
EVOLIoT: A Self-Supervised Contrastive Learning Framework
for Detecting and Characterizing Evolving IoT Malware Variants

Mirabelle Dib
mi_dib@encs.concordia.ca

Concordia University

Sadegh Torabi
storabi@gmu.edu

George Mason University

Elias Bou-Harb
elias.bouharb@utsa.edu

University of Texas at San Antonio

Nizar Bouguila
n_bouguila@encs.concordia.ca

Concordia University

Chadi Assi
assi@encs.concordia.ca
Concordia University

ABSTRACT
Recent years have witnessed the emergence of new and more so-
phisticated malware targeting the Internet of Things. Moreover,
the public release of the source code of popular malware families
such as Mirai has spawned diverse variants, making it harder to
disambiguate their ownership, lineage, and correct label. Such a
rapidly evolving landscape makes it also harder to deploy and gen-
eralize effective learning models against retired, updated, and/or
new threat campaigns. In this paper, we present EVOLIoT, a novel
approach aiming at combating “concept drift” and the limitations
of inter-family IoT malware classification by detecting drifting IoT
malware families and understanding their diverse evolutionary tra-
jectories. We introduce a robust and effective contrastive method
that learns and compares semantically meaningful representations
of IoT malware binaries and codes without the need for expen-
sive target labels. We find that the evolution of IoT binaries can be
used as an augmentation strategy to learn effective representations
to contrast (dis)similar variant pairs. We discuss the impact and
findings of our analysis and present several evaluation studies to
highlight the tangled relationships of IoT malware, as well as the
efficiency of our contrastively learned feature vectors in preserving
semantics and reducing out-of-vocabulary size in cross-architecture
IoT malware binaries.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation.

KEYWORDS
IoT malware classification, concept drift, contrastive learning
ACM Reference Format:
Mirabelle Dib, Sadegh Torabi, Elias Bou-Harb, Nizar Bouguila, and Chadi
Assi. 2022. EVOLIoT: A Self-Supervised Contrastive Learning Framework for
Detecting and Characterizing Evolving IoTMalware Variants. In Proceedings
of the 2022 ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’22), May 30-June 3, 2022, Nagasaki, Japan. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3488932.3517393

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3517393

1 INTRODUCTION
The recent growth in the number of IoT devices has motivated
the rise of IoT-tailored malware that enable cyber-attacks as part
of coordinated and monetized large-scale botnets [66]. The public
release of the source code of some of the main IoT malware families
such as the Mirai [2], has forever shaped the IoT threat landscape.
Specifically, the effectiveness of Mirai, and the ability to add new
exploits to the codebase has paved the way for more advanced and
sophisticated Mirai-like malware variants such as Hajime [20] and
Satori [34], to name a few. The increasing number of detected IoT
malware and the threat associated with the IoT-driven cyberattacks
has pushed the security community to focus their effort on deploy-
ing specialized honeypots [24, 43, 53] to detect IoT malware/botnet
and investigate their inner operations [2, 11, 66]. This is essential
for developing rigorous mitigation approaches against the spread of
IoT malware strains by building effective learning-based malware
detectors and classifiers [16, 51, 60].

Despite such effort, the complex relationship and similarities in
terms of code reuse among malware variants bring several chal-
lenges for malware analysis including labeling, provenance, triage,
lineage analysis, as well as family and authorship attribution. In
fact, it is unclear what makes each group of malware distinct, what
links together popular families, or how the same malware family
evolves over time. This is also reflected by the labels assigned by
anti-virus (AV) vendors, which are often inconsistent and coarse-
grained, and often unable to capture the code reuse between IoT
malware and their evolutionary characteristics. More importantly,
the rapid evolution of the IoT threat landscape along with the char-
acteristics of newly detected IoT malware variants in terms of their
massive code reuse and underlying relationship [11, 12], is most
likely to cause the performance of classifiers to degrade with time,
as old malware campaigns are typically retired/updated while new
ones are developed [23]. This change in the data distribution of a
machine learning model is called concept drift [23], which makes it
challenging to generalize existing learning models that were trained
with older data to new, previously-unseen samples.

In order to build sustainable models for IoT malware classifi-
cation, it is important to identify when the model shows signs of
aging, by which it fails to effectively recognize new variants and
adapt to potential changes in the data, especially when accounting
for in-class evolution of IoT malware families. Thus, to build an
effective and robust classifier, we must aim at detecting drifting IoT
variants within the same malware family (i.e., in-class evolution)
and consequently, interpret the meaning behind the drift to identify

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

452

https://doi.org/10.1145/3488932.3517393
https://doi.org/10.1145/3488932.3517393
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3488932.3517393&domain=pdf&date_stamp=2022-05-30

which mutations distinguish one variant from another. Note that
previous research relied on the prediction decisions of a learning
model as a by-product of the classification process [16, 30, 58]. How-
ever, it is likely that a drifting sample that does not belong to any
class will be assigned with high confidence to the wrong class (i.e.,
closed-world assumption), which has been previously validated.

To mitigate this confidence bias, calibrated probability predic-
tors (e.g., Venn-Abers Predictors [14]) as well as statistical non-
conformity measures [37] have been proposed. Although useful,
these approaches cannot draw concrete conclusion on drifting/e-
volving samples and lose their effectiveness on high dimensional
data. A more recent work by Yang et al. [72], used an auto-encoder
coupled with a contrastive loss to compress the data and learn
an effective distance between samples of different classes. While
their resulting distance function can efficiently detect and rank
drifting samples from distinct classes, their approach is not tailored
to in-class drifting samples, which is more relevant in the context
of IoT. Alternatively, a plethora of works studied the evolution of
malware binaries by computing the similarity between functions
extracted from the decompiled binary code (e.g., instructions), basic
blocks, control flow graphs (CFGs) [17, 19, 32, 70, 73], and execu-
tion traces [4, 35]. While they provide invaluable insights, none of
them is applied on Linux-based IoT malware. Cozzi et al. [12] took
this opportunity to identify code similarities between IoT malware
families using function-level binary diffing using off-the-shelf tools
that are not tailored for IoT. Additionally, their approach required
a substantial amount of manual adjustments, which hampers its
scalability and feasibility for real-time threat detection and analysis.

In this work, we aim at filling this gap by detecting evolving
IoT variants and understanding their evolutionary trajectories, in
a systematic and scalable way tailored to the peculiarities of IoT
malware. We propose EVOLIoT, a self-supervised contrastive learn-
ing approach based on pre-trained language models such as BERT
[15], which effectively learns and compares semantically meaning-
ful representations of binary code, without the need for expensive
target labels. This presents an immense advantage to the problem
of scarcity of labeled data (e.g., emerging IoT malware) in security
applications. In fact, the proposed contrastive objective views the
evolution of IoT malware binaries as a natural language augmenta-
tion strategy, which maximizes the mutual information between
malware sequences and their conserved malicious function. As
such, EVOLIoT identifies evolved samples by constructing a “posi-
tive” pair through feeding the same sample to the encoder twice to
get two embeddings that only differ in hidden dropout masks found
in Transformers [25]. As such, the model learns to predict positive
pairs among other embeddings (i.e., negative pairs). In other words,
EVOLIoT learns to encourage “disagreement” across evolutionary
views by contrasting the rest of the embeddings, and thus, learn to
discriminate between samples coming from the same class.

To this end, we make the following main contributions:

• We leverage the power of contrastive learning to address concept
drift and the limitations of inter-family IoTmalware classification
due to the evolution of IoT malware. We present EVOLIoT, a
robust and effective contrastive method that learns and compares
semantically meaningful representations of IoT malware binaries
without the need for expensive target labels.

• We are among the first to address the limitations of inter-family
classification and attribution of IoT malware binaries using con-
trastive learning. We propose to view the evolution of IoT mal-
ware binaries as a desirable choice of augmentation to construct
“views” for contrastive learning in a security application, from
both a theoretical and technical point of view. We illustrate that
our contrastive learning objective, which is based on evolutionary
augmentation, directly encourages representational invariance to
shared features across positive views while at the same time, en-
couraging disagreement across views by dealing with same-class
augmentations as negative to each other.

• Motivated by the number of IoT samples, their diverse target
architectures and their general lack of obfuscation, we adopt a
cross-architecture code-based analysis that can capture a binary’s
malicious intent and evolutionary essence. Our framework lever-
ages the cutting-edge BERT architecture [15] to deeply infer the
underlying code semantics regardless of the binary’s instruction
set architecture (ISA). We also consider a well-balanced instruc-
tion normalization strategy that conserves as much contextual
information as possible for cross-architecture syntactic variations
while maintaining efficient computation.

• We evaluate our approach using a large corpus of IoT malware
binaries that were detected over a course of 3 years. We lever-
age an interpretable strings-based analysis to detect and validate
more than 50 variants belonging to the top 3 IoT malware fami-
lies:Mirai, Gafgyt, Tsunami. Our analysis highlights the constant
evolution of variations among each family from different perspec-
tives such as the added target exploits and 0-day vulnerabilities,
TOR-enabled botnet communication, and botnet behaviors (e.g.,
detection evasion), to name a few.

• We extensively evaluate our proposed method on three applica-
tions, by leveraging EVOLIoT as a semantic search engine for
finding semantically similar variant queries, and testing the effect
of our balanced normalization process and our cross-architecture
embeddings in reducing out-of-vocabulary instructions and pre-
serving semantics, respectively.

• We make our ground truth dataset with identified fine-grained
labels, as well as the full list of identified evolutionary trajectories
(e.g., exploits, variants) available1 to researchers to support future
work.

The rest of the paper is organized as follows. We provide back-
ground information and discuss the problem scope in Section 2.
Detailed information about the proposed approach is presented in
Section 3. We discuss our main findings, evaluation results, and
limitations in Section 4. We present an overview of related work in
Section 5 before concluding the work in Sections 6.

2 BACKGROUND AND PROBLEM SCOPE
In what follows, we elaborate on the problem of concept drift in
the context of security applications (e.g., malware evolution) and
highlight the power of attentive and self-supervised methods as
effective solutions.

1https://github.com/IoTMalw/EVOLIoT

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

453

0 3 6 9 12 15
Testing Period (month)

0.5

0.6

0.7

0.8

0.9
F1

-s
co

re

F1 (Mirai)
Training period

Figure 1: The impact of drifting samples on the classifica-
tion accuracy for samples of theMirai family (trained/tested
MLP classifier with a 3 months sliding window).

2.1 Concept Drift (In-Class Evolution)
Concept drift has been used to describe the problem of the changing
relation between the input data and the target variable over time
[23]. In cybersecurity, these changes apply to the malware develop-
ment and data generation process where attackers are constantly
modifying their attack vectors, trying to bypass defenders’ solutions
[7]. Moreover, the evolution of malware is another problem related
to this challenge, where the process of defining and improving
variants results in new types of attacks. Concept drift in a multi-
class classification setting usually involves drifting samples from
previously unseen families (new class), or drifting samples from
an existing class but with changing behavioral patterns (in-class
evolution).

In this paper, we focus on the problem of in-class evolution, which
is understudied in literature and more relevant in the context of
IoT malware. Specifically, we examined the in-class evolution of
samples from the Mirai family over one year by training an MLP
classifier on samples detected in the first 3 months while testing
with previously-unseen samples detected in the following 3 months
intervals, respectively. As illustrated in Figure 1, we capture the
impact of the drifting samples through examining the degrading
accuracy of the MLP classifier over time (detailed in Appendix A). In
fact, previously proposed ML-based solutions for detecting concept
drift [23] are not necessarily suitable for security applications as
they mainly rely on the collection of new sets of well-prepared and
labelled data to statistically assess model behaviors [5, 14, 18]. How-
ever, in the context of cybersecurity, new attacks/data are usually
unknown thus, it is almost impractical to assume that the incoming
data is sufficiently labeled for (re)training classification models.
Moreover, data labelling is usually time-consuming, expensive, and
requires expertise. Instead, we focus on a more practical scenario
that leverages contrastive learning, as explained in the following
sub-section.

Contrastive Learning (CL). Contrastive learning is a type of
Self-supervised Learning (SSL), which allows the model to learn
sentence-level semantics by comparison. In general, SSL has emerged
as a powerful method for learning effective representations without
the need for expensive target labels [15]. This presents an immense
advantage to the problem of scarcity of labeled, clean data (e.g.,
malware) in cyber security applications. Moreover, it helps a model
gain more generalization ability by learning from large amounts

of unlabeled data, in contrast to a supervised model which learns
only from what is available in the training data.

To this end, we rely on contrastive learning, which works by
pulling semantically close neighbors together and pushing apart
non-neighbors. Recent progress on self-supervised contrastivemeth-
ods has proven its effectiveness in learning good data representa-
tions for instance discrimination and semantic similarity tasks in
various domains such as computer vision [8, 29], audio processing
[52], and computational biology [42, 71]. Hence, we explore the idea
of contrastive learning to learn semantically-aware binary code
representations of IoT malware variants to detect their mutations
and evolution (Section 3). Moreover, to effectively learn sentence
embeddings from unlabeled data, we incorporate pre-trained At-
tention and Transformer language models such as BERT [15], as
described in the following sub-section.

Attentive Transformer Language Model. BERT’s model ar-
chitecture is a multi-layer bi-directional Transformer encoder based
on the original implementation described in [65], which provides
rich vector representations of a natural language by capturing the
contextual meanings of words and sentences using a multi-head
self attention mechanism [3]. It consists of two main processes: (a)
a pre-training phase, based on masked language model (MLM) and
next sentence prediction (NSP) strategies to build a generic model
that considers context and orders of words and sentences in a large
data corpus; (b) a fine-tuning process that applies the pre-trained
model to a specific downstream task. Sentence-BERT (SBERT) [56],
proposed as a modification of the pre-trained BERT network, uses
siamese and triplet network structures to derive semantically mean-
ingful sentence embeddings that can be efficiently compared using
cosine-similarity. In this work, we demonstrate that a contrastive
objective, coupled with pre-trained language models such as BERT
[15], can be extremely effective in learning sentence embeddings
from unlabeled data.

2.2 Problem Scope and Insights
The widespread use of packing and obfuscation made static analysis
generally inadequate in the malware domain [50]. However, to
our advantage, the current number of samples and the general
lack of sophisticated obfuscation in IoT binaries enable code-based
analysis [11, 12]. Conveniently, modelling the binary code of an
executable can provide a precise reflection of its malicious intent
and evolutionary essence, especially in terms of code reuse and
added functionalities. Hence, identifying evolving malware strains
can be equivalent to a binary similarity comparison problem, where
two samples have syntactically or semantically (dis)similar feature
vectors. Specifically, the equivalent semantics of a binary code can
be defined as a sequence of instructions that carries out an identical
task from a logical function in the original source. Yet, the realm of
IoT presents a few challenges:

(1) Multiple efforts are in place to ensure that IoT malware samples
can run on devices with diverse hardware architectures and
system configurations. Meaning, two binaries compiled from
the same source code for different architectures (e.g., ARM,
MIPS) can present syntactically different instructions.

(2) In contrast to previous work [19, 21, 32, 44, 70], the code equiv-
alence problem cannot be resolved at the function-level due to

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

454

the tangled relationships of similarities and code reuse between
IoT malware binaries. In fact, “stolen” code components from a
function or a set of functions can be inserted into other code,
that is, borrowed code is not necessarily a function.

(3) Identifying the start of functions within binary code is a com-
mon problem in the context of static malware analysis. In fact,
the performance of well-known analysis tools such as IDA
Pro has been shown to deteriorate significantly (drops to 60%)
when identifying the start of functions in stripped binaries [13],
whereas it works consistently for correctly identifying instruc-
tions and basic blocks.

In fact, the key to identifying differing IoT malware variants is to
explain their evolutionary trajectories regardless of their target in-
struction set architectures (ISAs). Therefore, considering the above-
mentioned challenges, determining the similarity between two
malware variants requires a precise and efficient cross-architecture
embedding model, which can capture the semantics and dependen-
cies of instructions.

While previous solutions failed to procure such results, we pro-
ceed by regarding instructions as words and basic blocks as sen-
tences. Particularly, we present a newmethod to train such sentence
embeddings without relying on training data, and by leveraging
Sentence-Transformer and contrastive learning. The idea is to con-
sider the evolution of IoT binaries as an augmentation strategy,
and hence encode the same instance twice to form a positive pair.
The distance between these two embeddings will be minimized,
while the distance to other embeddings of the other sentences in
the same batch will be maximized (i.e., they serve as negative pairs).
An overview of our proposed approach is detailed in Section 3.

3 APPROACH
In this work, we propose a new approach to address the problems of
concept drift and intra-family IoT malware classification by leverag-
ing contrastive learning. We have two main objectives: (i) Detecting
in-class evolving/drifting IoT malware binaries, and (ii) interpreting
the meaning behind the drift. To achieve our objectives, we follow
a multi-stage methodology, as illustrated in Figure 2. In particular,
we detect drifting IoT binaries by extracting a feature modality
from the malware binaries (e.g., assembly code), normalizing all
instructions, learning a vector to represent the semantic meaning
of the assembly code of the executable binary, and then deriving an
effective distance function to measure the dissimilarity of samples.
Second, the goal of interpreting the drift is to identify the causes
of the drift (e.g., added functionalities, behavior changes, etc.) and
link the detection decision to semantically meaningful features.

In what follows, we provide further details about each stage of
the proposed methodology (Figure 2).

3.1 Feature Extraction & Pre-Processing
We start our analysis by extracting and normalizing important
features (e.g., assembly instructions) that carry enough information
to effectively differentiate a drifting sample from another.

Formally, the assembly code of an executable is a set of basic
blocks each containing a sequence of assembly instructions, de-
noted by 𝐼𝑓 : (𝑖1, 𝑖2, 𝑖3, ..., 𝑖𝑚), where𝑚 is the number of instructions

in the function. These sequences of machine instructions are analo-
gous to a natural language, which implies the possibility of utilizing
effective techniques in an NLP domain such as BERT for a binary
task. In fact, the authors of InnerEye [73] apply the idea of Neural
Machine Translation (NMT) to a binary function similarity com-
parison task by regarding instructions as words and basic blocks as
sentences.

We start by extracting a set of essential artifacts 1 (e.g., feature
modalities) from our malware samples (Table 1), using commer-
cially popular static binary analysis tools. We leverage IDA Pro
[31] to extract basic blocks of assembly instructions. Following
that, we perform Instruction Normalization to map instructions to
various tokens, which are leveraged by most deep learning meth-
ods to generate input sequences for their training phase. Hence,
we propose a well-balanced instruction normalization 2 that is
neither too generic nor too specific, to avoid an out-of-vocabulary
(OOV) problem, while capturing code semantics with tokens that
hold rich information. In fact, various approaches [17, 19, 44, 73]
have adopted mechanical conversions where the most common
one is replacing every immediate operand with a single notation
such as immval, without a thorough consideration of their contex-
tual meanings. Such a coarse-grained normalization renders every
call instruction identical, hence loses a considerable amount of
contextual information. However, retaining immediate values [44]
can raise an OOV problem due to a massive number of unseen
instructions (tokens).

Conveniently, to maintain contextual and semantic information,
good word embeddings must rely on an individualized normal-
ization strategy where binary code semantics are expressed as
precisely as possible while using a reasonable number of tokens.
For instance, it is important to differentiate between immediate
values because an immediate can represent either a call invocation,
a memory reference to jump to, a string reference, a statically-
allocated variable, etc. Therefore, erasing such differences makes
an embedding rarely distinguishable from another.

To this end, combining successful normalization strategies from
the literature, we make sure to: (i) differentiate between a jump and
a call destination, a string value, or a memory reference, (ii) consider
different sizes in a 32-bit register [19], (iii) keep stack pointers or
base pointers intact [44] while preserving pointer expressions to
maintain memory access information. Finally, Opcodes are not
normalized and are retained as they are.

3.2 Instruction Embedding Model
To this end, we leverage a pre-trained languagemodel, namely BERT
[15], to encode the normalized assembly instructions 3 and then
fine-tune all the parameters using the contrastive learning objective
(§3.3). Note that BERT takes as input a token “sequence” which can
either be single sentence or a pair of sentences packed together. We
consider a sentence to be a block of assembly instructions. Such
input representation allows BERT to handle a variety of down-
stream tasks and thereby later serves our contrastive objective
(§3.3). We leverage pre-trained checkpoints of BERT with a number
of settings/considerations, as described in Appendix B.

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

455

Embeddings

Quality

Feature Extraction & Pre-Processing

Target

Binaries

Disassembler Assembly Instructions

Instruction

Normalization

IA1, IA2, ..., IAn, IB1, IB2, ..., IBm, IC1, …

Instruction Embedding Model

Tokenization + Masking

Segmentation

Positional Encoding

Transformer Encoder (k layers)

E[CLS] | EI1| E[MASK]| … | EIn| E[SEP]
A

EI1’| EI2’ |…| E[MASK]| EIm |E[SEP]
B

EA | EA | EA | … | EA | EA

EB | EB | EB | … | EB | EB

Contrastive

Objective

maximize

similarity minimize similarity

+

-

Intermediate embeddings

(next layer)

Intermediate embeddings

(previous layer)XA

X’A X’B

X’B

X’BX’A

X’A

+

-

Understanding Evolution

Extract

Strings

Strings Analysis

Evaluation

Normalization

Feed Forward Feed Forward

Add & Norm

Multi-Head Attention

Add & Norm

XB

x k

Detect Drift

Explain

Drift

Figure 2: An overview of the proposed EVOLIoT framework/approach and its various stages.

3.3 Contrastive Objective
In this section, we present the contrastive embedding framework
4 behind EVOLIoT, which can produce superior “sentence” embed-
dings (i.e., assembly instructions feature vectors) from incoming
unlabeled malware data, and learn how to compare them to identify
differing variants within the same family. The idea of contrastive
learning is to learn a good representation of unlabeled data by distin-
guishing similar samples from the others. It assumes a set𝐷 = {𝑥+

𝑘
}

including paired examples 𝑥𝑖 and 𝑥 𝑗 which are semantically related,
also referred to as positive pairs. Then, a neural network base en-
coder 𝑓 (.) extracts representation vectors from the data examples,
denoted as 𝑧𝑖 = 𝑓 (𝑥𝑖) and 𝑧 𝑗 = 𝑓 (𝑥 𝑗). As described in §3.2, we
adopt the pre-trained language model BERT as our encoder. More-
over, the contrastive objective is to identify 𝑥 𝑗 in the set of negative

examples {𝑥−
𝑘
}𝑘≠𝑖 for a given 𝑥𝑖 . Let 𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗) =

𝑧
⊺
𝑖
𝑧 𝑗

| |𝑧𝑖 | |. | |𝑧 𝑗 | | be the
cosine similarity between two feature vectors, the contrastive loss
is defined as [8]:

ℓ𝑖, 𝑗 = − log
exp(𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗) / 𝜏)∑

𝑧𝑘 ∈𝑍− exp(𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑘) / 𝜏)
, (1)

where 𝜏 ∈ R denotes a temperature hyper-parameter (𝜏 = 0.05) to
adjust the scaling of the similarity scores, and 𝑍− := {𝑧𝑘 }𝑘≠𝑖 . This
loss, which is computed across all positive pairs (𝑖, 𝑗) and (𝑗, 𝑖) in a
mini-batch, brings the anchor and positive samples together while
driving the anchor and negative samples apart.

In this work, we consider the evolution of IoT binaries over the
years as a theoretically and technically desirable augmentation
strategy to construct “views” of the input. As described in Appen-
dix C, IoT malware variants can be considered as “evolutionary
augmented views” of a common ancestor 𝑥 (e.g., first Mirai variant
to appear), while T can denote possible evolutionary trajectories
characterized by changing features and mutations (Figure 9). The
key idea is that properties of the ancestral sequence will be pre-
served in both descendants (i.e., views). Therefore, by training a
contrastive encoder to project them to nearby locations in the latent
space, their proximity is ensured to correspond to similar malicious
functions, even without explicit labels.

In general, contrastive learning encourages “agreement” between
important features across evolutionary views. In contrast, our con-
trastive objective aims at identifying factors that contribute instead
to the “disagreement” between evolutionary views. In particular,

while the existing contrastive schemes act by pulling all augmented
samples toward the original sample, we suggest to additionally push
the samples with shifting transformations away from the original.

To learn a good alignment for positive pairs and identify the
evolved samples is to construct two different embeddings as “pos-
itive pairs” by feeding the same sample twice to the encoder and
getting two embeddings that only differ in hidden dropout masks
(as detailed in Appendix C). Thus, the distance between these two
embeddings will be minimized, while the other embeddings in the
same batch will serve as “negative” examples, and the model will
predict the positive one among negatives. By contrasting the rest
of the embeddings, the model will learn to discriminate between
samples coming from the same class, by maximizing the distance
to the shifting embeddings instead of minimizing it.

3.4 Understanding Evolutionary Changes
In this section, we try to elaborate on the interpretability by compre-
hending what has caused a sample to drift from its neighbors over
time. Once our contrastive module has identified groups of evolving
variants, it will output a label for each sample, representing the clus-
ter to which it belongs. Given the fact that the model’s performance
is very tightly coupled with the representations used (i.e., assembly
instructions), and while such raw features are very informative for
the learning model, there are often not very human-interpretable
by themselves.

Therefore, to understand the evolutionary characteristics of
evolving IoT malware, we perform a strings-based similarity analy-
sis on the binary samples, which would allow us to attribute the
variant changes to more interpretable features. As such, we uti-
lized reverse-engineering techniques and static malware analysis
to extract meaningful strings that provide clues about the suspect
malware and its functionalities (e.g., attack commands, target de-
vices, malicious payloads, C&C IP addresses, unique strings, etc.).
In particular, we use regular expressions to obtain special textual
indicators such as IP addresses associated with possible adversarial
hosts, and distinctive keywords associated with unique variants
or known malicious commands to search for target devices, ex-
ploited vulnerabilities and attack operations. An example of the
extracted strings from a malware binary is presented in Listing 1
in Appendix D.

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

456

Search

Engine

Search

Query
Encoder Query Vector

Sentence

Embeddings

Search

Results Most similar variants

Figure 3: Overview of our semantic code search engine.

3.5 Evaluation of Instruction Embeddings
We evaluate the quality of our generated cross-architecture code
embeddings in terms of their ability to preserve useful semantics
information as compared to other baselines. Our qualitative analysis
consists of showing that our code embedder can be efficiently used
as a semantic search engine, as shown in Figure 3, for finding
known variants in our unsupervised dataset with high precision, as
well as learning semantic information about syntactically different
instructions. In addition, we assess the effect of our well-balanced
normalization process in reducing out-of-vocabulary instructions
when presented with previously unseen and diverse instructions
sets. All evaluation results are presented in Section 4.4.

4 RESULTS
In this section, we examine the impact of the rapid evolution of
IoT malware on the performance of classifiers over time (§A), fol-
lowed by an assessment of the impact of contrastive learning on
the detection of in-class drifting IoT malware binaries.

4.1 Data Collection
In this paper, we leverage well-known online malware repositories
such as VirusShare [67] and VirusTotal [68] along with a special-
ized IoT honeypot (IoTPOT [6]) to obtain over 90,000 IoT malware
samples that were detected between 2018 and 2021. For consis-
tency purposes, we performed pre-processing steps to filter out
corrupted or non-executable files (e.g., HTML/ASCII files), ending
up with 74,429 IoT malware binaries. To label these samples, we
have retrieved their VirusTotal (VT) analysis reports and processed
them with AVClass [59], which determines the most likely family
name attributed to malware samples by applying a majority rule
on reported labels from multiple anti-virus engines. Table 1 reports
the top identified families, with Mirai and Gafgyt dominating the
dataset. Such imbalance in the data across different families is amere
reflection of the monopoly inflicted by Mirai and its descendants
on the IoT threat landscape. In fact, the effectiveness of the Mirai
family motivates adversaries to reuse/recycle the Mirai source code,
with most of the “new” IoT botnets to represent mere modifications
of the Mirai code base. Moreover, the analysis of Internet-scale
scanning activities generated by infected IoT devices confirms the
prevalence of Mirai-like malware in the wild [27, 55, 62].

It is worth noting that 34% of the collected samples, AVClass [59]
failed to reach a consensus for a common family name, as 2,664
of them were not associated with known IoT malware families
to anti-virus engines (Unknown), and 24,271 were never found in
VirusTotal reports (Unseen). This is an indication that the identified
malware binaries can be either new, or have not been detected
yet by anti-virus vendors. In fact, it is unrealistic to assume that
security analysts are aware of all malware families deployed in

Table 1: Distribution of malware by family.

Label Count (%)

Mirai 40,974 (55.05)
Gafgyt 3,976 (5.34)
Tsunami 956 (1.28)
Dofloo 464 (0.62)
Others 122 (0.16)

Unknown 2,664 (2.23)
Unseen 24,271 (32.60)

Total 74,429 (100)

the wild. Yet, it stands to confirm the effectiveness of honeypots
towards a promptly collection of IoT malware samples.

Note that all the collected IoT malware data is available for
research purposes and can be directly requested from the above-
named sources (e.g., IoTPOT [53]). Unfortunately, the restricted
sharing policies instilled by the data providers prevents us from
directly sharing the analyzed samples with the research community.

4.2 Impact of Contrastive Objective
To examine the impact of using contrastive learning to identify
drifting variants within the same class, we first evaluate the quality
of the obtained clusters of variants. A good clustering method will
produce high quality clusters in which the intra-cluster similarity
is low and the inter-cluster similarity is high. The Silhouette index
is a measure of how similar an object is to its own cluster (cohesion)
compared to other clusters (separation) [33]. A score 𝑠 ∈ [−1, 1] is
calculated for each object, where ‘1’ indicates that this is a perfectly
clustered object. Values near 0 indicate overlapping clusters while
negative values generally indicate that a sample has been assigned
to the wrong cluster. Further details about the calculation of the
silhouette score is presented in Appendix E.

To illustrate the impact of the contrastive learning objective,
we compare the learned representations on 6,000 randomly se-
lected Mirai samples using Standard and the proposed Contrastive
Embedding. As shown in Figure 4, we empirically visualize the
representations learned by our contrastive module and their dis-
tinctive separation in the latent space. We use t-SNE [64], which
is a non-linear dimensionality reduction technique for visualizing
data in a low 2-dimensional space. We observe that the contrastive
loss leads to better variants separation, making it easier to distance
samples from others. In fact, the contrastive objective leads to better
data clustering than the standard embedding model, with a high av-
erage silhouette score (about 0.89) for the total number of identified
clusters. Moreover, we observe fewer overlapping samples when
comparing Figures 4.a and 4.b and a clearer distinction between
them. It is interesting to see the dense pink cluster in Figure 4.a
further dissected when the contrastive objective is applied in Fig-
ure 4.b. In fact, our strings-based analysis in Section 4.3 confirms
the presence of two similar variants in this cluster that only differ
by one additional exploit targeting GPON routers. This demon-
strastes the effectiveness of EVOLIoT in distinguishing fine-grained
modifications in evolved variants.

Comparison with State-Of-Art (CADE [72]).We conduct an
experiment to evaluate the performance of the open-sourced CADE

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

457

Figure 4: t-SNE visualization of learned representations on 6,000 randomly selected Mirai samples with (a) Standard embed-
ding, and (b) Contrastive Embedding.

Table 2: Drifting detection results on the Drebin and IoT malware datasets when comparing CADE with a baseline vanilla
autoencoder (AE).

Method Drebin (Avg) IoT (Avg)
Precision Recall F1 Norm. Effort Precision Recall F1 Norm. Effort Insp. Count

Vanilla AE 0.63 0.88 0.72 1.48 0.53 0.99 0.69 2.54 22050

CADE 0.96 0.96 0.96 1.00 0.84 0.80 0.82 1.35 9941

[72] when applied to our IoT malware samples. The authors’ ob-
jective is to detect and interpret drifting samples from previously
unseen malware families by similarly leveraging the power of con-
trastive learning. By design, CADE uses an auto-encoder augmented
with contrastive loss to learn compressed representation of the
training data. The first term of their contrastive loss minimizes
the reconstruction loss of the auto-encoder while the second term
minimizes the Euclidean distance between two samples in the la-
tent space, if they are from the same class. To evaluate the drifting
sample detection module, the authors pick one of the families as
the previously unseen family, while the other families are split into
training and testing sets. In this respect, we select three IoT mal-
ware families (Mirai, Gafgyt, Tsunami) to form a balanced dataset of
their assembly code artifacts, and pick one of the 3 families as the
unseen. As such, the unseen family is not available during training
and the goal is to correctly identify samples belonging to the hidden
family as drifting samples in the testing time. Given a ranked list of
detected samples, CADE calculates three evaluation metrics: preci-
sion, recall and 𝐹1 score. In addition to these metrics, CADE ranks
drifting samples based on their distance to the nearest centroids to
focus on those that are furthest away.

As shown in Table 2, CADE is compared with a baseline vanilla
autoencoder (AE) without contrastive loss. Additionally, we evalu-
ate the performance of CADEwhen applied to IoTmalware samples.
For each experiment (choice of previously unseen family), we re-
port the highest 𝐹1 score for each model. The “inspecting effort”
is a metric that refers to the total number of inspected samples
to reach the reported 𝐹1 score, normalized by the number of true
drifting samples in the testing set. A higher inspecting effort means

that more analysis is required to manually verify if a sample truly
belongs to the unseen family in the testing set.

For each evaluation metric, we report the mean value across all
settings, as well as the normalized inspecting effort. As summarized
in Table 2, for the IoT malware dataset, the number of samples (“in-
spection count”) that need to be validated by security analysts as
truly belonging to the previously unseen family is very high (com-
pared to 600 inspected on Drebin by the authors), yet still lower
with CADE, which confirms the importance of contrastive learning.
Moreover, the obtained results strongly suggest that CADE per-
forms well in most settings (i.e., using the Drebin dataset), but not
as well when applied to the IoT malware dataset. This is a limitation
of CADE, especially when testing their technique on malware mu-
tations/variants within the same family. As such, CADE is primarily
focused on Type A concept drift (i.e., introduction of a new class in
a multi-class setting), while we address its limitations in identifying
drifting samples that are from existing classes (i.e., Type B: in-class
evolution).

Further Comparison. Several invaluable works have been pro-
posed for clustering IoT malware families using static and dynamic
features [63], as well as for dissecting and in-depth studying a sin-
gular family such asMirai [2, 66]. Yet, to the best of our knowledge,
we are among the first to detect in-class drifting IoT malware bi-
naries and study their mutations over time. In fact, Cozzi et al.[12]
proposed a code-level clustering and function similarity solution
to draw the lineage of IoT malware families. By design, the authors
leveraged a popular off-the-shelf binary diffing tool to perform a
detailed code similarity analysis on 93k samples that have appeared
between 2015 and 2018, and discovered shared components across
different families. While a direct comparison between our works

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

458

is not feasible, it is clear that their approach is sophisticated and
limited by the stripped nature of IoT malware binaries, and by
the scalability and direct application of binary diffing tools to IoT
binaries.

Moreover, multiple approaches on binary code similarity have
been proposed to study malware lineage inference [12, 32, 35, 41,
48], however they are only applied in the context in which theywere
developed and not on Linux-based IoT malware. If they do, they
only support the MIPS and ARM architectures. In addition, most
proposed solutions compute similarity between binaries from their
execution traces [4, 35], which are too-coarse grained for variant
identification, or at the function or CFG levels [12, 17, 32, 44, 70],
which depend on the ability of finding the start of functions. This is
inherently difficult in the context of IoT due to the stripped nature
of binaries. Cozzi et al. [12] try to circumvent this by propagating
known symbols in unstripped binaries to stripped binaries.

4.3 Characterizing Variant Changes
Using our contrastive objective, we identified 44 variants of Mirai
and 11 variants of Gafgyt, as highlighted in Figure 5. However, it is
still unclear how the same family evolved over time, what makes
these variants different, and whether or not samples from different
families are connected. To answer these questions, we take a step
further by extracting and investigating their strings, which will shed
more light on the common/differing characteristics of the identified
variants.

Given the extracted strings, we perform a string-based similarity
analysis on the identified malware samples. As illustrated in figure
5, we draw the connectivity plot for 10,000 Mirai and 3,000 Gafgyt
samples. The darker edges are indicators of a high similarity be-
tween the samples. By looking at the detection time of the samples,
we noticed that the older Mirai variants are likely to share more
resemblance and appear at dense and more central areas, whereas
newer Mirai variants are growing apart and appear farther at the
edges. In addition, it is clearly observed that the Mirai variants
are more closely connected, forming more visibly connected re-
gions. On the other hand, Gafgyt samples seem to be less connected
(lower similarities) and thus, placed further apart. We proceed by
understanding these differences and the threats associated with
each identified cluster of variants.

Among the three most populated and closely related Mirai clus-
ters (#1, #2 and #3), we found 7,124 samples, that were first scanned
in 2018, exploiting two vulnerabilities affecting GPON routers.
When these two vulnerabilities are used in conjunction, they enable
the execution of commands sent by an authorized remote attacker
to a vulnerable device. What makes these kindred clusters separate,
is their expansion to target a vulnerability in Huawei HG532 routers
(#2) and Netgear routers (#3). As such, among samples in Cluster
#9, we found 97 attributed to the Apep botnet, which aside from
dictionary attacks via telnet, also spread through infected Huawei
routers, which explains why they are closely-connected to Cluster
#2. By investigating further, we also uncovered samples belonging
to the Xjno variant in the same cluster, using the same command &
control URL as the Apep variant. This stands to confirm that EVO-
LIoT identifies fine-grained characteristics shared among different
samples.

In addition, we found 1,917 samples spread across Clusters #5
and #11, taking advantage of a ThinkPhP vulnerability which allows
them to breach web servers using the PHP frameworks via dictio-
nary attacks on default credentials to gain remote access to them.
Among those in Cluster #11, we detected a more recently scanned
variant, using a new exploit to infect Huawei devices with malware
named after the recent Covid pandemic. Moreover, we found 7 sam-
ples belonging to the Miori variant in Cluster #8 spreading through
a remote code execution in ThinkPHP. They start by contacting
other IP addresses using Telnet, while also listening on port 42352
for commands from their C2 servers. Next, they verify whether a
targeted device was successfully infected by sending the command
“/bin/busybox MIORI”. Interestingly, we found one evolved Miori
sample in Cluster #11 also downloading a new malicious payload
named “corona3.sh” and killing a list of competing botnets to ensure
persistence. As such, by grouping together covid-related samples
in Cluster #11, EVOLIoT sheds light on the rapid evolution of IoT
malware towards exploiting global events for malware propagation
and distribution. Additionally, Cluster #22 contains complementary
samples to Cluster #5, belonging to the Yowai variant and spreading
using the same ThinkPHP exploit, however, we found references to
commands for killing competing botnets that might have infected
the targeted device. Among their kill list are the names of 58 vari-
ants and the majority are unknown to us. This proves the existence
of a multitude of (unknown) IoT variants that attackers are familiar
with, which gives them a bigger advantage over the control of the
next wave of cyber attacks.

Furthermore, while 70 samples belonging to the Omni variant
were found in Cluster #1 targeting GPON routers, samples belong-
ing to the same variant were found in a further away cluster, #27.
This is because they are leveraging a total of 11 vulnerabilities
associated with multiple target devices. While the identified vul-
nerabilities are publicly known, this is the first variant using all
11 exploits in conjunction. This evolved campaign of Omni vari-
ants is preventing further infection of infected devices by dropping
packets received on 15 different ports using the iptables command.
Interestingly enough, this variant shares the same IP address for
downloading payloads and reporting to the C&C server with 194
Gafgyt samples, which explains why they are nearly clustered. This
is either a case of mislabeling or an indication that the same bot mas-
ter is controlling two independent IoT campaigns concurrently. By
looking closely at them, we found that they share the same exploits
as the Mirai Omni variant except for an OS command injection in
the UPnP SOAP interface which renders 5 types of D-Link routers
vulnerable. However, newer samples of this Gafgyt variant detected
in 2019 have incorporated a command injection exploit targeting
D-Link DSL-2750B routers. As such, while Mirai and Gafgyt might
not share the same codebase, they still exploit and target common
devices, using similar attack methods and reporting to the same
C2.

Moreover, we performed the same analysis on some Mirai sam-
ples that have been clustered on the edges, further than the rest,
and found that they have been first scanned by VirusTotal between
2020 and 2021. We found 38 samples in Cluster #19 that seem to
be spreading by hijacking a vulnerability in digital video recorders
(DVR) provided by KGUARD, as well as connecting to their C2 via
the Tor-Proxy protocol using 7 different ports. We found embedded

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

459

Figure 5: A weighted graph constructed using UMAP [45] representing the connectivity between the strings embeddings of (a)
10,000 Mirai and (b) 3,000 Gafgyt samples with highlighted nodes that represent 11 variants identified by EVOLIoT (§4.3).

URLs with the ".onion" extension. Out of curiosity, we looked at
Cluster #29 represented by the singly connected node in Figure 5.a,
and found indications of the string “aurora”. EVOLIoT has pushed
it further than other Mirai variants because it is spreading using
a 0day vulnerability in the Ruijie (NBR700) routers. Interestingly,
that same vulnerability is being exploited by an older Mirai variant
which has appeared two months earlier, which explains the single
connection edge. However, the vulnerability exploit payload in the
aurora variant uses many empty variables with confusing names to
distract security analysts. It additionally has a mechanism to check
whether it is running in a sandbox environment, by verifying the
path and filename where the sample is located. This is an indication
that Mirai variants are growing to be more resilient. In addition,
while the sample is not packed, a lot of sensitive information are
hidden and seem to be encrypted using a different algorithm than
Mirai’s simple XOR encryption.

4.4 Evaluation
To evaluate the quality of our instructions embeddings, we first
assess the effectiveness of our model in learning code semantics
by finding semantically similar samples in our dataset, compared
to other approaches. Then, we evaluate the quality of our cross-
architecture instructions in preserving semantics versus syntactics.
Finally, we assess the power of normalization in reducing the in-
structions vocabulary size while capturing code semantics with
tokens that hold rich information.

Semantic-Search Engine. To evaluate the quality of our ob-
tained embeddings, our first task aims at finding the most semanti-
cally related code from a collection of candidate codes. This would
allow us to verify the effectiveness of our model in learning code
semantics information. As such, we relied on our strings-based
analysis §4.3 to build our own ground truth data for evaluation.
This dataset consists of a 587 samples of Mirai belonging to 6 dif-
ferent variants: Omni (70), Apep (97), Yowai (37), Satori (72), Dark
(91), Josho (220). To identify samples that belong to the same vari-
ant class, we randomly pick a sample per variant class to encode
it using our embedding model and retrieve all other semantically
similar code embeddings in our dataset. To do so, we leverage
FAISS [36] with Approximate Nearest Neighbor. FAISS uses prin-
cipal component analysis to reduce the number of dimensions in

the vectors, to reduce the computation when comparing a query
vector against already embedded vectors. Next, it partitions the
data into similar clusters to compare the query vector against these
partition/cluster centroids. Once the nearest centroid is found, only
full vectors within that centroid are compared to the query, and all
others are ignored. Hence, the complexity of the required search
area is significantly reduced.

We evaluate the performance of our search engine with varying
retrieval thresholds to inspect whether true positives are ranked at
the top. We sort the returned results and evaluate each of them in
sequence. We collect recall and precision at top-k position (𝑘 = 10).
Recall is the fraction of the documents that are relevant to the
query that are successfully retrieved, while the precision is the
fraction of the documents retrieved that are relevant to the user’s
information need. It is trivial to achieve recall of 100% by returning
all documents in response to any query. Therefore, recall alone is
not enough but one needs to measure the number of non-relevant
documents also, for example by computing the precision. In fact,
since each query can have multiple relevant results, we use Mean
Average Precision (MAP) as the metric to evaluate the code search
on our embeddings dataset. The mean average precision for a set
of queries is the mean of the average precision scores for each

query, which can be calculated as 𝑀𝐴𝑃 =

∑𝑄

𝑞=1𝐴𝑣𝑒𝑃 (𝑞)
𝑄

, where 𝑄
is the number of queries in the set and 𝐴𝑣𝑒𝑃 (𝑞) is the average
precision for a given query 𝑞. We use 4 baselines for comparison of
the evolution results (Word2vec [47], Doc2vec [39], Code2vec [1],
and Bi-LSTM [61]). Please refer to Appendix F for further details
about the used baselines.

It is important to note that several other solutions [17, 32, 44]
have been proposed to analyze binary code similarity and semantic
code retrieval, however, we cannot directly compare them to our
approach since they mainly rely on the availability of the source
code along with binary functions and/or extracted control flow
graphs, which are not considered in our approach.

Besides the above-mentioned baselines that rely on code embed-
dings, we also manually select features to compare with basic-block
feature-based machine learning classifiers such as Gemini [70] and
Genius [22]. We compare our embedding model to the SVM classi-
fier using 16 manually selected features (as detailed in Table 4 in

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

460

Table 3: Results of the semantic search retrieval using differ-
ent baselines as code embedders.

Model Performance (MAP)

Word2vec 0.36
Doc2vec 0.39
Code2vec 0.57
Bi-LSTM 0.74
EVOLIoT 0.89

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our model, AUC=88.8%
SVM, AUC=53.5%

Figure 6: Comparing ROC and AUC performance results.

Appendix F) from binary disassembly (e.g., number of instructions,
average basic blocks, etc.). We leverage an ELF binary analysis
service developed by [11] which evaluates ELF binaries in a multi-
architecture sandboxing environment using static and dynamic
malware analysis techniques to extract these features. We refer the
reader to our public link for a complete list of extracted features.

As shown in Table 3, we were able to efficiently retrieve, validate,
and label using our semantic search engine, previously unknown
variants in our dataset with a mean average precision of 89%. This
confirms that our embedding model generate semantically simi-
lar/relevant code embeddings, and outperforms different baselines.
Moreover, our model outperforms the SVM classifier trained on the
manually selected features, and achieves much higher AUC values,
as illustrated in Figure 6. This is because manually selected features
cause significant information loss in terms of the contained instruc-
tions and the dependencies between these instructions, while our
model precisely encodes and preserves the block semantics across
different variants.

Cross-Architecture Instruction Embeddings. In this section,
we present our results from qualitatively analyzing the instruction
embeddings for different architectures. Zuo et al. [73] have shown
that instructions compiled for the same architecture cluster together
while those compiled from a different architecture cluster far from
each other. This is due to the syntactic variations that an architec-
ture introduces, which creates further challenges in the context of
IoT due to the diverse nature of cross-platform devices.

Our objective is to evaluate the quality of our cross-architecture
instruction embedding model, by picking variants that have been
clustered together for their semantic relationship, and analyzing
their target architectures. For our embedding model to be effective,
two semantically similar yet syntactically different binaries should
still be clustered closely in the space. As such, we first use t-SNE
[65] to plot the instruction embeddings in a two-dimensional plane.
As shown in Figure 7, our analysis of clusters #1, #3, and #14 show
that semantically related samples are clustered together even if
they have different target instruction architectures. In fact, cluster
#1 contains semantically similar samples targeting a variety of CPU

1

14 3

Figure 7: Visualization of syntactically different yet seman-
tically similar embeddings belonging to clusters 1, 3, and 14.

0 10 20 30 40 50 60 70 80 90100
Percentage of corpus used (%)

0

2

4

6

Vo
ca

bu
la

ry
 s

iz
e

(x
10

^
5)

1e5
without pre-processing
with pre-processing

Figure 8: Visualization of the growth of the vocabulary size
when the corpus size increases.

architectures, while clusters #3 and #14 are only reserved to the top
two most popular architectures among IoT devices. Such variability
is explained by evolving samples that are expanding the pool of
potential devices which can be compromised.

Effectiveness of Well-balanced Normalization. A prepro-
cessing normalization step is applied to avoid an out-of-vocabulary
problem, while preserving code semantics instructions with tokens
that hold rich information. To evaluate the impact of instructions
normalization, we seek to understand whether the instructions vo-
cabulary size is affected with or without pre-processing. As such, we
disassembled 4,385 Mirai variants that have been scanned in 2019
and counted the total number of assembly instructions: 80,299,331.
Then, we divided the corpus in 10 equal sized parts to see how
the vocabulary size grows in terms of the percentage of analyzed
corpus. As clearly observed in Figure 8, the vocabulary size grows
significantly and relatively fast without pre-processing, while re-
mains relatively small when pre-processing is applied. As shown
by the analysis results, EVOLIoT can be leveraged as a semantic
search engine for finding semantically similar variants while outper-
forming previous approaches, in addition to preserving semantics
in cross-architecture embeddings and reducing out-of-vocabulary
instructions.

4.5 Limitations and Future Work
This work has a number of limitations, which may hamper the
generalizability and the validity of the reported findings. For in-
stance, we rely on the fact that IoT malware samples are still largely

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

461

unobfuscated as compared to generic malware. However, we were
unable to extract useful strings from around 23% of the analyzed
samples. Despite that, our analysis showed that the majority of
these samples did not employ sophisticated obfuscation, thus, can
be de-obfuscated using off-the-shelf tools (e.g., UPX). Furthermore,
due to the lack of fine-grained IoT malware labels and lack of
well-designed ground truth datasets for evaluation, we built our
own ground truth to evaluate the proposed semantic search en-
gine (§4.4). As such, while the dataset might be relatively small
and not representative, it represents a reliable dataset since the
samples were carefully examined and labelled manually through
our strings-based analysis.

For future work, we intend to address the above mentioned
limitations by investigating different techniques for malware de-
obfuscation and unpacking to account for a more representative
sample of IoT malware while extending the work to non-IoT mal-
ware space, which observes more obfuscation. Further, we will
combine our manual analysis with information obtained from on-
line threat repositories to obtain a more representative ground truth
that can improve our evaluation outcomes. Finally, the unveiling
of diverse IoT malware variants inspires us to study in future work
the competition and coordination among IoT botnets in the wild,
which is still underexplored in literature.

5 RELATED WORK
IoT Threat Landscape The public release of the source code of the
Mirai botnet [57] has prompted new actors to easily bootstrap their
own botnet and compete over the control of vulnerable IoT devices.
Antonakakis et al. [2] have presented the first comprehensive study
of theMirai botnet and described the effect of the shared source code
on the release of new specialized variants. Several other works have
focused on the customizations of Mirai (e.g., Hajime, BrickerBot)
to study the change in their infection behavior [38, 66] as well as
to reveal shared password combinations used during brute forcing
[10]. While these works focus on one botnet, Griffioen et al. [27]
have focused onmultipleMirai-like variants competing for the same
IoT devices to identify the differences in success between botnets.
They exploit 7,500 IoT honeypots and a flaw in the design ofMirai’s
random number generator to conclude that IoT botnets are not
self-sustaining. Alternatively, Torabi et al. [62] leveraged passive
network measurements collected from the darknet along with IoT
device information to infer compromised IoT devices in the wild.
Additionally, several studies [53, 66] have deployed IoT-tailored
honeypots to capture a wide range of emerging IoT threats and
their characteristics. While previous works hold valuable insights
on the threat landscape of IoT malware, further research is needed
to study the dynamics behind the emergence of new intra-family
strains and track the evolution of existing ones.

Malware Evolution and Lineage Inference. Malware is con-
stantly evolving to adapt to survival needs, bug fixes, and feature
additions. Lineage studies are most useful when applied to malware
as version information is usually not available [28, 35]. Inspired
by the evolution of species and molecules, Goldberg et al. [26]
and iLINE[35] produced malware phylogeny trees using a directed
acyclic graph (DAG). Lindorfer et al. [41] investigated the malware
evolution process by mapping API calls to disassembled code in

order to identify mutations in the malware family. Calleja et al.
[6] identified code reuse between benign software and different
Windows malware families observed over a period of 40+ years.
Their observations ranged from common utility functions to anti-
detection routines to credentials for brute-forcing attacks.

Moreover, several techniques for binary similarity gained mo-
mentum as they can be applied for malware lineage inference. In a
recent survey, Haq et al. [28] highlighted the strengths and weak-
nesses of 61 approaches on binary code similarity, including those
used for malware evolution [32, 35, 41, 48]. BEAGLE was proposed
by Lindorfer et al. [41] to study malware evolution by comparing bi-
nary code in terms of API calls extracted using behavioral analysis.
Huang et al. [32] identified code reuse in two Windows malware
families by computing the similarity between functions extracted
from binaries at the instruction, basic block and CFG levels, while
Jang et al. [35] have combined low-level binary features, code-level
basic blocks and binary execution traces for lineage construction.
Existing solutions have been designed around computing CFGs
and matching procedures that cannot be adapted to compute a
constant size signature of a binary on which a similarity measure
can be applied. They also cannot be immediately extended to cross-
platform similarity and therefore cannot be applied on Linux-based
IoT malware. Cozzi et al. [12] took this opportunity to identify
code similarities between IoT malware families using function-level
binary diffing. However, they resorted to popular off-the-shelf bi-
nary diffing tools not tailored for IoT, which required a substantial
amount of manual adjustments and validation.

Recent advancements in machine learning techniques have seen
effective applications in binary code similarity. Ding et al. [17]
have recently proposed an assembly clone search approach named
Asm2Vec, which learns a vector representation of the sequence of
instructions executed on a certain path of the CFG. While it out-
performed several state of-the-art solutions in the field of binary
similarity, Asm2Vec is not directly applicable for semantic clones
across architecture as it only generates single-platform embeddings,
and it has the performance overhead of performing random walks
on CFGs. In another work, Xu et al. [70] proposed Gemini, a neural
network-based approach to compute binary function embeddings
based on an annotated CFG, a graph containing manually selected
features. However, their annotation approach based on manual
feature selection can introduce human bias, by preferring, for in-
stance, arithmetic instructions over others. In InnerEye [73], Zuo
et al. apply the idea of Neural Machine Translation (NMT) to find
similar CFG blocks. However, it is not clear how such embeddings
are a representation of entire functions. Secondly, the used LSTM
architecture is burdened by long term dependencies/memorization,
hence does not cope well with long sequences of instructions [40].
DeepBinDiff [19] has been proposed to find differences between
two binaries by leveraging deep neural networks and greedy graph
matching. Yet, DeepBinDiff requires call symbols and strings which
would be stripped away or obfuscated in statically linked malware,
hence it is a single architecture solution.

6 CONCLUSION
In this paper, we present a robust, accurate, and semantic-aware
assembly instructions representation generator, EVOLIoT, which

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

462

leverages the evolution of IoT binaries as effective augmentation
strategy for contrastive learning. Our approach achieves both effi-
ciency and accuracy for cross-architecture assembly instructions
search without relying on any expensive (e.g., CFG) or manually
selected features. Additionally, we addressed the problem of in-class
concept drift by detecting evolving IoT malware variants and inter-
preting the reason behind their drift. Further, we comprehensively
evaluate the effectiveness and robustness of our proposed approach
with a large corpus of IoT malware data. Our findings shed light on
the evolving IoT threat landscape characterized by the ever-lasting
Mirai variant, which is spreading by using new undisclosed vul-
nerabilities, persisting by killing other bots and looking out for
sandbox environments, encrypting its communication using Tor
proxies, and incorporating encryption algorithms.

REFERENCES
[1] Uri Alon, Meital Zilberstein, et al. 2019. code2vec: Learning Distributed Repre-

sentations of Code. Proceedings of the ACM on Programming Languages 3, POPL
(2019), 1–29.

[2] Manos Antonakakis, Tim April, et al. 2017. Understanding the Mirai botnet. In
26th USENIX Security Symposium. USENIX Association, Vancouver, BC, 1093–
1110.

[3] Dzmitry Bahdanau, Kyunghyun Cho, et al. 2014. Neural Machine Translation
by Jointly Learning to Align and Translate. In 3rd International Conference on
Learning Representations. ICLR, Banff, Canada, 1–15.

[4] Ulrich Bayer, Paolo Milani Comparetti, et al. 2009. Scalable, Behavior-Based
Malware Clustering. In Network and Distributed System Security Symposium,
Vol. 9. NDSS, San Diego, CA, 8–11.

[5] Albert Bifet and Ricard Gavalda. 2007. Learning from Time-Changing Data with
Adaptive Windowing. In Proceedings of the 2007 SIAM international conference on
data mining. SIAM, Minneapolis, Minnesota, 443–448.

[6] Alejandro Calleja, Juan Tapiador, et al. 2018. The Malsource Dataset: Quantifying
Complexity and Code Reuse in Malware Development. IEEE Transactions on
Information Forensics and Security 14, 12 (2018), 3175–3190.

[7] Fabrício Ceschin, Marcus Botacin, et al. 2019. Shallow Security: On the Creation
of Adversarial Variants to Evade Machine Learning-based Malware Detectors. In
Proceedings of the 3rd Reversing and Offensive-oriented Trends Symposium. ACM,
Vienna, Austria, 1–9.

[8] Ting Chen, Simon Kornblith, et al. 2020. A Simple Framework for Contrastive
Learning of Visual Representations. In Proceedings of the 37th International Con-
ference on Machine Learning, Vol. 119. PMLR, Virtual, 1597–1607.

[9] Joana Costa, Catarina Silva, et al. 2014. Concept Drift Awareness in Twitter
Streams. In 2014 13th International Conference on Machine Learning and Applica-
tions. IEEE, Detroit, MI, 294–299.

[10] Andrei Costin and Jonas Zaddach. 2018. IoT Malware: Comprehensive Survey,
Analysis Framework and Case Studies. BlackHat USA 1, 1 (2018), 1–9.

[11] Emanuele Cozzi, Mariano Graziano, et al. 2018. Understanding Linux Malware.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA,
161–175.

[12] Emanuele Cozzi, Pierre-Antoine Vervier, et al. 2020. The Tangled Genealogy
of IoT Malware. In Annual Computer Security Applications Conference (ACSAC).
ACM, Austin, USA, 1–16.

[13] Ahmad Darki, Michalis Faloutsos, et al. 2019. IDAPro for IoT Malware analysis?.
In 12th USENIX Workshop on Cyber Security Experimentation and Test (CSET19).
USENIX Association, Santa Clara, CA, 1–15.

[14] Amit Deo, Santanu Kumar Dash, et al. 2016. Prescience: Probabilistic Guidance
On the Retraining Conundrum for Malware Detection. In Proceedings of the
2016 ACM Workshop on Artificial Intelligence and Security. ACM, Vienna, Austria,
71–82.

[15] Jacob Devlin, Ming-Wei Chang, et al. 2019. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT). ACL, Minneapolis, MN,
USA, 4171–4186.

[16] Mirabelle Dib, Sadegh Torabi, et al. 2021. A Multi-Dimensional Deep Learn-
ing Framework for IoT Malware Classification and Family Attribution. IEEE
Transactions on Network and Service Management 18, 2 (2021), 1165–1177. https:
//doi.org/10.1109/TNSM.2021.3075315

[17] Steven H. H. Ding, Benjamin C. M. Fung, et al. 2019. Asm2Vec: Boosting Static
Representation Robustness for Binary Clone Search against Code Obfuscation
and Compiler Optimization. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, San Francisco, CA, 472–489. https://doi.org/10.1109/SP.2019.00003

[18] Denis Moreira dos Reis, Peter Flach, et al. 2016. Fast Unsupervised Online Drift
Detection Using Incremental Kolmogorov-Smirnov Test. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’16). ACM, San Francisco, California, 1545–1554.

[19] Yue Duan, Xuezixiang Li, et al. 2020. Deepbindiff: Learning Program-Wide Code
Representations for Binary Diffing. In Network and Distributed System Security
Symposium. NDSS, San Diego, California, 1–16.

[20] Sam Edwards and Ioannis Profetis. 2016. Hajime: Analysis of A Decentralized
Internet Worm for IoT Devices. Rapidity Networks 16 (2016), 1–18.

[21] Sebastian Eschweiler, Khaled Yakdan, et al. 2016. discovRE: Efficient Cross-
Architecture Identification of Bugs in Binary Code. In Network and Distributed
System Security, Vol. 52. NDSS, San Diego, California, 58–79.

[22] Qian Feng, Rundong Zhou, et al. 2016. Scalable Graph-Based Bug Search for
Firmware Images. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, Vienna, Austria, 480–491.

[23] João Gama, Indrė Žliobaitė, et al. 2014. A Survey on Concept Drift Adaptation.
ACM Comput. Surv. 46, 4 (2014), 1–37.

[24] Usha Devi Gandhi, Priyan Malarvizhi Kumar, et al. 2018. HIoTPOT: Surveillance
on IoT Devices Against Recent Threats. Wireless personal communications 103, 2
(2018), 1179–1194.

[25] Tianyu Gao, Xingcheng Yao, et al. 2021. SimCSE: Simple Contrastive Learning
of Sentence Embeddings. In Empirical Methods in Natural Language Processing.
EMNLP, Punta Cana, Dominican Republic, 1–17.

[26] Leslie Ann Goldberg, Paul W Goldberg, et al. 1998. Constructing Computer Virus
Phylogenies. Journal of Algorithms 26, 1 (1998), 188–208.

[27] Harm Griffioen and Christian Doerr. 2020. Examining Mirai’s Battle over the
Internet of Things. In Proceedings of the 2020 ACM SIGSACConference on Computer
and Communications Security. ACM, Virtual, 743–756.

[28] Irfan Ul Haq and Juan Caballero. 2021. A Survey of Binary Code Similarity. ACM
Comput. Surv. 54, 3, Article 51 (2021), 38 pages.

[29] Kaiming He, Haoqi Fan, et al. 2020. Momentum Contrast for Unsupervised
Visual Representation Learning. In 2020 Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. IEEE, Seattle, WA, 9729–9738.

[30] Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting Misclassi-
fied and Out-of-Distribution Examples in Neural Networks. In 5th International
Conference on Learning Representations. ICLR, Toulon, France, 1–12.

[31] Hex-Rays. 2005. IDA Pro Disassembler. https://www.hexrays.com/products/ida/.
[32] He Huang, Amr M. Youssef, et al. 2017. BinSequence: Fast, Accurate and Scalable

Binary Code Reuse Detection. In Proceedings of the 2017 ACM on Asia Confer-
ence on Computer and Communications Security. ACM, Abu Dhabi, United Arab
Emirates, 155–166.

[33] Félix Iglesias, Tanja Zseby, et al. 2019. Absolute Cluster Validity. IEEE Transactions
on Pattern Analysis and Machine Intelligence 42, 9 (2019), 2096–2112.

[34] Vijayan J. 2018. Satori Botnet Malware Now Can Infect Even More IoT Devices.
[35] Jiyong Jang, Maverick Woo, et al. 2013. Towards Automatic Software Lineage

Inference. In 22nd USENIX Security Symposium. USENIXAssociation,Washington,
DC, 81–96.

[36] Jeff Johnson, Matthijs Douze, et al. 2021. Billion-Scale Similarity Search with
GPUs. IEEE Transactions on Big Data 7, 3 (2021), 535–547.

[37] Roberto Jordaney, Kumar Sharad, et al. 2017. Transcend: Detecting Concept Drift
in Malware Classification Models. In 26th USENIX Security Symposium. USENIX
Association, Vancouver, BC, Canada, 625–642.

[38] Constantinos Kolias, Georgios Kambourakis, et al. 2017. DDoS in the IoT: Mirai
and Other Botnets. Computer 50, 7 (2017), 80–84.

[39] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and
Documents. In International Conference on Machine Learning (ICML’14). PMLR,
Beijing, China, II–1188–II–1196.

[40] Zhouhan Lin, Minwei Feng, et al. 2017. A Structured Self-Attentive Sentence
Embedding. In 5th International Conference on Learning Representations. ICLR,
Toulon, France, 1–15.

[41] Martina Lindorfer, Alessandro Di Federico, et al. 2012. Lines of Malicious Code:
Insights into the Malicious Software Industry. In Proceedings of the 28th Annual
Computer Security Applications Conference (ACSAC ’12). ACM, Orlando, Florida,
349–358.

[42] Amy X Lu, Haoran Zhang, et al. 2020. Self-Supervised Contrastive Learning
of Protein Representations by Mutual Information Maximization. BioRxiv 1, 1
(2020), 1–17.

[43] Tongbo Luo, Zhaoyan Xu, et al. 2017. Iotcandyjar: Towards an Intelligent-
Interaction Honeypot for IoT Devices. Black Hat 1 (2017), 1–11.

[44] Luca Massarelli, Giuseppe Antonio Di Luna, et al. 2019. Safe: Self-Attentive Func-
tion Embeddings for Binary Similarity. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer, Gothenburg,
Sweden, 309–329.

[45] L.McInnes, J. Healy, et al. 2018. UMAP: UniformManifold Approximation and Pro-
jection for Dimension Reduction. ArXiv e-prints 1, 1 (2018), 1–63. arXiv:1802.03426

[46] Yu Meng, Chenyan Xiong, et al. 2021. Coco-lm: Correcting and Contrasting Text
Sequences for Language Model Pretraining. NeurIPS abs/2102.08473 (2021), 1–16.

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

463

https://doi.org/10.1109/TNSM.2021.3075315
https://doi.org/10.1109/TNSM.2021.3075315
https://doi.org/10.1109/SP.2019.00003
https://www.hexrays.com/products/ida/
https://arxiv.org/abs/1802.03426

[47] Tomas Mikolov, Ilya Sutskever, et al. 2013. Distributed Representations of Words
and Phrases and Their Compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2 (NIPS’13). Curran
Associates Inc., Red Hook, NY, USA, 3111–3119.

[48] Jiang Ming, Dongpeng Xu, et al. 2015. Memoized Semantics-based Binary Diffing
with Application to Malware Lineage Inference. In IFIP International Information
Security and Privacy Conference, Vol. AICT-455. Springer, Hamburg, Germany,
416–430.

[49] Aziz Mohaisen and Omar Alrawi. 2014. Av-meter: An Evaluation of Antivirus
Scans and Labels. In International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment. Springer, Egham, UK, 112–131.

[50] Andreas Moser, Christopher Kruegel, et al. 2007. Limits of Static Analysis for
Malware Detection. In Twenty-Third Annual Computer Security Applications Con-
ference (ACSAC 2007). IEEE, Miami Beach, FL, USA, 421–430.

[51] Quoc-Dung Ngo, Huy-Trung Nguyen, et al. 2020. A Survey of IoT Malware and
Detection Methods Based on Static Features. ICT Express 6, 4 (2020), 280–286.

[52] Aaron van den Oord, Yazhe Li, et al. 2018. Representation Learning with Con-
trastive Predictive Coding. CoRR abs/1807.03748 (2018), arXiv:1807.03748.

[53] Yin Minn Pa Pa, Shogo Suzuki, et al. 2016. IoTPOT: A Novel Honeypot for
Revealing Current IoT Threats. Journal of Information Processing 24, 3 (2016),
522–533.

[54] Feargus Pendlebury, Fabio Pierazzi, et al. 2019. TESSERACT: Eliminating Experi-
mental Bias in Malware Classification Across Space and Time. In 28th USENIX
Security Symposium. USENIX Association, Baltimore, MD, 729–746.

[55] Morteza Safaei Pour, Antonio Mangino, et al. 2020. On Data-Driven Curation,
Learning, and Analysis for Inferring Evolving Internet-of-Things (IoT) Botnets
in the Wild. Computers & Security 91 (2020), 101707.

[56] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). ACL, Hong Kong, China, 3982–
3992.

[57] Mirai Source Code Release. 2016. https://krebsonsecurity.com/2016/10/source-
code-for-iot-botnet-mirai-released/.

[58] Konrad Rieck, Thorsten Holz, et al. 2008. Learning and Classification of Malware
Behavior. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, Berlin, Heidelberg, 108–125.

[59] Marcos Sebastián, Richard Rivera, et al. 2016. Avclass: A Tool forMassiveMalware
Labeling. In International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, Cham, 230–253.

[60] Jiawei Su, Danilo Vargas Vasconcellos, et al. 2018. Lightweight Classification of
IoT Malware Based on Image Recognition. In 2018 IEEE 42Nd Annual Computer
Software and Applications Conference (COMPSAC), Vol. 2. IEEE, Tokyo, Japan,
664–669.

[61] Kai Sheng Tai, Richard Socher, et al. 2015. Improved Semantic Representations
from Tree-Structured Long Short-Term Memory Networks. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing. ACL, Beijing,
China, 1556–1566.

[62] Sadegh Torabi, Elias Bou-Harb, et al. 2022. Inferring and Investigating IoT-
Generated Scanning Campaigns Targeting a Large Network Telescope. IEEE
Transactions on Dependable and Secure Computing 19, 1 (2022), 402–418. https:
//doi.org/10.1109/TDSC.2020.2979183

[63] Sadegh Torabi, Mirabelle Dib, et al. 2021. A Strings-Based Similarity Anal-
ysis Approach for Characterizing IoT Malware and Inferring Their Under-
lying Relationships. IEEE Networking Letters 3, 3 (2021), 161–165. https:
//doi.org/10.1109/LNET.2021.3076600

[64] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605.

[65] Ashish Vaswani, Noam Shazeer, et al. 2017. Attention is All You Need. InAdvances
in Neural Information Processing Systems. Curran Associates, Inc., Long Beach,
USA, 5998–6008.

[66] Pierre-Antoine Vervier and Yun Shen. 2018. Before Toasters Rise Up: A view Into
the Emerging IoT Threat Landscape. In International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer, Heraklion, Crete, Greece, 556–576.

[67] VirusShare. 2012. VirusShare. https://virusshare.com/
[68] VirusTotal. 2004. VirusTotal. https://www.virustotal.com/
[69] ZhuofengWu, SinongWang, et al. 2020. Clear: Contrastive Learning for Sentence

Representation. CoRR abs/2012.15466 (2020), 1–10.
[70] Xiaojun Xu, Chang Liu, et al. 2017. Neural Network-Based Graph Embedding

for Cross-Platform Binary Code Similarity Detection. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. ACM, Dallas,
Texas, 363–376.

[71] Kevin K Yang, Zachary Wu, et al. 2018. Learned Protein Embeddings for Machine
Learning. Bioinformatics 34, 15 (2018), 2642–2648.

[72] Limin Yang, Wenbo Guo, et al. 2021. CADE: Detecting and Explaining Concept
Drift Samples for Security Applications. In 30th USENIX Security Symposium.
USENIX Association, Virtual, 2327–2344.

[73] Fei Zuo, Xiaopeng Li, et al. 2018. Neural Machine Translation Inspired Binary
Code Similarity Comparison Beyond Function P[airs. In Proceedings 2019 Network
and Distributed System Security Symposium. NDSS, San Diego, California, 1–15.

A OBSERVING CONCEPT DRIFT
In a real-life setting, it is unwise to assume that the data is inde-
pendent and identically distributed (i.i.d.) [23], therefore, it is most
likely that the model will become obsolete when the distribution of
incoming data at test-time is different from that of training data. In
order to confirm the presence of evolving samples in our dataset,
we observe whether such samples impact the accuracy of classifiers.
Particularly, we analyse the performance change (i.e., decrease) of
a model over time when predicting newly collected data.

To do this, we adopt a sliding time window approach [9] where
we begin by splitting the dataset into a training subset 𝑇𝑟 with a
time window size𝑊𝑟 , and a testing subset 𝑇𝑠 with a time window
size𝑊𝑠 . For a realistic setting, we enforce the following constraints:
(1)𝑊𝑠 >𝑊𝑟 to evaluate the long-term performance and robustness
to decay of the classifier, (2) every window size is split into equal
time slots of size 𝑧, to allow for a considerable and equal number
of samples in each test window [𝑡𝑖 , 𝑡𝑖 + 𝑧], (3) all the samples in 𝑇𝑟
must be precedent to the ones in 𝑇𝑠 ; violating this constraint will
bias the evaluation by including future knowledge in the classifier,
and (4) all the evaluations must assume that labels𝑦𝑖 of the samples
𝑠𝑖 ∈ 𝑇𝑠 are unknown, even though we have their labels.

Figure 1 captures the performance of a classifier 𝐶 trained on
𝑇𝑟 and tested for each time frame [𝑡𝑖 , 𝑡𝑖 + 𝑧] of the testing set 𝑇𝑠 .
We chose a multilayer perceptron (MLP), which is a class of feed-
forward artificial neural network (ANN), as our classifier 𝐶 . Our 𝑇𝑟
consists of a random set of samples that have been first scanned by
AV engines during the first three months of the year 2018. We first
test our classifier on a smaller set of samples which the classifier has
not been trained on. Then we test it on samples which have been
scanned during subsequent intervals of three months until 2019. As
observed in Figure 1, the classifier performs well when tested with
data that appeared during the same time interval (training period),
with an average accuracy above 96%. Subsequently, when we start
adding previously-unseen testing samples that have appeared in
later months, the overall accuracy significantly drops to below 50%.
This is indicative of the changing nature of variants within the same
class, and as such, it is necessary to detect such drifting samples.

It is important to note that several mitigation approaches [37, 54]
have been proposed to reduce the performance decay of classifiers
when tested on previously-unseen or drifting data, such as retrain-
ing on different timestamps, or quarantining drifting samples and
retraining the classifier solely on them. Moreover, as our objective
is not to test the robustness of classifiers over time nor propose
mitigation approaches, we will leave further evaluation of various
classifiers and different datasets for future work.

B INSTRUCTION EMBEDDING USING BERT
We start from pre-trained checkpoints of BERT:

• We include a special token at the beginning of every sequence
([CLS]) to indicate the start of a sequence. In addition, we dif-
ferentiate sentence pairs packed together into a single sequence
by separating them with a special token ([SEP]). For instance,

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

464

https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://doi.org/10.1109/TDSC.2020.2979183
https://doi.org/10.1109/TDSC.2020.2979183
https://doi.org/10.1109/LNET.2021.3076600
https://doi.org/10.1109/LNET.2021.3076600
https://virusshare.com/
https://www.virustotal.com/

([CLS] 𝑊1𝑊2 [MASK] ... 𝑊𝑛 [SEP] 𝑊1𝑊2 ... [MASK] 𝑊𝑚),
where𝑊 is a word in a sentence.

• We adopt BERT’s original masked language model (MLM), which
masks a percentage (e.g., 15 %) of the input tokens at random,
and then predicts those masked tokens during pre-training. An
advantage of masking is forcing the transformer to remember
the context representation for every input token while hiding
the words that it will be asked to predict at the final layer.

• BERT includes a next-sentence prediction (NSP) task which al-
lows it to learn relationships between sentences by predicting if
the next sentence in a pair is the true next or not. However, the se-
mantics of a function should be considered location-independent
from that of its adjacent functions. As such, attackers can copy-
/borrow a certain function from another source code and add it
anywhere in their code. Therefore, we do not use the NSP task
of BERT.

C EVOLUTION AS CHOICE OF “VIEWS”
The critical question that follows is how to select “views” of the
input, i.e., how to construct (𝑥𝑖 , 𝑥 𝑗) positive pairs. In visual repre-
sentations, Chen et al. [8] constructed such positive pairs 𝑥𝑖 = 𝑇1 (𝑥)
and𝑥 𝑗 = 𝑇2 (𝑥) by taking two independent augmentations or “views”
of a query image 𝑥 from a pre-defined family of transformations
𝑇 , where 𝑇1,𝑇2 ∼ 𝑇 . Some frequently used image transformations
are rotation, cropping or flipping. Recently, language and sentence
representations have adopted augmentation techniques such as
word deletion, substitution, and reordering [46, 69]. Moreover, in
most cases, (𝑥𝑖 , 𝑥 𝑗) are collected from supervised datasets. However,
when it comes to malware binaries, data augmentation is inherently
difficult because of their distinct nature, and incoming malware
data is mostly unlabeled.

In this work, we argue that the evolution of IoT binaries over
the years serves as a theoretically and technically desirable aug-
mentation strategy to construct views. As outlined in Figure 9, in
conceptualizing evolution as an augmentation plan, IoT malware
variants can be considered as “evolutionary augmented views” of
a common ancestor 𝑥 (e.g., first Mirai variant to appear), while
T can denote possible evolutionary trajectories characterized by
changing features and mutations. Much as 𝑥𝑖 and 𝑥 𝑗 can be seen as
two malware variants sampled from the same family at different
times. For instance, 𝑥𝑖 can be a variant of theMirai family that have
appeared in 2018, while 𝑥 𝑗 can be a variant of the same family that
have appeared in 2020.

The key idea is that properties of the ancestral sequence will be
preserved in both descendants (i.e., views). Therefore, by training
a contrastive encoder to project them to nearby locations in the
latent space, their proximity is ensured to correspond to similar
malicious functions, even without explicit labels. Therefore, con-
trastive learning directly encourages representational invariance
to shared features across variants. As in it encourages “agreement”
between important features across evolutionary views. Our con-
trastive objective is to identify what contributes instead to the
“disagreement” between evolutionary views.

Hence, the next important question is how to adapt the con-
trastive learning objective to identify differing IoT variants within

x

Common Ancestor

𝑥𝑖 𝑥 𝑗 Progeny

𝑧𝑖 𝑧 𝑗 Representation

𝑡 ∼ T 𝑡 ∼
T

𝑓 (.) 𝑓 (.)

Minimize agreement

Figure 9: Re-casting SimCLR [8] as a phylogenetic tree
where augmentations are the evolved malware variants.

the same family, i.e., how to encourage “disagreement” across evolu-
tionary views. In particular, while the existing contrastive schemes
act by pulling all augmented samples toward the original sample,
we suggest to additionally push the samples with shifting trans-
formations away from the original. Namely, instead of considering
evolved variants as positive to each other, we attempt to consider
them as negative if they belong to the same malware family. The
aim is to learn robust semantic representations that can capture
small input variations between variants belonging to the same class.

Learning a good alignment for positive pairs. Considering
the unsupervised nature of our dataset, an effective solution is to
take a collection of input samples {𝑥𝑖 }𝑁𝑖=1 and use 𝑥+

𝑖
= 𝑥𝑖 . The key

idea is that the evolutionary trajectories or mutations within the
same malware family are unknown, specially since ELF binaries do
not contain a timestamp of when they were compiled as opposed
to generic malware. Therefore, one might rely on public forum
discussions or on the VirusTotal first submission time as ground
truth. However, online discussions are time-consuming and difficult
to track and might not contain accurate or reliable information. On
the other hand, anti-virus engines’ scan time of the binaries might
not coincide with the time they actually appeared in the wild, as
malware can go a long time before being detected.

Hence, one way to identify the evolved samples is to construct
two different embeddings as “positive pairs” by feeding the same
sample twice to the encoder and getting two embeddings that only
differ in hidden dropout masks, found in Transformers [25]. We
denote 𝑧ℎ

𝑖
= 𝑓𝜃 (𝑥𝑖 , ℎ), where ℎ is random mask for dropout. Thus,

the distance between these two embeddings will be minimized,
while the other embeddings in the same batch will serve as “nega-
tive” examples, and the model will predict the positive one among
negatives. By contrasting the rest of the embeddings, the model will
learn to discriminate between samples coming from the same class,
by maximizing the distance to the shifting embeddings instead of
minimizing it.

Predicting the input sentence itself with only dropout used as
noise has been shown to greatly outperform training objectives
such as predicting next sentences, discrete data augmentation (e.g.,
word deletion and replacement) and even matches supervised train-
ing objectives [25]. We verify the effectiveness of our contrastive
objective for the detection of in-class evolution in our experimental
results in Section 4.2, by observing how samples that are closer
to each other, form tighter groups in the latent space, making it

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

465

rm − r f %s ; p k i l l −9 %s ; k i l l a l l −9 %s ;
cd / tmp | | cd / var / run | | cd / dev / shm | | cd / mnt ;
rm − f ∗ ; / b in / busybox wget h t t p : / / AnonIP / b i n s . sh ;
chmod 777 b i n s . sh ; sh b i n s . sh ;
/ b in / busybox t f t p − r t f t p . sh −g AnonIP ;

Listing 1: Example of readable strings extracted from a mal-
ware sample with anonymized IP addresses (AnonIP).

easier to separate/distance them from other variants, as well as by
comparing with previous works.

D EXTRACTED STRINGS FROMMALWARE
BINARIES

Listing 1 represents an example of the extracted strings from a
malware sample, which is designed to download and execute a
malicious file (bins.sh) from a possible adversarial C&C server
(http://AnonIP/). In addition, we notice that the malware is try-
ing to eliminate all running processes (e.g., rm, pkill, killall) in
order to fortify itself, and is trying different commands to down-
load malicious payloads in case one of them fails, as seen in this
consequent instruction using the TFTP protocol (e.g., tftp -r tftp.sh
-g AnonIP). We also focus on studying the relationships and cross-
family agreement between samples, which might be a reflection of
reused coding practices among IoT malware families, or a case of
mislabeling by anti-virus engines which is quite probable [49, 59].

E SILHOUETTE SCORE
Given an object 𝑥𝑖 of a cluster 𝐶 , the silhouette score is calculated
using the following equation:

𝑠 (𝑥𝑖) =
𝑏 (𝑥𝑖) − 𝑎(𝑥𝑖)

𝑚𝑎𝑥{𝑎(𝑥𝑖), 𝑏 (𝑥𝑖)}
, (2)

where 𝑎(𝑥𝑖) is the average distance or dissimilarity of an object 𝑥𝑖
to all other objects in the same cluster, and 𝑏 (𝑥𝑖) is the minimum
average dissimilarity of 𝑥𝑖 to all other clusters that are not its cluster.
The final index is obtained by averaging the scores for all objects
in the dataset. Figure 10 is a diagrammatic representation of the
above-mentioned silhouette coefficient formula.

𝐶1

𝐶2

𝑏 (𝑥𝑖) 𝑎(𝑥
𝑖)

Figure 10: A diagrammatic representation of the silhouette
coefficient formula 𝑠 (𝑥𝑖). 𝐶1 and 𝐶2 are clusters.

F BASELINE FOR COMPARISON
We use the following baselines for comparison:
• Word2vec [47] is a popular technique to learn word embeddings
using shallow neural networks. The continuous bag-of-words
model (CBOW) is a method of word2vec that uses words around
a target word as context. In our case, we compare by considering
each token (opcode or operand) as word and instructions around

each token as its context. DeepBinDiff [19] and Asm2vec [17]
both leveraged a variation of word2vec based on CBOW and
Paragraph Vector Distributed Memory (PV-DM) respectively, to
learn embeddings of assembly functions represented as a control
flow graphs (CFGs).

• Doc2vec [39] creates a numeric representation of a document of
words, regardless of its length. Distributed Bag ofWords (DBOW)
is doc2vec algorithmwhere the paragraph vectors are obtained by
training a neural network on the task of predicting a probability
distribution of words in a paragraph given a randomly-sampled
word from the paragraph. Here, a paragraph represents a code
snippet or a basic block of assembly instructions.

• Code2vec [1] is a model that learns distributed representations of
code called code embeddings, to evaluate its performance against
the task of semantically searching code snippets. It decomposes
code fragments to a collection of paths using Abstract Syntax
Trees (ASTs) and learns the atomic representation of aggregated
paths.

• Bi-LSTM [61] is a bidirectional sequence processing model that
consists of two LSTMs: one taking the input in a forward direc-
tion, and the other in a backwards direction. Bi-LSTMs effectively
increase the amount of information available and hence improve
the context of a word. We treat code simply as sequences of
tokens and use the neural machine translation (NMT) baseline
(i.e. a 2-layer Bi-LSTM) proposed in [73] for a cross-architecture
basic-block comparison.

Table 4: List of manually extracted features from binaries
disassembly using Padawan ELF tool [11].

Feature Description

average_bytes_function Average size in bytes of a function
average_basic_blocks Average number of basic blocks with
respect to functions
average_cyclomatic_cl Average cyclomatic complexity with
respect to functions
average_location Average lines of code with respect to
functions
branch_instruction Number of branch instructions
bytes_function Total size in bytes of the functions
call_instructions Number of call instructions
function_location Percentage of instructions belonging
to functions
indirect_branch_instr Number of indirect branch instructions
max_basic_blocks Max basic blocks
max_cyclomatic_cl Max cyclomatic complexity
num_funcs Number of functions detected
percent_load_covered Percentage of covered load segment
percent_text_covered Percentage of covered text section
syscall_instructions Number of syscall instructions

Session 4B: Security Applications of Machine Learning ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

466

	Abstract
	1 Introduction
	2 Background and Problem Scope
	2.1 Concept Drift (In-Class Evolution)
	2.2 Problem Scope and Insights

	3 Approach
	3.1 Feature Extraction & Pre-Processing
	3.2 Instruction Embedding Model
	3.3 Contrastive Objective
	3.4 Understanding Evolutionary Changes
	3.5 Evaluation of Instruction Embeddings

	4 Results
	4.1 Data Collection
	4.2 Impact of Contrastive Objective
	4.3 Characterizing Variant Changes
	4.4 Evaluation
	4.5 Limitations and Future Work

	5 Related Work
	6 Conclusion
	References
	A Observing Concept Drift
	B Instruction Embedding Using BERT
	C Evolution as Choice of ``Views''
	D Extracted Strings from Malware binaries
	E Silhouette Score
	F Baseline for Comparison

