling schemes. In this work, we
will consider the mathematical analysis of the single rate
and multirate fixed stress split iterative coupling schemes
for spatially heterogeneous poroelastic media. We will
re-establish the contractivity for both schemes in the local-
ized case, and we will show that heterogeneities come at
the expense of imposing more restricted conditions on the
number of fine flow time steps that can be taken within
one coarse mechanics time step in the multirate case. Our
mathematical analysis is supplemented by numerical sim-
ulations validating our derived upper bounds. To the best
of our knowledge, this is the first rigorous mathematical
analysis of the multirate fixed-stress split iterative coupling
scheme in heterogeneous poroelastic media.
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1 INTRODUCTION

Currently, the coupling between subsurface flow and reservoir geomechanics is an active area of
research. In fact, a clear understanding of the fluid flow and the solid-phase mechanical response
is needed for the accurate modeling of multiscale and multiphysics phenomena such as reservoir
deformation, surface subsidence, well stability, sand production, waste deposition, pore collapse, fault
activation, hydraulic fracturing, CO2 sequestration, and hydrocarbon recovery [30, 40]. Traditionally,
the main purpose of performing reservoir simulation was to obtain accurate results for reservoir flow
in which the effects of porous media deformations are approximated by a constant rock compressibil-
ity factor. In fact, such mechanical deformations have a direct impact on the pore pressure which, in
turn, affects the accuracy of reservoir flow models [40]. By oversimplifying the rock compressibility
coefficient with a constant rock compressibility term, the solid phase stress and strain can never be
accounted for. This poses several concerns on the accuracy of flow models in stress-sensitive and nat-
urally fractured reservoirs [40]. Therefore, it is only through the accurate coupling between subsurface
flow and reservoir geomechanics that accurate and trusted results can be deduced from flow models
in such types of reservoirs.

The coupled flow and geomechanics problem has been heavily investigated in the past. The seed
of this work can be tracked down to the work of Terzaghi [54] and Biot [9, 10]. Terzaghi was the first
to propose an explanation of the soil consolidation process. He analyzed the settlement of a column
of soil under a constant load which is prevented from lateral expansion. The success of Terzaghi’s
theory in predicting the settlement of different types of soils led to the creation of the science of soil
mechanics [10]. More details about Terzaghi’s theory of consolidation can be found in [54]. Terzaghi’s
one dimensional work was then extended by Biot to the three-dimensional case [10]. Several studies
and interpretations based on Biot’s consolidation theory can be found in [28, 46]. To name just a few,
Geertsma [28] utilized Biot theory to present a unified treatment of rock mechanics problems in the
field of petroleum production engineering. Rice and Cleary [46] considered applications of the Biot
linearized quasi-static elasticity theory of fluid-saturated porous media. Coussy [21] presented the
general theory of thermoporoelastoplasticity for saturated materials. Other nonlinear extensions of the
theory of poroelasticity can be found in [19, 20, 24, 26, 49, 52].

Several approaches to decompose and reformulate coupled multiphysics problems into simpler
subproblems exist in literature. For example, at the continuum mechanics level, iterative domain
decomposition methods, such as the Schwarz alternating method, have been developed to enable
continuum-to-continuum coupling in dynamic and quasistatic solid mechanics domains respectively
[32, 42, 43]. Such methods consider solving the mechanics problem in two different domains through
a coupling interface whereas in our approach, we solve two different physical problems at the same
domain. An alternative approach to decomposition of a multiphysics problem is the work of [11] which
employs PDE-constrained optimization techniques to break down the coupled problem into a sequence
of component physics problems that can be solved more robustly and efficiently using legacy codes
for each component physics problem separately. For each subproblem, a suitable objective functional
and a set of control variables are chosen such that the subproblem can be reformulated as a minimiza-
tion problem subject to the constraints provided by the corresponding component physics subproblem.
This is a variation of the works of [38, 39] that employ an optimization based strategy using virtual
controls for the decomposition of the domain, the operators, and the energy spaces as well. In their
approach, the virtual controls correspond to the solution of the underlying PDE, and the constraints are
the copies of the original PDE. In contrast, we will consider a physics-based splitting of our coupled
problem on a single computational domain.
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There are three major approaches of coupling fluid flow with reservoir mechanics, known as the
fully implicit, the explicit, and the iterative coupling schemes. The fully implicit scheme solves the
two problems simultaneously and a preconditioning technique can be employed to decouple the two
problems at the linear solver level [18, 25]. In contrast, the explicit coupling scheme decouples the
two problems, and solves them in a sequential manner [2, 4]. The iterative coupling scheme lies in
between these two approaches, decouples the two problems, and imposes an iteration between the two
until convergence is obtained [3, 5–7, 36].

Four major iterative coupling schemes for coupling flow with geomechanics exist in literature,
known as the fixed-stress, fixed-strain, drained, and undrained split iterative coupling schemes. For
a variational characterization of these schemes, we refer to the recent work [16]. Out of these four
methods, the fixed stress split and the undrained split schemes were shown to be convergent, while the
fixed strain split and the drained split schemes were shown to be only conditionally stable [33–35, 41].
This led to a huge emphasis on studying and extending the fixed stress split and the undrained split
schemes in contrast to the fixed strain and the drained split schemes. For example, a parallel in time
extension of the fixed stress split scheme was proposed in the work of [12], and a fixed-stress split
based preconditioner for the the simultaneously coupled system was proposed in the work of [18, 26,
27, 57]. There has been an investigation into the optimization of fixed stress algorithm in [53]. Multi-
phase flow coupled with linear/nonlinear geomechanics has been solved using iterative algorithm and
its variants [15, 44, 45]. Moreover, we refer the reader to [31] for iterative algorithms applied to an
extension of Biot model that includes multiple pressure fields with biological applications. Further-
more, a priori error estimates and a posteriori error estimates of these iterative algorithms have been
studied and developed in [1, 29, 37].

The coupled flow and geomechanics problem induces two characteristic time scales, one for
mechanics and the other for flow. These time scales may be different and we can exploit this fact to
design the so-called multirate schemes. In these schemes, we take different time steps for the flow
and for the mechanics. Assuming the mechanics time step to be slower in general, as is typically the
case in subsurface dynamics, we can take several fine flow time steps for each coarse mechanics time
step. The existing splitting schemes provide a natural way to consider the multirate scheme as the two
equations are decoupled. This allows us to choose appropriate time steps for each equation separately.
Similarly, we can also consider independent discretizations for the mechanics and flow equations giv-
ing rise to multiscale approaches [22]. Multirate extensions of the undrained split and the fixed stress
split schemes were proposed in the work of [3, 36], and nonlinear and multiscale extensions of the
fixed stress split scheme were proposed in the work of [13] and [22, 23]. Moreover, the convergence
of the undrained split iterative scheme in heterogenous poroelastic media was established in the work
of [8] for both the single rate and multirate schemes, and the convergence of the single rate fixed stress
split scheme in heterogeneous poroelastic media was addressed in the work of [14]. At this stage, it is
worth mentioning that the multirate approach is motivated from the field of solving ordinary differ-
ential equations [48]. In other multiphysics applications, for example, involving Stokes Darcy type or
other hyperbolic models, multirate approaches have been used in [17, 47, 50]. In this article, we will
follow an approach similar to the one presented in [8] to establish the convergence of the single rate
and multirate fixed stress split scheme in heterogenous poroelastic media.

As stated above, by extending the work of [3] to include heterogeneities in the poroelastic param-
eters, we will establish fixed point Banach contraction for both the single rate and multirate fixed
stress iterative coupling schemes in heterogeneous poroelastic media. Figure 1a,b show the difference
between the single rate and multirate coupling schemes. In the single rate case, the flow and mechan-
ics problems share the same time step, while in the multirate scheme the flow takes multiple finer time
steps within one coarse mechanics time step. It should be noted here that for the multirate scheme,
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FIGURE 1 Flowchart for the iterative coupling algorithm using single rate and multirate time stepping for coupled

geomechanics and flow problems. (a) Single rate; (b) multirate.

heterogeneities in the poroelastic parameters come at the expense of imposing an upper bound on the
number of flow fine time steps solved within one coarse mechanics time step. In addition, our local-
ized proof outlines a general strategy that is very likely to be useful for obtaining similar localized
estimates for other iterative and explicit coupling schemes.

The article is structured as follows. Model equations and associated discretizations are presented
in Section 2. Sections 3 and 4 present the formulations and analyses for the localized single rate and
multirate iterative coupling schemes respectively. Section 4 compares multirate Banach contraction
results established for homogeneous versus heterogeneous poroelastic media. Numerical results for
a realistic reservoir model, with a heterogeneous permeability distribution, are shown in Section 6.
Conclusions and outlook are discussed in Section 7.

1.1 Preliminaries

Let Ω be an open, connected, and bounded domain of R
𝑑 , where the dimension d = 2 or 3, with

a Lipschitz continuous boundary 𝜕Ω. For the pressure unknown, we assume that the boundary is
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decomposed into Dirichlet boundary ΓD, and Neumann boundary ΓN , associated with Dirichlet and
Neumann boundary conditions respectively, such that ΓD ∪ ΓN = 𝜕Ω. In addition, let 𝔇(Ω) be the
space of all functions that are infinitely differentiable and with compact support in Ω, and let 𝔇′(Ω)

be its dual space, that is, the space of distributions in Ω. As usual, we denote by H1(Ω) the classical
Sobolev space

H1(Ω) =
{

v ∈ L2(Ω); ∇v ∈ L2(Ω)𝑑
}
,

equipped with the semi-norm and norm:

|v|H1(Ω) = ||∇v||L2(Ω)𝑑 , ||v||H1(Ω) =
(||v||2L2(Ω) + |v|2H1(Ω)

)1∕2
.

More generally, for 1 ≤ p < ∞, W1,p(Ω) is the space

W1,p(Ω) =
{

v ∈ Lp(Ω); ∇v ∈ Lp(Ω)𝑑
}
,

normed by

|v|W1,p(Ω) = ||∇v||Lp(Ω)𝑑 , ||v||W1,p(Ω) =
(
||v||pLp(Ω) + |v|p

W1,p(Ω)

)1∕p

,

with the standard modification for the case when p = ∞. We also define:

H1
0(Ω) =

{
v ∈ H1(Ω); v|𝜕Ω = 0

}
,

and for the divergence operator, we shall use the spaces

H(div; Ω) =
{

v ∈ L2(Ω)𝑑 ; ∇ ⋅ v ∈ L2(Ω)
}
,

and

H0(div; Ω) =
{

v ∈ H(div; Ω)𝑑 ; v ⋅ n = 0 on 𝜕Ω
}
,

equipped with the norm

||v||H(div;Ω) =
(||v||2L2(Ω)𝑑 + ||∇ ⋅ v||2L2(Ω)

)1∕2
.

We recall the definition of the symmetric strain tensor: 𝜺(v) = 1

2

(
∇v + (∇v)T

)
, for a vector v in R

𝑑 .
For completeness, we list below two useful inequalities that will be used:

• Poincaré’s inequality in H1
0(Ω):

There exists a constant Ω depending only on Ω such that

∀v ∈ H1
0(Ω), ||v||L2(Ω) ≤ Ω|v|H1(Ω). (1)

• Korn’s first inequality in H1
0(Ω)

𝑑 :

There exists a constant C𝜅 depending only on Ω such that

∀v ∈ H1
0(Ω)

𝑑 , |v|H1(Ω)𝑑 ≤ C𝜅||𝜺(v)||L2(Ω)𝑑×𝑑 . (2)

2 MODEL EQUATIONS AND DISCRETIZATION

We assume a linear and elastic porous medium Ω ⊂ R
𝑑 , d = 2 or 3, in which the reservoir is saturated

with a slightly compressible fluid. We start by describing the geomechanics model, followed by the
flow model.
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2.1 Geomechanics model

Using a quasi-static (i.e., ignoring the second order time derivative for the displacement) Biot approach
to obtain the displacements (see [10]), the “geomechanics” model is as follows:

𝝈
por(u, p) = 𝝈(u) − 𝛼 pI, (3)

𝝈(u) = 𝜆(∇ ⋅ u)I + 2 G𝜺(u), (4)

−div 𝝈
por(u, p) = f in Ω, (5)

where 𝝈
por is the Cauchy stress tensor, I is the identity tensor, u is the solid’s displacement, p is the

fluid pressure, 𝛼 > 0 is the dimensionless Biot coefficient, 𝝈 is the effective linear elastic stress tensor,
𝜆> 0 and G> 0 are the Lamé constants, f is a body force, which is usually assumed to be a gravity
loading term. The last equation represents the balance of linear momentum in the solid.

2.2 Single phase flow model

Following a slightly different formulation compared to the one described in [30], we assume a lin-
earized slightly compressible single-phase flow model for the fluid in the reservoir. As listed in the
assumptions above, we also assume that K, the absolute permeability tensor, is bounded, symmetric,
and uniformly positive definite in space and constant in time (for discrete time intervals). The fluid
density, 𝜌f is assumed to be a linear function of pressure: 𝜌f = 𝜌f ,r (1 + cf (p − pr)). The porosity, or the
fluid content of the medium, denoted by 𝜑* is related to the “mechanical” displacement and “fluid”
pressure by this relation: 𝜑∗ = 𝜑0+𝛼∇ ⋅u+

1

M
p, where 𝜑0 is the initial porosity, and M is the Biot con-

stant. The fluid mass balance in the reservoir, denoted by Ω, reads: 𝜕

𝜕t

(
𝜌f𝜑

∗
)
+∇ ⋅

(
𝜌f v

D
)
= qs, where

qs is a mass source or sink term, and vD is the velocity of the fluid in Ω, vD = −
1

𝜇f

K
(
∇p − 𝜌f g∇𝜂

)
.

Substituting the definitions of vD, 𝜌f , and 𝜑* into the mass balance equation, we get:

𝜕

𝜕t

(
𝜌f ,r

(
1 + cf (p − pr)

) (
𝜑0 + 𝛼∇ ⋅ u +

1
M

p
))

+ ∇ ⋅

(
𝜌f ,r

(
1 + cf (p − pr)

)
vD
)
= qs.

which can be written as (after re-arranging terms):

𝜌f ,r

( 1
M

(
1 + cf (p − pr)

)
+ cf

(
𝜑0 + 𝛼∇ ⋅ u +

1
M

p
))

𝜕

𝜕t
p + 𝜌f ,r𝛼

(
1 + cf (p − pr)

)
∇ ⋅

𝜕

𝜕t
u

+ ∇ ⋅

(
𝜌f ,r

(
1 + cf (p − pr)

)
vD
)
= qs.

For the sake of linearization, we assume that the fluid compressibility cf is small, in the order of 10−5 or
10−6, and the term cf (p − pr) is also small as well (of the same order). We make the following approx-

imations: 1

M

(
1 + cf (p − pr)

)
≈

1

M
, cf

(
𝜑0 + 𝛼∇ ⋅ u +

1

M
p
)

≈ cf𝜑0, 𝜌f ,r(1 + cf (p − pr))𝛼 ≈ 𝜌f ,r𝛼,

𝜌f ,r(1 + cf (p − pr))vD ≈ 𝜌f ,rv
D, 𝜌f ,r(1 + cf (p − pr))g∇𝜂 ≈ 𝜌f ,rg∇𝜂. With such approximations, the mass

balance equation now reads:

𝜌f ,r

( 1
M

+ cf𝜑0

)
𝜕

𝜕t
p + 𝜌f ,r𝛼∇ ⋅

𝜕

𝜕t
u + 𝜌f ,r∇ ⋅ vD = qs

which can be written as (after dividing by 𝜌f ,r, and submitting the expression of vD):

𝜕

𝜕t

(( 1
M

+ cf𝜑0

)
p + 𝛼∇ ⋅ u

)
− ∇ ⋅

(
1
𝜇f

K
(
∇p − 𝜌f ,rg∇𝜂

))
= q̃, (6)

 1
0

9
8

2
4

2
6

, 2
0

2
3

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

u
m

.2
3

0
0

4
 b

y
 U

n
iv

ersity
 O

f T
ex

as L
ib

raries, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

7
/0

6
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



3176 ALMANI ET AL.

where q̃ =
qs

𝜌f ,r

. This completes the derivation of the poro-elastic equations, modeling the displacement

u and pressure p in Ω.
Therefore, our quasi-static Biot model, which is quite standard in literature [10, 30], reads: Find u

and p satisfying the equations below for all time t ∈]0, T[:

− div𝝈por(u, p) = f in Ω,

𝝈
por(u, p) = 𝝈(u) − 𝛼p I in Ω,

𝝈(u) = 𝜆(∇ ⋅ u)I + 2G𝜺(u) in Ω,

𝜕

𝜕t

(( 1
M

+ cf𝜑0

)
p + 𝛼∇ ⋅ u

)
− ∇ ⋅

(
1
𝜇f

K
(
∇p − 𝜌f ,rg∇𝜂

))
= q̃ in Ω,

Boundary conditions∶ u = 0 on 𝜕Ω, K
(
∇p − 𝜌f ,rg∇𝜂

)
⋅ n = 0 on ΓN , p = 0 on ΓD,

Initial condition (t = 0) ∶
(( 1

M
+ cf𝜑0

)
p + 𝛼∇ ⋅ u

)
(0) =

( 1
M

+ cf𝜑0

)
p0 + 𝛼∇ ⋅ u0,

where: g is the gravitational constant, 𝜂 is the distance in the vertical direction (assumed to be constant
in time), 𝜌f ,r > 0 is a constant reference density (relative to the reference pressure pr), 𝜑0 is the initial
porosity, M is the Biot constant, q̃ =

qs

𝜌f ,r

where qs is a mass source or sink term taking into account

injection into or out of the reservoir. We remark that the first three equations describe the mechanics
whereas the fourth one is the flow equation. Note that the above system is linear and coupled.

2.3 Mixed variational formulation

A mixed formulation will be used for the flow equations and conformal Galerkin will be used for the
mechanics equation. In the mixed method, the flux is defined as a separate unknown, and the flow
equation is rewritten as a system of first order equations. This formulation is a standard one for flow
equations as it is locally mass conservative and computes the flux explicitly. For time discretization,
we will assume a backward-Euler scheme (for both the continuous and discrete in space formulations).

Accordingly, for the fully discrete formulation (discrete in time and space), let 𝔗h denote a reg-
ular family of conforming triangular elements of the domain of interest, Ω. Using the lowest order
Raviart–Thomas (RT) spaces, we have the following discrete spaces (Vh for discrete displacements,
Qh for discrete pressures, and Zh for discrete velocities (fluxes)):

Vh =
{

vh ∈ H1(Ω)𝑑 ; ∀T ∈ 𝔗h, vh∣T ∈ P
𝑑
1 , vh∣𝜕Ω = 0

}
(7)

Qh =
{

ph ∈ L2(Ω); ∀T ∈ 𝔗h, ph∣T ∈ P0
}

(8)

Zh =
{

qh ∈ H(div; Ω); ∀T ∈ 𝔗h, qh∣T ∈ P
𝑑
1 , qh ⋅ n = 0 on ΓN

}
(9)

The space of displacements, Vh, is equipped with the norm:

||v||Vh
=

(
𝑑∑

i=1

‖vi‖2
H1(Ω)

)1∕2

.

 1
0

9
8

2
4

2
6

, 2
0

2
3

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

u
m

.2
3

0
0

4
 b

y
 U

n
iv

ersity
 O

f T
ex

as L
ib

raries, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

7
/0

6
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



ALMANI ET AL. 3177

We also assume that the finer time step is given by: Δtk = tk − tk−1. In this work, we assume uniform
fine flow time steps, so for simplicity, we will drop the subscript k, and denote the fine time step by
Δt. If we denote the total number of timesteps by N, then the total simulation time is given by T = Δt

N, and ti = iΔt, 0 ⩽ i ⩽ N denote the discrete time points.
For the fully discrete scheme, we have chosen the RT spaces for the mixed finite element discretiza-

tion. However, the proof extends to other choices for the mixed spaces (e.g., the multipoint flux mixed
finite element spaces [55, 56]).

Remark 1 Notation: Two indices will be used in this article, one for the time step and
the other for the coupling between the mechanics and flow. The following notations will
be employed, n denotes the coupling iteration index, k denotes the coarser (mechanics)
time step iteration index, m denotes the finer (flow) time step iteration index, Δt stands for
the time step, and q is the “fixed” number of local flow time steps per coarse mechanics
time step. A schematic showing the relations between k, m, q, and Δt can be found in
Figure 1b. In addition, for a given time step t = tk, we define the difference between two
coupling iterates as:

𝛿𝜉n+1,k = 𝜉n+1,k − 𝜉n,k,

where 𝜉 may stand for ph, zh, or uh (the discrete pressure, flux, and displacements
variables).

2.4 Assumptions

We have the following assumptions on the model and data:

1. For mechanical modeling, the reservoir is assumed to be heterogeneous, isotropic and saturated
poro-elastic medium. The reference density of the fluid 𝜌f > 0 is given and positive.

2. The Lamé coefficients 𝜆 > 0 and G > 0, the dimensionless Biot coefficient 𝛼, and the pore
volume 𝜑* are all positive.

3. The fluid is assumed to be slightly compressible and its density is a linear function of pressure.
The viscosity 𝜇f > 0 is assumed to be constant.

4. The absolute permeability tensor, K, is assumed to be symmetric, bounded, uniformly positive
definite in space and constant in time.

5. The parameters K, 𝛼, G, M, 𝜆, cf , 𝜇f , and 𝜑0 can vary in space and time.
6. For the fully discrete formulation, we have the following additional assumptions:

(a) The spatial domain is denoted by Ω ⊂ R
𝑑 , d = 1, 2, or 3. Its external boundary is denoted

by 𝜕Ω, with an outward unit normal vector n.
(b) The spatial domain is discretized into NΩ conforming grid elements Ei such that: Ω =

∪
NΩ

i=1Ei.
(c) Each grid element Ei has its own, independent, set of flow and mechanics parameters: Ki,

𝛼i, Gi, Mi, 𝜆i, cfi
, 𝜇fi

, and 𝜑0i
. Moreover, we assume that the localized permeabilities Ki

include viscosities 𝜇fi

(
i.e., Ki =

Ki

𝜇fi

)
.

(d) The outward normal vector for each grid element Ei is denoted by ni. In addition, for two
adjacent grid elements Ei and Ei−1 sharing a common boundary interface, ni =−ni−1 across
the common boundary.
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3 LOCALIZED SINGLE RATE FORMULATION AND ANALYSIS

3.1 Continuous in space global weak formulation

The continuous in space global weak formulation of the coupled problem reads:

Step (a): Find pn+1,k ∈ H1(Ω), zn+1,k ∈ H(div; Ω) ∩ {zn+1,k
⋅ n = 0 on 𝜕Ω} such that:

∀𝜃 ∈ L2(Ω),

NΩ∑
i=1

((
1

Mi

+ cfi
𝜑0i

+ Li

)(
pn+1,k − pk−1

Δt

)
, 𝜃

)

Ei

+

NΩ∑
i=1

(
∇ ⋅ zn+1,k, 𝜃

)
Ei

=

NΩ∑
i=1

(
Li

(
pn,k − pk−1

Δt

)
− 𝛼i∇ ⋅

(
un,k − uk−1

Δt

)
, 𝜃

)

Ei

+

NΩ∑
i=1

(q̃, 𝜃)Ei
(10)

∀q ∈ H(div; Ω) ∩ {q ⋅ n = 0 on 𝜕Ω},

NΩ∑
i=1

(
K−1

i zn+1,k, q
)

Ei

=

NΩ∑
i=1

(
pn+1,k,∇ ⋅ q

)
Ei

−

NΩ∑
i=1

⟨
pn+1,k, q ⋅ n

⟩
𝜕Ei

+

NΩ∑
i=1

(
∇
(
𝜌f ,rg𝜂

)
, q
)

Ei

(11)

Step (b): Given pn+1,k, zn+1,k, find un+1,k ∈ H1
0(Ω)

𝑑 such that,

∀v ∈ H1
0(Ω)

𝑑 ,

NΩ∑
i=1

2
(
Gi𝜺

(
un+1,k

)
, 𝜺(v)

)
Ei

+

NΩ∑
i=1

(
𝜆i∇ ⋅ un+1,k,∇ ⋅ v

)
Ei

−

NΩ∑
i=1

(
𝛼ip

n+1,k,∇ ⋅ v
)

Ei

−

NΩ∑
i=1

⟨
𝝈

(
un+1,k

)
n, v

⟩
𝜕Ei

+

NΩ∑
i=1

⟨
𝛼ip

n+1,k I
=
n, v

⟩
𝜕Ei

=

NΩ∑
i=1

(f, v)Ei
(12)

We note that at the continuum level, the Cauchy stress tensor, given by 𝝈
por(u, p) = 𝝈(u) − 𝛼pI

=
, is

continuous at grid boundaries. Thus, the boundary terms in Equation (12) can be grouped as:

−

NΩ∑
i=1

⟨
𝝈

(
un+1,k

)
n, v

⟩
𝜕Ei

+

NΩ∑
i=1

⟨
𝛼ip

n+1,k I
=
n, v

⟩
𝜕Ei

= −

NΩ∑
i=1

⟨
𝝈

por
(
un+1,k

)
n, v

⟩
𝜕Ei

= 0

due to the continuity of 𝝈por at grid boundaries and the fact that the normal vector has a different sign
in each two adjacent grid elements sharing a common boundary. For the outer boundary, we require
that v = 0 on 𝜕Ω.

The boundary term in the flux Equation (11) also vanishes due to similar reasons. The pressure
unknown is assumed to be continuous at the continuum level (otherwise∇p is not defined). In addition,
q ⋅ n is continuous across element boundaries, as q ∈ H(div; Ω). This results in canceling all inner
boundary terms in Equation (11). For outer boundary terms, we restricted the test space such that q ⋅

n = 0 on 𝜕Ω. Therefore, we have:

NΩ∑
i=1

⟨
pn+1,k, q ⋅ n

⟩
𝜕Ei

= 0.

The weak formulation now reads:
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Step (a): Find pn+1,k ∈ H1(Ω), zn+1,k ∈ H(div; Ω) ∩ {zn+1,k
⋅ n = 0 on 𝜕Ω} such that:

∀𝜃 ∈ L2(Ω),

NΩ∑
i=1

((
1

Mi

+ cfi
𝜑0i

+ Li

)(
pn+1,k − pk−1

Δt

)
, 𝜃

)

Ei

+

NΩ∑
i=1

(
∇ ⋅ zn+1,k, 𝜃

)
Ei

=

NΩ∑
i=1

(
Li

(
pn,k − pk−1

Δt

)
− 𝛼i∇ ⋅

(
un,k − uk−1

Δt

)
, 𝜃

)

Ei

+

NΩ∑
i=1

(q̃, 𝜃)Ei
(13)

∀q ∈ H(div; Ω) ∩ {q ⋅ n = 0 on 𝜕Ω},

NΩ∑
i=1

(
K−1

i zn+1,k, q
)

Ei

=

NΩ∑
i=1

(
pn+1,k,∇ ⋅ q

)
Ei

+

NΩ∑
i=1

(
∇
(
𝜌f ,rg𝜂

)
, q
)

Ei

(14)

Step (b): Given pn+1,k, zn+1,k, find un+1,k ∈ H1
0(Ω)

𝑑 such that,

∀v ∈ H1
0(Ω)

𝑑 ,

NΩ∑
i=1

2
(
Gi𝜺

(
un+1,k

)
, 𝜺(v)

)
Ei

+

NΩ∑
i=1

(
𝜆i∇ ⋅ un+1,k,∇ ⋅ v

)
Ei

−

NΩ∑
i=1

(
𝛼ip

n+1,k,∇ ⋅ v
)

Ei

=

NΩ∑
i=1

(f, v)Ei
(15)

3.2 Fully discrete weak formulation

Now, we mimic the spatially continuous weak formulation (13)–(15) to obtain the fully discrete for-
mulation (discrete in time and space). We recall that a mixed formulation will be used for flow, and
continuous Galerkin will be used for mechanics. Moreover, we assume no flow boundary conditions for
the outer flow boundary, and zero displacement boundary conditions for mechanics. The fully-discrete
weak formulation now reads:

Step (a): Find p
n+1,k
h ∈ Qh, z

n+1,k
h ∈ Zh such that:

∀𝜃h ∈ Qh,

NΩ∑
i=1

((
1

Mi

+ cfi
𝜑0i

+ Li

)(
p

n+1,k
h − pk−1

h

Δt

)
, 𝜃h

)

Ei

+

NΩ∑
i=1

(
∇ ⋅ z

n+1,k
h , 𝜃h

)
Ei

=

NΩ∑
i=1

(
Li

(
p

n,k
h − pk−1

h

Δt

)
− 𝛼i∇ ⋅

(
u

n,k
h − uk−1

h

Δt

)
, 𝜃h

)

Ei

+

NΩ∑
i=1

(
q̃, 𝜃h

)
Ei

(16)

∀qh ∈ Zh,

NΩ∑
i=1

(
K−1

i z
n+1,k
h , qh

)
Ei

=

NΩ∑
i=1

(
p

n+1,k
h ,∇ ⋅ qh

)
Ei

+

NΩ∑
i=1

(
∇
(
𝜌f ,rg𝜂

)
, qh

)
Ei

(17)

Step (b): Given p
n+1,k
h , zn+1,k

h , find u
n+1,k
h ∈ Vh such that,

∀vh ∈ Vh,

NΩ∑
i=1

2
(

Gi𝜺

(
u

n+1,k
h

)
, 𝜺 (vh)

)
Ei

+

NΩ∑
i=1

(
𝜆i∇ ⋅ u

n+1,k
h ,∇ ⋅ vh

)
Ei

−

NΩ∑
i=1

(
𝛼ip

n+1,k
h ,∇ ⋅ vh

)
Ei

=

NΩ∑
i=1

(f, vh)Ei
(18)
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In terms of differences between coupling iterations, equations (16), (17), and (18) read:

∀𝜃h ∈ Qh,
1
Δt

NΩ∑
i=1

((
1

Mi

+ cfi
𝜑0i

+ Li

)
𝛿p

n+1,k
h , 𝜃h

)

Ei

+

NΩ∑
i=1

(
∇ ⋅ 𝛿z

n+1,k
h , 𝜃h

)
Ei

=
1
Δt

NΩ∑
i=1

(
Li𝛿p

n,k
h − 𝛼i∇ ⋅ 𝛿u

n,k
h , 𝜃h

)
Ei

(19)

∀qh ∈ Zh,

NΩ∑
i=1

(
K−1

i 𝛿z
n+1,k
h , qh

)
Ei

=

NΩ∑
i=1

(
𝛿p

n+1,k
h ,∇ ⋅ qh

)
Ei

(20)

∀vh ∈ Vh,

NΩ∑
i=1

2
(

Gi𝜺

(
𝛿u

n+1,k
h

)
, 𝜺 (vh)

)
Ei

+

NΩ∑
i=1

(
𝜆i∇ ⋅ 𝛿u

n+1,k
h ,∇ ⋅ vh

)
Ei

−

NΩ∑
i=1

(
𝛼i𝛿p

n+1,k
h ,∇ ⋅ vh

)
Ei

= 0 (21)

3.3 Proof of contraction

• Step 1: Flow equations

For each grid element Ei, let 𝛽i =
1

Mi

+ cfi
𝜑0i

+ Li, testing (19) with 𝜃h = 𝛿p
n+1,k
h , and multiplying

by Δt, we obtain:

NΩ∑
i=1

‖‖‖𝛽
1∕2
i 𝛿p

n+1,k
h

‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

(
∇ ⋅ 𝛿z

n+1,k
h , 𝛿p

n+1,k
h

)
Ei

=

NΩ∑
i=1

(
Li𝛿p

n,k
h − 𝛼i∇ ⋅ 𝛿u

n,k
h , 𝛿p

n+1,k
h

)
Ei

. (22)

Testing (20) with qh = 𝛿z
n+1,k
h , we obtain:

NΩ∑
i=1

(
K−1

i 𝛿z
n+1,k
h , 𝛿z

n+1,k
h

)
Ei

=

NΩ∑
i=1

(
𝛿p

n+1,k
h ,∇ ⋅ 𝛿z

n+1,k
h

)
Ei

. (23)

Substituting (23) into (22), together with Young’s inequality, we obtain:

NΩ∑
i=1

‖‖‖𝛽
1∕2
i 𝛿p

n+1,k
h

‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

(
K−1

i 𝛿z
n+1,k
h , 𝛿z

n+1,k
h

)
Ei

≤

NΩ∑
i=1

1
2ϵi

‖‖‖Li𝛿p
n,k
h − 𝛼i∇ ⋅ 𝛿u

n,k
h

‖‖‖
2

Ei

+

NΩ∑
i=1

ϵi

2
‖‖‖𝛿p

n+1,k
h

‖‖‖
2

Ei

.

Introducing a new parameter 𝜒 i for each grid element Ei, we define a local quantity of contraction
for each Ei as: 𝜒i𝛿𝜎

n,k
v = Li𝛿p

n,k
h − 𝛼i∇ ⋅ 𝛿u

n,k
h . The choice 𝜖i = 𝛽 i for each Ei gives:

NΩ∑
i=1

𝛽i

2
‖‖‖𝛿p

n+1,k
h

‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k
h

‖‖‖
2

Ei

≤

NΩ∑
i=1

1
2𝛽i

‖‖‖𝜒i𝛿𝜎
n,k
v
‖‖‖

2

Ei

. (24)

• Step 2: Elasticity equation

Now, test the elasticity Equation (21) with vh = 𝛿u
n+1,k
h to get:

NΩ∑
i=1

2Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k
h

)‖‖‖‖
2

Ei

+

NΩ∑
i=1

𝜆i
‖‖‖∇ ⋅ 𝛿u

n+1,k
h

‖‖‖
2

Ei

−

NΩ∑
i=1

𝛼i

(
𝛿p

n+1,k
h ,∇ ⋅ 𝛿u

n+1,k
h

)
Ei

= 0. (25)
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• Step 3: Combining flow and elasticity equations

Combining flow (24) with elasticity (25), we obtain:

NΩ∑
i=1

2Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k
h

)‖‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k
h

‖‖‖
2

Ei

+

NΩ∑
i=1

{
𝛽i

2
‖‖‖𝛿p

n+1,k
h

‖‖‖
2

Ei

− 𝛼i

(
𝛿p

n+1,k
h ,∇ ⋅ 𝛿u

n+1,k
h

)
Ei

+ 𝜆i
‖‖‖∇ ⋅ 𝛿u

n+1,k
h

‖‖‖
2

Ei

}

≤

NΩ∑
i=1

𝜒2
i

2𝛽i

‖‖‖𝛿𝜎
n,k
v
‖‖‖

2

Ei

. (26)

Now, for each grid element Ei, expand the RHS to match terms on the left hand side and form a
square:

‖‖‖𝛿𝜎
n,k
v
‖‖‖

2

Ei

=
L2

i

𝜒2
i

‖‖‖𝛿p
n,k
h

‖‖‖
2

Ei

−
2𝛼iLi

𝜒2
i

(
𝛿p

n,k
h ,∇ ⋅ 𝛿u

n,k
h

)
Ei

+
𝛼2

i

𝜒2
i

‖‖‖∇ ⋅ 𝛿u
n,k
h

‖‖‖
2

Ei

.

For each Ei, the following inequalities should be satisfied: 𝛽i

2
≥

L2
i

𝜒2
i

, 2𝛼iLi

𝜒2
i

= 𝛼i, and 𝜆i ≥
𝛼2

i

𝜒2
i

. The first

and second inequalities give: 𝜒2
i = 2Li, and 1

Mi

+ cfi
𝜑0i

≥ 0, which is trivially satisfied. The third

inequality gives: Li =
𝛼2

i

2𝜆i

. With: Li =
𝛼2

i

2𝜆i

and 𝜒2
i = 2Li, we have:

NΩ∑
i=1

2Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k
h

)‖‖‖‖
2

Ei

+

NΩ∑
i=1

1
2

(
1

Mi

+ cfi
𝜑0i

)‖‖‖𝛿p
n+1,k
h

‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k
h

‖‖‖
2

Ei

+

NΩ∑
i=1

‖‖‖𝛿𝜎
n+1,k
v

‖‖‖
2

Ei

≤

NΩ∑
i=1

⎛⎜⎜⎝
Li

1

Mi

+ cfi
𝜑0i

+ Li

⎞⎟⎟⎠
‖‖‖𝛿𝜎

n,k
v
‖‖‖

2

Ei

. (27)

We finally have, for each Ei ∈ Ω, 1 ≤ i ≤ NΩ:

2
NΩ∑
i=1

Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k
h

)‖‖‖‖
2

Ei

+
1
2

NΩ∑
i=1

(
1

Mi

+ cfi
𝜑0i

)‖‖‖𝛿p
n+1,k
h

‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k
h

‖‖‖
2

Ei

+

NΩ∑
i=1

‖‖‖𝛿𝜎
n+1,k
v

‖‖‖
2

Ei

≤ max
1≤i≤NΩ

⎛
⎜⎜⎝

Li

1

Mi

+ cfi
𝜑0i

+ Li

⎞
⎟⎟⎠

NΩ∑
i=1

‖‖‖𝛿𝜎
n,k
v
‖‖‖

2

Ei

. (28)

Theorem 1 [Localized single rate Banach contraction estimate] The localized multi-

rate iterative scheme is a contraction given by

2
NΩ∑
i=1

Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k
h

)‖‖‖‖
2

Ei

+
1
2

NΩ∑
i=1

(
1

Mi

+ cfi
𝜑0i

)‖‖‖𝛿p
n+1,k
h

‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k
h

‖‖‖
2

Ei

+

NΩ∑
i=1

‖‖‖𝛿𝜎
n+1,k
v

‖‖‖
2

Ei

≤ max
1≤i≤NΩ

⎛
⎜⎜⎝

Li

1

Mi

+ cfi
𝜑0i

+ Li

⎞
⎟⎟⎠

NΩ∑
i=1

‖‖‖𝛿𝜎
n,k
v
‖‖‖

2

Ei

.
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4 LOCALIZED MULTIRATE FORMULATION AND ANALYSIS

In a similar way, we can derive a localized Banach contraction estimate for the multirate case. We start
by writing the localized spatially continuous multirate weak formulation. We note that the localized
permeability tensor Ki includes the viscosity 𝜇i.

4.1 Continuous in space global weak formulation

• Step (a): For 1 ≤ m ≤ q, find pn+1, m+k ∈ H1(Ω), and zn+1, m+k ∈ H(div; Ω) ∩ {zn+1, k
⋅ n = 0 on

𝜕Ω} such that,

∀𝜃 ∈ L2(Ω),
1
Δt

NΩ∑
i=1

((
1

Mi

+ cfi
𝜑0i

+ Li

)(
pn+1,m+k − pn+1,m−1+k

)
, 𝜃

)

Ei

+

NΩ∑
i=1

(
∇ ⋅ zn+1,m+k, 𝜃

)
Ei

=

1
Δt

NΩ∑
i=1

(
Li

(
pn,m+k − pn,m−1+k

)
−

𝛼i

q
∇ ⋅

(
un,k+q − un,k

)
, 𝜃

)

Ei

+

NΩ∑
i=1

(q̃, 𝜃)Ei
, (29)

∀q ∈ H(div; Ω) ∩ {q ⋅ n = 0 on 𝜕Ω},

NΩ∑
i=1

(
K−1

i zn+1,m+k, q
)

Ei

=

NΩ∑
i=1

(
pn+1,m+k,∇ ⋅ q

)
Ei

−

NΩ∑
i=1

⟨
pn+1,m+k, q ⋅ n

⟩
𝜕Ei

+

NΩ∑
i=1

(
𝜌f ,rg∇𝜂, q

)
Ei

, (30)

• Step (b): Given pn+1,k+q and, zn+1,k+q, find un+1,k+q ∈ H1
0(Ω)

𝑑 such that,

∀v ∈ H1
0(Ω)

𝑑 ,

2
NΩ∑
i=1

(
Gi𝜺

(
un+1,k+q

)
, 𝜺(v)

)
Ei

+

NΩ∑
i=1

(
𝜆i∇ ⋅ un+1,k+q,∇ ⋅ v

)
Ei

−

NΩ∑
i=1

(
𝛼ip

n+1,k+q,∇ ⋅ v
)

Ei

−

NΩ∑
i=1

⟨
𝝈

(
un+1,k+q

)
n, v

⟩
𝜕Ei

+

NΩ∑
i=1

⟨
𝛼ip

n+1,k+qI
=
n, v

⟩
𝜕Ei

=

NΩ∑
i=1

(f, v)Ei
. (31)

In a similar way, as detailed in the single rate case, all boundary terms vanish. The
continuous-in-space weak formulation then reads:

• Step (a): For 1 ≤ m ≤ q, find pn+1,m+k ∈ H1(Ω), and zn+1,m+k ∈ H(div; Ω) ∩ {zn+1,k
⋅ n = 0 on

𝜕Ω} such that,

∀𝜃 ∈ L2(Ω),
1
Δt

NΩ∑
i=1

((
1

Mi

+ cfi
𝜑0i

+ Li

)(
pn+1,m+k − pn+1,m−1+k

)
, 𝜃

)

Ei

+

NΩ∑
i=1

(
∇ ⋅ zn+1,m+k, 𝜃

)
Ei

=

1
Δt

NΩ∑
i=1

(
Li

(
pn,m+k − pn,m−1+k

)
−

𝛼i

q
∇ ⋅

(
un,k+q − un,k

)
, 𝜃

)

Ei

+

NΩ∑
i=1

(q̃, 𝜃)Ei
, (32)
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∀q ∈ H(div; Ω) ∩ {q ⋅ n = 0 on 𝜕Ω},

NΩ∑
i=1

(
K−1

i zn+1,m+k, q
)

Ei

=

NΩ∑
i=1

(
pn+1,m+k,∇ ⋅ q

)
Ei

+

NΩ∑
i=1

(
𝜌f ,rg∇𝜂, q

)
Ei

, (33)

• Step (b): Given pn+1,k+q and, zn+1,k+q, find un+1,k+q ∈ H1
0(Ω)

𝑑 such that,

∀v ∈ H1
0(Ω)

𝑑 ,

2
NΩ∑
i=1

(
Gi𝜺

(
un+1,k+q

)
, 𝜺(v)

)
Ei

+

NΩ∑
i=1

(
𝜆i∇ ⋅ un+1,k+q,∇ ⋅ v

)
Ei

−

NΩ∑
i=1

(
𝛼ip

n+1,k+q,∇ ⋅ v
)

Ei

=

NΩ∑
i=1

(f, v)Ei
. (34)

4.2 Fully discrete weak formulation

We mimic the spatially continuous weak formulation (32)–(34) and obtain the fully discrete formula-
tion (discrete in time and space) as follows:

• Step (a): For 1 ≤ m ≤ q, find p
n+1,m+k
h ∈ Qh, and z

n+1,m+k
h ∈ zh such that,

∀𝜃h ∈ Qh,
1
Δt

NΩ∑
i=1

((
1

Mi

+ cfi
𝜑0i

+ Li

)(
p

n+1,m+k
h − p

n+1,m−1+k
h

)
, 𝜃h

)

Ei

+

NΩ∑
i=1

(
∇ ⋅ z

n+1,m+k
h , 𝜃h

)
Ei

=
1
Δt

NΩ∑
i=1

(
Li

(
p

n,m+k
h − p

n,m−1+k
h

)
−

𝛼i

q
∇ ⋅

(
u

n,k+q

h − u
n,k
h

)
, 𝜃h

)

Ei

+

NΩ∑
i=1

(
q̃h, 𝜃h

)
Ei

, (35)

∀qh ∈ Zh,

NΩ∑
i=1

(
K−1

i z
n+1,m+k
h , qh

)
Ei

=

NΩ∑
i=1

(
p

n+1,m+k
h ,∇ ⋅ qh

)
Ei

+

NΩ∑
i=1

(
𝜌f ,rg∇𝜂, qh

)
Ei

, (36)

• Step (b): Given p
n+1,k+q

h and, z
n+1,k+q

h , find u
n+1,k+q

h ∈ Vh such that,

∀vh ∈ Vh, 2
NΩ∑
i=1

(
Gi𝜺

(
u

n+1,k+q

h

)
, 𝜺 (vh)

)
Ei

+

NΩ∑
i=1

(
𝜆i∇ ⋅ u

n+1,k+q

h ,∇ ⋅ vh

)
Ei

−

NΩ∑
i=1

(
𝛼ip

n+1,k+q

h ,∇ ⋅ vh

)
Ei

=

NΩ∑
i=1

(
fh, vh

)
Ei

. (37)

4.3 Proof of contraction

• Step 1: Flow equations

For each grid element Ei, let 𝛽i =
1

Mi

+ cfi
𝜑0i

+ Li. For n ≥ 1, by taking the difference of two

successive iterates of (35), which corresponds to one local flow iteration and its corresponding local
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flow iteration in the previous flow and geomechanics iterative coupling iteration, testing with 𝜃h =

𝛿p
n+1,m+k
h − 𝛿p

n+1,m−1+k
h , we obtain

NΩ∑
i=1

𝛽i
‖‖‖𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

(
∇ ⋅ 𝛿z

n+1,m+k
h , 𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

)
Ei

=

NΩ∑
i=1

(
Li

(
𝛿p

n,m+k
h − 𝛿p

n,m−1+k
h

)
−

𝛼i

q
∇ ⋅ 𝛿u

n,k+q

h , 𝛿p
n+1,m+k
h − 𝛿p

n+1,m−1+k
h

)

Ei

. (38)

Similarly, for the flux Equation (36), by taking the difference of two successive iterates, followed
by taking the difference at two consecutive finer time steps, t = tm+k, and t = tm−1+k, and testing with
qh = 𝛿z

n+1,m+k
h , we obtain

NΩ∑
i=1

(
K−1

i

(
𝛿z

n+1,m+k
h − 𝛿z

n+1,m−1+k
h

)
, 𝛿z

n+1,m+k
h

)
Ei

=

NΩ∑
i=1

(
𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h ,∇ ⋅ 𝛿z

n+1,m+k
h

)
Ei

. (39)

We combine (38) with (39), apply Young’s inequality (for each grid Ei) to obtain

NΩ∑
i=1

𝛽i
‖‖‖𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei

+ Δt

NΩ∑
i=1

(
K−1

i

(
𝛿z

n+1,m+k
h − 𝛿z

n+1,m−1+k
h

)
, 𝛿z

n+1,m+k
h

)
Ei

≤

NΩ∑
i=1

1
2ϵi

‖‖‖‖Li

(
𝛿p

n,m+k
h − 𝛿p

n,m−1+k
h

)
−

𝛼i

q
∇ ⋅ 𝛿u

n,k+q

h

‖‖‖‖
2

Ei

+

NΩ∑
i=1

ϵi

2
‖‖‖𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei

.

For each Ei, the choice 𝜖i = 𝛽 i absorbs the pressure term on the right hand side. Together with a
simple expansion of the flux product, we derive

NΩ∑
i=1

𝛽i

2
‖‖‖𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei

+
Δt

2

NΩ∑
i=1

{‖‖‖K
−1∕2
i 𝛿z

n+1,m+k
h

‖‖‖
2

Ei

−
‖‖‖K

−1∕2
i 𝛿z

n+1,m−1+k
h

‖‖‖
2

Ei

+
‖‖‖‖K

−1∕2
i

(
𝛿z

n+1,m+k
h − 𝛿z

n+1,m−1+k
h

)‖‖‖‖
2

Ei

}

≤

NΩ∑
i=1

1
2𝛽i

‖‖‖‖Li

(
𝛿p

n,m+k
h − 𝛿p

n,m−1+k
h

)
−

𝛼i

q
∇ ⋅ 𝛿u

n,k+q

h

‖‖‖‖
2

Ei

. (40)
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The right hand side constitutes an expression for a quantity to be contracted on. Introducing a new
parameter 𝜒 i for each Ei, we define the localized volumetric mean stress for (1 ≤ m ≤ q) as

𝜒i𝛿𝜎
n,m+k
v = Li

(
𝛿p

n,m+k
h − 𝛿p

n,m−1+k
h

)
−

𝛼i

q
∇ ⋅ 𝛿u

n,k+q

h . (41)

The value of 𝜒 i for each Ei will be chosen such that contraction can be achieved on the spatial
summation of the localized norms of 𝜎n,m+k

v , summed over q flow finer time steps, within one coarser
mechanics time step. Summing up (40) for 1 ≤ m ≤ q, substituting the new definition of the localized
volumetric mean stress (41), and noting that 𝛿z

n+1,k
h = 0, we obtain

q∑
m=1

NΩ∑
i=1

𝛽i

2
‖‖‖𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei

+
Δt

2

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k+q

h

‖‖‖
2

Ei

+
Δt

2

q∑
m=1

NΩ∑
i=1

‖‖‖‖K
−1∕2
i

(
𝛿z

n+1,m+k
h − 𝛿z

n+1,m−1+k
h

)‖‖‖‖
2

Ei

≤

q∑
m=1

NΩ∑
i=1

1
2𝛽i

‖‖‖𝜒i𝛿𝜎
n,m+k
v

‖‖‖
2

Ei

. (42)

• Step 2: Elasticity equation

For n ≥ 1, we take the difference of successive iterates of the mechanics Equation (37), and test
with vh = 𝛿u

n+1,k+q

h to get

2
NΩ∑
i=1

Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k+q

h

)‖‖‖‖
2

Ei

+

NΩ∑
i=1

𝜆i
‖‖‖∇ ⋅ 𝛿u

n+1,k+q

h

‖‖‖
2

Ei

−

NΩ∑
i=1

𝛼i

(
𝛿p

n+1,k+q

h ,∇ ⋅ 𝛿u
n+1,k+q

h

)
Ei

= 0. (43)

For the iterative scheme to be contractive, a quantity similar to the right hand side of (42), for the
next iterative coupling iteration, n + 1, has to be formed. To achieve that, we introduce a term involving
a summation over all flow finer time steps in (43) by noticing that

q∑
m=1

(
𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

)
= 𝛿p

n+1,k+q

h . (44)

Substituting (44) into (43) leads to

2
NΩ∑
i=1

Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k+q

h

)‖‖‖‖
2

Ei

+

NΩ∑
i=1

𝜆i
‖‖‖∇ ⋅ 𝛿u

n+1,k+q

h

‖‖‖
2

Ei

−

NΩ∑
i=1

𝛼i

(
q∑

m=1

(
𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

)
,∇ ⋅ 𝛿u

n+1,k+q

h

)

Ei

= 0. (45)

• Step 3: Combining flow and elasticity equations

By combining (45) with (42), and rearranging terms, we form a square term, in expanded form,
summed over flow finer time steps within one coarser mechanics time step for each grid element Ei,

2
NΩ∑
i=1

Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k+q

h

)‖‖‖‖
2

Ei

+

q∑
m=1

NΩ∑
i=1

{
𝛽i

2
‖‖‖𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei

+
𝜆i

q

‖‖‖∇ ⋅ 𝛿u
n+1,k+q

h

‖‖‖
2

Ei

− 𝛼i

(
𝛿p

n+1,m+k
h − 𝛿p

n+1,m−1+k
h ,∇ ⋅ 𝛿u

n+1,k+q

h

)
Ei

}

 1
0

9
8

2
4

2
6

, 2
0

2
3

, 4
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/n

u
m

.2
3

0
0

4
 b

y
 U

n
iv

ersity
 O

f T
ex

as L
ib

raries, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

7
/0

6
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



3186 ALMANI ET AL.

+
Δt

2

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k+q

h

‖‖‖
2

Ei

+
Δt

2

q∑
m=1

NΩ∑
i=1

‖‖‖‖K
−1∕2
i

(
𝛿z

n+1,m+k
h − 𝛿z

n+1,m−1+k
h

)‖‖‖‖
2

Ei

≤

q∑
m=1

NΩ∑
i=1

𝜒2
i

2𝛽i

‖‖‖𝛿𝜎
n,m+k
v

‖‖‖
2

Ei

. (46)

It remains to choose the values of our newly introduced parameters, 𝜒 i and Li, such that the coef-
ficients of the expanded square contributes only positive terms to the left hand side of (46). Therefore,
we expand the right hand side of (46) for each Ei as

‖‖‖𝛿𝜎
n,m+k
v

‖‖‖
2

Ei

=
L2

i

𝜒2
i

‖‖‖𝛿p
n,m+k
h − 𝛿p

n,m−1+k
h

‖‖‖
2

Ei

−
2𝛼iLi

q𝜒2
i

(
𝛿p

n,m+k
h − 𝛿p

n,m−1+k
h ,∇ ⋅ 𝛿u

n,k+q

h

)
Ei

+
𝛼2

i

𝜒2
i q2

‖‖‖∇ ⋅ 𝛿u
n,k+q

h

‖‖‖
2

Ei

. (47)

Now, we match the coefficients of the expansion in (47) to the coefficients of the expanded square
on the right hand side of (46), hence, deduce the values of 𝜒 i and Li for each grid element Ei, respec-
tively. For the left hand side of (46) to remain positive, the following inequalities should be satisfied

𝛽i

2
≥

L2
i

𝜒2
i

,
2𝛼iLi

q𝜒2
i

= 𝛼i,
𝜆i

q
≥

𝛼2
i

𝜒2
i q2

.

The second and third inequalities give rise to the following condition

Li ≥
𝛼2

i

2𝜆i

for each Ei.

The first inequality gives rise to q ≤
𝛽i

Li

. For Li =
𝛼2

i

2𝜆i

, 𝜒2
i =

𝛼2
i

q𝜆i

, we derive the following condition

on the number of flow finer time steps within one coarse mechanics time step

q ≤
2𝜆i

𝛼2
i

(
1

Mi

+ cfi
𝜑0i

)
+ 1 for each Ei, (48)

which is not restrictive as typically in practice the values of 𝜆i are quite large. Now, we group the terms
of the expanded square on the left hand side of (46) to form the quantity of contraction for the next
iterative coupling iteration, n+ 1, as

2
NΩ∑
i=1

Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k+q

h

)‖‖‖‖
2

Ei

+

q∑
m=1

NΩ∑
i=1

(
𝛽i

2
−

L2
i

𝜒2
i

)‖‖‖𝛿p
n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei

+

q∑
m=1

NΩ∑
i=1

‖‖‖𝛿𝜎
n+1,m+k
v

‖‖‖
2

Ei

+
Δt

2

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k+q

h

‖‖‖
2

Ei

+
Δt

2

q∑
m=1

NΩ∑
i=1

‖‖‖‖K
−1∕2
i

(
𝛿z

n+1,m+k
h − 𝛿z

n+1,m−1+k
h

)‖‖‖‖
2

Ei

≤

q∑
m=1

NΩ∑
i=1

𝜒2
i

2𝛽i

‖‖‖𝛿𝜎
n,m+k
v

‖‖‖
2

Ei

.

Substituting 𝜒2
i =

2Li

q
, 𝛽i =

1

Mi

+ cfi
𝜑0i

+ Li for each Ei, with further algebraic simplifications, we

obtain

2
NΩ∑
i=1

Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k+q

h

)‖‖‖‖
2

Ei

+
1
2

q∑
m=1

NΩ∑
i=1

(
1

Mi

+ cfi
𝜑0i

+ (1 − q)Li

)‖‖‖𝛿p
n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei
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+
Δt

2

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k+q

h

‖‖‖
2

Ei

+
Δt

2

q∑
m=1

NΩ∑
i=1

‖‖‖‖K
−1∕2
i

(
𝛿z

n+1,m+k
h − 𝛿z

n+1,m−1+k
h

)‖‖‖‖
2

Ei

+

q∑
m=1

NΩ∑
i=1

‖‖‖𝛿𝜎
n+1,m+k
v

‖‖‖
2

Ei

≤ max
1≤i≤NΩ

⎛
⎜⎜⎝

Li

q
(

1

Mi

+ cfi
𝜑0i

+ Li

)
⎞
⎟⎟⎠

q∑
m=1

NΩ∑
i=1

‖‖‖𝛿𝜎
n,m+k
v

‖‖‖
2

Ei

. (49)

The contraction coefficient: max
1≤i≤NΩ

(
Li

q
(

1
Mi

+cfi
𝜑0i

+Li

)
)

< 1 for q ≥ 1. This is trivially satisfied (at

least we take one flow time step followed by one mechanics time step).

Theorem 2 [Localized multirate contraction estimate] For q ≤ 1 +

min
1≤i≤NΩ

2𝜆i

𝛼2
i

(
1

Mi

+ cfi
𝜑0i

)
, Li =

𝛼2
i

2𝜆i

and 𝜒2
i =

2Li

q
, the localized multirate iterative scheme

is a contraction given by

2
NΩ∑
i=1

Gi

‖‖‖‖𝜺
(
𝛿u

n+1,k+q

h

)‖‖‖‖
2

Ei

+
1
2

q∑
m=1

NΩ∑
i=1

(
1

Mi

+ cfi
𝜑0i

+ (1 − q)Li

)‖‖‖𝛿p
n+1,m+k
h − 𝛿p

n+1,m−1+k
h

‖‖‖
2

Ei

+
Δt

2

NΩ∑
i=1

‖‖‖K
−1∕2
i 𝛿z

n+1,k+q

h

‖‖‖
2

Ei

+
Δt

2

q∑
m=1

NΩ∑
i=1

‖‖‖‖K
−1∕2
i

(
𝛿z

n+1,m+k
h − 𝛿z

n+1,m−1+k
h

)‖‖‖‖
2

Ei

+

q∑
m=1

NΩ∑
i=1

‖‖‖𝛿𝜎
n+1,m+k
v

‖‖‖
2

Ei

≤ max
1≤i≤NΩ

⎛⎜⎜⎝
Li

q
(

1

Mi

+ cfi
𝜑0i

+ Li

)
⎞⎟⎟⎠

q∑
m=1

NΩ∑
i=1

‖‖‖𝛿𝜎
n,m+k
v

‖‖‖
2

Ei

.

5 MULTIRATE BANACH CONTRACTION ESTIMATES FOR

HOMOGENEOUS VERSUS HETEROGENEOUS (LOCALIZED)

POROELASTIC MEDIA

Table 1 compares the Banach contraction result derived for the multirate scheme in homogeneous
poroelastic media [3] against the one derived in this article (for heterogeneous poro-elastic media).

Remark 2 Our localized Banach estimates work provides another strong justification
for introducing the modified multirate iterative coupling scheme presented in our earlier
work [3]. Following a similar approach to the proof presented above, the localized modi-
fied multirate iterative coupling scheme will not impose any upper bound on the number
of flow finer time steps taken within one coarse mechanics time steps. This follows imme-
diately as the quantity of contraction in the modified scheme is independent of q. The
details are spared.

Remark 3 For our earlier obtained results, the word “homogeneous” is not as restrictive
as it sounds. In fact, some degree of uniformity in the flow and mechanics parameters
should be imposed in this case. However, parameter values can change smoothly across
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TABLE 1 Banach contraction estimates for homogeneous versus heterogeneous (localized) poro-elastic media.

Original contraction estimates

for poroelastic media

Localized contraction estimates for

heterogeneous poroelastic media

Conditions on parameters A degree of spatial uniformity should be
imposed as described in Remark 3

Parameters can be heterogeneous

Contraction coefficient

(
L

1
M
+cf 𝜑0+L

)2

max
1≤i≤NΩ

(
Li

q
(

1
Mi

+cfi
𝜑0i

+Li

)
)

for Li =
𝛼2

i

2𝜆i

for all Ei ∈ Ω

Condition on q None q ≤ 1 + min
1≤i≤NΩ

2𝜆i

𝛼2
i

(
1

Mi

+ cfi
𝜑0i

)

When do contraction
coefficients Match?

For L =
𝛼2

2𝜆
,
(

M𝛼2

2(𝜆+M𝜆cf 𝜑0)+M𝛼2

)2
For q = upper limit, and Li =

𝛼2
i

2𝜆i

for all Ei ∈Ω, con-

traction estimate = max
1≤i≤NΩ

(
Mi𝛼

2
i

2
(
𝜆i+Mi𝜆icfi

𝜑0i

)
+Mi𝛼

2
i

)2

.

Exact match

the spatial domain. The fixed stress stabilization term in this case should take the form

L =
𝛼2

max

2𝜆min

, and this value will be added to the main diagonal of the linear system in a

homogeneous manner. In fact, this leads to slower convergence rate, as the contraction
coefficient increases monotonically with L. The power of the localized contraction result
is that it allows us to add localized fixed-stress regularization terms which can vary across
grid cells, yet the scheme is still contractive.

6 NUMERICAL RESULTS

6.1 Brugge field model

We consider the Brugge field model [2, 51] with a heterogeneous permeability distribution for com-
paring the efficiency of the multirate scheme versus the single rate scheme. The model consists of a
9 × 48× 139 general hexahedral elements capturing the field geometry, with 30 bottom-hole pressure
specified wells, 10 of which are injectors at a pressure of 2600 psi, and 20 are producers at a pres-
sure of 1000 psi. Producers are located at a lower elevation compared to injectors. No flow boundary
condition is enforced across all external boundaries. For the mechanics model, we apply a mixture of
zero displacement and traction boundary conditions. Gravity is not neglected in the model and detailed
specifications of the input parameters can be found in Table 2.

6.2 Results

Figures 2 and 3 show the pressure profiles after 16 and 192 days of simulation for the single rate and
multirate schemes (q = 1, 2, 4, and 8). All four schemes result in almost identical results. We also note

that the upper bound for q is calculated to be: q ≤ 1+ min
1≤i≤NΩ

2𝜆i

𝛼2
i

(
1

Mi

+ cfi
𝜑0i

)
= 10.52. That is, for the

multirate scheme to be theoretically convergent, we should choose q ≤ 10. In other words, we should
not take more than 10 finer time steps within one coarse mechanics time steps for the iteration to con-
verge. This upper bound is validated numerically as follows: we will show in the second paragraph that
for q ≤ 8, the number of iterative coupling iterations increase, which in turn increase the number of
flow and mechanics linear iterations, and the overall CPU runtime as well. Therefore, for the multirate
fixed stress split scheme to converge faster and be effective, we should not exceed 8 flow fine time
steps within one course mechanics time step. This is predicted by our computed upper bound q ≤ 10.

Figure 4a shows the accumulated CPU run time for the single rate case (q = 1), and for multirate
cases: q = 2, 4, and 8. The multirate iterative coupling algorithm with two flow finer time steps within
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TABLE 2 Input parameters for Brugge field model.

Injectors wells 10 injectors (pressure specified at 2600.0 psi)

Producers wells 20 producers (pressure specified at 1000.0 psi)

Total simulation time 192.0 days

Finer (unit) time step 1.0 days

Number of grids 60048 grids (9 × 48× 139)

Permeabilities highly varying

kxx Range: (0.002122, 350.1372) md

kyy Range: (0.022143, 4135.124) md

kzz Range: (0.022493, 4163.053) md

Initial porosity, 𝜑0 0.2

Fluid viscosity, 𝜇f 2.0 cp

Initial pressure, p0 400.0 psi

Fluid compressibility cf : 1.E-4 (1/psi)

Rock compressibility: 1.E-6 (1/psi)

Rock density: 165.44 lbm/ft3

Initial fluid density, 𝜌f : 56.0 lbm/ft3

Young’s modulus (E) 1.E5 psi

Poisson ratio, 𝜈 0.4

Biot’s constant, 𝛼 0.6

Biot modulus, M 1.0E16 psi

𝜆 =
E𝜈

(1+𝜈)(1−2𝜈)
142857.0 psi

L (introduced fixed stress parameter) 𝛼2

2𝜆

Flow boundary conditions No flow boundary condition on all 6 boundaries

Mechanics B.C.

“X+” boundary (EBCXX1()) 𝜎xx = 𝜎 ⋅ nx = 5, 000 psi, (overburden pressure)

“X-” - boundary (EBCXXN1()) u = 0, zero displacement

“Y+” - boundary (EBCYY1()) 𝜎yy = 𝜎 ⋅ ny = 1500 psi

“Y-” - boundary (EBCYYN1()) u = 0, zero displacement

“Z+” - boundary (EBCZZ1()) u = 0, zero displacement

“Z-” - boundary (EBCZZN1()) 𝜎zz = 𝜎 ⋅ nz = 1000 psi

one coarser mechanics time step (q = 2) results in 27.32% reduction in CPU run time compared to the
single rate. Multirate couplings (q = 4, and q = 8) result in 48.43%, and 51.15% reductions in CPU
run times respectively. Figure 4b explains the reduction in CPU run time observed in the multirate
case. By just solving for two flow finer time steps within one coarser mechanics time step (q = 2), the
total number of mechanics linear iterations was reduced by 51.08% with reference to the single rate
case. Multirate couplings (q = 4, and q = 8) result in 75.61%, and 86.29% reductions in the number
of mechanics linear iterations respectively, which in turn, reduce the CPU run time as well. Figure 4c
shows the total number of flow linear iterations in the four cases. We see an increase in the total
number of flow linear iterations for multirate iterative couplings. Multirate iterative coupling with two
flow finer time steps (q = 2), within one coarse mechanics time step results in 44.76% increase in the
total number of flow linear iterations. Multirate couplings (q = 2), and (q = 8) result in 49.63%, and
69.01% increase in the total number of flow linear iterations respectively. Figure 4d shows the number
of iterative coupling iterations per coarse mechanics time step. The increase in the number of flow
linear iterations for multirate cases is attributed to the increase in the number of iterative coupling
iterations performed for each coarse mechanics time step, as shown in Figure 4d. This validates the
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FIGURE 2 Pressure profiles after 16.0 simulation days.

FIGURE 3 Pressure profiles after 192.0 simulation days.

theoretical upper bound on q(q ≤ 10), or the number of flow fine time steps taken within one coarse
mechanics time step, as discussed in the previous paragraph. In addition, the huge decrease in the
number of mechanics linear iterations outperform the overhead introduced by the increase in the
number of flow linear iterations. This is a key factor to the success of the iterative multirate coupling
scheme in reducing the overall CPU run time.
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(a) (b)

(c) (d)

FIGURE 4 Brugge field model results. (a) CPU run time versus simulation days; (b) total number of mechanics linear

iterations versus simulation days; (c) total number of flow linear iterations versus simulation days; (d) number of iterative

coupling iterations per coarser time step.

We conclude that the applicability and efficiency of the multirate fixed-stress split iterative
coupling scheme extends to the case in which the poro-elastic media is highly heterogeneous.
Its convergence is shown theoretically, and observed numerically for field-scale problems, with a
heterogeneous permeability distribution.

7 CONCLUSIONS AND OUTLOOK

This article considers single rate and multirate fixed stress split iterative coupling schemes in
heterogeneous poroelastic media. The fixed stress split scheme allows for the sequential coupling
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of flow with mechanics and a coupling iteration is imposed until convergence is obtained for every
discrete time step. The convergence of both the single rate and multirate coupling schemes in homo-
geneous poroelastic media have been established in the past [3]. The novelty of the work presented
in this article is that it extends these Banach contraction results to the case in which the poroelastic
media is highly heterogeneous (flow and mechanics parameters can vary in both space and time).
To the best of our knowledge, this is the first time in literature a Banach contraction result has been
rigorously obtained for the multirate fixed stress split iterative coupling scheme in heterogeneous
poroelastic media. Moreover, the localized contraction proof outlines a general strategy that is very
likely to be applicable for obtaining similar localized contraction estimates for other iterative cou-
pling schemes, as shown in [8] for example for the undrained split scheme. In addition, our analysis
reveals an upper bound on the number of flow fine time steps that can be solved for within one coarse
mechanics time step in the multirate scheme. Our theoretical findings in this article are supplemented
by numerical results for a realistic reservoir model with a highly heterogenous permeability field,
validating the derived upper bound in the multirate case. In addition, the numerical results show that
the applicability and efficiency of the multirate scheme extends to the case in which the poroelastic
medium is highly heterogeneous.
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