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ABSTRACT
To understand the formation of stars from clouds of molecular gas, one essentially needs to know two things: What gas collapses,
and how long it takes to do so. We address these questions by embedding pseudo-Lagrangian tracer particles in three simulations
of self-gravitating turbulence. We identify prestellar cores at the end of the collapse, and use the tracer particles to rewind
the simulations to identify the preimage gas for each core at the beginning of each simulation. This is the first of a series of
papers, wherein we present the technique and examine the first question: What gas collapses? For the preimage gas at the t=0,
we examine a number of quantities; the probability distribution function (PDF) for several quantities, the structure function for
velocity, several length scales, the volume filling fraction, the overlap between different preimages, and fractal dimension of
the preimage gas. Analytic descriptions are found for the PDFs of density and velocity for the preimage gas. We find that the
preimage of a core is large and sparse, and we show that gas for one core comes from many turbulent density fluctuations and a
few velocity fluctuations. We find that binary systems have preimages that overlap in a fractal manner. Finally, we use the density
distribution to derive a novel prediction of the star formation rate.
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1 INTRODUCTION

Stars form out of clouds of molecular gas that is barely held together
by gravity (Dobbs et al. 2011). They are turbulent, magnetized, self-
gravitating, and once stars begin to form the clouds are blown apart
by radiation and outflows (Chevance et al. 2022). The extraordinary
violence of the supersonic flows within the clouds create overden-
sities that are massive enough to decouple from the turbulence and
collapse (Krumholz & McKee 2005). These overdensities collapse
to ultimately form stars, and along the way form prestellar cores.
The purpose of this series of papers is to examine the formation of
these prestellar cores, and in this initial installment we focus on the
initial conditions of the cores; What are the properties of the gas that
becomes a prestellar core?
Prestellar cores are cold (𝑇 = 10 − 20K), dense (𝑛 ∼ 104cm−3)

small (𝑟 = 0.1pc) somewhat round objects that are often associated
with young stellar objects and star forming regions (Guzmán et al.
2015). They form the basic reservoirs out of which stars can form,
and thus their formation process will tell us a great deal about the
formation of stars. Within the prestellar core, a protostar is formed
along with a disk and possibly a jet that will further influence the
final properties of the star (Matzner & McKee 1999), but this late
collapse is beyond the scope of the current work. Here we focus on
the portion of the collapsing molecular cloud that ultimately ends in
the prestellar core.
The collapse of molecular clouds is a messy process, and many

aspects are under investigation. In broad strokes, some portion of the
cloud becomes unstable to gravity, as forces that are not gravity give
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way to forces that are gravity. That portion then can gain mass from
the surrounding cloud as it collapses. The final mass of a prestellar
core is the sum of the mass of the initial fragment plus any gas it
gains during the collapse, minus any gas it loses due to turbulence
and tidal interactions with other bits of the cloud. In the turbulent
fragmentationmodel, themass and collapse rate is largely determined
by the initially unstable portion of the cloud (Krumholz & McKee
2005; Hopkins 2013). In the competitive accretionmodel, the mass is
largely determined by the later tidal interactions (Bonnell et al. 2001).
In a newmodel, the inertial flowmodel, themass is determined by the
large scale velocity patterns in the cloud (Padoan et al. 2020; Pelkonen
et al. 2021). Finally, the stochastic star formation models treat the
collapse of clouds as a random walk (Scannapieco & Safarzadeh
2018). It is likely that none of these are individually correct, but as
we will show the collapse has aspects of all of these processes.
The discussion of the formation of stars is filled with discussions

of fractals and filaments (Elmegreen & Falgarone 1996; Hacar et al.
2022). Clouds are observed to have fractional dimensions of 2.6-2.8
(Stutzki et al. 1998) or are perhaps better described by a multifractal
system (Yahia et al. 2021). Elongated filamentary structures within a
cloud will have fractal dimensions less than that. Ultimately, the for-
mation of stars is one of dimension reduction; the three-dimensional
cloud must be forced into a zero-dimensional star by way of 2 di-
mensional shocks and 1 dimensional filaments.
In this work, we simulate collapsing molecular clouds by first

stirring a periodic box with a large-scale, supersonic driving pattern.
Once a statistically steady state is reached, massless tracer particles
are inserted uniformly throughout the box, and gravity is turned
on. This onset of gravity is 𝑡 = 0 for our purposes. The cloud is
then allowed to collapse. Particles in dense regions at the end of
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the simulations are identified, and traced back to the initial phase at
𝑡 = 0. Exact details of the simulation setup, particle advection, and
particle selection can be found in Section 2.2.
Other works have also examined the collapse of a cloud in a

Lagrangian manner. Mocz &Burkhart (2018) examined the behavior
ofmagnetic fields during collapse. Kuznetsova et al. (2019) examined
the angular momentum of collapsing objects. Pelkonen et al. (2021)
also used tracer particles to examine accretion onto cores. Smullen
et al. (2020) used consecutive isocontours of density to follow cores,
and showed that isocontours are not structures that can be used for
consistent identification of cores.
This is the first paper in a series. In the second paper, we will

examine the rate and geometry of the collapse. In the third, we will
focus on the magnetic field behavior.
This paper is organized in the following manner. We present the

code and simulations in Section 2. We present results in Section
3; Section 3.1 shows projections and path lines for the cores; Sec-
tion 3.2 presents the probability distribution function (PDF) for den-
sity, speed, magnetic field, and gravitational potential; Section 3.3
presents the second order structure function; Section 3.4 presents the
length scales of the simulation; Section 3.5 presents the convex hull
bounding of each preimage and discusses their contents; Section 3.6
presents the fractal dimension of the preimages. We present a new
model for the star formation rate in Section 4, and summarize in
Section 5.

2 METHODS

We run three simulations of adaptive mesh refinement (AMR) mag-
netohydrodynamic (MHD) simulations using the code Enzo (Collins
et al. 2010; Bryan et al. 2014). The simulations use 1283 root grids
and 4 levels of refinement, and 1283 tracer particles. We employ
isothermal magnetohydrodynamics and gravity. Here we will de-
scribe the code and simulations.

2.1 Enzo

Enzo (Collins et al. 2010; Bryan et al. 2014) is an astrophysical hydro-
dynamics code that uses theAMRstrategy ofBerger&Colella (1989)
to dynamically add patches of additional refinement as needed by the
simulation. It has been used for hundreds of astrophysical publica-
tions, including star formation (Collins et al. 2012) and reionization
and structure formation (Xu et al. 2016).
In this work, we use ideal isothermalMHD,AMR, and self gravity.

We use the piecewise linear method of Li et al. (2008), the isother-
mal Riemann solver fromMignone (2007), the constrained transport
method of Gardiner & Stone (2005), and the divergence-preserving
AMR algorithm of Balsara (2001). Self gravity is handled with a fast
Fourier transform (FFT) method on the root grid, and a multi-grid
method on the subgrids. Tracer particles integrate their position by
first using a trilinear interpolation of the velocity field, and a drift-
kick-drift method of advance. More details on the tracer particles can
be found in Section 2.3 and Bryan et al. (2014). More details on the
solvers can be found in Collins et al. (2010) and Bryan et al. (2014).

2.2 MHD simulations

Our simulations began by driving periodic boxes with large scale
(wavenumbers between 1 and 2) solenoidal velocity patterns, with a
target sonic Mach numberMs = 𝑣rms/𝑐𝑠 = 9, where 𝑣rms is the root
mean square velocity, and 𝑐𝑠 is the sound speed. The driving was

Table 1. Simulation parameters and number of cores. All simulations have a
mean Mach number of 9 and mean virial parameter 𝛼 = 5𝜎2𝑅/𝐺𝑀 = 1.
Plasma beta, the ratio of thermal to magnetic pressure, 𝛽 = 𝑃gas/𝑃mag, and
number of cores found 𝑁cores, are below

Name 𝛽 𝑁cores

𝑠𝑖𝑚1 0.2 113
𝑠𝑖𝑚2 2.0 112
𝑠𝑖𝑚3 20 136

continued for several dynamical times (𝑡dyn = 𝐿0/2𝑣rms, where 𝐿0
is the box size) until a statistically steady state was achieved. This
driving was done with a box of 10243 zones per side.
The box is then down-sampled to 1283, tracer particles are added

(one particle for each zone) and the simulation is restarted with
gravity and 4 levels of AMR. For these simulations, refinement is
triggered whenever the local Jeans length is less than 16 zones (i.e.

𝐿J =

√︂
𝜋𝑐2

𝑠/𝐺𝜌 < 16Δ𝑥). Collapse continues for about 0.8 free-
fall time (𝑡ff =

√︁
3𝜋/32𝐺𝜌0), where 𝜌0 is the average density. A

summary of the simulations can be found in Table 1
Unlike many star formation simulations in the literature, we do not

employ sink particles in this work. This choice was made as to not
influence the small-scale dynamics of the collapse with additional
model parameters. This limits the run time of our simulations, as the
code is not able to handle real singularities.
These simulations are scale free, so most analysis is done relative

to themean quantities in the box (e.g. mean density and sound speed).
However it is useful to associate the results with physical units. We
follow the scaling laid out in Collins et al. (2012); the length scale of
the box is 4.6 pc, the density is 1000 cm−3, the time scale is 1.1 Myr,
the mass of the box is 5900 𝑀⊙ , and the magnetic field strength is
(13, 4.4, 1.3) 𝜇G for (𝑠𝑖𝑚1, 𝑠𝑖𝑚2, and 𝑠𝑖𝑚3).

2.3 Tracer Particles

Our tracer particles follow the flow byway of a tri-linear interpolation
of the velocity field on the grid. Thus if a particle is between the mid-
points of zones (𝑖, 𝑗 , 𝑘) and (𝑖 + 1, 𝑗 + 1, 𝑘 + 1), its velocity in each
direction is a linear combination of the velocities in the 8 neighboring
zones. If the particle’s position is (𝑥, 𝑦, 𝑧) and the zone center is at
(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), we define the distance to the left point as 𝜖𝑥 = (𝑥−𝑥𝑖)/Δ𝑥,
𝜖𝑦 = (𝑦 − 𝑦𝑖)/Δ𝑦, 𝜖𝑧 = (𝑧 − 𝑧𝑖)/Δ𝑧, and the distance to the right
point is 1 − 𝜖𝑥 . The full interpolation is then

𝑣𝑥 (𝑥, 𝑦, 𝑧) = 𝑣𝑥,𝑖, 𝑗 ,𝑘 𝜖𝑥𝜖𝑦𝜖𝑧+ (1)
= 𝑣𝑥,𝑖, 𝑗+1,𝑘 (𝜖𝑥) (1 − 𝜖𝑦) (𝜖𝑧)+
= 𝑣𝑥,𝑖, 𝑗 ,𝑘+1 (𝜖𝑥) (𝜖𝑦) (1 − 𝜖𝑧)+
= 𝑣𝑥,𝑖, 𝑗+1,𝑘+1 (𝜖𝑥) (1 − 𝜖𝑦) (1 − 𝜖𝑧)+
= 𝑣𝑥,𝑖+1, 𝑗 ,𝑘 (1 − 𝜖𝑥) (𝜖𝑦) (𝜖𝑧)+
= 𝑣𝑥,𝑖+1, 𝑗+1,𝑘 (1 − 𝜖𝑥) (1 − 𝜖𝑦) (𝜖𝑧)+
= 𝑣𝑥,𝑖+1, 𝑗 ,𝑘+1 (1 − 𝜖𝑥) (𝜖𝑦) (1 − 𝜖𝑧)+
= 𝑣𝑥,𝑖+1, 𝑗+1,𝑘+1 (1 − 𝜖𝑥) (1 − 𝜖𝑦) (1 − 𝜖𝑧).

Here 𝑣𝑥,𝑖, 𝑗 ,𝑘 denostes the numerical value of the x-velocity in the
zone (𝑖, 𝑗 , 𝑘), and 𝑣𝑥 (𝑥, 𝑦, 𝑧) is the continuous particle velocity. Sim-
ilar expressions hold for 𝑣𝑦 (𝑥, 𝑦, 𝑧) and 𝑣𝑧 (𝑥, 𝑦, 𝑧).
The particle position is updated from this in a kick-drift manner,

𝑥𝑛+1 = 𝑥𝑛 + Δ𝑡𝑣𝑥 . (2)

One of the advantages of this algorithm is that it is low order, so it
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Figure 1. The evolution of our simulation. Simulation 𝑠𝑖𝑚1 is in the top row, 𝑠𝑖𝑚2 in the middle row, and 𝑠𝑖𝑚3 in the bottom row. (Left Column) Preimages
of the cores. Colored pixels represent particles that will end up in dense zones. Most of the overlap between different preimages is not due to projection effects,
but show preimages that occupy similar space. (Middle Column) Tracks of the centroids for each core as they collapse through time, mapping the first column
to the third. Each track starts at the black point. (Right Column) Projections of the final frame with hundreds of dense knots.

injects no complexity into the flow on its own. Particles that are closer
than Δ𝑥 have velocity increments that are linear in the spacing. One
consequence of this is the over clustering of particles (Konstandin
et al. 2012). Given two particles with separation less than Δ𝑥, if the
flow is converging, the particles will be driven to a separation of zero
in a matter of a few time steps. This is easiest to see in 1d, where

𝑣𝑥,1𝑑 = 𝑣𝑖𝜖𝑥 + 𝑣𝑖+1 (1 − 𝜖𝑥). (3)

Two particles with separations 𝐷Δ𝑥 will have a relative velocity, 𝑣𝑟 ,
of

𝑣𝑟 = (𝑣𝑖+1 − 𝑣𝑖)𝐷, (4)

and will have zero spacing in a time

𝑡 =
𝐷Δ𝑥

𝑣𝑟
=

1
∇ · 𝑣 . (5)
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Figure 2. Particle tracks for various cores from 𝑡 = 0 (black dots) to 𝑡 = 𝑡f (red dots). Cores exhibit a variety of behaviors and distributions as they collapse.
Some tracks are rather straight, and signify direct collapse with perhaps a bulk motion. Many show more complex dynamics. Axis labels have been omitted
for clarity, in all plots the horizontal axis is the 𝑦 position in code units, and the vertical axis is the 𝑧 position. It should be noted that the scale of each core is
different; some take up half the domain (core 84, core 32) but others are much smaller (core 44).

Because of this, the density of the particles is not a reasonable repre-
sentation of the density of the gas, and we do not consider it. We only
use the particles to identify which zones to analyze, and we perform
all analysis on the Eulerian zone data. We discuss particle selection
in the next section.

2.4 Particle Analysis

2.4.1 In Brief

In order to study the gas that will collapse, we must first identify the
gas that did collapse. That is, we need to identify the dense cores,
𝑐𝑖 , at the end of the simulation, and select the particles within that
core to examine at earlier times. We discuss peak finding and particle
selection in Section 2.4.2. Once particles for 𝑐𝑖 have been selected at
𝑡 = 𝑡final, their location in earlier snapshots can be found. The zones
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that contain particles in core 𝑐𝑖 at 𝑡 = 0 is referred to as the preimage
gas.
In all analysis presented here, the tracers only identify the zones to

analyze; all physical quantities are taken from the grid data, not the
properties of the particles. Further, each zone is only counted once;
if two particles reside in the same zone, that zone is counted only
once for averaging purposes.
One of the guiding principles of this study is to avoid defining the

“edge” of a core. There are a number of possible ways that the “edge”
of a core has been defined in the literature, e.g. density isocontours
with suitable energy contents. However, lacking a predictive theory
of turbulence, it is impossible to say a priori if the gas within the
“edge” of the core actually ends on the star. In fact, we argue that
any closed 2d surface will necessarily contain a substantial fraction
of gas that does not end on the star.

2.4.2 Particle selection

We first identify density peaks in the last frame of each simulation
using yt. This collection of density peaks contains all of the cores we
are interested in, as well as a number that are low-density turbulent
fluctuations. Peaks formed by gravity are, in these simulations, easily
distinguishable from those formed by the turbulence, as they have
typical densities of 𝜌𝑝𝑒𝑎𝑘 ∼ 105...7, while the turbulent peaks have
𝜌𝑝𝑒𝑎𝑘 ∼ 102...3. The distribution of peak densities was found to
be bimodal, with one population having 𝜌𝑝𝑒𝑎𝑘 << 104𝜌0, and one
population with 𝜌𝑝𝑒𝑎𝑘 >> 104𝜌0. We retain only peaks in the
upper portion of the distribution. Turbulence at this Mach number is
incapable of making densities above a few hundred, anything truly
dense can be only formed by gravity. Not all of our cores will survive
infancy, but this is not the concern of the present work.
Once the peak zones are identified in space, the particles around

them can be selected. Owing to the fact that particles cluster more
tightly than the gas, the particles reside only in the densest zones
around the peak. It is found that particles all reside well within a
density contour of 𝜌𝑠𝑒𝑙𝑒𝑐𝑡 = 𝜌

3/4
𝑝𝑒𝑎𝑘

, so we use this to select particles
for each density peak. A density contour at 𝜌𝑠𝑒𝑙𝑒𝑐𝑡 is used to identify
particles to track. The density contour is otherwise ignored.
It should be emphasized that particles are not selected by taking

density contours. Any isosurface of density is absolutelymeaningless
as far as a turbulent cloud is concerned. Our particles are selected by
virtue of being located at density maxima.
As a test of the particle selection technique, all of the analysis

presented here was performed with a more restrictive particle selec-
tion. This more restrictive selection takes only particles in the zone
containing the densest peak and its immediate neighbors. This gave
fewer particles, but did not change any of the results presented here.

2.4.3 Analysis

Once particles for each core 𝑐𝑖 are identified, their locations in previ-
ous frames are identified. The collection of zones marked by tracers
for a core 𝑐𝑖 is referred to as the preimage 𝑃𝑖 .
It has been seen by us and others that particles, lacking pressure,

cluster tighter than the gas does. Thus we do not at any point analyze
the density or velocities of the particles themselves; particles are only
used to identify grid zones to analyze. Unless otherwise noted, we
only count each zone once, even though there are eventually multiple
particles in each zone. This does not affect the results in this work,
as we are primarily focusing on the first snapshot where there is an
exact 1-1 correspondence between zones and particles. As we will

discuss in Paper II, the number of unique zones does not decrease
significantly until the last few frames.

2.4.4 Online Core Browser

We form hundreds of cores, but a publication is finite. In order to
enjoy the rich spectrum of cores that are formed along their col-
lapse trajectories, we have built an online database of cores and their
properties. This can be found at http://cores.dccollins.org.

3 RESULTS

3.1 Core Demographics

Figure 1 shows a summary of our results. The top,middle, and bottom
rows show 𝑠𝑖𝑚1 𝑠𝑖𝑚2 and 𝑠𝑖𝑚3, respectively, which have initial
plasma 𝛽 = 0.2, 2.0, 20.0. The three columns show the beginning of
the simulation on the left, the end of the simulation on the right, and
the path between the two in the center. We will elaborate on each of
these.
The first column (1a, 1d, and 1g) shows the initial positions of

the preimage particles. Each colored cloud of points forms a distinct
separate core at the end of the simulation. The grey square denotes
the boundary of the box, and particles have had periodic jumps
"straightened out" so they appear to come from outside the box. The
contours surrounding each preimage denotes the convex hull, which
will be discussed inmore detail in Section 3.5. The substantial overlap
between different preimage clouds is not the result of projection, but
real overlap. This will be discussed in Section 3.5.
Themiddle column (1b, 1e, and 1h) shows the tracks of the centroid

of the core as it collapses, the dot marks the beginning of the track.
A variety of behaviors can be seen. Some are long and relatively
isolated, while some are tangled together in clusters. Thewide variety
of collapsemorphologies can be seen in Figure 2, andwill be revisited
in Paper II.
The third column (1c, 1f, 1i) shows projections of the entire box at

the end of each simulation. Dense knots are clearly visible as black
spots. We identify (323, 381, 295) density peaks in (𝑠𝑖𝑚1, 𝑠𝑖𝑚2, and
𝑠𝑖𝑚3), respectively, of which (113, 112, 136) survive our density
cuts.
Insight about the collapse process can be had by plotting particle

trajectories for individual cores, as seen in Figure 2. This shows
a collection of pathlines for every particle for several cores. The
particles begin at the black dots (which are regular by construction)
and end on the red dots. There is quite an array of collapse modalities
seen by the collapsing cores. Core 323 (top left corner of Figure 2
as well as 1a) seems to be a filamentary structure, and the flow
starts in the direction of the filament; core 8 moves coherently while
collapsing. Core 27 comes from a complex region, and has a more
complex accretion pattern. In the bottom row, 𝑠𝑖𝑚3 core 32 seems
to form from multiple sub-clumps, while core 378 has two major
sources of gas that merge at the end. Similar plots can be found for
every core in our online core browser.

3.2 PDFs of Preimage Gas

Figure 3 shows the volume-weighted distribution of density (𝜌, top
row), speed (𝑣, second row), magnetic field strength (𝐵, third row)
and gravitational potential (Φ, bottom row) for each simulation at
𝑡 = 0. For each plot, the solid black line shows the probability density
function (PDF) for the entire simulation for that quantity, which we
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Figure 3.The probability density functions (PDF) for 𝜌 (top row, 3a-3c) speed 𝑣 (second row, 3d-3f), magnetic field strength 𝐵 (third row, 3g-3i) and gravitational
potential 𝜙 (bottom row, 3j-3l). Each panel shows 4 lines, each at time 𝑡 = 0. The solid black line shows the PDF for all gas, 𝑉 (𝑞) . The dashed black line is the
distribution for all preimage gas, 𝑉 (𝑞 |∗)𝑉 (∗) . The solid grey line shows the probability of forming a core at a given value, 𝑉 (∗ |𝑞) . The dashed grey line is the
prescription for the preimage distribution, where available (see text for details). This has not yet been found for the potential field. Simulation 𝑠𝑖𝑚1 is shown in
the first column, 𝑠𝑖𝑚2 in the second, and 𝑠𝑖𝑚3 in the third column.
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Figure 4. Themean density ⟨𝜌/𝜌0 ⟩ and rms velocity 𝜎𝑣 for all preimages for
each simulation. No correlation is seen between the two. The density includes
cores whose initial mean density is below the mean of the box. All cores are
supersonic.

denote 𝑉 (𝑞), where 𝑞 is 𝜌, 𝑣, 𝐵, or 𝜙. The dashed black line shows
the distribution for just the preimage particles, which we denote
𝑉 (𝑞 |∗)𝑉 (∗) (the PDF of 𝑞 given the fact that it will form a core.) The
two black curves are measured directly from the simulations. The
solid grey line shows the the ratio of the two distributions, 𝑉 (∗|𝑞),
which shows the probability of forming a core at a certain value of 𝑞.
The preimage PDF is somewhat non-intuitively denoted 𝑉 (𝑞 |∗)𝑉 (∗)
(rather than just the first term) because the integral of this quantity
gives 𝑉 (∗), the probability that a particle ends in a core.
For density, 𝜌, and speed, 𝑣, we additionally have analytic forms

for𝑉 (𝜌 |∗)𝑉 (∗) and𝑉 (𝑣 |∗)𝑉 (∗) represented by the dashed grey lines.
For these, we additionally performed a Kolmogorov Smirnov (KS)
test to determine if the preimage distribution was drawn from our
analytic prediction. The KS test compares the maximum difference,
𝐷, between the cumulative distribution for two functions. It compares
𝐷 to the critical value, 𝐷𝑐 , and produces the 𝑝 value that they are
drawn from the same distribution. All 𝑝 values are larger than 0.05,
indicating that the analytic prediction is a reasonable description of
the preimage distribution. Each will be discussed in detail in the
following sections.
For each simulation, 𝑉 (∗) is the fraction of particles in preim-

age cores relative to the total number, and is (0.057, 0.134, 0.13)
for (𝑠𝑖𝑚1, 𝑠𝑖𝑚2, 𝑠𝑖𝑚3) respectively. It is also true that 𝑉 (∗) =∫
𝑉 (𝜌 |∗)𝑉 (∗)𝑑𝜌, which we will revisit in Section 4.
We will discuss each distribution in turn.

3.2.1 Density PDFs

It is hard to overstate the importance of the density PDF in mod-
ern star formation theory. It has been well established (Vazquez-
Semadeni 1994; Federrath et al. 2010; Collins et al. 2012) that it can

be approximated by a lognormal,

𝑉 (𝑠)𝑑𝑠 = 1√︂
2𝜋𝜎2

𝑠

exp
−(𝑠 − 𝜇)2

2𝜎2
𝑠

𝑑𝑠 (6)

where 𝑠 = ln 𝜌/𝜌0. The actual distribution may have non-
gaussianities that come from the divergence of velocity in the driv-
ing of the turbulence (Federrath et al. 2010), intermittency (Hopkins
2013), magnetic fields (Molina et al. 2012), and complex thermody-
namics (Appel et al. 2022), to name a few. The exact details of the
fit are not a major concern in this work, but the functional form is a
useful tool.
The top row of Figure 3, 3a, 3b, and 3c, shows the PDF of density

for our simulations, at the beginning of the simulation. The black
line shows the PDF of density for the whole computational domain,
𝑉 (𝜌). One can fit a lognormal to each one, but that does not concern
us in this work. This is a single snapshot from a turbulent field,
and as such, subject to random fluctuations that cause it to deviate
from lognormal. What is of interest is its relationship to the gas that
actually forms stars.
The distribution of preimage gas is denoted by 𝑉 (𝜌 |∗)𝑉 (∗) and

can be seen as the dashed black line in Figures 3a, 3b, and 3c. This
is gas that contains particles that we identify as “forming stars” at
the end of the simulation (see Section 2.4.2 for our particle selection
method.) Before this study, our assumption was that this𝑉 (𝜌 |∗)𝑉 (∗)
would be more-or-less a step-function at some critical density, 𝜌𝑐 .
This is not the case. In fact, the distribution is also roughly lognormal,
with similar variance to the total box, and a mean that is higher by
a nontrivial amount. This distribution gives the gas that will form
stars, so what is now needed is a prediction of 𝑉 (𝜌 |∗)𝑉 (∗) that only
depends on quantities available at the beginning of the simulation
and we will understand the star formation rate.
We can predict𝑉 (𝜌 |∗)𝑉 (∗) usingBayes’ theorem.We canmeasure

the probability of a parcel of gas to become part of a core, given its
density, as

𝑉 (∗|𝜌) = 𝑉 (∗)𝑉 (𝜌 |∗)
𝑉 (𝜌) (7)

= 𝑎2𝜌
𝑎1 (8)

Equation 7 is Bayes theorem, and Equation 8 is an empirical fit to
the curve. This is shown as the solid grey line in Figures 3a, 3b, and
3c. Thus, gas from all densities participate in the formation of cores,
with a powerlaw decline in the probability to low densities.
An analytic description of the preimage PDF, 𝑉 (𝜌 |∗)𝑉 (∗), can

then be found from Equation 7:

𝑉 (𝜌 |∗)𝑉 (∗) = 𝑉 (∗|𝜌)𝑉 (𝜌) (9)
= 𝑎2𝜌

𝑎1𝑉 (𝜌). (10)

This is shown as the dashed grey curve in the figures. Here we can
predict the distribution of the preimage gas using only the initial PDF
and knowledge of 𝑎1 and 𝑎2. The next task is to approximate 𝑎1 and
𝑎2, the slope and the normalization of 𝑉 (∗|𝜌). This becomes more
speculative, so we relegate the discussion to Section 4.
We performed a Kolmogorov-Smirnov test between the measured

preimage distribution, 𝑉 (𝜌 |∗)𝑉 (∗), and the description 𝑎2𝜌
𝑎1𝑉 (𝜌).

We find that the two match with statistical significance of 𝑝 =

(0.37, 1.0, 0.84) for the three simulations. Since there are two fit
parameters, good agreement is not unexpected, but it demonstrates
that the preimage gas is the product of a powerlaw and a lognormal.
Or, as will be discussed in Section 4, another lognormal.
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Figure 5. The second order velocity structure function. The thick black line is 𝑆2,𝐿 (𝑟 ) for the entire simulation (the typical definition). The faint thin black lines
show 𝑆2,𝐿,𝑐𝑖 for each core, 𝑐𝑖 . The color map is a heat map, a histogram of each track that goes through each point. The dashed black line shows the mean of
𝑆2,𝐿,𝑐𝑖 over all cores.

3.2.2 Velocity PDFs

We show the velocity PDF in the second row, Figures 3d, 3e, and
3f. As in the top row, the black line shows the PDF of velocity for
the initial snapshot of the simulation, 𝑉 (𝑣). The black dashed curve
shows the preimage velocity distribution,𝑉 (𝑣 |∗)𝑉 (∗). The solid grey
curve shows the probability of forming a core at a given speed,𝑉 (∗|𝑣).
The grey dashed line is our prediction for the preimage distribution,
𝑉 (𝑣 |∗)𝑉 (∗). We will discuss each of these in turn.
The velocity PDF of a turbulent cloud,𝑉 (𝑣), should be very nearly

a Maxwell-Boltzmann distribution,M(𝑣;𝜎), where

M(𝑣;𝜎) = 1
√

2𝜋𝜎2
𝑣2 exp(−𝑣2/2𝜎2). (11)

This is for the same symmetry arguments that is used to derive
it in the classical theory of gases: to first approximation, the three
components 𝑣𝑥 , 𝑣𝑦 , and 𝑣𝑧 , should be identical and separable, and the
PDF should only depend on the velocity magnitude (Maxwell 1860).
This is enough to show that each velocity component should be a
Gaussian, and the total should be a Maxwell-Boltzmann distribution
with variance equal to the variance of any one component, i.e. the
1d Mach number. See Rabatin and Collins (2023, in prep) for a more
complete discussion. Thus, our volume-weighted velocity PDF is
expected to be

𝑉 (𝑣) = M(𝑣;𝜎𝑣,1𝑑) (12)

where 𝜎𝑣,1𝑑 is the velocity variance along one dimension. For our
Mach number of 9, the 1d Mach number is 𝜎𝑣,1𝑑 ∼ 9/

√
3 ∼ 5.2.

The measured 𝜎𝑣,1𝑑 is found to be (5.2, 5.3, 5.4) for (𝑠𝑖𝑚1, 𝑠𝑖𝑚2,
𝑠𝑖𝑚3).
We find that the preimage gas fully samples the turbulent gas, with

little preference for low total velocity that one might expect. For the
preimage gas, we find that the simple prediction

𝑉 (𝑣 |∗)𝑉 (∗) = 𝑉 (∗)M(𝑣;𝜎𝑣,1𝑑) (13)

matches the data with a K.S. 𝑝 value of (0.87, 0.94, and 0.87) for
the three simulations, respectively. This is the dashed grey curve
in Figures 3d, 3e, and 3f, which lines up extremely well with the
measured preimage PDF shown by the black dashed line. This is not
a fit to the data.

To the extent that our prediction is correct, this implies

𝑉 (∗|𝑣) = 𝑉 (∗), (14)

and the velocity gives us little to no information about the possibility
for collapse of a given parcel of gas. This is not exactly correct, as the
solid grey curve is not completely flat in all three panels. However,
deviations from a flat curve occur at very low and very high speed
gas, which also suffer from low number statistics as can be seen
by the low values of 𝑉 (𝑣). There are no trends in 𝑉 (∗|𝑣) that are
consistent across all three simulations, which leads us to conclude
that the variations seen are due to the chaos of the turbulence.
In reality, the Maxwellian prescriptions are not perfect as we do

not really have the symmetry properties required for the derivation
and we have only presented a snapshot rather than an ensemble
average.However, theK-S test between𝑉 (𝑣 |∗)𝑉 (∗) andM(𝑣;𝜎𝑣,1𝑑)
give 𝑝−values of (0.87, 0.94, 0.87) for the probability that the two
describe the same distribution. Thus a Maxwellian is a reasonable
description of the preimage speed distribution.

3.2.3 Magnetic PDFs

The PDF of magnetic field strength is shown in the third row, Figures
3g, 3h, and 3i. The total PDF, 𝑉 (𝐵), is shown in the black line; the
preimage magnetic distribution, 𝑉 (𝐵|∗)𝑉 (∗), is dashed black; and
𝑉 (∗|𝐵) is the solid grey curve.
Presently, we do not have a clear analytic form for 𝑉 (𝐵). We find

that the distribution of the preimage gas is well described by a fraction
of the PDF for the whole gas:

𝑉 (𝐵|∗)𝑉 (∗) = 𝑉 (∗)𝑉 (𝐵) (15)

and to the extent that this is true, 𝑉 (∗|𝐵) = 𝑉 (∗) and is constant
with 𝐵. There seems to be a small excess of gas with high 𝐵 that
forms stars. This could again be low number statistics, or it could be
correlation between 𝐵 and 𝜌, as high density gas has high magnetic
fields, and we show in the first row that high density gas collapses
preferentially. A future paper will examine the magnetic behavior in
greater depth.
The preimage magnetic PDF can be seen to be a constant multiple

of the parent. Thus we compare 𝑉 (𝐵|∗)𝑉 (∗), which is a measured
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quantity, with 𝑉 (∗)𝑉 (𝐵), a constant multiple of the original dis-
tribution. Thus we perform the KS test between the two, and find
𝑝 = (0.30, 0.82, 0.41) that the preimage PDF is drawn from a sam-
ple of 𝑉 (𝐵).

3.2.4 Potential PDFs

There are only four independent fields in these simulations; density,
velocity, magnetic field, and gravitational potential. For complete-
ness, we also examine the last of these. The gravitational potential
can be seen in the bottom row, Figures 3j, 3k, and 3l. It is the most
beguiling of the distributions presented. We lack a functional form
for the full 𝑉 (𝜙), and the preimage distribution looks to be essen-
tially unrelated. There is a strong preference for gas that has low
gravitational potential to form cores. As the potential is only set by
the density field, and more importantly the spatial distribution of
the density, this shows that the configuration of the density is more
important than other quantities in predicting if a parcel of gas will
collapse.
We hope to understand this further in the future.

3.3 Density and Velocity structures

3.3.1 Density Correlations

Figure 4 shows a scatter plot of the mean density and rms velocity
for each preimage, ⟨𝜌/𝜌0⟩ and 𝜎𝑣/𝑐𝑠 , as well as their histograms
(left and top panels of that figure). Here, the average is taken over all
the gas that makes up the preimage of an individual core. Counter
intuitively, there are cores with mean densities quite low, lower than
the mean of the box. The typical mean density is about 2𝜌0. The rms
velocity is supersonic for all cores, with a peak around 4𝑐𝑠 .

3.3.2 Second Order Structure Function

The second order longitudinal structure function, 𝑆2,𝐿 (𝑟), charach-
terizes how velocity scales with size (or distance). It is the average
of the square of the velocity difference along the separation:

𝑆2,𝐿 (𝑟) = ⟨((v(x + r) − v(x)) · r̂)2⟩x,r̂. (16)

That is, given two points separated by a vector r, 𝑆2,𝐿 (𝑟) is the av-
erage of the velocity difference along r. The average ⟨⟩x,r̂ is taken
over all positions, x, and all directions, r̂, leaving only the magnitude
of the separation, 𝑟, as the free parameter. For incompressible tur-
bulence, dimensional arguments yield 𝑆2,𝐿 (𝑟) = 𝐶𝜖2/3𝑟2/3, where
𝐶 is a (hopefully universal) constant and 𝜖 is the dissipation rate.
For our compressible simulations, we find 𝑆2,𝐿 (𝑟) ∝ 𝑟𝑎2 , where
𝑎2 = (0.76, 0.89, 0.91) for (𝑠𝑖𝑚1, 𝑠𝑖𝑚2, 𝑠𝑖𝑚3), respectively. This
can be seen as the solid black lines in Figure 5.
For each preimage, we perform the same analysis but fix x on the

center of each core. By analogy to Equation 16, we plot, for each
core,

𝑆2,𝐿,𝑐𝑖 = ⟨(v − v𝑐𝑖 (𝑟 = 0)) · r̂)2⟩𝑐𝑖 (17)

where 𝑐𝑖 denotes a core, and 𝑣𝑐𝑖 (𝑟 = 0) is the velocity at the center
of the core. Note that this is only an average over the preimage zones,
not including gas that does not end in the dense core. This is similar
to Equation 16, except that equation averages over center position
and angle, while Equation 17 is at a fixed center.
Figure 5 shows four things: 𝑆2,𝐿 (𝑟) (black lines) computed for

each simulation at 𝑡 = 0; 𝑆2,𝐿,𝑐𝑖 for each core in each simulation
(morass of thin grey lines); a heat map for 𝑆2,𝐿,𝑐𝑖 showing the
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Figure 6. Length Scales. A histogram of preimage lengths (solid lines),
density auto-correlation (dotted lines) and velocity auto-correlation (dashed
lines). The distribution of cores is in line with, but not exactly, the veloc-
ity auto-correlation length, 𝐿𝑣 . The density auto-correlation length (dotted
vertical lines) is much shorter than the typical preimage size.

relative occupancy of each track in the space (color field); and the
average of 𝑆2,𝐿,𝑐𝑖 over each core, ⟨𝑆2,𝐿,𝑐𝑖 ⟩𝑐𝑖 (black dashed line).
Clearly there is a substantial spread in the behavior of the population
of cores, andwe’re taking a small sample that is more prone to sample
variance. 𝑆2,𝐿 (𝑟) is a clearly defined powerlaw, while the average of
𝑆2,𝐿,𝑐𝑖 is not so regular. However, 𝑆2,𝐿,𝑐𝑖 for each core clusters
around 𝑆2,𝐿 (𝑟), and the average ⟨𝑆2,𝐿,𝑐𝑖 ⟩𝑐𝑖 is in the neighborhood
of 𝑆2,𝐿 (𝑟), sharing slope and overall offset. For 𝑠𝑖𝑚1 and 𝑠𝑖𝑚2,
⟨𝑆2,𝐿,𝑐𝑖 ⟩𝑐𝑖 shares slope and offset with 𝑆2,𝐿 (𝑟). The third simulation
has a nontrivial offset between ⟨𝑆2,𝐿,𝑐𝑖 ⟩𝑐𝑖 and 𝑆2,𝐿 (𝑟), indicating
that preimages in 𝑠𝑖𝑚3 have slightly higher initial velocities than a
typical patch of gas.
It should be noted that Figure 5 is logarithmic, so the area above

the black line is actually larger than the area below it, even though it
appears the opposite.

3.4 Length Scales

Figure 6 shows the length scales at play in these simulations. We
compare the size scale of the preimage gas (solid lines) to the size
scales defined by density structures (dotted lines), scales defined
by velocity structures (dashed lines), the sonic length (black star),
and the Jeans length (grey star). Each of these will be defined and
discussed in turn.
We define the length scale of the preimage gas (solid lines in Figure

6) by way of the convex hull. The convex hull defined by the points is
the smallext convex polyhedron that encloses the particles. We will
discuss these further in Section 3.5. For now we simply use them as
a quantifiable way to measure the length of the cloud of preimage
points. The hulls can be seen in Figure 1 as the black lines around each
set of colored points. (In reality, the two-dimensional hull around the
points is shown as the full three dimensional hull is difficult to vi-
sualize). The volume of the convex hull is easy to compute, and we
take the cube root of its volume to stand in for the length. Defining
a single length for an amorphous cloud of points is an oversimplifi-
cation, the oversimplification we select is to call 𝐿preimage = 𝑉

1/3
hull .
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We find that the length scales are broadly distributed, from 10% -
50% of the computational domain. The strongly magnetized simula-
tion is peaked around 0.14 𝐿box, while the other two are more broad
and peak at roughly 0.2𝐿box. Thus one core requires (0.5-1.5) pc of
molecular gas.
Other estimates of the length are possible.We could have taken the

longest separation between points or the principle axis of the moment
of inertia tensor. Each of these would result in a larger length for our
cores, since their cubes are larger than 𝑉hull.
The length scale of density structures (dotted lines in Figure 6) is

characterized by the density auto correlation function:

𝐴𝐶𝜌,3D (𝛿x) = 1
𝑉

∫
𝑉
𝑑3x′𝜌(x′)𝜌(x′ + 𝛿x)

𝐴𝐶𝜌 (𝛿𝑥) =
1

4𝜋𝛿𝑥2

∫
Ω

𝑑Ω𝐴𝐶𝜌,3D (𝛿x). (18)

The first of these is the average of the product of density with itself
shifted by 𝛿x. The second is the azimuthal average of the first, making
a function only of the magnitude of the shift, 𝛿𝑥. This is plotted in
Figure 6 as colored dotted lines. It is useful to further collapse the
auto correlation function to a single scalar characterizing the complex
density field. This is the auto correlation length,

𝐿AC,𝜌 =

∫
𝐴𝐶𝜌 (𝑥)𝑑𝑥
𝐴𝐶𝜌 (0)

, (19)

and is shown as the grey dotted line. As the lengths are similar for all
three simulations we plot their average. All density hulls are larger
than this value, indicating that many density fluctuations feed a single
core. The density structures that give rise to this 𝐴𝐶𝜌 are determined
by the initial turbulence.
The velocity structures (dashed lines in Figure 6) are characterized

by the velocity auto correlation function. This is defined similarly to
that for density,

𝐴𝐶v,3D (𝛿x) = 1
𝑉

∫
𝑉
𝑑3x′v(x′) · v(x′ + 𝛿x)

𝐴𝐶v (𝛿𝑥) =
1

4𝜋𝛿𝑥2

∫
Ω

𝑑Ω𝐴𝐶v,3D (𝛿x) (20)

𝐿AC,v =

∫
𝐴𝐶v (𝑥)𝑑𝑥
𝐴𝐶v (0)

. (21)

The velocity auto correlation function and length are shown as dashed
lines in Figure 6. Colored dashed lines show the function, and the dark
grey dashed line shows 𝐿AC,v. The peak of the distribution of core
lengths is smaller than this for the strongly magnetized simulation,
and roughly coincident with the peak for the other two.
For completeness, we also plot the sonic length (black star) defined

by way of

𝜎𝑣 (𝐿)2 = 𝑐2
𝑠 (𝐿/𝐿sonic)𝑝 , (22)

where 𝑐𝑠 is the speed of sound, and 𝑝 is expected to be about 1 for
supersonic turbulence. To find 𝐿sonic, we fit the structure function
(𝑆2,𝐿 (𝑟), Equation 16, seen in the black lines in Figure 5) to Equation
22. We find that 𝑝 = (0.76, 0.89, 0.91) for (𝑠𝑖𝑚1, 𝑠𝑖𝑚2, 𝑠𝑖𝑚3), and
𝐿sonic ≃ 0.004 for each. This is shown as the black star in Figure
6. This is much smaller than the length defined by the velocity auto
correlation and the length scale of the cores.
Finally, again for completeness, we plot the Jeans length (grey

star),

𝐿Jeans =
𝑐𝑠√︁
𝐺𝜌0

, (23)

which is the largest disturbance that can be supported by pressure in

Figure 7. (left) Volume filling fraction for each core relative to its bounding
hull. Preimage gas is sparse in the domain. (right) Volume filling fraction of
all cores in each hull. A large fraction of gas within a hull does not make it
to any core.

uniform gas. This is shown as the grey star in Figure 6. It is similar
in scale to the density fluctuation scale, and much smaller than the
objects that do collapse. It is coincidental that the Jeans length and
density autocorrelation lengths are comparable in size; the density
autocorrelation length is determined entirely by the turbulence before
gravity is turned on, while the Jeans length depends on the strength
of gravity.
We conclude that a typical preimage blob is comprised of several

density fluctuations, but only one or two velocity fluctuations. The
Jeans length is smaller than the region that collapses by a factor of 2.

3.5 Convex Hulls and Spatial Overlap

In order to examine the spatial extents of the collapse, we draw the
convex hull around the preimage gas for each of our cores. The convex
hull was introduced briefly in Section 3.4, here we define it properly
and explore their contents.
A surface, C, is said to be convex if for ever pair of points in C,

the line segment joining the points is also in C. The convex hull of a
set of points, P, is the smallest convex surface that contains P. For
each core, 𝑐𝑖 , we compute its convex hull H𝑖 by way of the Qhull
algorithm (Barber et al. 1996) as implemented in Scipy (Virtanen
et al. 2020).
We plot the convex hull for the preimage gas for all three simula-

tions in the left column of Figure 1. There are two notable features;
one is that the preimage points are decidedly not convex, and the
second is the high degree of spatial overlap between convex hulls.
We discuss each of these in the next two sections.

3.5.1 Convex Hull Filling Fractions

In any hullH𝑖 there are three populations of particles: particles that
end in core 𝑐𝑖 , particles that end in a different core, 𝑐 𝑗 , and particles
that do not end in any core. We define the volume of the preimage
gas,𝑉cell,i for core 𝑖 as the total of the cell volume of zones occupied
by particles in core 𝑖. The total volume of the hull𝑉hull,i is the volume
of the polyhedron. We discuss the third population in Section 3.5.4.
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Figure 8. Three projections of a collection of preimage from 𝑠𝑖𝑚3(8a-8c) and their time evolution (8d). Several preimages are quite mixed with one another
(e.g. 52,53,55, and 56) while some share boarders but do not actually overlap (e.g. 74 and 76, in pink and grey). The time evolution shows that 74 and 76 separate
early, while 52, 53 and 56 overlap for most of the collapse, only separating at late times.
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Figure 9. Fraction and number of overlapping cores for each of our three simulations. For each figure, the center plot shows the average overlap fraction for each
core (red) and the peak overlap fraction (black) vs. the number of strictly overlapping cores. A few points (notably at 0,0) represent more than one core. Only
(13, 6, 3) cores do not overlap with any other cores in each simulation, respectively.

Figure 7 shows the ratio of each hulls cell volume,𝑉cell,i to the hull
volume, 𝑉hull,i in the left panel. The right panel shows the ratio of
volumes for any core to the hull,

∑︁
𝑗 𝑉cell,j
𝑉hull,i

. For all three simulations
this distribution is peaked towards zero. A large number of cores

contain a small number of particles that occupy a large volume of
space. No hull is more than half filled by its own particles. The take
away from this is that preimage particles are sparsely distributed in
space. When including particles that end in other dense cores, the

MNRAS 000, 000–000 (0000)



12 Collins, D. C. et al

10 2 10 1 100

Distance [pc]

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

100
101

102

N

101 103

N
10 2 10 1 100

Distance [pc]

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

101

103

N

101 102 103

N
10 1 100

Distance [pc]

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

100
101

102

N

101102103

N

Figure 10. Overlap Fraction vs. Final Binary Separation. For every pair of cores, the overlap of the two preimages is plotted vs. the final binary distance.
Histograms showing the marginalized histograms are shown to the top and right of each figure. Red points come from pairs of cores with preimages from
different neighborhoods. Color shows the ratio of overlaps between the cores, with black being a ratio of 0 and yellow a ratio of 1. Black points (low ratio) with
overlap > 0 have particles from core 1 are in the hull of core 2, but particles from core 2 are not in the hull of core 1. This implies apple-banana nesting or
complex abutting of the two cores. All tight binaries come from gas that is originally mixed.

Figure 11. The Other Ones. Core particles (red) and particles within the
convex hull that do not end in cores (blue, green.) The grey line denotes the
simulation boundary. The top row is the first snapshot and the bottom row is
the final snapshot of the simulation. Shown is core 107 from 𝑠𝑖𝑚3, but most
cores have similar behavior. Left: spatial location of core particles and “other
ones.” Right: Density-radius relation for core particles (red) and other ones
(green).

distribution of filling fractions is peaked at 25%, with a long tail to
75%. One region in space contains gas that will form several cores.
There are two reasons for these low volume filling fractions. The

first is the mismatch between the hull and the "edge" of the preimage,
like a banana in a plastic bag. The second reason is the sparseness
of the gas in space; most preimage zones in the volume touch zones

that are not preimage zones. The first is apparent from Figure 1. The
second is not observable in that figure due to projection effects, but
we will revisit in Section 3.6.
The reason for the substantial distinction between the left and right

panels of the volume filling distributions in Figure 7, is the fact that
the preimage gas from different cores begin life spatially intertwined.
One hull can contain particles that go into many hulls. The nature of
this unmixing will be explored further in Paper II.

3.5.2 Spatial Overlap of Convex Hulls

The second most notable aspect about the convex hulls is the vast
amount of overlap between different preimages. Quantifying this
overlap is the primary reason to use the convex hulls, as we can
identify overlap by asking if particles from one core are contained in
the hull of another.
Figure 8 is a qualitative examination of this overlap and the subse-

quent separation. This set of cores can be seen in the bottom right of
Figure 1g. This figure shows three spatial projections and one space-
time projection. The spatial projections in panels 8a-8c are 𝑦̂, 𝑥̂, and
𝑧̂, respectively and the fourth panel is the 𝑦̂ coordinate vs. time. Each
panel shares an axis with its neighbors. The black lines show the
convex hull for each preimage. The primary purpose of this figure is
to illustrate the extent of spatial overlap between preimages. Some
are almost completely mixed (e.g. 52,53,55,and 56) while some (74
and 76, in pink and grey respectively) are not mixed, even though
one appears wrapped around the other. The fourth panel, 8d, demon-
strates the manner in which the cores untangle themselves. Core 55
is not assembled in one unit, but shows mergers of at least two sub-
clumps. It separates from 52, 53 and 56, which remain close until the
end. Cores 74 and 76 separate quite early and end up not particularly
close; some as-of-yet unidentified parameter ensures their rapid sep-
aration. Cores 77 and 78 are entirely mixed, and end up as a close
binary.
In order to quantify the amount of overlap each core experiences,
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we define the overlap, 𝑂𝑖, 𝑗 between cores 𝑖 and 𝑗 as

𝑓𝑖, 𝑗 =
𝑁𝑖, 𝑗

𝑛𝑖
(24)

𝑂𝑖, 𝑗 = min
(︁
𝑓𝑖, 𝑗 , 𝑓 𝑗 ,𝑖

)︁
. (25)

𝑁𝑖, 𝑗 is the number of particle from core 𝑖 that are within the convex
hull of core 𝑗 , and 𝑛𝑖 is the total number of particles in core 𝑖. Thus
𝑓𝑖, 𝑗 is the fraction of 𝑖′𝑠 particles in hull 𝑗 . The overlap between the
two cores,𝑂𝑖, 𝑗 , is then the smaller of 𝑓𝑖, 𝑗 and 𝑓 𝑗 ,𝑖 .𝑂𝑖, 𝑗 is symmetric
in 𝑖, 𝑗 , but 𝑁𝑖, 𝑗 is not. This definition is useful as it is only near unity
when there is significant mixing between the cores; for a pair of cores
𝑖 and 𝑗 , a large 𝑂𝑖, 𝑗 means a large fraction of 𝑖 particles are in 𝑗 and
vice versa. In cases where overlap occurs due to the non-convexity of
one of the shapes, such as 74 and 76, a large fraction of 74 is with the
hull of 76, but the converse is not true, the particles of 76 lie outside
of the hull of 74.
Figure 9 shows two points for every core. The horizontal axis shows

the number of other cores each core overlaps with (i.e.𝑂𝑖, 𝑗 > 0). The
vertical axis shows the maximum overlap fraction (red) and average
over all neighbors (black). One can see that there is a substantial
degree of overlap between the cores. For example, the first panel
shows 𝑠𝑖𝑚1 where 𝑁overlap = 16, one finds three cores. Each of
those cores overlaps with sixteen others. For each, there is one other
core that overlaps at least 80%. On average, each of the three cores
overlaps with its neighbors about 20%. For the other two simulations,
even more overlap is seen. This is also evident in Figure 1. As many
as 40 cores overlap in 𝑠𝑖𝑚2, and 50 in 𝑠𝑖𝑚3, and some of those
overlap quite substantially.

3.5.3 Binaries Start Mixed

It is interesting to ask what happens to gas that begins mixed. Figure
10 shows, for every pair of cores, the overlap fraction vs. the final
binary separation distance. The color shows the ratio of fractions,
𝑁𝑖, 𝑗/𝑁 𝑗 ,𝑖 , ranging from 0 to 1. By its definition, large values of𝑂𝑖, 𝑗

will also have ratios close to unity. Red points have no shared neigh-
bors and all have 𝑂𝑖, 𝑗 = 0. Non-red points all have shared neighbors
in common (i.e. friends-of-friends), even if they themselves do not
overlap. All close binaries in our simulation begin with mixed gas.

3.5.4 The Other Ones

It is interesting to ask where the “other” particles go. Within the
convex hull H𝑖 there are three populations of particles: particles
that go into the core 𝑖, particles that go into a different core, 𝑗 ,
and particles that do not go into any identified core. These “other
ones” are shown in Figure 11 for core 107 from 𝑠𝑖𝑚3. Here, we
see two snapshots for core 107 of 𝑠𝑖𝑚3; the first snapshot (top row)
and last snapshot (bottom row.) The left column shows the spatial
distribution. The right column shows density vs. radius from the
center. Red points are core particles. Blue (left) and green (right)
show points that start within the convex hull but do not end on a
core. The “other ones” are initially co-located with the core particles
in both parameter spaces. At the end, the core particles are located
in a few zones, at high density. The “other ones” are found in a
filamentary patch distributed in a large space, around half the length
of the simulation. In the density-radius plot at late time, it can be
seen that the “other ones” are distributed in a large volume, mostly at
low density. Several narrow spikes of population can be seen, these
are the location of other cores that form from this same volume. The

other cores themselves have also been cut out, they occupy much
higher densities than the “other ones.”
This is just one representative core, but others show similar trends.

Surprisingly enough (or perhaps not surprising), they are often spa-
tially highly filamentary. This plot can be seen for all cores in our
core browser.
Figure 11 also shows that a different particle selection method

would not result in qualitatively different results. Much of the gas
that starts in the hull ends spread across much of the cloud. Further,
this gas will likely not ever become part of the final population of
stars, as radiation pressure will very soon begin unbinding much of
the gas that is close to the star.

3.6 Fractals

Fractals are seen in many places in star forming clouds. Here is
another. As anticipated in Section 3.5.1, preimage zones within the
convex hull are sparsely distributed in space. We use the Minkowski
dimension, or box counting dimension, by counting the number,
𝑁 (𝜖), of boxes of size 𝜖 needed to cover the preimage, andmeasuring
the scaling as 𝜖 becomes small. The dimensionality of the preimage
is defined as

𝐷 = lim
𝜖→0

log 𝑁 (𝜖)
log 1/𝜖 . (26)

The volume of each particle is simply the volume of the zone it
occupies. We cover each preimage with a uniform grid of at most
1283, and count the number of boxes that contain particles. We then
double the box size and repeat. The result is consistently a powerlaw,
and the exponent is the dimension.
The distribution of dimensions can be seen in Figure 12. The left

panel shows the box covering for core 323 of 𝑠𝑖𝑚1, and the right
shows the distribution of dimensions, 𝐷, for each core. For all three
simulations, the dimension peaks around 1.6. This should come as
no surprise, as filamentary structures have been shown to resolve into
smaller, more filamentary structures upon improved observations.
One of the shortcomings of using convex hulls to cover a fractal

object is the fact that it is impossible. In fact, any 2d manifold cannot
surround a structure with fractal dimension less than 3 without also
including some other material.

4 DISCUSSION

4.1 Predicting the Star Formation Rate

We can use Figure 3 to predict the star formation rate. The prediction
we present here is preliminary, and will be examined more fully in
an upcoming study. Here we take a probabilistic approach which has
also been used elsewhere (Elmegreen 2018).
The integral under the dashed black line in Figures 3a, 3b, and 3c

gives the rate of core formation in our simulation. The simulation ran
for one free fall time, and the number of particles found in cores is

𝑉 (∗) =
∫

𝑉 (∗|𝜌)𝑉 (𝜌)𝑑𝜌 (27)∫
𝑉 (𝜌 |∗)𝑉 (∗)𝑑𝜌. (28)

The first line is integrating over the marginal distribution, and the
second is an application of Bayes theorem, ultimately showing that
the probability of forming a core is the integral under the dashed
black line in Figures 3(a-c). We have shown that 𝑉 (∗|𝜌) is well
approximated by a powerlaw. If we can describe that powerlaw by
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Figure 12. Computing the Dimension of Cores. Left: Computing the dimensionality of a preimage by box covering. Here one core (𝑠𝑖𝑚1, core 323, also seen
in Figure 1a). The scaling of the number of boxes of length ℓ needed to cover the shape gives the dimension. Right: The distribution of fractal dimensions for
all three simulations.
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Figure 13. The PDF of density with models. As in Figure 3, the black line is 𝑉 (𝜌) , dashed black is 𝑉 (𝜌 |∗)𝑉 (∗) , grey is 𝑉 (∗ |𝜌) . The green curve is an
approximation to 𝑉 (∗ |𝜌) given in Equation 32. The solid red curve is the product of 𝑉 (𝜌) and (𝜌/𝜌max)1/2, and the dashed red curve is a lognormal prediction
of what will collapse based only on properties of 𝑉 (𝜌) .

quantities easily obtainable from the beginning of the simulation, we
can predict the rate of star formation. Which we shall now do.
The curve 𝑉 (∗|𝜌) = 𝑉 (∗)𝜌𝑎1 has two properties that we will

exploit to make a predictive theory. First,𝑉 (∗|𝜌) ≃ 1 at 𝜌max. All the
densest gas forms cores. Second, the powerlaw slopes are all close
to 1/2. This is true for the current simulations, a future study will
explore the generality of these statements. Thus the probability of
forming a star at a given density takes the simple form

𝑉 (∗|𝜌) = 𝑎2𝜌
𝑎1 (29)

≃
(︃

𝜌

𝜌max

)︃1/2
. (30)

Inserting that into Bayes’ theorem,

𝑉 (𝜌 |∗)𝑉 (∗) = 𝑎2𝜌
𝑎1𝑉 (𝜌) (31)

≃
(︃

𝜌

𝜌max

)︃1/2
𝑉 (𝜌), (32)

≃ 𝑡ff (𝜌max)
𝑡ff (𝜌)

𝑉 (𝜌), (33)

where we have used the fact that 𝑡ff (𝜌) = (𝐺𝜌)−1/2 in the last ex-

pression. We can interpret this in the following manner: all of the
gas in the box can participate in the collapse, but lower density gas is
suppressed by its ability to get dense. It is probably an oversimplifi-
cation to interpret this as “low density gas collapses slower”, but we
shall make this statement.
We can further understand the mean and normalization of

𝑉 (𝜌 |∗)𝑉 (∗) by noticing that the product of a powerlaw and a Gaus-
sian is another Gaussian. By using 𝜌𝑎 = 𝑒𝑎 ln 𝜌:(︃

𝜌

𝜌max

)︃𝑎
exp

(︃
−(𝑠 − 𝜇)2

2𝜎2
𝑠

)︃
= 𝐴 exp

(︃
−(𝑠 − (𝜇 + 𝑎𝜎2))2

2𝜎2
𝑠

)︃
(34)

𝐴 = exp
(︃
𝜇𝑎 + 1

2
𝑎2𝜎2

𝑠 − 𝑎𝑠max

)︃
. (35)

So if 𝑉 (𝜌) has mean 𝜇 and width 𝜎𝑠 , 𝑉 (𝜌 |∗)𝑉 (∗) has width 𝜎𝑠 ,
mean 𝜇 + 𝑎𝜎2

𝑠 , and is suppressed by exp
(︂
𝜇𝑎 + 𝑎2𝜎2

𝑠 − 1
2𝑎𝑠max

)︂
.

The solid red line in Figure 13 is a prediction of the star formation
rate using only quantities available at the beginning of the simulation.
Moreover, it is a prediction of the distribution of gas that will form
stars.
In Figure 13, we show the applicability of these approximations.
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As in Figure 3, the solid black line shows𝑉 (𝜌), the dashed black line
shows 𝑉 (𝜌 |∗)𝑉 (∗), and the grey line shows 𝑉 (∗|𝜌). The green line
shows an approximation to 𝑉 (∗|𝜌) that does not require knowledge
of the outcome of the simulation, namely

𝑉 (∗|𝜌) =
(︃

𝜌

𝜌max

)︃1/2
. (36)

The solid red curve is the product of Equation 36 and𝑉 (𝜌). This is a
reasonable match to the black dashed curve it is trying to represent,
but the error in the exponent on the powerlaw shifts the peak of the
prediction slightly. Finally, we plot the most aggressive oversimpli-
fication in the dashed red curve, which is the Gaussian described by
Equation 35, with 𝜇 and 𝜎𝑠 and 𝑠max taken from moments of 𝑉 (𝜌).
The advantage of the red curves is that we can write them down
before the simulation starts.
The long-term behavior of this model, specifically Equation 29,

is of interest. How would this change we were able to continue
the simulations and cores to accrete more? Likely it will not evolve
much with continued accretion, as the gas near a given core generally
came from the same convex hull, and will sample the same initial
distribution. The distribution𝑉 (𝑞 |∗)𝑉 (∗) samples the distributions of
gas in the union of the convex hulls of all the cores, further accretion
will simply sample this gas better. However, it is also possible that
“low density gas collapses slower” is not an oversimplification but
is instead accurate, in which case the powerlaw will become more
shallow with time. It may depend on the manner in which accretion
is finally halted by radiation.
We indicate that 𝑉 (∗|𝜌) is relatively insensitive to mean magnetic

field, but our simulations were performed with a singleMach number
and cloudmass.A future studywithmore simulationswill address the
validity of this model as Mach number and cloud mass are changed.

5 CONCLUSIONS

In this work, we embedded pseudo-Lagrangian tracer particles in
an Eulerian adaptive mesh refinement simulation of a collapsing
molecular cloud. This is the first paper in a series; in this first paper,
we focus on the properties of the initial conditions of the gas before
it collapses. The preimage gas refers to the gas at the beginning of
the simulation that contains tracers that are found in prestellar cores
at the end of the simulation.
The most salient feature is that the preimage gas forms a wide

variety of morphologies. Many are isolated single or small multiple
systems that travel most of the length of the box before the end of the
simulation. Many form from converging flows. Many form a major
structure early and accrete in both clumpy and continuous manners.
Many form along filaments. A quick glance at Figure 2 demonstrates
this, and a lengthy visit to our online browser will show this in
abundance.
The preimage gas bears substantial imprint of the turbulence from

which it was born, but the gravity is what ultimately dictates the
collapse.
Wemeasure the probability distribution function (PDF) for density,

𝜌, speed, 𝑣, magnetic field, 𝐵, and gravitational potential, 𝜙. We
measure 𝑉 (𝑞), the PDF of the quantity 𝑞 at 𝑡 = 0, as well as 𝑉 (∗|𝑞),
the probability the gas will form a star at that value of 𝑞. For density,
we find that 𝑉 (𝜌) is roughly lognormal as expected, and 𝑉 (∗|𝜌) is a
powerlaw in density. This shows that high density gas is more likely
to form cores, but gas at all densities can participate in the collapse.
The speed PDF, 𝑉 (𝑣), is roughly Maxwellian, with width set by the
one-dimensional Mach number, as expected. We find that 𝑉 (∗|𝑣) is

basically flat, with small deviation caused by the small statistics of
a single turbulent field. This indicates that the velocity at the start
of the collapse is not a strong predictor of what gas will collapse.
The magnetic PDF, 𝑉 (𝐵), has not known functional form, more
importantly 𝑉 (∗|𝐵) is also basically flat. There is perhaps a small
increase in more highly magnetized gas, but this is likely a result of
that gas also being denser, and denser gas preferentially collapses.
The potential PDF,𝑉 (𝜙), also has not known form, but is shown to be
strongly predictive of what gas will collapse, as 𝑉 (∗|𝜙) is a linearly
decreasing function of 𝜙. As expected, gas in deeper potential wells
collapses.
We also examine the 2nd order structure function of velocity for

both the individual preimages and the full volume. The structure
function for the full volume is a powerlaw in the separation, as
expected. Each preimage is a single instance of a turbulent field,
but taken as an ensemble they are reasonably well described by the
structure function of the whole volume.
We examine the length scales of the preimage gas, and compare to

other length scales in the simulation. Preimage gas is large in space,
many times larger than the density auto correlation length, and one
to a few times larger than the velocity auto correlation length. A
given preimage typically covers many density fluctuations and a few
velocity fluctuations.
We show that the preimage gas is sparse in space. We measure

the volume filling fraction and show that it is small compared to the
overall size of the preimage. We also compute the fractal dimension
for each preimage, and find that preimages have a fractal dimension
that peaks around 1.6.
We show that preimage gas for different cores begins mixed in

space. Close binaries in the end of the simulation come from gas that
is initially well mixed.
Finally, we present a predictive model for the star formation rate.

This is based on the finding that 𝑉 (∗|𝜌) is a powerlaw that has a
value of unity at the highest density and an index of roughly 1/2. We
then interpret 𝑉 (∗|𝜌) as suppression of collapse based on the free-
fall time; denser gas can collapse faster. This has a similar functional
form as other predictions of the star formation rate, but a different
interpretation. This prediction will be explored in a future study.
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