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Abstract

For the thin obstacle problem in R3, we show that half-space solutions form
an isolated family in the space of %—homogeneous solutions. For a general solution
with one blow-up profile in this family, we establish the rate of convergence to this
profile. As a consequence, we obtain the regularity of the free boundary near such
contact points.

1. Introduction

Motivated by applications in linear elasticity [21] and reverse osmosis [8], the
thin obstacle problem studies minimizers of the Dirichlet energy over functions that
lie above a lower-dimensional obstacle. In the most basic formulation, a minimizer
satisfies the following system:

Au <0 in By,
u=>0 in By N {x, = 0}, (1.1)
Au=0 1in B; N ({{u > 0} U {x, # 0}).

Here Bj is the unit ball in the Euclidean space R". The coordinate of this space
is decomposed as x = (x’, x,,) with x’ € R?"! and x, € R. Note that the odd
part of the solution, (u(x’, x,,) — u(x’, —x,))/2, is harmonic and vanishes along
the hyperplane {x, = 0}; by removing it, we assume that the solution is even with
respect to {x, = 0}.

Remark 1.1. The thin obstacle problem enjoys several invariances. For instance,
if u is a solution, then rotations of u around the x,-axis also solve the problem. The
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same happens for positive multiples of u. For simplicity, we identify two solutions
u and v up to a normalization if a rotation of u around the x,-axis equals a positive
multiple of v.

After works by RICHARDSON [16] and URALTSEVA [22], Athanasopoulos and
Caffarelli obtained the optimal regularity of the solution u [2], namely,

1

1
we Chl BN CLZ (BN (x, > 0O)).

o

The next step is to address the regularity of the contact set A(u) := {u = 0}N{x, =
0} and the free boundary dgn-1 A (). To this end, we need precise information about
the solution near a contact point.

Applying Almgren’s monotonicity formula[1], ATHANASOPOULOS—CAFFARELLI—
SALSA [3] showed thatforeachq € A(u), thereis aconstant A, called the frequency
of the solution at q, such that

n—1
2l
lullz2@p, @y ~r 2 "

as r — 0. Moreover, along a subsequence of r — 0, the normalized solution
converges to a blow-up profile at q, that is,

Ug.r i et (1.2)

lull 258, g))
The limit ug is a A,-homogeneous solution to (1.1), also known as a A,-cone.
This opened up two interesting directions of research. The first concerns the

space of homogeneous solutions, and the goal is to classify admissible frequencies
and cones, namely, to classify

@ := {1 € R : there is a non-trivial A-homogeneous solution to (1.1)},
and
Py :={u : usolves (1.1) with x - Vu = Au}

foreach A € ®. The second direction concerns the regularity of the contact set A (u)
for a general solution. Here the central issue is to quantify the rate of convergence
in (1.2), as this leads to uniqueness of the blow-up profile as well as regularity of
the contact set. This often requires sorting contact points into

Ay(m) :=1{q € A(u) : 1y = A}. (1.3)
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1.1. Admissible frequencies and homogeneous solutions

The program along the first direction is complete when n = 2. See, for instance,
PETROSYAN—SHAHGHOLIAN-URALTSEVA [15]. In this case, it is known that

1
®=NU {2k~ :keN}.

Corresponding to integer frequencies, the homogeneous solutions are (even
reflections of) polynomials. To be precise, we have that

Pak—1 = {a(=D*Re(lx2| +ix)* ' 1a > 0} (1.4)
and
Por = {aRe(x) +ix2)** :a > 0}, (1.5)

where Re(-) denotes the real part of a complex number. In particular, all 2k — 1)-
cones vanish along the line {x» = 0}, and 2k-cones are harmonic in the entire
space.

On the other hand, homogeneous solutions with (2k — %) frequencies vanish
along half-lines. Up to a normalization, they satisfy

spt(Au) = A(u) = {x; <0,x2 =0},

where we denote by spt(-) the support of a measure. Up to a normalization, the
2k — %)-cone is given by

1
uzk_%(r, 0) = r2k_% cos ((Zk - 5) 9) , (1.6)

where r > 0 and 6 € (—m, ] are the polar coordinates of the plane.
In general dimensions, the classification of admissible frequencies and cones
remains incomplete. By extending the solutions from R?, we see that

1
(DDNU{Zk—E:keN}.

Thanks to FOCARDI-SPADARO [11,12], we know that U, _, [2k— L ke A (u) makes
up most of the contact points, in the sense that its complement in A (z) has dimension
at most (n — 3).

Athanasopoulos—Caffarelli-Salsa classified the lowest three frequencies [3],
namely,

dC {1,%}U[2,+oo).

CoLOMBO—SPOLAOR-VELICHKOV [4] and SAVIN-YU [17] showed the existence of
a frequency gap around each integer, that is, for each m € N, there is o, > O,
depending only on m and n, such that

SN (m— oy, m+ay) = {m}.
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For the classification of cones, most results center around frequencies in { %} UN.
By ATHANASOPOULOS—CAFFARELLI-SALSA [3], it is known that

P32 = {Normalizations of u3/> as in (1.6)}.1
Note that #3 is monotone along any direction in {x, = 0}, a fact used extensively
2

for the classification of %—cones as well as free boundary regularity near points with
% frequency.

Extensions of (1.4) and (1.5) to general dimensions were obtained by FIGALLI-
R0s-OTON—SERRA [10] and GAROFALO—PETROSYAN [13], respectively. Similar to
their counterparts in R?, all (2k — 1)-cones vanish in the hyperplane {x, = 0}, and
2k-cones are harmonic in the entire space. Consequently, if we let v denote a solution
to the linearized equation around an integer-frequency cone, then either v|{y,—o)
or Avl(y,—0} has a sign. The vanishing property of (2k — 1)-cones implies that
V|{x,=0) = 0. The harmonicity of 2k-cones implies that Av|;x,—o; < 0. These are
the key observations behind the regularity of contact points with integer frequencies
[18].

1.2. Regularity of the contact set

By the classification of %-cones, if ¢ € A;(u), then after a normalization, we
have u;, — u3 along a subsequence of » — 0. Here we are using the nota-
tions from (1.2) and (1.6). With the monotone property of u 3 Athanasopoulos—
Caffarelli—Salsa proved that the blow-up profile is independent of the subsequence
of r — 0, and that A3 (u) is locally a (n — 2)-dimensional C L@_manifold in
{x, = 0} [3]. Recently, this manifold has been shown to be smooth in [6] and
analytic in [14].

For points in Ay (u), uniqueness of the blow-up profile was established by
GAROFALO-PETROSYAN [13], who also showed that Ay () is contained in count-
ably many C!-manifolds. Regularity of the covering manifolds was improved to
C'1°2 by CoLOMBO-SPOLAOR—VELICHKOV [4]. For points in Asg_1(u), unique-
ness of the blow-up profile was obtained by FIGALLI, ROos-OTON and SERRA [10].
Recently, a unified approach was developed to quantify the rate of convergence in
(1.2) at points in Aok—1(u) and Aox («) [18]. In particular, we proved that Aoy—1(u)
is locally covered by C!%-manifolds.

On a different note, Ferndndez-Real and Ros-Oton showed that for generic
boundary data, the free boundary is smooth outside a set of dimension at most
(n — 3) [9]. In general, the free boundary is always countably (n — 2)-rectifiable,
a result by FocARDI-SPADARO [11,12].

1.3. Main results

In this paper, we study contact points with % frequency in R, The example ug
from (1.6) illustrates that these points can make up the entire free boundary as well

I InR”, the pair (r, €) is understood as the polar coordinates of the (x,_1, x,)-plane.
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as the entire line {r = 0}. Unfortunately, not much is known about them in terms
of the classification of %-cones and the regularity of A 1 (u).

Unlike %-cones, homogeneous solutions with % frequency are not monotone
along directions in {x, = 0}. On top of that, for a solution, v, to the linearized
equation around u 7, neither vy, —o; > 0 nor Av|(,—o; < O is necessarily true.
Thus the observation behind the study of integer-frequency points is no longer
applicable. As aresult, it requires new ideas to study contact points with % frequency.

With the full classification of %-cones seemingly out of reach, we focus on the
family of half-space cones. Up to a rotation in {x,, = 0}, these are homogeneous
solutions satisfying

either spt(Au) C {x,—1 <0, x, =0}, or spt(Au) D {x,—1 <0, x, =0}.

With notations from (1.6) and footnote 1, half-space %—cones in R3 belong to,
up to a normalization, the family

Fl = {u; +a1x1u% +ap (x% — %r2> u3 :0<ap <5, anda% < F(a2)},
(1.7)
where
I'(ap) := min {4a2 (1 — laz> , gaz (z — iag)} . (1.8)
5 25 2 10

The subscript in F7 is to indicate that the coefficient of u; is 1. The parameters
2
a = (ay, a) lie in the region

A=E NE;,

where E1 and E; are two ellipses

2 2 2 2
@ @=5) | @ @=35/6)
BEs T S 1} and £z = {49/5 TG S 1}'

(1.9)
Their boundaries intersect at (0, 0) and (:l:@, 5/4); see Fig. 1.

Remark 1.2. Up to a normalization, this family ] contains all examples of %-
cones currently known.

For future reference, we divide A further into three subregions

according to the location of a = (aj, ap) relative to 3.A. See Fig. 2.
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Let i > 0 be a small parameter”. These subregions are defined as:

Ali={aeA:ay>p, ai <T(@)};

Ay i={aeA:ay > u, a% =T(a)}; and

As:={ae A:ap <2u}.
With an abuse of notation, we also write

peAjforj=1273

when the coefficients of p belong to the corresponding region.

We now describe the main results of this work.

2 The parameter u is chosen in Sections 5. See Remark 5.1.

(1.10)

(1.11)
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Although there could be other %—cones, they cannot be connected to the half-
space cones. This is the content of our first result.
Theorem 1.1. Suppose that u is a %—homogeneous solution to (1.1) in R3 with

lu — p| <din B;

for some p € F.
There is a universal constant dy > 0 such that if d < dy, then up to a normal-
ization, we have that

ue}"].

A universal constant is a constant whose value is independent of the particular
solution under consideration.

The following two results address the behavior of the solution near a contact
point where at least one blow-up belongs to F7. For brevity, let us denote these
points by AIZ{S(u), that is,

2

ATS ) = {g € A(u) : Up to a normalization, one blow-up profile at q is in F1}.
2
The next result quantifies the rate of convergence in (1.2) at a point in A%S (u).
2

Theorem 1.2. Let u be a solution to (1.1) in B; C R3 with 0 € Ags(u). Then up
2

to a normalization, we have the following two possibilities:
(1) either
u— u%l < O(r%|10g(r)|7"0) in By for all small r;
(2) or
;
lu— p| < O@r27) in B, for all small r
for some p € .7-'1\{14%}.
The parameter co > 0 is universal.

In particular, blow-up profiles at points in AIZ'I S (u) are independent of the sub-
2

sequence r — 0.
Theorem 1.2 also leads to a stratification result concerning A %S (1), we have
2

Theorem 1.3. Let u be a solution to (1.1) in B; C R3. Then we have the decom-
position

ASwyn B =%yuU 3,
2

where X is locally discrete, and 1 is locally covered by a C''°2-curve.
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Remark 1.3. Suppose 0 € AH S(u), we actually have regularity of the entire A 1 (u)
near O (instead of just AH S(u)) If ug is a blow-up profile at 0, then the free

boundary dgn—1 A(u) is Cl 102 at 0. If u blows up to some p € .7-'1\{147} then
A%(u) N B,(0) = {0} for some small p > 0.

These results are proven through an improvement-of-flatness argument.
Roughly, if the solution u is approximated in B; by a profile p with error d, then
we need to reduce the error at a smaller scale, say in B, by picking another profile
p’. The natural candidate is

p = p+dv, (1.12)

where v is the solution to the linearized problem around p.

This strategy has been successful in many free boundary problems, for instance,
the Bernoulli problem [5], the obstacle problem [19] and the triple membrane
problem [20]. In these problems, the solutions have a fixed homogeneity at free
boundary points. This is not the case for the thin obstacle problem. Consequently,
we cannot always reduce the error in our problem. When this happens, however,
we can ‘improve the homogeneity’ in terms of the Weiss energy functional [23].

This is the content of the main lemma of this work, which is as follows:

Lemma 1.1. There are constants, d, p, C sinall, and C big, such that
Ifu € S(p,d, Dwithp € Fiandd < d, thenwe have the following dichotomy:

a) either
Wy 1) = Wy (s p) = cd?,
and
uedS(p,Cd, p;
b) or
uedp, %d,p),

where p' € F| up to a normalization, and

Ip" = pllpoos2) < Cd.

The space S(p, d, p) consists of d-approximated solutions at scale p, and W% )
is the Weiss energy functional, defined in (2.6). A similar lemma was established
for integer-frequency points in [18].

The proof of Lemma 1.1 is divided into three cases, corresponding to the three
subregions of A as in Fig. 2.

when p € Aj, the modification p’ from (1.12) solves the thin obstacle problem
for small d. In this case, Lemma 1.1 follows from a standard compactness argument.
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Extra care is needed when p € A; U Aj. Here the profile p could become
degenerate at certain points. The same p’ might violate the constraints p’|(x;=0; > 0
and Ap’ < 0.

For p € Aj, there are two possibilities. If the coefficients (aj, ap) are bounded
away from (+/15/2, 5/4), the intersection of d E| and 9 E», then only one of the
two constraints might fail. If they are very close to (V15 /2,5/4), both constraints
can fail, but the locations of failure are well-separated from {r = 0}. In both cases,
we replace p’ by solving a boundary-layer problem around the place where the
constraints fail. This is the same strategy adapted to study integer-frequency points
[18].

New challenges arise when p € Az. When p is very close to u 7, both constraints
might fail along {r = 0}. Indeed Lemma 1.1 needs to be modified to be a trichotomy.
See Lemma 5.1. For this, we need to study an ‘inner problem’ in small spherical
caps near {r = 0}, which reduces to the thin obstacle problem in R? with data at
infinity. This is the main reason why we restrict to three dimension in this work.

Although this restriction to three dimension seems crucial, we hope similar
ideas would work for half-space solutions with higher frequencies.

This paper is organized as follows: In Section 2, we collect some preliminary
results. In Sections 3, we establish Lemma 1.1 when p € A;. The same lemma is
proved in Section 4 for p near Aj;. In Section 5, a modified lemma is proved for
profiles in A3z. This is the most involved part of this paper, and requires several
technical preparations that are left to the Appendices. Finally in Section 6, all these
are combined to show the main results Theorems 1.1, 1.2 and 1.3.

2. Preliminaries

In this section, we gather some useful notations and results.

Unless otherwise specified, in this paper we denote by u a solution to the thin
obstacle problem (1.1) in some domain in R3. For this space, we have the standard
coordinate system R3 = {(x1, x2,x3) : x; € R}, decomposed as

x = (x’, x3) where x’ = (x1, x2).
A subset of R3 is decomposed as £ = E +UE'UE~, where
E'=EN{x3 =0}, and E* = E N {&x3 > 0}. (2.1

With this notation, the contact setis A(u) = {u = 0}'.

Recall that the solution u is assumed to be even with respect to {x3 = 0}. As such
it may fail to be differentiable in the x3-direction at points in A (u#). Nevertheless,
it is still differentiable from either side of the domain. In this paper, for a function
w e CYB; N {x3 > 0}), we use a‘%}w(x) to denote its one-sided derivative at
x € B, namely,

wx’, 1) —w’, 0)

(2.2)
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In general, if € is a domain in R3, we denote by v the inner unit normal along 9.
For w € C! (2) and x € 92, we denote by w, (x) the one-sided normal derivative
at xo with respect to €2, that is,

oo w F+ty) —wx)
wy(x) = lim .
t—0t t

2.3)

To utilize the rotational symmetry of the problem, we introduce the rotation
operator with respect to the x,-axis . For T € (—m, &), this operator U; acts on
points, sets, and functions in the following manner:

U;(x) = (x1 cos(t) — x2 sin(7), x1 sin(t) + xp cos(1), X3),
U(E)={x:U_;x € E},
U (Hx) = f(U_rx). (2.4)

The problem is also scaling invariant. For p > Oand g € A 1 (u), defined as in
(1.3), the the rescaled function

7
U(g.p)(x) = ulg + px)/p? 2.35)
solves the problem in a rescaled domain with 0 € A% ((q,p))- When g = 0, we
simplify the notation by

Up) = U(0,p)-

2.1. Weiss monotonicity formula and consequences

The Weiss monotonicity formula was used by Weiss to treat the obstacle prob-
lem [23], and was adapted to the thin obstacle problem by GAROFALO-—PETROSYAN
[13]. Its decay is used in this paper to quantify an ‘improvement of homogeneity’
between scales.

Since we are concerned with contact points with % frequency in R3, we include

here only the %-Weiss energy functional in 3d

1 7
W1 (u; p) = —8/ Vul> = — | u’. (2.6)
2 p° Js, 20° JyB,

We collect some of its properties in the following lemma. For its proof, see Theorem
1.4.1 and Theorem 1.5.4 in [13].

Lemma 2.1. Suppose that u solves the thin obstacle problem in By C R3. Then for
p € (0, 1), we have

dW( ) 2/ (V ! )2 2.7
—Wi(u; p) = — Up) V — U . .
dp 2 o Jog (o) ) (p)

In particular, p — W7 (u; p) is non-decreasing.
If0 e A% (u), then lim,_.¢ W% (u; p) =0.
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The rescaling u ) is defined as in (2.5).
Under the same assumptions as in Lemma 2.1, we can integrate (2.7) and apply
Holder’s inequality to get that

|| o0 = 1)) = oo /020 W3 s 1) = Wy s o)t 28)
1

for0 < py < p1 < 1.

2.2. Harmonic functions in slit domains and half-space cones

Motivated by thin free boundary problems, harmonic functions in slit domains
were studied in great detail by DE SILVA-SAVIN [6,7]. In this work, we only need
certain basic elements when the slit is flat.

Let (7, 0) denote the polar coordinate for the (x>, x3)-domain with r > 0 and
0 € (—m, ). The slit is defined as

S ={0=n}={x <0,x3 =0} (2.9)
For a subset of R3, we decompose it relative to the slit as £ = EUE , where
E=E\S, andE=ENS. (2.10)

Given a domain  C R3, a harmonic function in the slit domain Q is a contin-
uous function that is even with respect to {x3 = 0} and satisfies

Av=0 inQ
{ v s @2.11)

v=0 in Q.

As is the case for regular domains, homogeneous solutions play an important
role. Given a non-negative integer m, let’s define the following space:

— 1
Hm+% = {v : v is a harmonic function in R3, x-Vv= (m+§)v} . (2.12)
Functions in H,, 1 satisfy

{(ASZ + D=0 in S?, 013

v=0 in S~2,
where
. . . 1 3
Agz is the spherical Laplacian, and 2, 1 = (m + E) (m + E) . (214

These functions are the basic building blocks for general solutions to (2.11).
For instance, we have the following theorem from [6]:



408 O. SaviN & H. Yu

Theorem 2.1. (Theorem 4.5 from [6]) Let v be a solution to (2.11) with Q = B;
and ||v| L= < 1.
Given m > 0, we can find vk+% € H]H_%fork =0,1,...,m, such that

||Uk+% lzooBy < C
and

m
=Y

k=0

(x) < C|x|m+1u%f0rx € B%.

Here uy is defined as in (1.6), and C depends only on m.

The functions from (1.6) are homogeneous harmonic functions in R3. The
following proposition states that, in some sense, these functions generate all homo-
geneous harmonic functions; its elementary proof is left to the reader.

Proposition 2.1. [fv e H L then we have the following expansion:

v =aou,, 1+ pi(xr, r)um,; + -+ pr(x, Pyl g+t P, rug,

where ay € R, and py, is a k-homogeneous polynomial in (x1, r).
The following orthogonality follows from standard argument:
Proposition 2.2. Suppose m # n are two non-negative integers, then we have the

following:
a) If p and q are polynomials of (x1, r), then

/SZ Pty s} = 0.

2)va€7'{m+% andwEHn+%,then

/ v-w=0.
SZ

In this work, we are most interested in the space of harmonic functions with
% homogeneity, namely, H%. Following Proposition 2.1, we see that this space is
spanned by the following four functions:

7 7
U =r?2 cos(—@), Vs 1= X|Us,
2 2 2

V3 = (xf — r2/5)u%, and VL= (x? — xlrz)u%. (2.15)

3
2

The same space is also spanned by u 7 and its first three rotational derivatives. Using
2
the notation from (2.4), they are

d d
u7, ws = —|;=Us(uz7), w3 :=—|;=Us(ws), and
dr 2 2 dr 2
d
= —le=0 Uz (w3). (2.16)
T 2

7
2

2
w
d

=
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Remark 2.1. These two bases are related by

7 35 7 105 133
5 5 3 =—v3 ——u7, andw; = —vi — —Vs.
2 2 2 2 4 2 4 2 2 8 2 8 2
With these preparations, we classify half-space solutions to the thin obstacle
problem in R3 that are %-homogeneous.

Proposition 2.3. Suppose that u is a nontrivial %—homogeneous solution to (1.1)
in R3. The followings are equivalent:

(1) spt(Au) C S;

(2) spt(Au) D S;

(3) u € F1 up to a normalization.

Recall the definition of F; from (1.7). See also Remark 1.1 for the notion of nor-
malization.

Proof. By definition of 7, statement (3) implies the other two. Here we show
that statement (1) implies statement (3). A similar argument gives the implication
2) = ().

By Green’s formula and homogeneity of the functions involved, we have that

7
/uzAu—uAuzz—/ usu —uug =0.
B 2 2 2 @ 2 2

By statement (1), uy = 0 on spt(Au), thus fBl uAu% =0.
Sinceu > 0onS = spt(Au%), this implies # = 0 on S. With statement (1),

we see that u is a %-homogeneous harmonic function in R3. Consequently, it is a
linear combination of functions from (2.15), that is,

U =apui +ayvs +axvsz +azvi
2 2 2 2

fora; € R. Such afunction satisfies the constraints ;=0 > 0and Au|;—0; <0
if and only if ap > O and u/ag € F;. O

For our purpose, we also need homogeneous harmonic functions in slit domains
with singularities. In R?, typical examples are given by

0) = r "t 1Yo) forn e N 2.17
u_n+%(r, )i=r cos n—z orn € N. 2.17)

Eachu_, 4l is (—n + %)-homogeneous and harmonic in R2.
2

In R3, we will need the following two functions:

_ = (xf + lO)cfr2 — 15x1r4) -u

v = (xi‘—éx%rz—r4)~u7l, and v_ 3.
2 2

(2.18)

3
2

[~]

Both of these are %-homogeneous functions in R and harmonic in R3. Near the
poles S? N {r = 0}, they have a singularity of order —% and —% respectively.
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Correspondingly, we have that

w = _|T=0Uf(w%)7 and w_

1 3
-2 dr 2

d
= d—|r=o Ur(w_1), (2.19)
T 2

which are also %-homogeneous and harmonic in R3.

2.3. A Double-sequence lemma

We conclude this section with a lemma dealing with two numerical sequences.
It is a slight modification of Lemma 5.1 from [18].

Lemma 2.2. Let (wy,) and (e,) be two sequences of real numbers between 0 and
1. Suppose that for some constants, A big, a small and y € (0, 1], we have

1
Wy41 < Aen+y Vn e N

and the following dichotomy:

o cither wy+1 < w;, — ae,% and ey 1 = Aey;
® or Wyt < Wy and ep41 = %en.

Then we have that

1+

en < Ce,” (2.20)

foralln € N, and

Zen < +00.

Moreover, we have that

> en=Clun+ei)? ify = 1; 221)
n>N
and
LN .
Z en < C2T7" ify € (0, 1). (2.22)
n>2N

Here c € (0, 1) and C are constants depending only on A, a and y.

Proof. The only modification from Lemma 5.1 in [18] is the right-hand side of
(2.21). To see this, let ay, := w,, + Meﬁ. For n > 0 small, it was shown in [18] that
oy < (1 —c)ay—1, which gives that

1/2 1/2
Zan/ < CozN/ .
n>N

1/2

From here, we simply note that ¢, < «, 0O
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3. Dichotomy for p € A;

In this section, we prove Lemma 1.1 when p € Aj;see (1.10), (1.11) and Fig. 2.

Starting with such a profile p, the natural modification p’ = p+dv from (1.12)
solves the thin obstacle problem if d is small. Consequently, the improvement-of-
flatness result follows by a classical argument.

Nevertheless, we include the argument here. Readers less familiar with the
subject might take this section as a roadmap for the strategy. Contrasting this section
with the next two, we hope to illustrate the challenges that arise in each different
case.

3.1. Well-approximated solutions
Throughout this section, we consider profiles p = agu 1 +av 3 + arv 3 with
ap € [1/2,2], and (a1 /ag, az/ap) € Ar;
that is, for a small parameter u > 0,

1/2<ap <2, p<ayfap <5, and (a1/ap)* < I'(az/ao). (3.1

Recall the basis {u%, v%, v%, v%} from (2.15), and the function I from (1.8).
To simplify our discussions, let us denote

iy = T(az/ag) — (a1/ao)”. (32)
The space of well-approximated solutions is defined as follows:

Definition 3.1. Suppose that the coefficients of p satisfy (3.1).
Ford, p € (0, 1], we say that u is a solution d-approximated by p at scale p if
u solves the thin obstacle problem (1.1) in B,, and

7
lu — p| <dp?inB,.
In this case, we write
ueS(p,d,p).

Being well-approximated implies the localization of the contact set, as follows:

Lemma 3.1. Suppose that u € S(p, d, 1) with d small.
We have

Au =Oin§\10{r > Cd%}, and u:Oinl?% N{r > Cdl%},
where C depends only on w and 1) from (3.2).

Recall the notations for slit domains from (2.10), and that (7, #) denotes the polar
coordinate of the (x2, x3)-plane.
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Proof. Using (3.1) and direct computations, we have that
P> cpup,r? in {6 =0},

Withu > p — d in By, it follows u > 0in {0 = 0, 7 > Cd7} N By. This gives the
first conclusion.
To see the second conclusion, we note that

3
P —Cp,r 3 in {0 = ). (3.3)

Recall our convention from (2.2).

Now for some large A to be chosen, let xg € }§778 N{r > AdTZS}, and Q =
{Ix' = xol < d3, |x3] <di}.

With (3.3) and the C 1‘%—regularity of p, we have that

0 1 51,
%P =< _ECM,MpAzdS in Q"
if A is large, depending only on w and 1.

Define the barrier ¢ (x’, x3) = (|x' — xo|> — 2x32)/d%, then ¢ is a solution to
the thin obstacle problem. Inside 2, we have that

wl—

B N P S S R | 5
¢ —p=lx —xol°/d3 —2x5/d5 + Scpp,A2d3 - x3

2
/ 2,101 51
> |x" — xo|°/d3 + ZcﬂvﬂpAZC“ - X3
for A large. It follows from even symmetry that
¢ > p+dalong 9Q

for A large.
Together with u < p+d in By, this implies u < ¢ in 2. The second conclusion
follows. 0O

Since the profile p solves the thin obstacle problem, by the maximum principle
and Cacciopolli’s estimate, we have the following:

Lemma 3.2. Suppose that u solves (1.1) in By. Then
lu — pllLoosy o) + llu — P||H1(31/2) < Cllu = pllLi(s)
for a universal constant C.

Recall the Weiss energy functional from (2.6). This energy is controlled for
well-approximated solutions.

Lemma 3.3. Suppose that u € S(p,d, 1), then
Wy (u:3/4) < cd’

for a universal constant C.
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Proof. The homogeneity of p implies that

) 7 2
Wi(p; 1) = IVpl© — = p
2 B, 2 JaB,

7 2
= —PpAp — ppy + 5P
B dB;
- / _pAp=0. (3.4)
B

Recall from (2.3) that p, denotes the inner normal g\erivative along 9 B;. For the
last equality, we used the fact that p is harmonic in R3.

The rest of the proof is identical to the case for integer-frequency points; see
Lemma2.7in[18]. O

3.2. The dichotomy

With these preparations, we state the main lemma of this section.

Lemma 3.4. Suppose that u € S(p. d, 1) with p satisfying (3.1). y
There is small § > 0, depending only on w and p, such that if d < §, then we
have the following dichotomy:

(1) either
Wi (s 1) = Wy (s po) > cjd®
and
ueS(p,Cd, po);
(2) or
we S, 3d. p0)
for some

p = Ur[aéu% +aiv% —}—aév%]
with |t + Y Iaj. —aj| < Cd.
The constants cg, po and C depend only on L.

Recall the rotation operator U from (2.4), and the basis {u% , v% Y 3 v 1 } from
(2.15).

Proof. Let ¢y and py be small constants to be chosen.

_1
Note that for any u € S(p, d, 1), we always have u € S(p, p, *d, po).
Suppose, on the contrary, that the conclusion is false. Then we find a sequence
(un, pn, d,) satisfying

liminf p, >0
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and
un € S(pp.dy, 1) with d, — 0,
but
W7 (s 1) = Wy (s po) < c3d? for all n, (3.5)
and
up € S (p’, %dn’ po> (3.6)

for any p’ satisfying the properties as in alternative (2) from the lemma.
Step 1: Compactness.
Define i, = %. Then |i,| < 1in By.
With Lemma 3.1, we have that

— 2 —~ 2
Aii, =0in By N{r > Cd,}, and i, = 0in B3 N {r > Cd,’}.

As a result, up to a subsequence, the functions #,, converge locally uniformly in
Iim;\{r = 0} to some li. The limit il is a harmonic function in the slit domain
B3, defined as in (2.11). Since the set {r = 0} has zero capacity, we have that

li,, — L?OO||L2(B7/8) =o(l) asn — oo. (3.7

With Theorem 2.1, for k = 0, 1, 2, 3, we find hk+%, a(k+ %)-homogeneous

harmonic function in If@, such that
|ﬁoo—(h%+h%—|—h%+h%)|(x)§C|x|% for x € Bys. (3.8)

Moreover, each ||/ 1 [|L>(s,) is universally bounded.
2

In the remaining of this proof, we omit the subscripts in u,, p,, ii, and d,.
Step 2: Almost homogeneity.
With (3.7), we find p € [pg, 400] such that

i — ool 238, + Il — ool L2(ym,,) = o).
Combined with (3.8), this implies
i = (hy +hy +hs +hDll2pp,) + 10—y +hy +hs +h)ll28,,)
< C,0171 +o(1).
As a result, we have
(= (h% +h% —|—h% +h%)](%) —[a— (h% +h% +h% +h%)]”L2(8Bp)

< Cp? +o(l),
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where f( 1 denotes the rescaling of the function f asin (2.5). With the homogeneity
of p and hk+%, this gives that

1 1
| Sluyy = ul = Ty +3hy +h )l 25, < Co2 +o(1). (3.9)

Meanwhile, applying (2.8) together with (3.5), we have that

/BB lt(p) —u@pl < v10g(2)\/W% (u; 2p) — W% (u; p)
1

< C Wy ) = W s po)
< Ccod

for a universal constant C. Note that we used our choice of p € [pg, 400].
This implies, by the maximum principle, that |u(,) — u@p)| < Ccod in By 3.
As a result,

||14(%) - M||L2(aBp) =< CP% luepy — u(2p)”L2(aB%) < CCOdﬂ%-
Together with (3.9), this gives that
17k + 3Ry + hsll 28, < Co? +cop? +o(D)).
Using Proposition 2.2 and homogeneity of the functions involved, we have that
I8yl = C0* + cop® +o(1)),
Ih3 1) < C(0* + cop® +o(1)),
Ihs Nl < C(0* + cop +o(1)).

With (3.7) and (3.8), we have that

13
i =7l By, = Coo + co)pg + o(D),
since p € [po, 4p0]-
Step 3: Improvement of flatness.
The last estimate from the previous step gives that
13
2

lu = (p+dhlLi(By,) = Cdl(po+co)py +o(D].

We temporarily switch to the basis {u% ) 3 w 3 w ! } from (2.16). Suppose, in
this basis, we have that

p=bour + byws +brws, and h7 = agu7 + ¥jws + w3 +azwi.
2 2 2 2 2 2 2 2
Thus

p+dhi = (bo—i-dao)u% + (b1 +doz1)w% + (bz—l—daz)w% —l—dotgw%.

A
2
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Using Remark 2.1 and (3.1), we have the lower bounds
1 2
by +dagy > E_C(L and by + day > g,u—Cd. (3.10)

Now we let (81, B2, T) be the solution to the following system:

B1 + (b + dag)t = b1 +doy
Ba+ BiT + 3(bo + dag)t? = by + dary .
Bt + %,317:2 + %(bo + dOlo)‘C3 =das

Using (3.10), it is elementary that this system has a solution when d is small.
Moreover, we have that

o3d
Tl + 181 — (b1 +o1d)| + |B2 — (b2 + a2d)| < C|———| < Cd. (3.11)
by +doy
Using Taylor’s Theorem and the integrability of 0% U (w 1 ), we have that
I(p +dhg) = [(bo + aod)uy + frws + pows](Ur )12y < Cd®
for C depending on p. Switching back to the basis {u 7 v 3 v 3 v 1 }, we have that
l(p+ dh%) - U,f[a(’)u% + aiv% + aév%]HL](Sz) < Cd?,

with |a} —aj| < Cd by (3.11). By homogeneity, we have that

s

2
(p + dh%) — U_,[a{)u% + aﬁv% + aév%]HLl(szo) <Cdpy .
Combining this with the first estimate in this step, we have that
/ / / B
llu — U_r[aou% +ajvs + a2U%]||L1(szO) < Cdpy [po + co +o(D)].
Since p lies in the interior of A and |a} —aj| < Cd,weseethataju; +ajvs +ayv3
2

solves the thin obstacle problem when d is small, depending on ), from (3.2). As
a result, we can apply Lemma 3.2 to get that

7
llu — U—r[aéu% + aﬂvg + aéU%]”LO"(BpO) < Cdpg [po + co + o(1)].

Consequently, if we choose pg and ¢y small, depending only on u, such that
C(po + co) < 1, then

7
2
0

71 1
llu —U_T[a(/)u% +a/1v% —i—aév%]HLoo(BpO) < d,ooz(z + Co(1)) < Ed,o

eventually. This contradicts (3.6). O
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4. Dichotomy for p Near A,

In this section, we focus on profiles near A, from (1.10).
To illustrate the ideas, let’s take p = u% + alv% + azv% e A, with
nw<a <5 anda% =T(ap)

for a small parameter u > 0, to be chosen in Section 5; see Remark 5.1. The
function I was defined in (1.8). Recall also the basis {u%, vs, v%, v%} from (2.15)
2

for the space H% from (2.12).
We further assume that

a; > 0.

The other case is symmetric.
Although p solves the thin obstacle problem, the two constraints p|{y,—o; > 0
and Ap|(x;=0; < 0 become degenerate as

(1) whena, < 3,

Ap = 0along R

(2) whena, > 3,
p=0along R,
where
-5
R;’ =1t 1,—a6],0 :t >0} and
14 — 5612
R, = {z. (-1, ﬁ,o) = o} 3 (4.1)
- 2w

Let us denote by A[f the intersections of these two rays with the sphere
A7) =Ry NS (4.2)
It is crucial that both points are bounded away from {r = 0} with
dist(A5, {r =0}) = ¢, > 0, (4.3)

where ¢;, depends only on .

Due to the degeneracy of p, the modified p’ = p + dv as in (1.12) may fail to
solve the thin obstacle problem, and is no longer a suitable profile to approximate
our solution (for instance, a result similar to Lemma 3.2 is not necessarily true).

3 This ray R), is understood to be {(0,5,0) : s > 0} if ap = 5.
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We tackle this issue by solving the thin obstacle problem in small spherical
caps around A*, and replace p’ with this solution. Along the boundary of the caps,
this procedure creates an error. With (4.3), we show that this error has a significant
projection into 7 from (2.12). This allows us to control the error in terms of the
decay of the Weiss energy.

In most part of this section, we deal with profiles near the ‘doubly critical’
profile

V15

Pdec :=u%+ v

3 3
2 2

5
+ Zv.s. 4.4)

This is the only profile in A, for which both Apg.(A™) and pg.(A™) vanish. As a
result, for profiles nearby, we need to find replacements in spherical caps near both
A*.

For other profiles p € Aj, only one of the two constraints is degenerate. The
treatment is more straightforward, and is only sketched near the end of this section.

4.1. The boundary layer problem around p ;.

We study homogeneous harmonic functions near pg.. For a small universal
constant § > 0, suppose that

p =aou% —|—a1v% +a2v% “+azvi

[N

satisfy

1 V15 5
<ap<2 and |2 - X212 21418 <. 4.5)
a(n 2 a 4 a

Recall from (4.2) that A™ = (\/5/8, —+/3/8,0) and A~ = (—+/3/8, /5/8,0)
are the points of degeneracy for pg.. For a universal small n > 0, define two
spherical caps

C,T ={xeS:|x— AT < n}, andC; =xeS:|x—A| < n}

Thanks to (4.3), both are bounded away from {r = 0} for small n. The same
notations are used to denote the cones generated by the two caps. See Fig. 3.
In general, for £ > 0 we define

CFi={xeS*:|x— A% <. (4.6)
Inside the caps Cni, we solve the thin obstacle problem for the operator (Ag> +
)»% ) from (2.14) with p as boundary data:
(Ag + A%)vlf <0 inCF,
vy =0 on Cy N {x3 =0},
(A2 + A%)vlﬂ; =0 in{x3 #0}U{vy >0},

vljf =p along BC,T.

4.7)
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A%

?\-’(
Kk
/—\>

%>

T

Fig. 3. Boundary layers for p,;. in (x1, x2)-plane

Note that when 7 is universally small, the maximum principle holds for (Ag2 + A 1 )

in Cni, and problem (4.7) is well-posed.
The maximum principle also implies

vy = pinC;. (4.8)

+

With the symmetry of p, the solutions v,

are even with respect to {x3 = 0}.

Definition 4.1. Given p satisfying (4.5), our replacement for p, to be denoted by
D, is the following function

- { p outside Cf,
p =

+ .ot
v, an.

Equivalently, the replacement p is the unique minimizer of

V> / |VSzv|2 — 702
s? 2
over
{v : v = poutside C,ﬂf, and v > 0 on {x3 = 0}}.

Here Vg denotes the tangential gradient on S?.
We also denote the %-homogeneous extension of p by the same notation.

Recall the notations for slit domains from (2.10). We have, by definition,

(Ag2 +A7)p = fIfEdHllacni + g,ﬂ,thHCmn:O} in Si\(SZ\C,;L),

4.9
p=0 on SI\C,. 9
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Here f; arise from the gluing of v;k and p along CF, and g? are a consequence
of the thin obstacle problem (4.7). In particular, following our convention for one-
sided derivatives (2.3), we have

fy = (= Pvlycz (4.10)
and
g;,t < 0 is supported in {p = 0} N {x3 = 0}.

Remark 4.1. The replacement p does not necessarily satisfy the two constraints
Dlixz=0y = 0 and A p(r,—0; < 0 outside C,,i. This is due to the possible presence of
v in p, which becomes dominant near {r = 0}.

On the other hand, suppose that p = aot 7 +a1v% +a2v% —i—agv% satisfies (4.5)
with a3 = 0, then p satisfies p|(x,—0; > 0 and Ap|(x,—0; < O outside C:*, and the
same holds for p.

One essential ingredient of this section is that fp:’E have significant projections
into H7 from (2.12). To measure this, we introduce some auxiliary functions.
2

Let ¢ : S? — R denote the projection of f;t into 'H 1 from (2.12), namely,

¢p = cqug +cyvs +ezvs +ervr, A.11)
2 2 ) 3
where
Cc1 :;/ M7(f+dH]|A ++f7dH1|A )
2 ”u%”LZ(SZ) 2 2 p aC; p aC,
and
C 1:%/ v l(f+dHl|A ++f7dH1|A )
ma llvm+%||L2(Sz) s2? m+3 P aC, p ac,

form =0, 1, 2. It follows that
1 — gl
(fdH lac + [ dH ye- —¢p) L H%.
By Fredholm alternative, there is a unique function H), : S? — R satisfying

1 — gl D
(Ag2 +A%)Hp=fp+dH |ac,,++fp dH |3C;_¢’p onS~2,
H,=0 on S2.

The natural extensions of f I;—L, g,f, ¢p and H), into RR3 are denoted by the same

symbols.
With this convention, we define

®, = H, (| |)|x|z+8¢p<| |>|x|zlog<|x|> (4.12)
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which satisfies

_ pt g2 T3
A®, = f,ydH |acni 1nR~, 4.13)
®,=0 on R3,
where we have used the notations for slit domains from (2.10).
Finally, let us denote that
kp = PpllLecsy), (4.14)

which measures the size of the error coming from the gluing procedure along BC,]i.
For all the functions and constants defined so far, the subscript p is often omitted
when there is no ambiguity.
We collect some properties of the replacement p from Definition 4.1.
We have the following localization of the contact set of p:

Lemma 4.1. For p satisfying (4.5), we have that
p>0in(C\C" ), and p=0in(C\C" ),
T ce2 T cs2

where C is a universal constant.

Recall our notations from (2.1) and (4.6).

Proof. With (4.8), we have p > p > pgc — C6 in C;. The first statement follows
from direct computation.

Note that pg. and p both solve (4.7) in C,J{ with p = p < pge + C§ along
dC,F, it follows from the maximum principle that p < pg. + C8 in C,’. The second
conclusion follows from a barrier argument similar to the proof for Lemma 3.1. O

The next lemma controls the change in p when p is modified.

Lemma 4.2. Suppose that p satisfies (4.5), and take g = aouy + o vs + a2v3 +
0[3U% with |aj| < 1for j =0,1,2,3.
Then we can find a universal modulus of continuity, w(-), such that
lp+dg — (5 +d) | sy < @G +d) - d,
lp+dg—(p +dq)”L°°(C,7_\CW_/2) <w@+d)-d,

and
Ip+dg — (p+dg)l 1) < o(d +6)-d.

Proof. The distinction between the estimates in Cr—vi_ and Cn_ is due to the fact that
g =0inC,f N {x3 =0}, whileg #0inC, N {x3 = 0}.
Step 1: The estimate in C,F.
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Let Q := C,;L N {x3 > 0}. We build a barrier by solving the following system

(Ag2 —i—)»%)w =0 in <,

— ; + /
w=1 in (C 5
w=0 in asz\(cgm)/,

where C is the universal constant from Lemma 4.1. We extend w to Cn+ N{x3 < 0}
by evenly reflecting it with respect to {x3 = 0}.

It follows from the maximum principle and the second statement in Lemma 4.1
that

p+dq—(p+dq) <Cd-winC;.

For ¢ > C(6 + d)% to be chosen, it follows that

p¥dg—p<Cd-(£+supuw) along 3C;,
ac
where we used the Lipschitz regularity of ¢ and ¢ = 0 along C,‘]Ir N {x3 = 0}. From
here the maximum principle implies p rdq —p<Cd-({+ SupyC:+ w) inC;f,
and consequently,

pFdq—(p+dg) <Cd-(€+supw)inC;.
acS

Using Lemma 4.1, for small d 4 §, it follows from the maximum principle in
CI\C; that

p+dg—(p+dg) <Cd-(€+supw)inC,.
aCcy

A symmetric argument gives that

pfl—vdq —(p+dq) > —Cd - (L4 supw) inCnf
act

By choosing ¢ small, and noting that SUpyc+ W = @y (d 4 §) for a modulus of
continuity depending only on ¢, we get the desired estimate in C,7+ .

Step 2: The estimate in C,; \Cn_/Z'

The main difference with the previous case is that g no longer vanishes along
{x3 =0} inthe cap C; .

We build a barrier by solving

(Agr+Apw =0 inC\C,

w=1 in(Cg

\/5+d)/’

I
«/5+d) ’
w=20 in ac,;.
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With the first statement in Lemma 4.1, it follows from the maximum principle that
p+dq—(p+dq) <Cd-winC,.
In particular, we have that

p+dg— (p+dq) < Cd- sup winCy\C, .
9Cy)2

A symmetric argument gives p f{—qu —(p+dg) = —-Cd- Sup,c, , W inC \Cn/Z‘
Note that Supc, , W = 0asd + 8 — 0, the previous two estimates gives the
desired results in C;’ \Cn /2

Step 3: The L' (S?) estimate.
For ¢ > 0, with the same barrier from Step 2, we have for small d + §

\p+dg — (p+dg)| SCd-zlépwinC,,_\C['
4

Thus

lp+dq—(p +dlpicyy = Cd-supw + Cde?.
aCy

By choosing ¢ small, and noting sup;c, w — 0 asd + 8 — 0, we have that
Ip+dg — (5 +dl, i, < od+6)-d.

A similar estimate in C,;r follows directly from the conclusion in Step 1. Since
p+dq — (p+dq) = 0 outside Cgt, the L' (S?) estimate follows. 0O

As a consequence, we can control the change of «, defined in (4.14), when p
is modified.

Corollary 4.1. Under the same assumption as in Lemma 4.2, we have that
Kptdg < kp+w(@+d)-d.

Proof. Define w, = p —pand wy4y = p -qu —(p+dg),thenwpyigy —wp
vanishes along 8C,]_, and satisfies (Ag2 + A%)(wp+dq —w,) =0in Cn_\Cn_/Z'
Boundary regularity estimate gives that

(Wptdg — wply = Cllwprag — wp”LOO(Cn*\cn*/z) along acn_-

Similarly, with w444 — w) vanishing along 3, U (C;/\C;) )’ and (Age +
M) Wptag — wp) = 0in (C\C,y) N {x3 > 0}, we have that

(Wptdg — wply = Cllwprag — wp”LOO(C;r\c;rﬂ) along ac;—;_-
The conclusion follows from (4.10) and Lemma 4.2. 0O

The following lemma is the key estimate of this section:
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Lemma 4.3. Suppose that p satisfies (4.5) with § > 0 universally small. Then

el sy = ek
for a universal ¢ > 0.

Recall the definitions of ¢ and « from (4.11) and (4.14), respectively.

Proof. Define Q = (C+\Cn /4) N {x3 > 0}, and let w denote the solution to

(AS2+A%)w=0 in 2,
w=1 onacn/4ﬂ{x3>0},
w=20 on 89\8Cn/4
For § > 0 small, Lemma 4.1 implies that (p — p) solves the same equation as w

in 2, and both vanish long BQ\Z?C;]LM.
With (4.8), we can apply boundary Harnack principle to get that

P P(A++ 3)517
w 2

x)y<cC- ” <A+ + ge3>

for any x € (C,;F\C;'/z) N {x3 > 0}. Here we denoted by (A" + Ze3) the point on
S? we get by moving from A along the x3-direction by distance 7/2.
With (4.10), this implies that
+ ~
P P(A++77 )ff—SC rp=r (A++—e3) alongaC+
w 2 w 2

Wy

With a similar argument, we have that

c- p—r (A*+ﬁe3) < f— <C- PP (A*+Qe3> along aC, ",
v 2 vy v 2 n
where v denotes the solution to

(Agp + A%)v =0 in Cﬂ_\cn_/4’

v=1 on 8Cn/4,

v=20 on 8(3,7 .

Now for a constant 8 > 0 to be chosen, let us define that
q:u%—i—ﬂv% EH%. (4.15)

A direct computation gives that

K _z\ﬁ o \ﬁ_
ax3cJ(A)—a<ﬂ 5 5>,andq(A)—b( 3 /3),

where a and b are positive constants. With %\/g < %, we find B such that

Ag > ¢ > 0 along C,;“ N{x3 =0}, ¢ >c|x3]inCS,and ¢ > cin C, (4.16)
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for a universal ¢ > 0 if 5 is small.
Consequently,

f+qu1 > c/c+ wv|x3|dH] . % <A+ + geg>
0

n

2 PP (44 L)
w 2

= C||f+||L00(acj,')-

lens

Similarly,

p—r

_ _ n _
dH‘>—(A n )> NP 417
BCn_f q =C w +293 >cllf g 0Cy) ( )

Note that q € H%, we have ||(p||Loo(SZ) > C(||f+||Loo(aCn+) + ”fi”LOC(aC;))’
which gives the desired estimate. O

‘We also have

Lemma 4.4. Under the same assumptions as in Lemma 4.3, we have that
|p—pl < CkinC,
for a universal constant C.
Proof. In this proof, define w = p — p. By (4.8), it suffices to get an upper bound
forwinC, .
Suppose ¢ := maxe— w > 0, and that xq is a point where this maximum is
achieved, then xp € {(Ag2 + A%)w < 0}. As aresult, xg € {p = 0}. This implies

tlﬁat p(xo) = —e&,and 3371w(x0) = %ﬁ(xo) = 0. Thus %p(xo) = (0 and we have
that

7
p < —gein (B i(x)'

Since p > 0 along {x3 = 0}, this implies w > %5 in (Bcﬁ(xo))’. With the
super-harmonicity of w in C,, we have that

1
w > 58 in Bcﬁ(xo).
Comparing with the Green’s function for C;” with a pole at xo, we see that

. _ .
(p—pA + 563) > ce/llogel.

With (4.17) from the proof of Lemma 4.3, this implies « > ce¢, the desired estimate.
[m}

We also have the following control on the Weiss energy of the replacement p:
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Lemma 4.5. Suppose that p satisfies (4.5), then
W1 (p: 1) = Cx?

for a universal constant C.

Recall the definition of the Weiss energy from (2.6).

Proof. We first control the total mass of g~ from (4.9).
Take the auxiliary function g from (4.15), we have that

/ﬁ'(ASH—M)q:/ (As2 +A1)p-q
s 2 s 2

= | ffa+ f gq

/ac,,i Ciy N{x3=0}

= / Naras / g4
aC: C; N3 =0}

For the last equality, we used that ¢ = 0 along (C,‘}‘ )’, which contains spt(g™).

Now we note that (Ag + A%)q is supported in S2. On this set, p > 0 is
supported in (C,")". Recall from (4.16), we have (Ag + A%)q > 0in (C;)'. Thus
p-(Ag + )u%)q > 0 and we conclude that

—f §q= f+q+/ f7a =Ck.
Cy N{x3=0} Flens ac,

With g > cin Cn’ and g~ < 0, we conclude that

/ lg7| < Ck. (4.18)
S2
Using (3.4) and the homogeneity of p, we have that
Wi (p: 1) = C[/ (Vg2 pl* = 1757 —/ (Vg2 pl* =27 p7)]
2 SZ 2 SZ 2
_ S0y =2y 2 _ 2
- C[fc;avgzm Ay i) /C;(Ivszpl Ay

+C[/ (IVSzﬁIZ—AzﬁZ)—/ (Veepl = A7 pD)l,
C; 2 C,? 2

since spt(p — p) C C,df.
With p = 0 along (C;” )/, the profile p is admissible in the minimization problem
defining p in C;“ . See Definition 4.1. Using the harmonicity of p inC;", we continue
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with the previous estimate to get that
s, 12 ~2 2 2
Wy 1) =L (Vepl =7 = [ (VepP =agp)
n n

- —c/ (5 — p)(Ag +Ah1)p
Cy 2

_ —C/ (- pg
Cy

Combining this with (4.18) and Lemma 4.4, we have the desired estimate. 0O

4.2. Well-approximated solutions near pg.

For p satisfying (4.5), we define the space of well-approximated solutions in a
similar manner as in Subsection 3.1. The main difference is that now the solutions
are approximated by the replacement p as in Definition 4.1.

Definition 4.2. Suppose that the coefficients of p satisfy (4.5).
Ford, p € (0, 1], we say that u is a solution d-approximated by p at scale p if
u solves the thin obstacle problem (1.1) in B, and

lu — pl < d,o% in B,.
In this case, we write that
ueS(p.d,p).

Similarly to Lemma 3.1, we can localize the contact set of a well-approximated
solution if we assume a3 = 0 in the expansion of p; see Remark 4.1.

Lemma 4.6. Suppose that u € S(p, d, 1) with d small, and that p satisfies (4.5)
with az = 0.
We have that

Au:OinEﬂ{r>C(d+5)%}

+ | —
X X

N {(x1,x2,0):

> C(d +8)2, x, 50},
and

_ 3
u=0in By n{r > C(d+8)TIN{(x1, x2.0) - |x2 + \/;m > C(d+8)7,x; > 0).

Recall that § > 0 is the small parameter from (4.5), and that {(x1, x2,0) : |[x2 +
\/§x1| =0,x; >0} and {(x1,x2,0) : |xp + \/§x1| = 0, x; < 0} are the two rays
of degeneracy R* from (4.1) for py..
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Proof. Under our assumptions, we have, inside By,
u>p—d>p—d>Cpyge—Cs—d, andu < p+d < Cpg.+C8+d.

The conclusion follows from the same argument as in the proof for Lemma 3.1.
]

The following is similar to Lemma 3.2 and Lemma 3.3; it is the main reason
why it is preferable to work with p instead of directly with p:

Lemma 4.7. Suppose that p satisfies (4.5) with az = 0. Let u be a solution to (1.1)
in By, then

lu — Pl n) + lu = Pllgi(s,,,) < CUlu — plipies,) + )
and
w ( l < C( ~n2 2)
%uv 2)_ ||M_P||L1(BI)+K .

Proof. With Remark 4.1 and a3 = 0, p satisfies the constraints p|(,—0y > 0
and Ap(y;—0) < 0 outside C,jf. The same constraints are satisfied inside C,f by
Definition 4.1.

As aresult, inside {u > p}, we have that

A — p) > — fEdH?, e > —Cic|x|2dH| o
= acE = ac;E
This implies
u—p = (llu—plpig, +«)inBip.

A symmetric argument gives the corresponding lower bound, and we have the
control on ||u — ]5||L°°(Bl/2)'

The other estimates follow from the same argument as for Lemma 3.2 and
Lemma 3.3, together with Lemma 4.5. O

4.3. The dichotomy near pq.

With these preparations, we state the dichotomy for profiles near p,. from (4.4).

Lemma 4.8. Suppose that

ueSp,dl

for some p = agu1 + ajvs + arv; satisfying that
2 2 2

1 V15 5
ap € [57 2], and |ay/ap — T' + laz/ap — Z| <4.

There is a universal small constant § > 0, such that if d < S and § < §, then
we have the following dichotomy:
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(1) either
W7 (s 1) = Wy us po) = cjd?
and
u € S(p,Cd, po);
(2) or
ueds (p’, ld, po)
2
for some
p = Ur[aéu% +aiv% —}—aév%]
with

Ky <d, and |t| +Z|a;. —aj| < Cd.
The constants co, po and C are universal.

Recall the rotation operator U from (2.4), and the basis {u% L V3, V3, V) } from
2
(2.15).
Remark 4.2. For p’ = U, [a(/)u% +ajvs + aév%], all the constructions in Sub-
2
section 4.1, leading to p’, are performed with respect to the rotated coordinate

system.

Proof. We apply a similar strategy as in the proof for Lemma 4.8.

For ¢p and pg to be chosen, suppose that the lemma is false, then we find a
sequence (U, pn, dn, 8,,) satisfying the assumptions as in the lemma with d,,, §,, —
0, but both alternatives fail, namely,

W3 Guni 1) = Wy (s po) < c3d? for all n, (4.19)
and

1
un & S(p', 54n- po) (4.20)

for any p’ satisfying the properties as in alternative (2) from the lemma.

Step 1: Compactness.
Define

_ 1
dy +Kp,

A~

Up : (uy — p~n + qun)’

where @ and « are defined in (4.12) and (4.14) respectively. Then |i,| < 2 in Bj.
With Lemma 4.1, Lemma 4.6, (4.9) and (4.13), we have, up to a subsequence,

i, — ﬁoo”LZ(Bm) — 0.
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The limit i1~ is a harmonic function in the slit domain §1 according to (2.11).
For m = 0,1,2,3, Theorem 2.1 allows us to find hm+%, an (m + %)—
homogeneous harmonic function that is universally bounded in B; and satisfies

i, — (h% +h% +h% +h%)](%) — i, — (h% +h% +h% +h%)]||L2(aBp)
<Cp? +o(l)

for some p € [pg, 4p00].
Recall that f( 1 denotes the rescaling of f as in (2.5).

We omit the subscripts in uy, iy, pn, d, and 8, in the remaining of the proof.

Step 2: Almost homogeneity.

Using the homogeneity of the functions as well as the definition of ® from
(4.12), the last estimate from the previous step gives that

log?2 X
|Thy +3hy +hg) + %82 X

7 9
8 1 1) |x|)IXI2||L2(aBp> = Cp2(co+p) +o(l).

4.21)

For this, we used (4.19) in the same way as in Step 2 from the proof of Lemma 3.4
to control (u(%) —u).

By definition, we have ¢ € H 1 from (2.12). With (4.21), we apply Proposi-
tion 2.2 to get that

||h%||L°°(Bl) + P”h%”LOO(Bl) + pzllhgllmwn < C(pg + copg + o(1)),

and

< Cl(co + po) +o(D)]. (4.22)

1
@
H d + K L% (B))
These imply
13
i — h% ||L1(sz0) < C(po + CO)P02 +o(1). (4.23)
Moreover, with Lemma 4.3, we use (4.22) to conclude that
Kk < Cd[(co + po) + o(1)] (4.24)

for small (co + po) and large n. Consequently,

3
2

@l 18, = Cdl(co+ po)py” |10g pol 4 o(1)].

Combining this with the definition of & and (4.23), we have that
13
lu—1p+d+ K)h%]IILl(szo) < Cd[(po + co)py |log pol + o(1)].
With Lemma 4.2, we get that
13
e = qllL1(s,,,) = Cdl(po + c0)py |log pol +o(1)],
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where g = p + (d+/<)h%.
Step 3: Improvement of flatness.
With the same technique in Step 3 from the proof of Lemma 4.8, we find

p = a{)u% +aiv% —l—aév%
such that
lg = Ur (Pl oo gngpsty) < Cd. (4.25)

where |7| + > |a; — a}| < Cd. In this step, it is crucial that a; is bounded away
from 0.

If n and § are small, then {r > %} contains C,‘]—L and U,(C,’i). By definition of
replacements and (4.25), we have that

1 — U.(p/)| < Cd® on S2.

Combining this with the last estimate from the previous step, we have that

—~ 13
lu = Ue ()l (sy,) < Cl(po+co)pg [logpol +o(D]. (4.26)
On the other hand, with Lemma 4.1, we have
kp < kp+d-o(l) < Cdl(co+ po) +o(D)], (4.27)

where we used (4.24) for the last comparison.
With Lemma 4.7 and (4.26), this implies

~ 7
llu — Uz (p)llLe(s,,) < Cdpg [(po + co)llog pol + o(D)],
which implies
o1
ue S(p ) §d9 /00)
if po, co are chosen small universally and 7 is large. The bound on « ,» follows from

(4.27).
This contradicts (4.20). 0O

4.4. Dichotomy near general p* € Ay

In this subsection, we sketch the ideas for dealing with other profiles in Aj.
Let’s take p* € A3, namely,

with

p<da; <S5and (af)? = '(a})
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for a small parameter ;& > 0 to be fixed in the next section (see Remark 5.1), and
the function I" defined in (1.8). Let’s further assume af > 0 as the other case is
symmetric.

Thanks to results from Subsection 4.3, it suffices to consider the case when

| > 4. (4.28)
For such p*, we define
Cr(p*) ={x eIy — AL| <),
with the notation from (4.2). With (4.3), these caps are bounded away from {r = 0}
if n is small, depending on L.
For small § > 0 and a profile

p =aou% +ajvs +axvs
2

[N

with
ap € [1/2,2] and |ay /ag — af| + laz/ap — a5| < 8,

we define its replacement p by solving (4.7) in C,jf (p™*), as in Definition 4.1. With
(4.28), we see that when § > 0 is small, the replacement in one of the caps is
identical to p. The auxiliary functions in Subsection 4.1 can be defined in a similar
fashion.

With this construction, results from Subsection 4.1 follow from the same argu-
ment, with the constants possibly depending on p. The class of well-approximated
solutions can be defined similarly to Definition 4.2 with similar properties. The
same argument in the previous section leads to a similar dichotomy for profiles
near p*.

Combining these with Lemma 4.8, we have

Lemma 4.9. Suppose that
uedS(p,d,1)

for some p = apu1 + avs + axvs satisfying
2 2 2

1
ap € |:§, 2:| and |ay/ay — ai| + |laz/ag — a5| <8
with
w<as<5and (aT)2 =TI(a}).

There is a small constant § > 0, depending only on ., such that if d < & and
8 < &, then we have the following dichotomy:
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(1) either
Wy (u: 1) = Wy (u: po) = ctd?
and
u € S(p,Cd, po);
(2) or
ueds (p’, 1a?, po)
2
for some
p = Ur[a(’)u% —i—aiv% +a§v%]
with

kp <d, and |t|+ Y |} —aj| < Cd.

The constants ¢y, po and C depend only on L.

5. Trichotomy for p € Aj;

In this section, we study profiles near .43 from (1.10), that is, profiles near u 7
To some extend, this section contains the main contribution of the work.

Similarly to the case studied in Section 4, the constraints pl;—0; > 0 and
Aplix;=0y < 0 become degenerate for profiles in A3. Contrary to the previous
case, the points of degeneracy can be arbitrarily close to two poles PT, P~ €
SN {r = 0}. As a result, the cornerstone for the previous case, Lemma 4.3, no
longer holds.

To tackle this issue, we need to study the the thin obstacle problem on spherical
caps near P*. At the infinitesimal level, this reduces to the problem in R? studied
in Appendix 6. This is one of the main reasons why we need to restrict to three
dimensions in this work. This infinitesimal information influences the solution at
unit scale through two higher Fourier coefficients along small spherical caps near
P*. With these two extra Fourier coefficients, we can define two extended profiles,
one for each semi-sphere. These extended profiles approximate the solution with
finer accuracy.

Arising from this procedure are two errors, say Ej and E;. The former E
happens along the big circle S* N {x; = 0}, where the extended profiles from the
two semi-spheres are glued. The latter £, happens along the boundary of small
spherical caps near the poles P*. We establish that E; has a projection into H 1
with size proportional to E;. Therefore, if E; is dominating, a similar strategy as
in Section 4 can be carried out.

This leads to the following trichotomy, the main result in this section:



434 O. SaviN & H. Yu

Lemma 5.1. Suppose that
ueS(p.d1)

for some p = apu1 + ajvs + arvs + azvi with ag € [%,2] and
2 2 2 2

1 1
ep :=max{|a /aol, laz/aol?, laz/ap|3} 5.1

small.
Given small o > 0, we can ﬁnd S , o, p0 small, and C big, depending only on
o, such thatifd < § and €, < §, then we have the following three possibilities:

(1)
Wy (s 1) = Wy us po) = cgd’;
and
u € S(p,Cd, po);

(2) or

1
uedS (p’, Zd, p0>
r_ / / / .
for p =agug —i—alv% —l—azv% +a3v% with

/ .
Ky < okp, and E laj —ajl < Cd;

(3) or

d< ef,.
Recall the basis { u% , V5,0 3 v 1 }, the rotation operator U, and the Weiss energy
2
W% from (2.15), (2.4) and (2.6) respectively. The solution class S(...) and the

measurement for error «, similarly to their counterparts from Section 4, will be
defined later in this section.

Remark 5.1. We will fix o universally, which leads to universally defined § asin
the lemma. If we choose u, the parameter from (1.10), small depending on 5, then
Lemma 5.1 holds true for p near A3 from (1.10). Once this choice of u is made,
estimates from previous sections become universal.

Remark 5.2. With the definition of &,, we can write p = aouz + ajepvs +
2 2

Zlgef,v; + 513821) 1 with |a;| < 1. Such coordinates are more convenient for profiles
2 2
near u7.

2
In this section, we often write

p =aoui +ajevs —l—azezv; +a383v1,
2 2 2 2
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assuming implicitly that
1 . .
ap € [5,2] and |aj| < 1for j =1, 2,3 with & small.
Equivalently, in the basis {u%, w%, u)%, w%} from (2.16),
3. 4

p=aoui +ajews +&282w; +aze’wi.
2 2 2

[

Remark 5.3. By comparing with (1.7) and (1.8) we see that p = aou% + alev% +

are’v 3 + azev ! solves the thin obstacle problem if and only if

ap >0, ap >0, a3 =0, and

@\’ i fa2 ((_Laty 24a (73 wet)]
ap ap 5 ap 25ap \2 10 agp

If we assume only
2 2
1 axe
=0, a0 oy =0 ad (£) <42 (1o 125,
ap

and further that a; > 0, then p solves the thin obstacle problem outside a cone with
0(%)-opening near {r =0, x; > 0}, where Ap|(,,—o) might become positive.

The first half of this section is devoted to the proof of Lemma 5.1.

If the last possibility in Lemma 5.1 happens, then E; is not necessarily domi-
nating (see the paragraph before the statement of the lemma). In this case, we need
finer information of the solution using information from Appendix 6. This is carried
out in the second half of this section.

5.1. The extended profile pex:

Recall that (r, ) denotes the polar coordinate of the (x3, x3)-plane. For a small
universal constant > 0, we define two small spherical caps near S* N {r = 0}

C;E ={r <n, £x; >0}NS>%. (5.2)
In general, for small r¢ > 0, let
Coo = {r <ro, +x; >0}NS%

The cones generated by these caps are denoted by the same notations.
In this subsection, we focus on C;” . The other case is symmetric. As a result,
we often omit the superscript in C,;L

4 The coefficients are related by ag = ag — %&282, a) = %&1 — ga3et, ay =

%ﬁz, and a3 = %&3.
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Given a profile p = aou% + alav% + azezv% + a383v%, if we denote by v the
solution to the thin obstacle problem in C, with p as boundary data, then in general
we have [v — p| < C ¢7. This is not precise enough for later development.

The main task of this subsection is to show that we can find an extended profile,
Dext> SO that if we solve a similar problem with p.,; as boundary data, then the
error can be improved to O (86)-order. This p.y; will be an essential building block
for our replacement of p.

Throughout this subsection, we assume that

1
aoe[E,Z]; laj| <1for j=1,2,3; |bj| <A+ 1forj=1,2; ande < &.3)

where A is the universal constant from Proposition B.1, and ¢ is a small universal
constant.
Corresponding to these parameters, let us denote that

plao, ai, az, as; €] : = apu7 + ajevs + aze?vs +azevy, and
2 2 2 2

Dextlao, a1, az, az; by, by; €] : = plag, a1, az, az; €] + ble“v,% + bzesv,%.

5.4)
Recall the basis {u%, v%, v%, v%} from (2.15) and the functions vf%, v% from
(2.18).
Let v = v[ag, a1, az, az; by, by; €] denote the solution to
(Ag +A%)v50 in Cy,
v>0 inC, N{x3 =0}, (5.5)
(Ag2 +A%)v=0 inC, N (fv >0} U {x3 # 0}) ’

v = pexilao, a1, az, az; by, by; €] along 3C;).

The %—homogeneous extension of v is denoted by the same notation.

We often omit some of the parameters in p[...], pexs[...] and v[...] when
there is no ambiguity.

We begin with localization of the contact set of v.

Lemma 5.2. Assuming (5.3), we have that
lv—pl < Ce? inC,,
(Ag2 +)»%)v =0inCyN{r>Me}, andv=0inCyN{r > Me}
for universal constants C and M.
Here we are using the notations for slit domains from (2.10).

Proof. The key is to construct a barrier similar to the one in Step 2 from the proof
of Proposition B.1. We omit some details.
With the basis from (2.16), rewrite pey; as

Pext = flou% +Z118w% +6~1282w% +c~l383w% +b184v_% +b285v_%.
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By taking 7 large universally and (o, @) solving
- - 1. -
o] +apt =ap, anday + o 7 + anrz =day,
the function ¢ = apu7 + ajews + arews satisfies
2 2 2

U_r4(q) > pex: along 3C,

for e small. Recall the rotation operator U from (2.4). By taking 7 larger, if necessary,
it can be verified that ¢ solves the thin obstacle problem in R? (see Remark 5.3).
By the maximum principle, we have that

v < U_;(q) inCy. (5.6)
With g = 0 along ]ﬁé, we have that
v zoin@ﬂ{r > Me}.
Using again (5.6), we have that
v—p <U_re(q) — p < Ce? inCye.
With a similar argument, we can construct a lower barrier of the form
Ure(Gouy + prews + ,Bzezw%), which implies
(A2 +A%)v = Oin(f:, N{r > Mg},
and
v—p> —Cs% in Cpe.

Finally, we apply the maximum principle to v — p in C,\C s to get the desired
boundon v — p|. O

We now link the behavior of v near {r = 0} N S? to the problem studied in
Appendix 6. Before the precise statement, we introduce some notations.

For a function w : R — R, let us denote by 1, the following rescaling of its
restriction to the plane {x; = 1}

1
We 1 R? — R, and 0, (x2, x3) := —w(l, ex2, £x3). (5.7)
£2
For the solution v from (5.5), it follows that v, solves

Lev, <0 in Bg,,
0, >0 in B}eg,
Lev, =0 in B, N ({ve > 0} U {x3 # 0}),
Vg = (];ext)s on aBRp

(5.8)

where R, = and L, is the operator defined as

en/1-72’

35
Low = Agow + &°[x - (Dﬂézw x) —5x - Vgaw + Zw].
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Proposition 5.1. For {a;}, {b;}, ¢ satisfying (5.3), let v = vl]a;; bj; ] be the solu-
tion to (5.5).

Forag € [%, 2] and |a;f| <1 forj =1,2,3, let v* be the solution to (B.3) with
data p* = agu% +ajus + a;u% + a;‘u% at infinity.

Given R > 0, there is a modulus of continuity, wg, depending only on R, such
that

10e — v*llLooBr) < CUR(Z laj —ajl+e),
where Vg is defined in (5.7).

Proof. With the compactness of the region for (a;?), it suffices to find a modulus
of continuity for a fixed (a;f).
Suppose there is no such w, we find a sequence (a;’, b;?, &,) with g, — 0 and

a’;. — a;‘.‘ such that

10g, — v llLoeBg) = 8 > 0, (5.9)

)

where v" = v"[a"; b?; &n] asin (5.5).
With the bound on |v — p| from Lemma 5.2, we have, for a universal C,

2
- r .
|v;’n —[pn + 8,%(—a§‘—5 u3 +a§’r2u%)]| < CinBg, ,

where R, = —7— and
&
D =a6’u% +ajus +a’21u% +a§’u%.
3

Consequently, for any compact K C R?, there is a constant Cx depending only
on K, such that

92 — pul < C + Ckej in K if n is large.
With 9 solving (5.8), we have, up to a subsequence,

U7 — U locally uniformly in R?, (5.10)

with the limit 1+, solving the thin obstacle problem (1.1) in R2.
Now for any x € R2, we find a compact set K > x, then

oo — p*I(x) < limsup||uco — Uy, |(x) + Uy, — pal(xX) + [pn — p*[(X)]
< lim sup(C + CKSZ) <C.

With this, we have supp2 |use — p*| < +00, and by the uniqueness result in
Proposition B.1, we have us, = v*. This contradicts (5.9) and (5.10). O

If we apply Proposition 5.1 to the special case when a; = aj, we see that the

infinitesimal behavior of v near {r = 0} N S? is not affected by the coefficient b -
This allows the fixed argument in the following lemma:
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Lemma 5.3. Let a; satisfy ap € [%, 2land |aj| < 1for j =1,2,3, and A be the
universal constant from Proposition B.1.
We can find by and by with |bj| < A + 1 such that

v = pexilr,\c,p < CE°
where v = vlaj; bj; el and peyr = pexilaj; bj; €] are defined in (5.5) and (5.4),

and C is universal.
Moreover, there is a universal modulus of continuity, w, such that

2
|bj — ag - b} [a1/ao, az/ao. a3/agl| < w ()
forj =12
Recall the definition of bllgz [...] from Remark B.1.

Proof. With Lemma 5.2, we have that

(Ag2 + 1)V = pexr) =0 in C\Chse
U — Pext =0 on 8Cn U CUWM&

and |v — pext| < Cs% along dCps.. By Lemma A.1 with m = 2, to get the bound
on |v — pex|, it suffices to choose b; so that

1 3
[ (v — pext) - coS (—9) =0, and / (v — pext) - cos (—9) =0.
3CM5 2 aCMs 2

(5.11)

By a change of variable, we have that

1 9 2 2.9 N 5 1
(V= pext) -cos| =0 ) =¢e2(l — M~e7)* (Ve = (Pext)e) -cos | =0 |,
Cwme 2 0Bg, 2

(5.12)

where R, = —%_ and 9, and ( Pext)e are defined in (5.7).

T V1=M2%e2’

Now let us we define

p* =aour +aus +awusz +azui,
2 2 2 2
v™ is the solution to (B.3) with data p* at infinity,

2
Bj = ao - b} lai/ao, az/ao, a3 /ag]

and

Pt = D" +ﬂ1u_% + ,3214_%.
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Then we can compute the last term in (5.12) as

‘/i;BRg (Vg = (Pext)s) - cOS (%9) = /BBkg (U — v*) - cos (%9)
1 1
+/ G p:Xt) - €O <_9> +/ (p:xt — (Pext)e) - €OS <—9)
IBRe 2 3B, 2

With Corollary B.1, the second term vanishes. With Proposition 5.1 and R, < 2M
for & small, the first term is of order wy 7 (&) f 0Br cos(%@). We can use the definition

of pex; and p},, to continue

/ (Vg — (Pext)e) - COS (19) =/ cos (19) ~wpm (€)
3B, 2 9B, 2

1 1
+(B1 — bR * / cos? (—9) )
9B, 2

By adjusting b1, we can make the right-hand side 0. Moreover, this choice of b;
satisfies

by — Bi] < 2MZey(e), (5.13)

where w )y is the modulus of continuity from Proposition 5.1, and M is the constant
from Lemma 5.2.
In particular, for & small, we can find by satisfying [b;| < A+ 1 asin (5.3) such

that
1
/ (v — pext) - €OS (—9) =0.
AC e 2

A similar argument gives by satisfying |b2| < A + 1 such that

3
by — Bo| < CM2wrpm(e), (5.14)

3
/ (V — Pext) - cOS <—9> =0.
aCMs 2

Therefore, we have (5.11) and the bound on |v — p,y;| follows. The control on
|bj — Bl is a consequence of (5.13) and (5.14). O

and

With these, we finally define the extended profile
Definition 5.1. Corresponding to p = aou7 +a18v5 +are? v; +aze’ v1 withaj, &
satisfying (5.3), we define the extended proﬁle pex,, by
p+ bfe”’vf% + b2+85U7% in {x; > 0},
Pext = p+ bfs”'vf% + b2785v7% in {x; < 0},

where b;‘ are the coefficients from Lemma 5.3, and b; are given by a similar
procedure in C, .
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Remark 5.4. Corresponding to aj, €, we refer the coefficients bjt from Defini-
tion 5.1 by

+8% . 4. .+
bj [aj,s]._bj.

5.2. Boundary layer near Az and well-approximated solutions

In this section we construct the replacement of profiles near .43. It is illustrative
to compare this subsection with the construction from Subsection 4.1.
Given p = aot 1 +ajevs + azszv% + a383v%, satisfying (5.3), and the corre-
2

;,E as the solution to (5.5) in C;E.

If bj+ #= b; in Definition 5.1, the extended profile p.,; is discontinuous along
{x1 = 0}. To fix this issue, we make another replacement in the following layer

sponding p.y; as in Definition 5.1, we define v

Ly = {lx1] < n NS>

The cone generated by £, is denoted by the same notation.
In this layer, we solve

(Ag +Ahy =0 in L,
hp = Pext in 8[:,, U [:n.

Recall the notation for slit domains from (2.10).
With this, we define the replacement of p as:

Definition 5.2. For p satisfying (5.3), its replacement, p, is defined as
v;,t in Cni,
P=1hp in L,,

Dext 1n Sz\(c;:;: U £17)~

Equivalently, the replacement p is the minimizer of the energy

V> / |V§zv|2 — 702
s? 2
over
{v 1 v = pey: outside C,ﬂf ULy, andv>0on{x3=0}N C,,i}.
This replacement satisfies

(Mg +27)p = frpdH oz, + ffdellaci + gy dH | cxnpyzgy InSPU{r <),
=0 inS?N{r>n
(5.15)

Similarly to Subsection 4.1, we define some auxiliary functions.
The projection of fi , into H 1 (see (2.12)) is denoted by ¢, ,, namely,

@1,p:i=ciuz +csvs +c3v3 +civi, (5.16)
2 2 2 2 2 2 2 2
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where
1 / 1 1
€] = ——— uz - fi,pdH |y, andc, 1 = ————
2 luglieey Jeo2 ! " v, ley
1
. v . dH" |;
/Sz mit - SrpdH o,
form =0,1,2.

By Fredholm alternative, there is a unique function Hy , : S? — R satisfying
(Mg + A Hp = fi,pdH oz, =91, onS,
H =0 on S?.

Corresponding to these, we define

X 7 1 X 7
Dy pi=Hyp| — ) IxI2+ AT |x|2 log(|x|), (5.17)

x| |x|

which satisfies

5.18
®;,=0 on R3. ©-18)

{Acbl,p = fipdH?loz, nR3,
Let us denote that
k1,p = 1P, pllLes), (5.19)

which measures the size of the error coming from the gluing procedure along 9.£,,.
Similarly, corresponding to fz"”de1 |;9c,7+ + fzfdel Iacn— from (5.15), we
define

@2.p = ProjH% (f;,rdewac;f + fZTde”aC{)'
The function H j is the unique solution to
(A2 + A Hp p = szdelbc; + fzfdellacnf — ¢, onS?, and
H> , =0on s2.

Finally, we let

X 7 1 X 7
Dy, p = Hpp m |x]2 + §<P2,p m |x]2 log(|x]),
k2,p = P2, pllLo(B)), (5.20)
and
Kp :=Kip+K2p. (5.21)

The subscript p is often omitted when there is no ambiguity.
We estimate the change in p when p is modified.
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Lemma 5.4. Suppose that p = aou% + alsv% + azezv% + a383v% satisfies (5.3),
and that ¢ = agu7 + a1vs + V3 +a3v% satisfies || < 1.
Given small a > 0, we have, for C, > 0 big depending on a,

Ip+dq — (P +dq)l 2 < ad + Cus®
for small d, ¢ > 0.

Remark 5.5. It suffices to consider the case when d < g3 Incase d > &3, we
define ¢ = d% > ¢, and rewrite p = aot 7 + Zzlév% + ézézv% + &353v%. Then
|aj| < laj|. Consequently, conditions from (5.3) are satisfied if d is small enough.

Once the case for d < &3 is established, to deal with the case d > &3, we can
apply the conclusion to get an upper bound of the form ad + C,&° = ad + C,d>,

leading to the desired conclusion if we slightly decrease a and choose d small
enough.

Proof. We first focus on the estimate in {x; > 0}. In this region, suppose
Pext = P +b184v_% +b255v_%, and
(P +dq)ex = p+dg + pretv_s + prev_s.

Step 1: Estimate on |bj — B;|.
For rp > 0 to be chosen, with the same argument as in Lemma 5.3, we have

[P — Pext| + 1P +dq — (p +dq)ext] < Croe® in Cy\Cry, (5.22)

for a constant C,,, depending on ry.

Since p and p + dg both solve the thin obstacle problem (5.5) in C,, the max-
imum principle implies that the function r = ||p — p + dq||1=(s¢,) 1S increasing
for r € (0, ). With the previous estimate, this gives that

b1 = Br)etv_s + (b2 = e v_3 NI, < (b1 = pr)ev_s
1
+ (b2 = BE™v_3ll1=c,,) + Cre® + Crid
1
if ro < r1 < n. The last term is a consequence of the bound |g| < Crf inCy,.
With the orthogonality between v_ 1 and v_ 3 this implies
4 -1 s -3 4 -1 s -3
b1 — Bile®ry 2 + |b2 — Bale’ry 2 < Cllby — Bile™r, * + |by — Bale”r, *]
1
—i—Cme6 +Crid,

where C is universal. By choosing ry/rg >> 1, universally, we have that

1 3 1
by — Bile*ry > + |ba — Palery 2 < Crye® + Crid.

Step 2: Estimate in {x; > n}.



444 O. SaviN & H. Yu

With the final estimate from the previous step, we have that

1
|(Pext +dq) — (p +d@)ext| < Crye® + Crid in{x; > ON\C,.

With the maximum principle and (5.22), this gives that

- 1
p+dq — (P +dq)| < Crye® +CridinC,.

Meanwhile, p + dg = (p+dq)exs and p = pexs in {x1 > n}\C, by definition,
we conclude

- 1
lp+dqg —(p+dg) < Crosﬁ + Cridin{x; > n}.

Step 3: Conclusion.
With a symmetric argument, we have that

[ 1
Ip+dg — (Pp+dq)| < Crye®+ Cridin{x; < —n).
Using the maximum principle, we have that
[ 1
p+dq — (P+dq)| < Cre® + CridinS?,
1
From here, we choose r; small, depending on a such that C rl2 < a. Then we

choose ry < rq, which fixes the constant C,,. O

Lemma 5.4 leads to a control over the change in k1 , and k7 , from (5.19) and
(5.20) when p is modified. The proof is similar to the proof for Corollary 4.1 and
is omitted.

Corollary 5.1. With the same assumption and the same notation as in Lemma 5.4,
we have that

Kjpt+dg < Kjp +ad+Ca86f0rj =1,2.

Among the terms on the right-hand side of (5.15), the term f] has a significant
projection into H 7. While the similar result is not necessarily true for f2i, we can
2

show that f2i is small. This is the content of the following lemma.

Lemma 5.5. Suppose that p satisfies (5.3) and p.y: is as in Definition 5.1, then we
have that

—, 4 —
ekt < |bf — by le* + b — by |e% < Cllgill L)
and

Ky < Ce

for universal constants ¢ small and C large.
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Proof. With our convention for one-sided derivatives from (2.3), we have f; =
(P—Pext)vlyc,- By definition of p and the maximum principle, we have [p— pex| <
C(|b;r —by |84 + |b;‘ —by |7)in L,,. The upper bound on « follows from boundary
regularity of harmonic functions.

With Lemma 5.3, the bound on «; follows from a similar argument.

It remains to prove the lower bound for [|¢; || ;.00 (s2)-

For this let us define
_|P-p inSAC

Pext — P in C;:7t

Then for small ro > 0, we have that
1 et .
szIU%dH |3£n_v/82\(,’,io(A82 ~|—A%)q v%

= /SZ\C,iO(ASZ tA1q v —q- (Ag +2p)vy

:/ac%q'(v%)v_vé'%)-

With the definition of ¢ and orthogonality, we have that

2 2

fflvldHlm,,:st“/ [v_1(v1)y —v1(v_1)]
Sz 2 GC;B 2 2

+b;s4/ [ 1y — vl (5.23)
C* 2 2 2 2

0
By direct computation, we have that
lim v_1(v1)y =—A;=— lim vi(v_1),
2 2

ro—0 BCTJB 2 ro—0 3C;6 2

where A is a positive constant. Thus

f [o_ 1 (W1)y — 01 (01 )] = —24] as ro — 0.
+ 2 2 2 2

o

Now note that v; is odd with respect to the x1-variable and v_ 1 is even with respect

[N}

to the x -Variablze, we have that
[ty @pe = oy 240870 - 0
ac= 22 2 2
0
Consequently, sending o — 0 in (5.23), we have that
fz flv%dthwﬂ =2A1(b; —b)e".
S
A similar argument gives sz flv% dH'], c, = 2420, — b; )e> for a positive

constant Ay. The lower bound for [|@i [, ~s2) follows from these two equations
together with the definition in (5.16). O
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We now control the Weiss energy from (2.6) for the replacement p as follows:

Lemma 5.6. Suppose that p satisfies (5.3) and p is as in Definition 5.2. Then
Wi (i 1) < Ce°
for a universal C.

Proof. Similarly to Lemma 4.5, it suffices to prove the upper bound for the fol-
lowing quantity

f(wszmz—xzﬁ%:/ (Ve P1? = 2197 — (Ve pI* — A7 p?)
82 2 S2 2 2
2/ —(Ag +A27)p-(p—p) —f (Ag +A7)p-P—p)
S2 2 SQ 2

= —f i+t +eHP—p) —f (A2 +21)p-(p—p).
2 S2 2
(5.24)
For the second term, we note that (Ag + A %) p - (p — p) is supported in
{=Me < x2 < 0} N {x3 = 0} by Lemma 5.2. On this segment, we have (Ag> +
A ~r3+ert et + 6372, thus
2

I/ (Asz +27)p - (p— p)l
s? 2
_ £ s 30 o141 7
§C||p—p||Loo(Cni)- r24er2+er2+¢er 2<Ce" (525
0

since ||p — PHLOO(C;C) < Ce? by Lemma 5.2.

For sz (f1 + f;)(ﬁ — p) from (5.24), we notice that on the support of f;,
we have 7 = pex; and |pexs — p| = O(e*) by definition. With | f;| < Cs* from
Lemma 5.5, we have that

[+ @ pi=cet (5.26)

It remains to control — fSZ g - (p — p). To this end, we have that
—/ g -P—p) = —/ (Ag2 +27)(p —p) - (=p)
s? Cir 2

=/ (ﬁ—p)(ASz+xz>p—f @ =D p
cE 2 ack

n

+/ P=p)-p

n

S—/ i(ﬁ—p)v-p+/ci(ﬁ—p)-1vu+cg7

n 8’7
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= —/ (ﬁ—pexz)v~p—/ (Pext = Pv - P
acE aCE

n

+/ (P — Pext) - pv + / (Pext — P) - Py + C87
acik ac;

where we used (5.25) for the second to last line.
Note that (p — pext)y = 0% along 80,?[ by Lemma 5.5, this implies

—/ gi~(ﬁ—p)§—/ (pext_P)v‘P+/ (Pext — p) - pv + Ce.
s? e acE

n n
(5.27)
On the other hand, using orthogonality, we have that
_ oy — + 4 X 3
/(;CUi(pext P D /BC;E(bl € U,%)v asze U%
+Hbyev_3)y - aetvy = O(e)). (5.28)
Similarly,
/ (pext — P) - pv = O(&)). (5.29)
acE

Putting (5.28) and (5.29) into (5.27), we have that
—/ g (p—p) < Cs.
S2
Together with (5.24), (5.25) and (5.26), this implies the desired control. O

The following lemma explains the main reason why it is preferable to work
with p instead of p or pey:.

Lemma 5.7. Suppose that p satisfies (5.3). Let u be a solution to (1.1) in By, then

lu = PllLeBp) + lu = Pllurs,,) < Cllu = pliLis,) +Kp)

and

W u'l <C(lu—-7PpI? + 12 + &%)
5 52 = P L](B|) P .

Similarly to Definition 4.2, we define the class of well-approximated solutions
as follows:

Definition 5.3. Suppose that the coefficients of p satisfy (5.3).
For d, p € (0, 1], we say that u is a solution d-approximated by p at scale p if
u solves the thin obstacle problem (1.1) in B,, and

7.
lu —pl <dp?inB,.
In this case, we write

ueS(p,d,p).
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Similarly to Lemma 3.1 and Lemma 4.6, we can localize the contact set of
well-approximated solutions.

Lemma 5.8. Suppose that u € S(p, d, 1) with p satisfying (5.3) and d < &>.
We have that

Au:Oinl/ﬂﬂ{r>C8}, andu:Oingéﬂ{r>C8%}.

5.3. The trichotomy near A3

With all these preparations, we prove the trichotomy as stated in Lemma 5.1.
Steps similar to those in the proofs of Lemma 3.4 and Lemma 4.8 are omitted.

Proof of Lemma 5.1. For cq and pg to be chosen, depending on ¢, suppose that the
lemma fails, we find a sequence (u,, p,, d,) satisfying the assumptions from the
lemma with d, — 0 and ¢,, — 0, but none of the three possibilities happens,
namely,

W3 i 1) = W (s po) < c3d? for all n, (5.30)
1
un & S(p', Zdn» o) (5.31)
for any p’ satisfying the properties as in alternative (2) from the lemma, and

dy > & . (5.32)

A direct consequence of Lemma 5.5 is that
k2,p, < Cdy - €p, = dyo(l). (5.33)

With the same reasoning as in Remark 5.5, it suffices to consider the case when

3

<
d, =€y,

We omit the subscript in the remaining of the proof.

Define u = m(u — P + @1 + ), with the parameters and auxiliary
functions from Subsection 5.2. Similar to the proofs for Lemma 3.4 and Lemma 4.8,
foreachm =0, 1, 2, 3, we find an (m + %)-homogeneous harmonic function & mtd
such that

15
2

i = (hy +hy +hs +hD L1, = Cog +o(D). (5.34)

‘We also have that

11

Il 12 — 4l — (7h% + 3h% + h%)HLZ(aBpO) < Cpy +o(D).



Half-Space Solutions with 7/2 Frequency 449

Recall that f(1/2) denotes the rescaling of f as in (2.5). With the definitions of #,
@ and (5.30), this implies

1 X 7
_ — 2 [} — Oy | — (7Th 3h; h
Hd—i—/q s [Cwl <|x|> [x]2 + (D2)1,2) 2] ( 1 +3hs + %)

L2(8Bp,)

9
< Cpq (co + po) +o(1).

Now with (5.33), we have || ®3]| o (p,;) = d - 0(1). The previous estimate leads to

9
< Cpq (co + po) + o(1).

C X 7
Hiwl (—) IX|2 — (Thy +3hs +hs)
2 2 2 L2(3B,,)

d+K1+ K2 x|

From here, we apply orthogonality and Lemma 5.5 to conclude that
k1 < Cd(co + po + o(1)). (5.35)

Consequently,

13
2

@1l L1(B,,,) = Cdl(co+ po)pg [log pol +o(1)].
Putting this into (5.34), we have that
13
2

lu =P —(d+ K1 +x)hllLi(sy,) = Cdllco + po)py [log pol +o(D)].

With Lemma 5.4 and Lemma 5.7, if we take p’ = p + (d + «1 + Kz)h%, then

1
llu =P llee(s,,) < Cdl(co + po)pg I1og pol + o(1)].

Note that we used (5.32) to absorb the O (86) error from Lemma 5.4.
Choosing cg, po universally small and n large, we have that

1
ue S(p/a Zd’ PO)

With (5.35), we apply Corollary 5.1 with a = %a to get that
1 1
Ki,p < K1+ Zad + Cyed < Zad + Cd(co + po + o(1)).

Choosing now cp, po small, depending on o, we have k1, < %O’d , which implies
Ky <od

for large n by (5.33), contradicting (5.31). O
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5.4. Almost symmetric solutions

Based on Lemma 5.5, the term fid H' lac, from (5.15) has a significant pro-

jection into H 7. When k| > &>

this case, k7 is2 negligible, and the lower bound on the projection is what leads to
possibilities (1) and (2) in Lemma 5.1.

When k1 < &>, this argument no longer works. In this case, the extended profile
Pext from Definition 5.1 is ‘almost continuous’ long the big circle {x; = 0} N S?
since k1 ~ |191+ — by le* + |b§r — b;|85 by Lemma 5.5. This leads to information
about the profile by our analysis of the problem in R?.

, we can apply Lemma 5.5 to see that k1 > x2. In

Lemma 5.9. For a;, € satisfying (5.3), we set px; be as in Definition 5.1, b;—L asin
Remark 5.4, and p as in Definition 5.2.

Given any y > 0, we can find two small constants, o, and ¢, depending on
y, such that

if
e<epand b —by|+1b —b5le <oy e,
then
17 = Uze @l < ve (5.36)
for
q = aguy +djevs —l—aéezv% +a§83v%

satisfying

lay — ao| < Ce?, |a}| < C, |t| < C for a universal C,
and

dy > —y, lds| <y, and (a}/a})* < % -ahfay+y. (5.37)

Recall the rotation operator U from (2.4).
Compare with Remark 5.3, we see from (5.37) that g ‘almost solves’ the thin
obstacle problem up to an error of size y.

Proof. Let 5 > 0 be a small constant to be chosen, depending on y.
With Lemma 5.3, we have

‘b+_a0,b1§2 [‘L’ @ 13]
1

, —, < w(e), and
ap ap ao

_ 2| a a a3
by —ap - b [——,—,——

With our assumption on |bfr — b land ap € [%, 2], this implies

B |:a1 a a3j| sz[ ar a» a3]
1 T T, | T Y1 T Ty T s T T

ap aop 4o

< 4(w(e) + o).
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Similarly, we have that

ap ap aj

2 2 ay ap as
b%{ Ty T T +b£R T Ty T T
ap aop ag

The change of sign in front of bﬂfz is due to the odd symmetry of v_ 3 with respect
to {x; = 0}.

<4(w(e) +o0).

We perform a change of basis (see (2.16) and (2.19))

Pext = aOM% +-o bit84X{j:x1>0}v—% + b;:‘SSX{:I:xl>0}v—%

= flou% +L~118w% —I—Ezzazw% +5383w% —|—b1i84)({ixl>()}w_1

2
+ 5§E85X{:|:x1 >0jW_3.

With Corollary B.2, if ¢ and o are small, depending on §, then we find universally
bounded 7, o; and B; satisfying that

12
g — do| < Ce®, @y = =8, |es| <8, andef < —ar+8,  (5.38)

and

|Pext — U—ze(f)] < Cpyde® in {r > po} N {x1 > C|tle}, (5.39)

where pp > 0 is a small parameter to be chosen, and

f=oaour +ajews +O£282w§ +a353w1 +,31€4w_1 —i—,3255w_;.
2 2 2 2 2 2

If we take ¢ = apu7 + jews + arews + azedwi, and suppose
2 2 2 2
_ 4 5
Gext =q T YIEW_| + 7287w _3,

then p and U_;.(g) both solve (5.5) in C:—Ch\s' With (5.39) and

P—=U_2:(q) = (P — Pext) + (Pext — U_ze(f)) + (U_ze(f — gext))
+(U_ze(gexr — q)),

we can apply the same argument as in Step 1 from the proof for Lemma 5.4 to
conclude

ly1 — Bile* + 12 — Bale® < Cpy6°
if pg is fixed small enough.
With (5.39), this implies

|Pext — U—ze(qexs)| < Cppde’ in {r > po} N {x1 > C|t|e}.

An application of the maximum principle leads to

[P = U_1e(@)] < Cpyde” in {x1 > Clzle}.
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A similar argument gives [p—U_;.(q)| < Cp,é€” in {x1 < —C|t|e}. Together
with the estimate in {x; > C|t|e}, we can apply the maximum principle in £, to
get

1P —U_1e(@)| < Cpyde’ in S

Choosing é small, depending on y, we have (5.36). The constraint (5.37) follows
from (5.38). O

Remark 5.6. For ¢ = aju7 + ajsvs + aéezvz + a3e’v) as in the statement of
2 2
Lemma 5.9, if we assume

1

5>

24

then we can use the same argument as in Step 3 of the proof for Lemma 3.4 to find
tand a; with [7| = , a

O(y), and |a; — a}| = O(y) such that

5 + &2821)
2
satisfies

Glixs=0) = 0, Aglxs=0) <0

and
lg = Ure(@)| < Cye inf{r > n/2) N By
Moreover, if y and ¢ are universally small, then we have @, > 5; — O(y) > 0,
and
AN 2 ~ ) 7\ 2 /
1 a
()45 () oo
ag a; 5 a ag a
—11dj
< 2——, + Oy +¢)
2
< —(=—)"~.
< (24)
Note that we used a)

57 together with (5.37).

Consequently, ifa; > 0, then small perturbations from g solve the thin obstacle
problem outside a cone of O(g)-opening near {r = 0, x; > 0} (see Remark 5.3)
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5.5. One-sided replacement
For profile of the form ¢ as in Remark 5.6, that is,
p=aoui +ayevs + azszvg
2 2 2
with
! 2 >0 > ! d
€| =, 9 — Y, = —, an
aop 2 ap a oy a
2 2 2
1 1
) a2 (-2 )< (=) . (5.40)
ao ap 5 ap 24

we only need to replace it in a small spherical cap near {r = 0, x; > 0}.
To this end, we solve in Cj from (5.2) the following:

(Ag +X%)vp <0 inC;,

in Ot —
v, >0 ?n C,7 N {x3 = 0}, (5.41)
(Ag +A%)vp =0 inClN(fvp >0} U{x3 #0}),
vp=p along aC,".
With this, we define the replacement of p as
Definition 5.4. For p satisfying (5.40), its replacement, p, is defined as
. Jvp in C;]",
P=1p imshcr
Equivalently, the replacement p is the minimizer of the energy
V> / |VSzv|2 — kzvz
52 2
over {v: v = p outside CI, and v > 0 on {x3 = 0}}.
This replacement satisfies
~ 1 1 -,
(As2 ~|—)\%)p = fpdH |ac,7+ +gpdH |C;’m{x3:0} 1nS~2 UC;F, (5.42)

Similar to Subsection 4.1, we define some auxiliary functions.
The projection of f), into H 1 (see (2.12)) is denoted by ¢,,.

The function H), : S? — R is the unique solution to

(Ag2 + A7) H)p = fde1|3C;r —¢p onS?,
H,=0 on S2.
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Corresponding to these, we define

) —Hlp(ﬁ)l x|3 + <p1p(ﬂ)IXI210g(IXI)

which satisfies
A, = frdH?|ycr in R,
®,=0 on R3.
Finally, let us denote
kp = PpllLecsy-

With a similar argument as to that in Subsection 4.1, we have the following
properties:

Lemma 5.10. For p satisfying (5.40), we have that
p=0in(Cy\CE)
where C is a universal constant.

Lemma 5.11. Suppose that p satisfies (5.40), and take g = oo +a1v% +a2v% +
a3vy with |oj| < 1.
Then we can find a modulus of continuity, w(-), such that

Ip+dg — (p+dg)l o) < o +d) -d.
Corollary 5.2. Under the same assumption as in Lemma 5.11, we have that
Kp+dg < kp +w(e+d)-d.
By directly computing the inner product of f and v 1, we have that
Lemma 5.12. Suppose that p satisfies (5.40). Then
lollpoo(s2) = ek
for a universal ¢ > 0.

Note that p > 0 in C,‘;‘ N {x3 = 0}, thus p is admissible in the minimization
problem in Definition 5.4, we have

Lemma 5.13. Suppose that p satisfies (5.40), then W% (p; 1) <0.
This implies

Lemma 5.14. Suppose that p satisfies (5.40). Let u be a solution to (1.1) in By,
then

lu — pliLeos, ) + llu — ﬁ”Hl(Bl/z) < C(lu—pllprg,) +«)

and

1 ~12 2
W3 2) < Clu =l gy, + 1.
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Similarly to Subsection 4.2, we have that

Definition 5.5. Suppose that the coefficients of p satisfy (5.40).
Ford, p € (0, 1], we say that u is a solution d-approximated by p at scale p if
u solves the thin obstacle problem (1.1) in B, and

;
lu— p| <dp?in B,.
In this case, we write
ueS(p,d,p).

We can localize the contact set of well-approximated solutions

Lemma 5.15. Suppose thatu € S(p, d, 1) with d small, and that p satisfies (5.40).
We have that

Au:OinE\lﬁ{r > Cd%},
and
u:OinfBV% N{r> C(d+ &)}
for universal small o > 0 and big C > 0.

With these preparations, we have the following dichotomy similar to the one in
Subsection 4.3:

Lemma 5.16. Suppose that
ueS(p,d,1)

for some p = aot 7 + arsvs + azszv% satisfying (5.40).

There is a universal small constant € > 0, such that if e < & and d < &3, then
we have the following dichotomy:

1. either
Wy (s 1) = Wy us po) = cgd?
and
u€S(p,Cd, po);
2. or
, 1
u e S(P ) §d7 /00)
for some

p = Um[a{)u% + aisv% + aéezv%]
with ky < d, and

lag — aol < Cd. |t| +|aj —ai| + lay — az| < Cd /e,
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The constants co, po and C are universal.

Proof. For cp and pg to be chosen, suppose the lemma is false, we find a sequence
(Un, pn, dn, €,) satisfying the hypothesis of the lemma with d,,, &, — 0, but neither
of the two alternatives happens.

This allows us to find

q=0p +d(aou% +aws +ows +a3w%)

such that

13
2

e =Gl L1, < Cdpy [(co + po)l1og pol + o(1)]. (5.43)
With ap > 21—4 as in (5.40), there are T and a} satisfying
ap = ap +deg, |t| < Cd/e’, and |} —aj| < Cd/e’ for j = 1,2
such that
2 2.4
lg — U,w(a(’)u% ~|—a{8v% + dye v%)HLoo(Sz\Cni/z) < Crte” < Ced.

Note that we used our assumption that d < &3 for the last comparison. If we
denote by p’ = agyu 1 +ajev 3 + a§82v 3 then the maximum principle gives ||g —
P'll e (s2) < Ced. Together with (5.43), we get that

13
2

lu = 51l (8, = Cdrg [(co + po)llog pol + o(D)].

From here the remaining of the argument is similar to the proof of Lemma 4.8. O

6. Proof of Main Results

In this section, we prove our main results, Theorem 1.1, Theorem 1.2 and
Theorem 1.3.
We begin with some preparatory propositions.

Proposition 6.1. For a solution u to the thin obstacle problem (1.1) in By C R3,
suppose that its frequency at 0 is % and that

lu—u7| <din B;.
2
There is a small universal d > 0, such that ifd < d, then up to a normalization
1. either

u—uzl = 0| log|x|| ™),
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2. or
i — pl < O(x|FF0)
for some p € f]\{u%}.
Here ¢y > 0 is universal.

Recall the notion of normalization from Remark 1.1. The family of normalized
solutions, 1, is given in (1.7).

Proof. The proof is based on iterations of the trichotomy in Lemma 5.1 and the
dichotomy in Lemma 5.16.

To begin with, let y denote a small universal constant to be chosen, and let o,
denote the constant from Lemma 5.9 corresponding to this . Choose o such that
o/oy, < 1. This choice of o fixes 5, co and pg as in the statement of Lemma 5.1.

Step 1: Initiation.

For u satisfying the conditions in the proposition, let

uo = u(1/2), po:i= u%, do :=d, and wy = W%(u(); 1).

Recall the notation for rescaling from (2.5), and the Weiss energy functional from
(2.6).

Let ¢, be asin (5.1), then ¢, = 0. According to definitions in Subsection 5.2,
we have

Kpy =0,
and
ug € S(po, do, 1).

Consequently, if d is small, then dp < $and e o < $ asin Lemma 5.1. Moreover,
by Lemma 5.7, we have

wy < Cd3. (6.1)

Step 2: Induction.

Suppose for k = 0,...,n - 1, we have found (ux, pk, dx) such that u; €
S(pk,dy, 1), ep, < 8 and dy < 5. We can apply the trichotomy in Lemma 5.1 to
Up—_1.

If possibility (1) happens, we let
Pn = pn—1, and d,, = Cdp_1.
If possibility (2) happens, we let
, 1
pni=p, andd, = —d, 1.
2
In both cases, we let

U = (Un—1)(pg)> and wy := W1 (up; 1).
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We claim that until possibility (3) happens, Lemma 5.1 remains applicable. To
be precise, we have
5
p}l ’
and dy < & forall k < n. (6.2)

6/5

Claim: Until d, < ¢, , we have k), < di, wi < Cdk ,

To see this claim, we first notice that all three comparisons are true when k = 0.
It suffices to show that they stay true in the iteration.

Note that each time possibility (1) happens, k, = «p,_, and dy > dj—1. Each
time possibility (2) happens, we have k, < odi—1 = 20d). We see thatif o < %,
then the comparison between «, and d stays true.

With this, we can apply Lemma 5.7 to see that

wp < C(d?_, + Kf,k_l + gf,k_l) <C(d |+ sf,k_l).

With d;,_1 > sf,k_], we have that

wy < CdY% < cd?.

It remains to see the comparison between dj and 8. Note that dj decreases if
possibility (2) happens, thus we only need to prove the comparison when possibility
(1) happens. In this case, using Lemma 2.1 and our assumption that 0 is a point
with frequency %, we have that

wo > Wi—1 — W > c(%d,z_l.
With (6.1), this implies that
dy = Cdy_1 < Cdy < Cd.

Consequently, di stays below § if d is chosen small.

In summary, the claim (6.2) holds.

From here we see that until d,, < ef,n, the double sequence (wy, di) satisfies
the conditions in Lemma 2.2 with y = % In particular, if d is chosen small, then
> d is small.

Recall that the deviation in the coefficients of py is comparable to > d, and
that po = u I If we denote

Pk =a(]§u% —l—a]l‘v% —i—alz‘v% +a]3‘v%,

then a'é stays in [%, 2]. By choosing d smaller if necessary, we ensure that ¢, , as
defined in (5.1), stays below 5.

Therefore, until d,, < sgn, the conditions in Lemma 5.1 are satisfied, and we
can iterate this lemma to continue the sequence (u,, pn, dy).

In particular, if d,, stays above sf,n indefinitely, we can apply the same argument
in Section 5 of [18] to conclude

ju = uz] = O(x|?|log ||| )
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up to a normalization.
We now analyze the case when d,, drops below &>

pn’
Step 3: Adjustment when d,, < egn.

Suppose this happens for the first time at step n in the iteration, then possibility
(2) from Lemma 5.1 happens at this step. In particular, we have

1
dy, = Ednfl, Kp, = ody—1 < 20d,,

and
_ 1
lun — PyllLoeBy) < Zdn—l-

As a result, we have that

5 5
8[71171 S dn_l 5 28[771

Also note that in this case, the coefficients of p, deviates from those of p,_1 by
O(dy—1), the definition of &), in (5.1) gives

2/5

e <& +Cd5 <di(1+Cd) < 2dy-y 6.3)

if d is small.
If we denote by

+, +,
Pn,ext = Pn + b] ng;n X{ix1>0}v_% + bz ng?)n X{ix|>0}v_%,
where the coefficients b]# are from Remark 5.4, then Lemma 5.5 gives

+.n —n 4 +.n —n .5 5 5
b7 — b, |8pn + by, — Db, |8[7n < Ckp, <Cody—1 < Caspn <oyey,

by our choice of 0/0), < 1 before Step 1.
This allows us to apply Lemma 5.9, leading to

qg= a0u7 +a1£,,nv5 +a28[2, v3 +a§83 v1 (6.4)

such that

1P = Ure,,, @) < e, - (6.5)

Depending on the size of a}, we divide the discussion into two cases.
Step 4: The case when a)y, < 16 each time the adjustment in Step 3 is made.
In this case, we define p,’1 = ¢, then up to a rotation, we have

lun = Py llLoosy) < dn 1+ye, < —dn 1+ 2ydp—1 < 2dn 1

4 — 4
if y is small. Note that we used (6.3) and (6.5).
In particular, with d,, = %dn,l we still have that

un € S(p,dn, 1).
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Meanwhile, in this case, Lemma 5.9 gives that

P < gty < ldh) < =, and |)] <y
I =252 —4 "' =16 =
By (6.4) and (5.1), we have that
817;, S zgpn'

Consequently, if a} < % each time the adjustment happens, after this adjust-

ment, we have that

1 I s
dp = 5dn71 > ZEIM

and the induction in Step 2 can be continued, leading to

5
>
- 851’7/1 ’

ju = uz] = O(x|?|log ||| )

with the argument in Section 5 of [18] .
Step 5: The case when a)y, > 11_6 at one time the adjustment in Step 3 is made.

Suppose after the adjustment described in Step 3, we have that
q= af)u% + aispnv% + aésinv% + aésinv%
with a > .
In this case, with the reasoning in Remark 5.6, we find a solution to the thin
obstacle problem g such that
g — Use,, (@)] < Cye;, in{r > 5/2}N By. (6.6)
With (6.5), (6.6), and d,, < 8;’1, we have, up to a rotation
lun — g| < Cye,, in By.
From here, we fix the parameter € by
€= Epns
and relabeling our sequence
uo :=u,, po:=4q, anddy := C)/83.
Then
ug € S(po, do, 1),

where the class S is defined in Definition 5.5. Moreover, with pg solving the thin
obstacle problem, we can apply Lemma 5.14 to get that

wo := W(ug: 1) < Cdg < Cy?e®, (6.7)
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If d is chosen small enough, then ¢ < & from Lemma 5.16. Similar to Step 2,
we apply Lemma 5.16 iteratively and obtain a sequence (u,,, py, d,) with
un € S(pn, dn, 1).
Note that if alternative (1) in Lemma 5.16 happens, we apply (6.7) to get that
cgd? < wy—1 —w, < wp < Cy?e.

With a similar argument for comparison between d and § in claim (6.2), this implies
that

d, < C)/e3 for all n.

With a similar argument for comparison between x and d in claim (6.2), we
have that

Kp, < dy forall n.
Consequently, with Lemma 5.14, we have that
w = Wy uni 1) < cd?.

Therefore, the double sequence (w,, d,) satisfies the condition in Lemma 2.2 for
y = 1, and we have that

D dn = Cldg +wo)'/? < Cye’.

In particular, the deviation for coefficients of p, is of order Cy. Consequently,
if y is universally small, the conditions on the coefficients from Lemma 5.16 are
satisfied, and Lemma 5.16 can be applied indefinitely. With the same argument in
Section 5 of [18], we conclude that

,
lu — p| < O(|x|2+0)
up to a normalization for some p € Fi\{u 1 }. O

With a similar argument, we can apply Lemma 3.4 and Lemma 4.9 to establish
the following:

Proposition 6.2. For a solution u to the thin obstacle problem (1.1) in By C R3,
suppose that its frequency at 0 is %, and that

lu—pl<dinB;

for some p € Fiand |p —uz| > %c? where d is the universal constant from
2

Proposition 6.1. B B
There is a small universal d > 0, such that ifd < d, then up to a normalization

7
lu—p'| < O(x|2F)

for some p' € fl\{u%}.
Here ¢y > 0 is universal.
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With these two propositions in hand, we sketch the proofs for the main results.

Proof of Theorem 1.1. For a %-homogeneous solution u as in Theorem 1.1, we

see that if d < min{d, d} with d and d from Proposition 6.1 and Proposition 6.2
respectively, then

lu — p| = o(|x|?) as x — 0

for some p € Fi.
From here the homogeneity of u leadstou = p. O

Proof of Theorem 1.2. Suppose that p € F7 is a blow-up profile of u at 0. Then up
to a rescaling we have that

lu — p| < min{d, d} in B;
for d and d from Proposition 6.1 and Proposition 6.2, which leads to

lu—p'| = o(lx|?) as x — 0

for some p’ € F} up to a normalization.
However, with p being a blow-up profile, this forces p’ = p. From here we
either apply Proposition 6.1 or Proposition 6.2 to get the desired rate of convergence.
]

With this rate of convergence, the stratification in Theorem 1.3 follows from
the Whitney extension lemma; see, for instance, [4, 13]. We sketch the proof for the
more precise Remark 1.3:

Proof of Remark 1.3. Case 1: the solution blows up to u; at 0.

With the rate of convergence in Theorem 1.2 and Lemma 5.8, we see that in
a ball of radius r, the free boundary dp.—1 A(u) is trapped between two parallel
lines with distance r|log(r)|~. This is the desired C'1°2-regularity of the free
boundary at a point where u 7 is the blow-up profile.

Case 2: the solution blowzzs uptop € fl\{u%} at 0.

Now suppose p € Fi \{u%} is a blow-up profile at 0, we need to find p > 0
such that A% (u) N B, = {0}. If the conditions p|{x;—0} > 0 and Ap|(;—oy < O are
not degenerate, the conclusion follows from a standard blow-up argument.

We give the proof when p = py., the doubly critical profile from (4.4).
Suppose, on the contrary, that there is a sequence x; € A% (u) — 0. With the

notation from (2.5), we define

Uf 2= U(|xy])-

With the Holder rate of convergence from Theorem 1.2 and Lemma 4.6, we have
that xy /|xx| converges to the two rays of degeneracies R* from (4.1) or {r = 0}.
On the other hand, for py., points on RTU {r = 0} have frequencies in {1, % 2},

all bounded away from % This implies that x /|xx| has frequency bounded away
from % a contradiction. 0O
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Appendix A. Fourier expansion in spherical caps

In this appendix, we study the decay of a harmonic function in a slit domain near
the boundary of a spherical cap if some of its Fourier coefficients vanish along a
smaller cap.

Recall that we use (x1, r, #) as the coordinate system for R3, where r > 0 and
0 € (—m, ] are the polar coordinates for the (x2, x3)-plane. For small 7o > 0, the
ro-spherical cap is defined as

Cry i =1{r <ro, x1 >0} Nns2.
The main result of this appendix is

Lemma A.1. For two small parameters 1, with ¢ <K 1, suppose that v is a
bounded solution to

(Mg +27)v =0 inCy\Ce,
v=20 on BC,]UC,REE.

Ifwe have, forn =0,1,...,m — 1,

/ v - cos((n + %)9) =0,

aC;

then

1
sup |v| < C™Me™T7 . sup |v|
Cy\Cy)2 9Ce

for a constant C depending only on 1.

Recall the notations for slit domains and homogeneous harmonic functions in slit
domains from (2.10) and (2.13).

Proof. With the functions from (2.17), we define, forn =0, 1, ...,

. +4-2k 2k
fax1,7,0) = U_ (gl Z aixy r
O<k<k*
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where k* satisfies (n — 2k* +4)(n — 2k* +3) =0, a9 = 1, and
ar(n =2k +4)(n — 2k + 3) = ap+1(2n — 2k — )2k + 2). (A.1)

It is elementary to verify that f,, is %—homogeneous and harmonic in R3.
By the iterative relation (A.1), we can find a universal large constant M such that

lax| < M" fork =0,1,...,k*.
As aresult, by taking M larger if necessary, we have that
| ful <"1+ P2 M"]in C,.

On the other hand, we have f,(x1,r, 0) > r’”’%[l — r>M"] in C,, which gives
that

1
fulxr,e,0) > 58—"—%

if ¢ is small and n < 5. For n > 6, the same comparison follows directly from the
fact that a > O for all k if n > 6.
Consequently, the ratio f,(r, 0)/f, (e, 0) satisfies that

1
Jule,0)/f(2, 0) = cos((n + 5)0)
and
| fu(r, 6)/ fu(e, 0)] < &"F2r "3 M" inC,

by choosing M larger if necessary.
For each n, let ¢, denote the solution to

(Ag +47)gn =0 i Cy\Ce,
@y = cos((n + %)9) along dC,,
o, =0 along 9C; U C,;Tcg.

With the maximum principle, we have that

n 19 = —N—= .
— ;E: O;|§8n+én n %Mn lncn\ca

[
which implies that
lgn| < Ce"F2r72 M" in C,;\Ce.

Now with {cos((n + %)6)} being a basis for L2(3C,), for v as in the statement of
the lemma, we can write v = Y _ ¢,,¢,,, where

B facg v-cos((n + %)9)
B facs cos2((n + %)9) '

n
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For r > n/2, this implies that

i 1/2

1
lu(r, 0)] = (Zcﬁ)z Z on(r, )] < csup|v| Z g2n+1 g2

cn#0 cn#0

for a constant C depending on 7.
With our assumption on v, we have ¢, = 0 for n < m — 1. The conclusion follows
by observing that

Appendix B. The thin obstacle problem in R?

. 7 . .
Our treatment of solutions near u7 = r2 cos(%@) relies on a fine analysis of the
2

thin obstacle problem in tiny spherical caps around S? N {r = 0}. In the limit,
this problem leads to the thin obstacle problem in R? with prescribed expansion at
infinity.

In this section, we use (r, ) to denote the polar coordinates of R2 = {(x1, x2)}.
The notations for slit domains from (2.9) and (2.10) carry over with straightforward
modifications. We will also take advantage of the functions from (1.6) and (2.17).
Similarly to the functions in (2.16), in this appendix, we denote the derivatives of
ug by the following:

0 0 0
= —u7, W3 = —wWs, andw1 = —w3

ws : 3
2 dxp 2 2 dx; 2 0x) 2

The following two derivatives are singular near {r = 0}:
= —w_1. (B.1)

Letp =u7 +ajus +aus +azu1 =u7 +ajws +aws +aszwi, then p solves
2 2 2 2 2 2 2 2

the thin obstacle problem in R? if and only if

84 12
a>>0, a3=0, and a%fgaz; equivalently, a» >0, a3=0, and &%5?&2.

(B.2)

5 The two bases {uz,us,uz,u1}and {u7,ws,ws, w:} are related by
2 2 2 2 2 2 2

[N
[N]
N
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For t € R, the translation operator Uy is defined by its action on points, sets, and
functions in the following manner:

Ur(xr,x2) = (1 +7,x2), U(E)={x:U_rx€E}, U(/HHx)=fU_rx).

In this appendix, for p = u7 + ajus + arus + azu, we study solutions to the
2 2 2 2

thin obstacle problem in R? with data p at infinity:

u solves (1.1) in R2,

(B.3)
supp2 [u — p| < 4-00.

The starting point is the following proposition:

Proposition B.1. For |a;| < 1, there is a unique solution to (B.3).
For this solution, there is a universal constant A > O such that

suplu — p| < A; Au=0in {r/>\A}; andu =0in {r ;A}.
R2

Moreover, we can find by, by satisfying |bj| < A such that
lu —(p + bluf% + b2u7%)| < Alxl_zuf%forallx e R%.
Recall the harmonic functions with negative homogeneities from (2.17).

Remark B.1. For simplicity, we will denote the coefficients b; by bg-{{z lay, ap, as]
or simply b;[a1, az, az] when there is no ambiguity.

Proof. Step 1: Uniqueness.
Suppose that u; and u5 are two solutions to (1.1) in R? with sup luj — pl < +o0.
With a similar argument as in Lemma 3.1, we find R > 0 such that

Auj=0in{r> R}, andu; = 0in {r > R}.

Letw(x) := (uq —uz)(sz/|x|2) be the Kelvin transform gf\(ul —up) with respect
to d Bg. Then w is a harmonic function in the slit domain By, as defined in (2.11).
Applying Theorem 2.1, we have that |w| < Cu 1 in Bg, which implies that

luy —uz| < Cu_1 in R2.
2

From here we have 1 = us bythe maximum principle.
Step 2: A barrier function.
Rewrite p in the basis {#7, ws, w3, wi}tas p =u7 +ajws + aws + azwi.
2 2 2
For v > 0 to be chosen, if we let (o1, a2) denote the solution to
2 ~

1
oy +1=ad, andaz—i—alf—i—Er =ay,

and define

qg=ur +ojws +ows,

2 2 2
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then Taylor’s Theorem gives that

D=

U_(g)—p= lrg—ldlrz—i—dzt ui —Cttu
o —\6 2 2 -3

Choosing t large universally,
U_:(q)—p=0on{r= A}

for a universal large A.

By choosing 7 larger, if necessary, it is elementary to verify that (o1, o) satisfies
condition (B.2), and consequently, Q := U_; g solves the thin obstacle problem
in R2.

Step 3: Existence, universal boundedness, and localization of contact set.

For large n € N, let u,, be the solution to the thin obstacle problem (1.1) in B,, with
u, = p along 0B,

By the maximum principle, we have that

u, > pin B,, andu, < Q in B, (B.4)

if n is large. Consequently, this family {u, } is locally uniformly bounded. Therefore,
we can extract a subsequence converging to some i locally uniformly on R?. This
limit 1, solves the thin obstacle problem in R2.

With (B.4), wehave u, =0in B,N{x; < —A,x» =0}andu, > 1in B, N{x; >
A, xp = 0} for a universal A > 0. Thus we have that

Alioo = 0in {r > A}; and uso = Oin {r > A}.

Along {r = A}, wehave 0 < uso — p < Q — p < C. Thus the maximum principle,
applied in the domain{r > A}, gives that

luoo — pl = C

for auniversal constant C.. In particular, u  is the unique solution to (B.3), according
to Step 1.

Step 4: Finer expansion.

Let w(x) :== (u — p)(Azx/|x|2) be the Kelvin transform of (u — p) with respect
to d B4. Results from the previous step implies that w is a harmonic function in the
slit domain B4. An application of Theorem 2.1 gives universally bounded b; and
b, such that

w — (bruy +bou3)| < ClxPuy in By.
Inverting the Kelvin transform, we have that
lu = (p+bru_y +bu_3)| < Cla|u_y inR%.
O

For the solution from the previous proposition, we have precise information on its
first two Fourier coefficients along big circles.
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Corollary B.1. With the same assumptions and notations from Proposition B.1, we

have that
1
/ [u—(p+biu_1 +bou_3)]-cos <—0> =0
9B 2 2 2
and
3
/ [u—(p+biu_1 +bu_3)]-cos| -6 ) =0
dBR 2 2 2
forallR > A.

Proof. For simplicity, let us denote that
Pexi '=p+bu_y +bu_s.
With Proposition B.1, we have A(u — pex;) = Oin {r’>\A}, and u — peyr =
Oin{r > A}.
For R > A, define v := (r% — Rr_%)cos(%e). Then
Av=0in 11/%\2 and v = 0 along {r;O}.

With these properties, we have, for L > R, that
0= / (U — pext) - Av — AU — pext)
Br\BR

'U:/ (U = pext)v v — (U — Pext) - Vy.
9(BL\BR)

5 1 !
Along 3BL,Weha\l/eIM—Pexz| = O(L72), |(u—pext)v| = O(L72),[v| = O(L2)
and |v,| = O(L™2), thus

/ (U = Pext)y - v — (1 = pexs) - vy = O(L™).
0By,

Along dBg, we have v = 0 and v, = —R_% cos(%@). Combining all of these, we
have that

/ (U — Pext) -COS(EQ) = O(R%Liz).
9Bg 2

Sending L — oo gives the first conclusion. The second follows from a similar
argument. 0O

The following lemma is one of the main reasons for the restriction to 3d in the main
part of this work:
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Lemma B.1. Given functions

p=u7+taus+auz +azui, andq =ui —ajus +axuz —azuy

2 2 2 2 2 2 2 2
with |aj| < 1, suppose that u and v are solutions to (B.3) with p and q as data at
infinity, respectively.
Assumebilay, a2, a3] = bi[—ay, az, —azland bs|ay, az, a3] = —b2[—ay, az, —az],
then we can find universally bounded constants o1, oz and T such that
U= U,(u% +ajus ~|—052u%), and v = U,r(u% —aUs —i—(xzu%).
2 2

Recall the definition of b;’s from Remark B.1.

Proof. Step I1: Two auxiliary polynomials.
For simplicity, let us define b; = bj[a1, a2, a3] for j =1, 2, and

Pexi = ptbuu_y +bou_3, and gexs 1= q +biu_| —bou_s.
With Proposition B.1, we have that
Ut = Pexel + [V = Gext| < Alx| 3 in B2,
which implies that
Vit = V pest] + V0 = Vx| < Clx| 73 for x| = 1. (B.5)

. . . . . 7
Since u is an entire solution to the thin obstacle problem of order O(|x|2) at
infinity, we see that (0y,u — i 8x2u)2 is a polynomial of degree 5. Meanwhile, a
direct computation gives that

5
(O Pext — i0xy pext)” = P(x1 +ix2) + Y Ri(x1 +ix2),
k=1

where P is a polynomial of degree 5, and Ry is a (—k)-homogeneous rational
function fork =1,2,...,5.
With (B.5), it follows that

(3g,u — idy,u)? =P in R%.
If we define
P(1) := Re(dy,u — idy,u) (1, 0) = [0y, u)> — (dr,u)?1(z, 0) = Re P(r),

then P is a real polynomial of degree 5.
Similarly, corresponding to v and g, we have that

5

(axchext - iaxzq“t)z = Q(xl +ixp) + Zsk(xl +ixp),
k=1



470 O. SaviN & H. Yu

Q
&/ NS /\ , <
v /;/\f' A Y MK

Fig. 4. P and Q along the x{-axis

where Q is a polynomial of degree 5, and Sy is a (—k)-homogeneous rational
function fork = 1, 2, ..., 5. Moreover, we have that

O(1) := Re(dy, v — i35, 0) (1, 0) = [(3x,v)? — (3, v)?1(t, 0) = Re Q(r),

also a real polynomial of degree 5.
With bilai, az, a3] = bi[—ai, a2, —az] and bslay, az, az] = —ba[—ay, az, —az],
a direct computation gives that

P(1) = =Q(=0). (B.6)

Step 2: Half-space solutions.

With (B.6), we show that up to a translation, # must be a half-space solution. Since
u=0in{r ;A} according to Proposition B.1, it suffices to show that spt(Au) has
only one component.

Suppose, on the contrary, that

(—00,alU[b, +00) D spt(Au) D (—oo,a]U[b, c] withdb > a,

Note that the second component has to terminate in finite length since Au = 0 in
(r> Al

On (—o0, a] U [b, ], we have d,,u = 0. Thus P(t) = —(dy,u)> < Ofort €
(=00, a] U [b, c]. On the contrary, on (a, b), dx,u = 0 and P(t) = (axlu)2 > 0.
Moreover, since u(a) = u(b) = 0and u > 0 on (a, b), we must have oy, u(d) =0
at some point d € (a, b). Thus P(d) = 0. Note that d is a root of multiplicity at
least 2. Together with the roots a, b, c, this implies that P cannot have other roots;
see Fig. 4.

With the symmetry described in (B.6), if we let ¥’ = —b and ¢/ = —c, then
Q) = Q(c’) = 0 while Q > 0 on (¥, ¢). This implies that v > 0 on (¥', ¢'),
while v(b") = v(¢’) = 0. However, this implies that 9y, v must vanish at some point
on (b, ¢’), and so does Q. This is a contradiction.

As a result, spt(Au) must be a half line. A similar result holds for spt(Av). With
(B.6), we see that if spt(Au) = (—o0, a], then spt(Av) = (—o0, —al.

Step 4: Conclusion.

After the previous step, we can apply Theorem 2.1 to get that

U_ju=aus +oajus +oous +ajui.
2 2 2 - 2
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‘We must have ag = 0 by (B.2). With |u — (u% + alu% + azu%)| being bounded in
R2, we conclude a, = 1. Therefore,
U u=u7; +ojus +ayus.
2 2 2
Similarly, we have that
Ugv=uz + Brus + pous.
2 2 2

From here, we use (B.6) to conclude oy = B; and a; = —f. The conclusion
follows. 0O

A perturbation of the previous lemma leads to the following corollary (recall nota-
tions from (B.1) and Remark B.1):

Corollary B.2. Given p = u74aus+ayus+azu1 = ui+ajws+ayws +azwi
2 2 2 2 2 2 2 2
with |aj| < 1, we set

bj+ =bjlar, a2, a3], b; :==bj[—ar, a2, a3l for j = 1,2,
and

Pext = p"_b?_u,l +b;—u,

2

=p+5fw7%+15;w;.

3
2

[SI[%)

Then there is a universal modulus of continuity, w, such that

_ _ 1, 1
la; — (a1 +7)| + a3 — ot + —ogt° + =1

. 1
a — <a2+a1‘[ + ET2>‘ +

2 6
~ I, 1 5 14 ~ I 5 1 4 1 5
+ b?_ — <§(X2f + galf + ﬁf + b;— — 80[2'{ + ﬂﬂ{]f + mf
< w(bf — by |+1b3 + b5 )
Sor universally bounded aj and t satisfying
ar > 0anday < ?az. (B.7)

Proof. Suppose there is no such w, we find a sequence (a;.’) such that the corre-

sponding (bjﬁ’”) satisfy

by " = b+ by " + by | — 0, (B.8)

but for any bounded «; and 7 satisfying (B.7), we have that

1 1
as — <Ol2‘L’ + Ealrz + 6r3)‘
- 1 1 1 ~ 1 1 1
+, 2 3 4 +, 3 4 5
bln_(iazr T +ﬂr> b2n_<8azr T +?0f>‘
>e>0 (B.9)

lat — (o1 + 1)+ +

1
ﬁg — (Olz + a1t + §T2>

+ +
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Up to a subsequence, we have that

a;.l — aj?o and bj.c’” — bji’oo.

If we take that
pr=u;+alus +adus +afus =u; +ajws +&§’w% +&§’w%
2

and denote by u; the solution to (B.3) with data p;" at infinity, then, by Proposi-
tion B.1, we have that

luf — pf| < AinR?.

Up to a subsequence, we have u;" locally uniformly converge to uZ, a solution to
the thin obstacle problem in R2. Moreover, we have

lut, — [u% +af°u% +a§°u% +a§°u%]| < AinR%

Thus uZ, is the solution to (B.3) with data p}, = ug + afus +a§°u% +a§°u% at
2
infinity.
With Corollary B.1, we see that b;“oo = bj[ajo.o] = lim bj” A similar
. _ —00 ,_
argument applied to p,; = ug — a’l’u% + agu% — aglu% leads to bj =

bj[—a®,a5°, —a5°] = lim b;’". With (B.8), we conclude that

bilai®, a5°, a3"] = bi[—ai°, a3°, —a3°] and by[af®, a5°, a5°]

= _bz[_aloov azoo’ _ago]'

Lemma B.1 gives that

for a; satisfying (B.7).
Consequently, we have that

- . 1
a — (a1 + )| +|as° — <012+(X1t—|—§1-2>’ +

1 1
ase — (O(z‘t + Ealrz + 8t3>

- 1 1 1

+ bf°’+ — (50521:2 + 8011!3 + gt4)‘

+ (b3t — 105213 + LO[1‘C4 + L'55 =0.
2 6 24 120

With convergence of Ez;‘ — Ezjo.o and l;;“” — E?”OO, this contradicts (B.9). O
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