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Abstract—Ransomware uses encryption methods to
make data inaccessible to legitimate users. To date a
wide range of ransomware families have been developed
and deployed, causing immense damage to governments,
corporations, and private users. As these cyberthreats mul-
tiply, researchers have proposed a range of ransomware
detection and classification schemes. Most of these methods
use advanced machine learning techniques to process and
analyze real-world ransomware binaries and action se-
quences. Hence this paper presents a survey of this critical
space and classifies existing solutions into several cate-
gories, i.e., including network-based, host-based, forensic
characterization, and authorship attribution. Key facilities
and tools for ransomware analysis are also presented along
with open challenges.

Index Terms—Cybersecurity, ransomware, machine
learning

I. INTRODUCTION

Ransomware is a form of malware that encrypts user
files on a host computer or server. Once these opera-
tions have been completed, malicious actors (malactors)
demand some form of ransom payment (monetary or
otherwise) from their victims to release the decryption
keys. However, in many cases victims may still not get
their data back even after paying the ransom. Hence
ransomware has emerged as a very serious threat and
is already the most profitable type of malware (with
total annual payments in the billions of dollars) [1].
This spread has been further bolstered by cryptocur-
rencies offering high anonymity and complicating the
tracking/identification of attackers.

Now the earliest example of ransomware emerged
over 3 decades ago when compromised compact disks
(CD) were mailed to conference attendees. Subse-
quently, ransomware evolved to more network-based de-
livery (Archiveus Trojan and Gpcodoe, 2006) and cryp-
tocurrency payments (WinLock, 2008). Today a wide
range of families have been deployed, impacting many
users and organizations, e.g., government agencies, util-
ity providers, healthcare organizations, manufacturing
and technology firms, etc. In particular, there has been
an uptick in ransomware attacks against organizations
since associated payoffs are generally much larger [2].
By some accounts, up to 50% of large organizations
experienced ransomware attacks in 2020 [3]. Among
many notable incidents, the 2021 Colonial Pipeline
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ransomware attack caused sizable disruption to fuel
supplies in the US Northeast. In the same year, a large
computer manufacturer, Acer Inc., also had its financial
data impacted by a ransomware attack, and the Irish
healthcare system was also targeted.

Ransomware continues to evolve with increasing
levels of secrecy and sophistication, posing an un-
acceptable level of risk to governments, corporations
and private users. Therefore many efforts are being
made to address the challenges in this domain. For
example, the US government is proposing legislation to
mandate reporting of ransomware payments, and some
are even proposing an outright ban on ransom pay-
ments [4]. Similar directives are also being considered
in the European Union (EU). Meanwhile, researchers
are actively developing new ransomware detection and
mitigation strategies. The overall approach here is to
use ransomware signatures to detect nefarious activities
and update network and host defences to prevent or
limit their operation, e.g., in firewalls and host-based
antivirus programs. It is here that machine learning
(ML) methods, including neural network (NN) based
schemes, have proven to be very effective in analyzing
large amounts of empirical data and training advanced
ransomware detection and classification algorithms.

Hence this paper presents a survey of some key
contributions in ransomware detection and classifica-
tion. Since early detection is the most effective solu-
tion, further recovery methods are not reviewed. This
work differs from earlier surveys [5], [6] as it presents
a broader taxonomy and also reviews analysis tools.
First, Section II details the ransomware ‘“kill chain”
and highlights other aspects. Section III then overviews
network-based detection, whereas Section IV focuses on
localized host-based detection. Further methods using
forensic analysis and characterization are also reviewed
in Section V along with malware authorship attribution
in Section VI. Key facilities and tools for ransomware
analysis are then detailed in Section VII followed by
open challenges in Section VIII. Also note that the focus
here is on Windows-based ransomware as this is the
most common operating system (OS) today.
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Fig. 1: Timeline of ransomware families (Windows-based)

II. OVERVIEW OF RANSOMWARE

The ransomware ecosystem consists of multiple ac-
tors. Most notably, this includes targeted user hosts
and malicious command and control (C&C) servers
operated by malactors (to handle encryption keys and
payments). Other intermediaries also play important
supporting roles here, e.g., to identify victims, distribute
binaries, process payments, etc. Akin to other malware
services, new ransomware as a service (RAAS) offer-
ings have also emerged, allowing malicious users to
directly purchase attacks from “RaaS affiliates”. Indeed,
this greatly lowers the entry barrier for conducting such
cyberattacks.

Overall, there are several types of ransomware, and
a timeline of some major families is shown in Figure
1. For example, locker ransomware is designed to lock
users out of their machines and demand payments.
Meanwhile, cryptographic ransomware encrypts user
files and demands ransoms, and this type is the most
common. Finally, double-extortion ransomware threat-
ens further data release (also called doxing). Now ran-
somware operation entails a sequence of stages, termed
as the “kill-chain”, Figure 2. Although others have
shown slightly different versions of this sequence with
varied stages and namings, the key operations are still
the same. These stages are now briefly detailed, see also
[5]:

« Reconnaissance: This initial stage focuses on
identifying (enumerating) a list of potential hosts
to target for ransomware transmission. Hackers or
RaasS affiliates can use a range of methods here, in-
cluding port scanning, mailing lists, Internet/social
media crawling, or directly purchasing lists from
darknet marketplaces, etc.

Distribution/Delivery: The next step focuses on
delivering ransomware binaries to the identified
hosts. Again, a wide range of techniques are used
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here, e.g., spam/phishing emails, website exploits
(drive-by attacks), even manual transfers using
removable drives. As expected, there is almost
always an (inadvertent) human element involved
in downloading malware onto a device.
Installation/Infection: This stage entails ran-
somware setup on infected hosts. Most advanced
strains also try to hide their entry/presence by
doing various things, e.g., limiting pre-attack
“paranoia” activities, uncovering/disabling back-
ups, blocking host defense/firewalls, etc. Spreading
(propagating) ransomware designs also perform
internal reconnaissance to identify other hosts to
infect, i.e., worm-like operation.
Communication: This stage usually runs prior to
encryption and involves communicating with the
C&C server. The details here can vary based on
the type of encryption being used. For example,
symmetric encryption designs generate a local key
which is either sent to the external C&C server
or stored locally (but encrypted with the attacker’s
public key). Hence victims must contact the C&C
server to obtain the decryption keys. However,
symmetric encryption is vulnerable to interception
by anti-virus programs as it stores decryption keys
on local hosts (at least for some time). Hence
other standalone designs use asymmetric public
key encryption along with the attacker’s public
keys. However, such encryption is generally slower
and more vulnerable to detection by host anti-virus
programs.

Encryption: This is the main step where ran-
somware runs encryption algorithms to lock user
data and/or machine access. The original data is
usually wiped (along with any detected backups)
and a message of some sort is displayed. However,
excessive calls to encryption routines can take time
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and also consume a lot of processor cycles. In turn,
these signatures can be detected by host defenses.
Hence some ransomware strains try to maximize
their impact by only encrypted a small portion of
a file (but still enough to render it useless to users).
« Extortion/Payment: This final stage involves the
actual handling of ransom payments and any ter-
minal action sequences. Again, many ransomware
designs request payments in cryptocurrencies or
through the darkweb. Depending on the intentions
of the malactors, some ransomware designs may
not even release encryption keys after payment.

Note that large files can lead to lengthy encryption times
and high processor usage. In turn, this can increase
the chances of detection/mitigation by host anti-virus
programs [5]. As a result, some ransomware designs
only encrypt parts of a file to render it unusable. Others
may leave the first few bytes of a file (metadata)
unencrypted to complicate tampering detection. Overall,
ransomware differs from other forms of malware in
several important ways. For example, impacted hosts
are not necessarily controlled en-masse by botnet con-
trollers, unlike in distributed denial-of-service (DDoS)
attacks. Instead, ransomware C&C servers operate much
more intermittently and discretely (i.e., responding to
communication requests, handling keys, and processing
payments). Furthermore, unlike worm malware, not all
ransomware is spreading/propagating as this increases
the likelihood of detection. Table I summarizes some
of the key ransomware families that have emerged over
the last decade. A range of associated detection and
classification strategies are now reviewed here.

ITI. NETWORK-BASED DETECTION SCHEMES

Network-based detection schemes analyze host traffic
for ransomware activities, i.e., C&C communications
(Figure 2). Here, packet data can be collected from
infected hosts or enterprise/carrier networks. Overall,
several types of network traces can indicate ransomware
activity. For example, many strains send domain name
service (DNS) queries to resolve C&C server IP ad-
dresses, i.e., either statically hardcoded in binaries or
generated in a psuedo-random manner. Note that these
DNS requests can be detected/blocked by anti-virus pro-
grams by extracting static names and/or fingerprinting
dynamically generated ones. Other traffic types can also
be analyzed, e.g., networked storage access, etc. Some
contributions in this space are now reviewed.

The authors in [7] presents a network detection
system for Locky ransomware. A testbed is used to
run multiple samples of this malware, and then behav-
ioral and non-behavioral traffic features are analyzed,
e.g., HTTP-POSTS, MDN, and DNS (IPv4, IPv6). A
multi-classifier intrusion detection system (IDS) is then

developed using these features to detect packet- and
flow-level behaviors using a range of ML algorithms,
i.e., random forest (RF), random tree, Bayes network,
support vector machines (SVM), etc. Results show a
mean detection rate of 97%. Meanwhile, [8] states that
most detection methods are very labor intensive, e.g.,
requiring sandbox runs, reverse engineering (original
code), or host-based countermeasures. Hence a more
automated networking-based approach is presented for
the Samba protocol, a server message block (SMB) pro-
tocol for shared network files. A ransomware detection
scheme is then outlined to detect and interfere with in-
coming attacks (by disabling connections on an infected
machine). Various methods are implemented here, in-
cluding analyzing ransomware in real-time, studying the
characteristics of log data, and using behavioral analysis
to distinguish between normal and malicious traffic.
Another SMB-focused solution called REDFISH is also
outlined in [9], and this scheme analyzes transfers using
a network probe. A heuristic time-series method is
then used to detect ransomware activity and block file
encryption. Results show a 100% detection rate for 19
different ransomware families.

Furthermore, [10] presents a ML ransomware detec-
tion system using a software defined network (SDN)
framework. The goal here is to detect an attack before
encryption by using programmable forwarding engines
(PFE) to monitor packets. This data is analyzed to
detect communications between infected hosts and C&C
servers, and detection is done using a RF binary clas-
sifier. Results show a detection rate of 86% and a
false negative rate of 11%. Additionally, [11] presents
its R-Killer scheme to target the distribution stage by
identifying and blocking ransomware emails. The solu-
tion has three sub-systems, i.e., core detection engine
(for emails), a sandbox environment, and a proactive
monitoring entity (website links). Note that the key
difference between R-Killer and email scanning tools
is that the former directly communicates with email
servers to retrieve selected emails for scanning purposes.
The system also builds a threat intelligence repository
without leaking user data.

Meanwhile, the work in [12] details a rapid ransome-
ware detection and identification scheme (within 10 sec-
onds of execution). This approach uses two NN designs
to classify host activities, i.e., long short-term memory
(LSTM) and convolutional neural networks (CNN).
Four ransomware strains are considered, and training is
done using 220 samples of each. The model achieves a
true positive rate of 97.2%, and the system can identify
previously undetectable ransomware, i.e., CryptoWall,
Torrent locker, and Sage. As such, this solution offers
some promise for zero-day threat detection as well.
Meanwhile [13] presents network forensics behavior
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Fig. 2: Overview of ransomware attack “kill chain”

TABLE I: Common Windows-based cryptographic ransomware families

[ Name [ Origin | Characteristics
Reveton 2012 Screen locker type (with variants also doing file encryption), distribution via malicious websites
Cryptolocker 2013 Website and email distribution, AES-256 symmetric encryption, C&C messaging via onion routing
CryptoWall 2014 Copied into registry keys/startup folders, 2048 bit RSA asymmetric encryption, high revenues generated
TeslaCrypt 2015 Trojan ransomware, strong distribution networks, attacks gaming files, encrypts small files (symmetric encryption)
Chimera 2015 Phishing distribution, encrypts local and network drives using symmetric encryption, also threatens release (doxing)
SamSam 2016 Non-spreading, RDP access w. privilege escalation, RSA-2048 asymmetric encryption
Locky 2016 Email delivery with malicious MS Word (macros), encrypts certain file types, RSA-2048 and AES-128 encryption
Petya 2016 Cloud-based distribution, self-propagating (worm), admin privileges, encrypts boot table (NTFS) and data files
GoldenEye 2016 Like Petya but target files (.exe), malicious Excel file (macros), AES asymmetric encryption, offered through RaaS
Zcryptor 2016 Worm-like (spreading) via spam (files and macros), encrypts local/ shared drives and USB (multiple file formats)
NotPetya 2017 Worm-like (spreading), exploit Windows SMB protocol, AES-128 encryption, target nations and global shipping
‘WannaCry 2017 First “global” ransomware, fast spreading, 2048-bit RSA encryption, targeted governments, education, etc
REvil 2019 First to target IT providers, nation-state origin, stream cipher encryption (RC-4), threaten publication (doxing)
Bad Rabbit 2020 Drive-by attack distribution, spreading type, targets users in specific regions, AES-128 and RSA-2048 encryption
DarkSide 2020 Cybercriminal gang (RaaS), spreads across networks, RSA encryption, targets large corporations, data exfiltration
Zeoticus 2021 Run offline, avoids certain regions, changes registry keys (persistent), hybrid encryption, Proton mail payments

analysis for the Cerber ransomware (which offloads
target host search and encrypts all files). The solution
analyzes packet headers, protocol types, and payloads
(for viruses and spam). Signature detection is then used
to find similarities with previous attacks. Furthermore,
[14] studies ransomware in Chinese social networks
and highlights problems such as locking screens, call
blocking, hijacking, and password compromises. Fea-
ture extraction and ML are also used to detect locker
ransomware by analyzing messaging transactions, e.g.,
via SVM, REF, and logistic regression. Results show a
detection accuracy of 99%. Meanwhile, [15] focuses on
WannaCry and uses the Sysinternal and Wireshark tools
for behavioral and network analysis to identify com-
promise indicators. Results confirm successful tracking
of WannaCry based on registry modification, processes,
and file system and network activity.

Also, [16] presents a deep learning scheme for ran-

somware detection/classification called DeepRan. Here,
hosts use an attention-based bi-directional LSTM (Bi-

LSTM) network scheme to analyze network activity
and classify it as either normal or abnormal. Up to 17
families are studied, and a testbed is used to collect
logs from two users over 63 days. Results indicate a
detection accuracy of 99.87% and successful prevention
of ransomware infections. Also, [17] introduces a SDN-
based approach for ransomware detection that exam-
ines communications for CryptoWall and Locky ran-
somware (website messages, content sizes, etc). Three
key components are implemented here, including de-
tection method, learning phase, and fine-tuning phase.
Findings show a detection rate of 97-98% with little
damage to infected hosts. NetConverse also uses ML-
based schemes for network detection [18]. This scheme
analyzes Windows-based host traffic and implements
three phases, i.e., data collection, feature extraction,
and ML classification. In particular, a range of algo-
rithms are used for the latter phase, including Bayesian
networks, decision trees, k-nearest neighbour (k-NN),
multi-layer perceptron, RF, etc. Results show a detection
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rate of 97.1% for decision trees and 99.9% for RF
classifiers.

IV. HOST-BASED DETECTION SCHEMES

Host-based detection schemes monitor local system
activities to detect malware, both before and after
attacks. These capabilities are typically bundled into
antivirus programs, and a range of static and dynamic
actions (and frequencies) are tracked, e.g., such as
memory and file operations, application programmer in-
terface (API) function calls, dynamic link library (DLL)
calls, etc. For example, file operations can include
deletion, overwriting/modification, extension changes,
directory accesses, etc. Some key host-based schemes
for ransomware detection are now presented.

The work in [19] presents a dynamic analysis solution
for ransomware detection called UNVEIL. This scheme
uses the Cuckoo sandbox to monitor system and file
actions, e.g., persistent desktop messages (API display
message calls), selective encryption/deletion of files
based on attributes (size, date, accessed, and extension),
etc. The design requires access to file system mod-
ification information and analyzes data buffers in in-
put/output (1/0) requests. Tests are done using a dataset
with 148,223 malware samples, and findings show that
UNVEIL can successfully detect 13,637 ransomware
samples with a true positive detection rate of 96.3%.
Meanwhile, [20] presents a PAYBREAK scheme for
hybrid encryption ransomware using symmetric encryp-
tion. Here, the encryption keys are monitored/stored
in real-time, thereby facilitating file decryption (i.e.,
recovery). The proposed setup has three components,
including cryptographic function hooking, key vault,
and file recovery. Results confirm that PAYBREAK can
mitigate attacks from 12 out of 20 ransomware families
(9 of which are unmitigated beforehand).

Also, the work in [21] proposes an add-on driver
to immunize Windows-based file systems from ran-
somware attacks. Termed as SHEILDFS, this system
uses an adaptive model to profile behaviors by an-
alyzing billions of low-level file I/O operations for
benign applications. Various parameters are tracked
such as the number of folder listings, number of files
read/written/renamed, file types, etc. The system is mon-
itored and any operations are proactively rolled back if
malicious activity is detected. Similarly, [22] analyzes
application I/O requests to scan for ransomware activ-
ity and flag/restore affected files. These files are also
changed to protected status to prevent any modifications
before data is sent to the kernel. The model is tested
using 504 samples from 12 families and evaluated using
9,432 samples. Results show a total of 1,174 sam-
ples being flagged as active ransomware strains from
29 families. Meanwhile, [23] observes block request

headers and classifies ransomware into 3 types based
on how it overwrites encrypted files, i.e., Class A (in-
place), Class B (out-of-place), and Class C (deleting
and overwriting original). A detection algorithm is then
presented to monitor 4 I/O request parameters. The
solution also supports an instant recovery mode that
keeps a log of what files have been changed and
stores the originals. Hence if the algorithm suspects a
ransomware threat, it notifies the user for confirmation,
and if so, changes the file to read-only. A two-step
unsupervised ransomware detection system, RAPPER,
is also proposed in [24]. Namely, the first step monitors
process and system activity to flag suspicious behaviors.
Meanwhile, the second step analyzes this activity to
generate a detailed assessment using anomaly detection
to track hardware performance counters (HPCs). Rather
then modeling ransomware types, the work focuses on
normal behaviors. Specifically, long short term memory
(LSTM) encoding is used for unsupervised detection
using a time series approach. The authors also present
extensions for file backup/recovery.

Recent efforts have also analyzed early-state ran-
somware “paranoia” activities. These “pre-attack™ ac-
tions are used to detect environments and avoid fin-
gerprinting and detection (by execution in virtual en-
vironments). Namely, the working assumption here is
that benign applications will not try to sense/detect
much in their run-time environments. For example,
[25] proposes a framework to monitor pre-attack API
calls. Dynamic malware analysis is done by executing
ransomware samples (from VirusTotal and VirusShare)
in the Cuckoo sandbox to fingerprint API activities.
Next, natural language processing (NLP) (word-based)
methods are used to represent these activities and extract
a compact number of behavioral features to improve ML
scalability. A range of classifiers are then trained using
the extracted features, including Naive Bayes, k-NN,
RF, NN, LSTM, and Bi-LSTM. This effort builds and
analyzes one of the largest ransomware datasets, and
results confirm that many families do generate distin-
guishable API fingerprints. In particular, results show
very high detection rates, with RF classifiers averaging
95%. Meanwhile [26] also presents another scheme
to intercept API calls and detect ransomware paranoia
activities in Windows-based environments. First, the
authors build a training dataset using the VirusTotal
repository and extract 117 ransomware samples (across
30 contemporary families) along with related metadata
(as provided by anti-malware vendors such as BitDe-
fender, McAfee, and Kaspersky). These samples are
then run in user mode on a host and targeted/selected
API calls are routed to a detour function for logging
purposes. To prevent false positives, API function call
data is also collected for 98 benign applications. Subse-
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quently, all selected API functions are assigned a rank
from 1-10 based on how many times they are called.
If the score exceeds a carefully-chosen threshold, this
scheme flags the associated application as ransomware
and also takes mitigation actions to terminate it. Results
show an accuracy of 91% on training data and 84% on
testing data, albeit the latter also gives a higher false
negative rate of about 22%. This is attributed to the
fact that some ransomware types do not perform any
pre-execution inspection activities (making them hard
to detect via such methods). The authors also provide
GitHub access to their code and datasets. Meanwhile,
[27] presents a host-based ransomware prevention and
mitigation (RPM) framework using proactive API call
monitoring. Ransomware samples are run offline in a
sandbox to fingerprint API function calls (i.e., Reveton,
Locky, Teslacrypt, etc). Extracted features are then used
to build frequency pattern trees and then applied in real-
time to compare executing API sequences (and detect
potential paranoia activities).

Carefully note that Windows 10 also supports ran-
somware mitigation via its built-in blocking feature that
allows users to enable “Controlled Folder” access [3].
Specifically, this toggle only allows trusted applications
to access these folders, and users can also add other
applications to the trusted list. Although this capability
is very effective in blocking many ransomware fam-
ilies, it is not enabled by default and requires user
awareness and vigilance. Moreover, future ransomware
desgins may try to reset/disable this setting. Finally,
some hardware-based solutions have also emerged. For
example, [28] details a solid state drive (SSD) called
FlashGuard which implements a firmware recovery sys-
tem to support rapid recovery of encrypted data (using
out-of-place writes). As such no backup is required here.
FlashGuard is implemented on a 1 terabyte SSD drive
which is programmed for basic read, write, and erase
commands (and uses 15% capacity over-provisioning
for its operation).

V. FORENSIC ANALYSIS & CHARACTERIZATION

Forensic analysis focuses on recovering, gathering,
and analyzing information from infected machines to
determine the effects of malware (and uncover any iden-
tifying information). Accordingly, various studies have
also applied these methods to ransomware. Consider the
details.

The authors in [29] introduce a multi-level ML
analysis framework to detect/classify ransomware. This
scheme analyzes raw binaries, assembly code, and li-
braries using tools such as Linux object-code dump and
a portable executable parser. ML classifiers are then
trained using the extracted data, and results show a
detection rate of about 90% with various algorithms.
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Meanwhile, [30] presents one of the first schemes to
classify/detect ransomware using static analysis. Here,
operational code sequences are first transformed into N-
grams. Next, the term frequency-inverse document fre-
quency (TF-IDF) is computed for each N-gram for clas-
sification purposes, and several classifiers are trained
(including decision tree, RF, k-NN, naive Bayes). Ex-
perimental results show an impressive detection rate of
about 91%.

Note that many ransomware mitigation techniques
compare run-time models or model code snippet se-
mantics. However, related accuracy can be low here,
and hence [31] proposes a novel hybrid scheme called
“sliced segment equivalence checking” to identify fine-
grained semantic similarities/differences between exe-
cutables. A prototype BinSim system is also built to
successfully identify fine-grained relations between ob-
fuscated binaries (and this outperforms existing binary
diffing tools). Meanwhile, [32] proposes a dynamic
ransomware detection system that uses various ML
algorithms (such as RF, SVM, simple logistic, and naive
Bayes) to identify known and unknown ransomware
types. In particular, raw API data is used to build call
flow graphs (features), and findings show detection rates
of over 91%.

Furthermore, [33] introduces its RAPTOR scheme
to track attacker behaviors and forecast potential ran-
somware attacks. This solution implements malicious
domain prediction (from observed patterns) and uses
time series prediction, i.e., via hidden Markov models
(HMM) and autoregressive integrated moving aver-
ages (ARIMA). However, only the Cerber ransomware
family is analyzed here. Meanwhile, [34] uses data
mining to match multi-level code components (extracted
via reverse engineering) to identify unique rules. This
static analysis approach is termed as CRSTATIC and
operates on three code levels (assembly, library, and
function). Specifically, the frequency patter (FP) growth
algorithm is also used, and families are differentiated
using various attributes, e.g., propagation strategy, date
appeared, cryptographic techniques, and C&C servers.

Meanwhile, the digital forensic readiness (DFR) so-
lution in [35] defines mechanisms for secure com-
munication, forensic soundness, and decryption. This
scheme uncovers digital data evidence from computer
hosts and networks and then extracts/stores this data
in a secure database for offline analysis. Investigator
reports are then generated on actions and processes
performed by authorized entities. Also, [36] assesses
the VirusTotal anti-malware-engine by analyzing 100
papers to gauge how this repository is used, i.e., for
data pre-processing, label aggregation, engine indepen-
dence, high-reputation engines, malware coverage, data
sharing, etc. The authors conclude that most studies



use a common threshold or a trusted set of vendors
to classify a malicious file. Also, most efforts only
take a single results screenshot and do not check for
changes (leading to false positives). A two-year study in
[37] also analyzes start-to-finish ransomware payment
processing and concealment methods. Several families
are tested on 4 platforms to obtain memory dumps
and extract cryptocurrency addresses. Results show that
hackers collected over $16 million in ransom payments
from almost 20,000 victims, with Bitcoin being the
most common payment option. Also, [38] presents an
economic assessment of ransomware attacks using a
game theoretic model with two groups (victims and
hackers). The victim’s decisions are analyzed (using real
attacks) and the best solutions outlined. The authors
conclude that paying ransoms encourages attacks and
hence it is better to spend on data backups. Meanwhile,
[39] studies 1,180 American adults affected by ran-
somware attacks between 2016 and 2017. Of these, the
average ransom demand was $530, of which 4% were
paid. A self-assessment questionnaire is also used to
develop a risk assessment model for users. Finally, [40]
analyzes ransomware attacks from 2006-2014 and notes
that effective prevention is not necessarily complicated
(despite the large number of families involved). Specif-
ically, mitigation techniques can prevent many attacks,
e.g., such as API call monitoring, file system activity
monitoring, decoy resources, etc. Such analysis of file
system activities can also improve readiness against
zero-day ransomware threats.

VI. MALWARE AUTHORSHIP ATTRIBUTION

Malware authorship attribution analyzes the key
stylistic features of malware code to identify its au-
thors (creators). This information can help with digital
forensics tasks or tracking down malactors. However,
effective authorship attribution requires the availability
of malware source code, not just binaries, and this
can be a major challenge in the real world settings.
Indeed, many code features/styles may get obfuscated
during the compilation process to generate binaries, and
hackers themselves may take steps to remain hidden.
Some related works in this ransomware domain are now
presented.

A. Source Code Analysis

A source code analysis scheme for multi-author iden-
tification, Multi-Xin, is presented in [41]. This solu-
tion performs authorship verification, segment author-
ship identification, and authorship identification. Results
show that Multi-X can identify coding styles using
small code segments, as well as multiple authors in
a single source code (with 86% accuracy). Meanwhile
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[42] uses RF classifiers to “de-anonymize” C/C++ pro-
grammers based on their coding styles. Namely, the
work analyzes code derived from abstract syntax trees
and yields accuracy rates of 94% (1,600 authors) and
98% (250 authors). However many programmers use
similar techniques, and hence larger samples can lead
to overfitting. Also, the authors in [43] note that the
likelihood of two programmers writing similar code for
the same task is very low. Hence the study analyzes
coding characteristics to distinguish between authors,
e.g., via inline comments, blocked comments, space
indentation, lower-case only, upper-case only, etc. Gaus-
sian likelihood and NN-based methods are also used to
identify authors, with error rates under 2%. Meanwhile
[44] uses software forensics to analyze code fragments
and track identities. Different aspects are considered
here, including language, formatting, special features,
comment styles, variable names, scoping, execution
paths, etc. However, a lot of malware code uses snip-
pets from multiple authors, and programmers can also
disguise their code to complicate attribution.

B. Binary Analysis

Binary code analysis (BCA) performs direct analysis
of binary executables without access to the source code.
Along these lines, [45] notes that BCA can be used for
binary code clone detection, function recognition, mal-
ware detection, vulnerability discovery, and authorship
recognition. However, since the raw extracted features
cannot be directly used in supervised ML models, the
authors further partition them to generate embedded
vectors, i.e., graph- and code-based. Meanwhile, [46]
focuses on program authorship attribution and deciphers
details using code characteristics. The objectives here
include identifying program authors and finding stylis-
tic similarities between programs written by unknown
authors. A feature set is extracted (including N-grams,
idioms, graphlets, super-graphlets, and library calls) and
then used to train a SVM classifier. Results show that the
scheme can successfully identify authors in over 10,000
samples. Another binary analysis study is also presented
in [47]. Here the authors state that attribution can
provide key information on malware forensics, software
supply chain risk management, and software plagiarism
detection. However, most techniques assume that a bi-
nary is written by a single author, which is generally not
the case since most software (malware) is developed by
a team. An empirical study is then presented using data
from three large open-source projects. Specifically, the
researchers develop a method to capture programming
styles at the block level by looking at control and data
flows. Blocks are then compared to determine if they are
written by one or more authors. This scheme achieves
a block detection rate of 65% for 284 authors.



VII. RANSOMWARE ANALYSIS TOOLS & FACILITIES

Given the wide range of technical tasks involved in
ransomware analysis, related studies have utilized many
different software tools and facilities. These are briefly
reviewed here:

o Malware Repositories: Many researchers have
compiled their own independent ransomware
datasets. However, others have used facilities such
as VirusTotal and VirusShare which host large mal-
ware repositories with many ransomware families.
These malware binaries are typically uploaded by
users and can be downloaded for detailed analysis.

o Raw Trace Capture: Sandbox and VM tools are
widely used to analyze ransomware binaries and
capture trace files. Most notably, the Cuckoo sand-
box is a very popular option for Windows-based
testing, and the Triage facility (www.tri.ge) also
hosts a powerful online sandbox. Specifically, re-
searchers can use this latter resource to upload and
run malware binaries and also download existing
(pre-loaded/pre-processed) binaries and reports.

o Pre-Processing/Feature Extraction: ML methods
require extensive data pre-processing to select and
extract training features. Earlier, most researchers
developed their own customized code for these
purposes, e.g., using C/C++, Python, Java, etc.
However, many ML packages (detailed next) al-
ready provide extensive features to support such
processing. The Java-based open-source Pandas
toolkit also offers advanced data manipulation and
transformation support for labeled datasets.

o Machine Learning: A host of open source ML
packages are now available. These include toolkits
such as TensorFlow, Scikit, PyTorch, Weka, and
Keras.io. Collectively, these solutions provide full
support for almost all types of (supervised, unsu-
pervised) ML algorithms, i.e., such as linear regres-
sion, k-NN, k£ means clustering, decision trees, RF,
SVM, and most NN-based variants (baseline NN,
CNN, DNN, recurrent NN, LSTM, Bi-LSTM, etc).

VIII. OPEN CHALLENGES

Ransomware will continue to post a threat well into
the future. Hence it is crucial to keep pace with these
evolving scenarios and develop effective detection and
classification frameworks. Overall, the works surveyed
herein clearly represent a significant set of contributions
in this space. However, there are still many open chal-
lenges that need to be addressed, and some of these are
highlighted briefly.

Foremost, there is a pressing need to standardize
ransomware datasets and testcase scenarios. Indeed, it
is very difficult to compare existing schemes since
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most researchers have analyzed different subsets of ran-
somware using their own datasets. Hence it is important
to identify a subset of the most relevant ransomware
families and build/maintain a repository of binary down-
loads for each. Furthermore, associated testing and per-
formance parameters also need to be specified, e.g., such
as sandbox or VM run-times, evaluation metrics, etc.
These overall steps will help improve reproducibility
and enable proper comparative analysis.

Additionally, it is vital to address emerging scala-
bility and privacy concerns for ML-based ransomware
detection and classification. Namely, even though many
solutions have been proposed, their practicality in real-
world settings has not been fully considered. For exam-
ple, many users may be unwilling to share their detailed
log files (traces) for external analysis. At the same
time, complete local pre-processing of raw data may be
too burdensome for local host processors. Furthermore,
it may become difficult to implement centralized data
collection and ML computation at one site. Hence there
is a further need to develop proper frameworks to
address these concerns.
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