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Abstract

®

CrossMark

A magnon and a phonon are the quanta of spin wave and lattice wave, respectively, and they can
hybridize into a magnon polaron when their frequencies and wavenumbers match close enough
the values at the exceptional point. Guided by an analytically calculated magnon polaron
dispersion, dynamical phase-field simulations are performed to investigate the effects of
magnon polaron formation on the attenuation of a bulk acoustic wave in a magnetic insulator
film. It is shown that a stronger magnon—phonon coupling leads to a larger attenuation. The
simulations also demonstrate the existence of a minimum magnon—phonon interaction time
required for the magnon polaron formation, which is found to decrease with the magnetoelastic
coupling coefficient but increase with the magnetic damping coefficient. These results deepen
the understanding of the mechanisms of acoustic attenuation in magnetic crystals and provide
insights into the design of new-concept spin interconnects that operate based on acoustically

driven magnon propagation.

Supplementary material for this article is available online
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1. Introduction

Magnetic insulators are promising candidates for the intercon-
nect application in spin wave (magnon) computing devices
due to the dissipation-free magnon propagation [1-6]. Non-
local transport of incoherent magnons has been demonstrated
in low-damping ferrimagnetic insulator films such as yttrium
iron garnet (Y3FesOj,, or YIG) [7-10] and spinel ferrite
MgAlysFe; 504 [11] and the antiferromagnetic insulator film
such as haematite («-Fe,03) [12]. However, the intrinsic
magnon propagation length in these materials, which is on
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1361-6463/23/054004+10$33.00 Printed in the UK

the order of 10 pm, still falls short of the >100 ym goal
for practical spin interconnect application [13]. A promising
approach is to use a traveling acoustic wave (coherent phon-
ons) to generate coherent magnons via the magnon—phonon
interaction, thereby extending the magnon propagation length
to the acoustic wave propagation length. This approach was
computationally proposed based on advanced micromagnetic-
elastodynamic simulations [14-18] and demonstrated by
experiment, where a propagation distance of about 6 mm for
gigahertz (GHz) coherent magnons was observed even in mag-
netic metal Ni with relatively large magnetic damping [19].
Despite these exciting developments, the current under-
standing of the acoustic attenuation in magnetic crystals,
which determines the acoustic wave propagation length, is

© 2023 IOP Publishing Ltd
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far from complete. In particular, a quantitative understand-
ing of the dynamics of acoustic wave attenuation is still miss-
ing when magnons and phonons of similar frequencies and
wavenumbers hybridize into magnon polarons [20]. In this
case, the injected acoustic wave would be converted to a
magnetoelastic wave (its quanta are magnon polarons) whose
energy is converted back-and-forth between the spin and lat-
tice subsystems with nearly 100% efficiency during propaga-
tion. The damping of such magnetoelastic wave, which is
strongly determined by both the magnetic and elastic damp-
ing, is challenging to address by analytical calculation [21].
Although there are a few advanced computational models
[14—-18] which consider the generation of secondary acoustic
waves from the acoustically excited spin waves and hence in
principle permit modeling magnon polaron formation, the fea-
tures of magnon polaron formation were not reported in those
works. We suggest this is either because the frequency f and
wavenumber k of the acoustic and spin waves do not match
the condition of magnon polaron formation close enough, or
the magnetic damping coefficient used in these computation
studies is too large (which was also suggested in [18]).

In this article, we computationally investigate the effects
of magnon polaron formation on the attenuation of a bulk
acoustic wave in a magnetic insulator film, which has not
yet been addressed in existing computational or experimental
works. Time-domain simulations were performed based on an
in-house graphics processing unit (GPU)-accelerated dynam-
ical phase-field model [22]. This model not only considers
the two-way coupled dynamics of acoustic waves and spin
waves in magnetic thin-film heterostructures like in the exist-
ing works [14—18], but also includes the previously omitted
elastic stiffness damping for achieving a more accurate mod-
eling of acoustic attenuation. In particular, we demonstrate the
existence of a minimum magnon—phonon interaction time for
the magnon polaron formation, which is strongly influenced
by the magnetoelastic coupling and magnetic damping coef-
ficients. Our results deepen the understanding of the mechan-
isms of acoustic attenuation in magnetic crystals and provide
insights into the design of new-concept spin interconnects
that operate based on acoustically driven magnon propagation.
Moreover, the time-domain dynamics of the formation, trans-
port, and attenuation of magnon polaron studied herein can
be extended to other hybrid magnonic systems [23-26] that
involve the hybridization between magnons and other quasi-
particles such as photons [27, 28] and qubits [29].

2. Analytical formulation of the magnon polaron
dispersion relation

The formation of a magnon polaron requires (a) the magnons
and phonons have identical or at least similar frequencies (f)
and wavenumbers (k); (b) the values of f and k£ match close
enough the values at the crossing points of the magnon and
phonon dispersion curves; (c) both the magnetic and elastic
damping need to be low enough; (d) the interaction time

between magnons and phonons is long enough. To our know-
ledge, part (d) has previously not been explicitly stated. Due to
these multiple requirements, there are only a few reports on the
direct experimental observation of magnon polarons [30-35].
In fact, a majority of these works are limited to the observation
of k = 0 mode magnon polaron [30-33], which describe the
coupled evolution of spatially uniform magnetization (k = 0
mode magnon) and mechanical displacements (k = 0 mode
phonon). Although such k& = 0 mode magnon polaron can
exist in systems with relatively large magnetic damping such
as Ni [30] and Feg;Gajg [31], the observation of k£ # 0 mode
magnon polaron, which is more relevant to the spin intercon-
nect application, has thus far only been observed in epitaxial
iron garnet thin films that has low magnetic damping [34, 35].
For this reason, we consider (001) YIG film as a representative
material in this work. In this section, we analytically calculate
the magnon polaron dispersion relation of the (001) YIG film,
which will then be utilized to guide the dynamic phase-field
simulations.

Let us consider the equilibrium magnetization m® of the
(001) YIG film is along +x, which is stabilized by a bias
magnetic field HY applied along the same direction. For
such an in-plane-magnetized (001) YIG film, only a transverse
acoustic (TA) wave such as €,,(z,#) and €,,(z,7) can rotate the
local magnetization due to the symmetry of the magnetoelastic
anisotropy field [17, 36]. Therefore, we consider a continuous
bulk acoustic wave ¢,,(z,t), which can be generated by a piezo-
electric transducer [16, 18, 37], propagates into the YIG film
from its bottom surface (z = 0), and an adjacent gadolinium
gallium garnet (Gd;GasOy,, or GGG) substrate works as the
sink of the acoustic wave, as shown in figure 1(a). The dis-
persion relation of the magnon polarons (f—k) formed through
the hybridization of the TA phonons and acoustically excited
magnons can be analytically determined by linearizing the
coupled equations of motions for the local magnetization m
and local mechanical displacement u, given as,

w2 +w? w —w? 2 2242 o
o () S (e 25).
(0

where w = 2xf is the angular frequency of the magnon
polarons. wp and wp, are the angular frequencies of the
magnons and phonons, respectively. Both the wy, and wpp
are functions of the angular wavenumber ¢ = 27k and their
expressions are given in supplementary material 1. B, is the
magnetoelastic coupling coefficient, v is gyromagnetic ratio,
Lo 1S vacuum permeability, M is saturation magnetization, p is
mass density, D = ijs is exchange stiffness where A is the
exchange coupling coefficient, and K, is magnetocrystalline
anisotropy coefficient. Details of deriving equation (1) are also
shown in supplementary material 1. The formation of magnon
polarons induces two anticrossing in the dispersion rela-
tions of the TA phonons and exchange-coupling-dominated
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Figure 1. (a) Schematic, not to scale, showing a piezoelectric (PE)/ferromagnet (FM)/substrate heterostructure, where the substrate is a sink
for the continuous transverse acoustic wave ,;. A bias magnetic field H°™ is applied along +x to stabilize a spatially uniform initial
magnetization m° along the same direction. (b) Analytically calculated dispersion relations of transverse acoustic (TA) phonon (blue) and
exchange-coupling-dominated magnons (red) in a (001) YIG film under H%® = 2605 QOe, 13 025 Oe, and 26 050 Oe, where liz.

(c) Magnon polarons at the low-wavenumber (k) anticrossing between the TA phonon and the magnon branches under H® = 2605 Oe. The
formation of magnon polarons shifts the wavenumber of the injected acoustic wave by an amount indicated by Ak. Akl is the largest at the

exceptional point (ko, fo) = (2.6 um~!, 10 GHz).

magnons, as shown in figure 1(b). Figure 1(c) shows the dis-
persion relation of the magnon polaron at the low-k anticross-
ing at HY® = 2605 Oe, with an exceptional point (where
the dispersions of the TA phonon and magnon cross) of
(ko, fo) = (2.6 um~', 10 GHz). The magnon—phonon coup-
ling strength is defined as the wavenumber splitting [24] and
denoted as Ak in figure 1(c). It is worth noting that that
such analytically calculated dispersion relation of magnon
polarons, like existing theories on this topic [21, 38—41], are
obtained based on two key assumptions: (a) both the magnetic
damping and elastic damping are zero; (b) the acoustic and
spin waves both propagate in an infinitely long media without
reflection. A nonzero magnetic/elastic damping will reduce the
frequency/wavenumber gap at the anticrossing, leading to a
smaller coupling strength. The reflection of the acoustic and
spin waves at the heterostructure interface or film surface will
make the value of coupling strength different from the analyt-
ical prediction.

3. Dynamical phase-field model

Based on the heterostructure shown in figure 1(a), we
numerically model the influence of the magnon polaron

formation on the attenuation of acoustic wave in the YIG
film. The simulations were performed using an in-house GPU-
accelerated dynamical phase-field model that considers the
coupled dynamics of acoustic phonons, magnons, photons,
and plasmons in magnetic thin-film heterostructures [22]. For
the present problem, it is not necessary to consider the coup-
ling to the dynamics of photons because the radiation mag-
netic field produced by the magnons is negligibly small (see
supplementary material 2). It is also not necessary to consider
the coupling to the dynamics of plasmons (free electron gas)
[40] since the YIG is an electronic insulator.

In our phase-field model, the temporal evolution of the nor-
malized local magnetization m in the YIG is governed by the
Landau-Lifshitz—Gilbert equation,

5
14+a?

ary
14+a?

om __

eff
ot m x H

— m x (mx H) | (2)
where « is the effective magnetic damping coefficient. The
total effective magnetic field H is a sum of the magneto-
crystalline anisotropy field H*, the Heisenberg exchange
coupling field H®", the magnetic dipolar coupling field HYP,
the bias magnetic field H"® (fixed along +x in this work),
the magnetoelastic anisotropy field H™!. The mathematical
expressions of H*' and HP (both are a function of m), H*h
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(a function of V2m), and the H™' (a function of m and local
strain €) are provided in our previous work [22].

The injected acoustic wave &(z,¢), which is considered to be
spatially uniform in the xy plane, excites the spin wave m(z,?)
via the H™!. Therefore, the coupled transport of acoustic and
spin waves occurs along the z axis and can be modeled in a one-

dimensional (1D) system [16, 18, 22]. The strain is calculated

1 (0w | O
aSEU_2<6j + 8i)
mechanical displacement u is described by the elastodynamics
equation [42, 43],

(i, j = x, ¥, 2) and the evolution of the

p%:v~(o+ﬂ%‘l’), 3)

where stress 0 = c(e —€°); p, 3 and ¢ are the mass dens-
ity, stiffness damping coefficient and elastic stiffness, respect-
ively, for the (001)-oriented YIG or GGG. The & is stress-free
strain caused by the magnetization via magnetostriction, and
€9 =30, (m? — 1), eg = 2 XM mim;, withi, j = x, y, z, where
M1, and A | are the magnetostrictive coefficients of the YIG.
For a 1D system whose physical quantities are uniform in the

xy plane, the full expansion of equation (3) is given as,

12}

2 2 mym,
PG5 = (14 85) [l + B 252 | (da)
u. , 5%u, 8(mym,
P = (14585) [euFt + B2 @b
2y, E 2. o] 2
o= 8) [+ 0, 52]. o
where By = —1.5M{) (cft —cl}) and B, = —3X\}i,cl are
the magnetoelastic coupling coefficients of the YIG.

Equations (4a)—(4c) indicate that the precession of local mag-
netization can generate secondary acoustic waves via the terms
which are related to B; and B, (namely, the magnetoelastic
stress). The entire YIG/GGG heterostructure is discretized
into a 1D system of computational cells along the z axis,
with a cell size Az = 2 nm (slightly larger than the unit cell
size of YIG, ~1.2 nm [44]). The injection of the continu-
ous bulk acoustic wave e,,(z,¢) is simulated by applying a
time-varying mechanical displacement, u,(z = 0, ) = Umax
sin(27f 4ppt), at the bottom surface (z = 0) of the YIG film,
where f,p, is the frequency of the injected acoustic wave.
Central finite difference is used for calculating the spatial
derivatives. All equations are solved simultaneously using
the classical Runge—Kutta method for time-marching with a
real-time step A¢ = 20 fs. The magnetic boundary condition
0m/0z = 0 is applied on the two surfaces of the YIG film.
When solving the equation (3), the continuity boundary con-
ditions of mechanical displacement u and stress o (see details
in [17]) are applied at the YIG/GGG interface. The absorbing
boundary condition, %‘Z’ = —% %”t" (i =x v z), is applied at
the top surface of the GGG substrate to make it a perfect sink
for acoustic waves. Here v is the transverse sound velocity
for u, and u, and the longitudinal sound velocity for u,. All

solvers are GPU-accelerated to achieve high-throughput sim-
ulations in a computational system of the order of 10° cells
and millions of numerical time steps.

The materials parameters are summarized as follows.
For the (001) GGG [45], the elastic stiffness coefficients
C11 = 285.7 GPa, Clp = 114.9 GPa, Cq4 = 90.2 GPa
and p = 7085 kg m~3. For the (001) YIG [18, 41, 46],
Cc11 = 269 GPa, Clp = 107.7 GPa, Cqq4 = 76.4 GPa
and p = 5170 kg m™3; v = 022 rad MHz A~' m;
Mg =014 MAm™ ;A =326 pI m™'; K; = 602 J m™3;
B; =0.3MJm~3 and B, = 0.55 MJ m~3. The stiffness damp-
ing coefficient of the (001) YIG is assumed to be same as that
of the GGG, i.e. 3 =3 x 10~ s. The value of /3 is obtained
by fitting the experimentally determined characteristic decay
length of a GHz TA wave (~2 mm) in (001) GGG [32] (see
details in supplementary material 3).

4. Results and discussion

Guided by analytical calculation (figure 1(c)), a con-
tinuous acoustic wave ¢,, with an amplitude of 107>
(max = 1.224 pm) and a frequency fp, of 10 GHz is injected
into the (001) YIG film. To determine the existence of magnon
polarons, we numerically extract the magnon—phonon coup-
ling strength—the magnitude of wavenumber splitting or shift
|IAkl—from the simulated spatial profile of the acoustic wave.
A nonzero Ak indicates the presence of magnon polaron. A
200 pm thick YIG film is considered as the main example,
which allows us to obtain a 200 pum long profile for both
the spin wave and acoustic wave without wave components
reflected from the YIG/GGG interface. As a result, the numer-
ically extracted Ak from such spatial profiles can be utilized
for comparison to the analytical solution in figure 1(c) which
was also obtained by assuming no wave reflection. Figure 2(a)
compares the spatial profiles of the acoustically excited spin
wave m,(z) and the injected acoustic wave €,(z) in the 200 ym
thick YIG film at the moment (¢ = 52 ns) when the acoustic
wave just arrives at the YIG/GGG interface. As seen, the amp-
litude of acoustic wave reduces to almost zero at the nodes
where the spin wave amplitude is still significant if not at a
local maximum, indicating an elastic-to-magnetic energy con-
version of nearly 100% efficiency. From their corresponding
wavenumber spectra in figure 2(b), the wavenumber split-
ting from the 2.6 um~! (the k value of the injected acoustic
wave) to the two distinct values of 2.57 ym~! and 2.64 ;m~!
is clear, indicating the formation of magnon polarons. We
further vary the f.,p, from 9.8 GHz to 10.2 GHz in the sim-
ulations. As shown in figure 2(c), the numerically extracted
coupling strength |Akl agrees well with the analytical pre-
diction, demonstrating the high numerical accuracy of our
in-house dynamical phase-field model. In the case of thin-
ner YIG films (e.g. 10 pm), although the magnon polaron
can still form after the magnons and phonons interact for a
sufficiently long time, the numerically extracted Akl is differ-
ent from the analytical prediction due to the wave reflection



J. Phys. D: Appl. Phys. 56 (2023) 054004

S Zhuang and J-M Hu

a 0.1 b i
Spin wave 11 2.57 ymr
m i
3 —— Ed 2}64 a
! , 0.01 : 3 f
| 3 ->e <
o V0t——r b
1.2 : i f
: - Acoustic wave f 14
' il g
D =
£
<
'1.2! T T T 0
0 100 200 :
Z (um)
c d
B Simulation QO o
| o S
~ | Analytical S
: — | %
S 4 ° o
X .0
d T
04 % i (o} (o}
T T T T T T T T T EOC) 9? T T T T T ?9 <>
9.8 10.0 10.2 9.8 10.0 10.2
fapp (GHz) fapp (GHz)

Figure 2. (a) Spatial profiles of the spin wave m,(z) and the acoustic wave ¢,;(z) in a 200 pm thick (001) YIG film att = 52 ns. t = O ns is
the moment that the acoustic wave propagates into the YIG film from its bottom surface (z = 0). The inset shows the enlarged profile of the
my(z) in the last 50 pm. The dashed lines connect the local minima in the acoustic wave packet to the locations in the spin wave packet.

(b) Wavenumber spectra of the spin wave (top panel) and the acoustic wave (bottom panel) obtained by performing discrete Fourier
transforms of the m,(z) and the £y;(z) profiles shown in (a). (c) Analytically calculated (solid lines) and numerically simulated (circles)
wavenumber splitting/shift Akl (representing the coupling strength) of the magnon polaron as a function of the frequency of the injected
acoustic wave (fapp). (d) Simulated acoustic wave attenuation ratio / (see definition in the main text) as a function of the fpp.

(see details in supplementary material 4). However, when
the YIG film thickness is comparable to or smaller than the
single wavelength of the acoustic wave, which is 384 nm for
a 10 GHz ¢,, in (001) YIG, k = 0 mode magnon polaron will
appear instead of the k # 0 mode magnon polaron.

To evaluate the influence of magnon polaron formation on
the acoustic attenuation, we define the attenuation ratio % of the
injected acoustic wave as h = 1— fod e (2)’dz/ fods;‘;‘i(z)zdz,
where the integration evaluates the elastic energy of the entire
acoustic wave packet; £ (z) refers to the acoustic wave pro-
file simulated by omitting the magnetoelastic stress (see sup-
plementary material 5); d = 200 pm is the YIG film thickness.
Figure 2(d) shows the variation of & with the frequency of the

injected acoustic wave fpp, which shows a similar trend to that

of Akl in figure 2(c). When the frequency fpp = fo = 10 GHz,
h reaches its peak value of ~90%.

Now we discuss the influence of the magnetic damping
coefficient on the magnon polaron formation and the acous-
tic wave attenuation. Experimentally, it has been shown that
the magnetic damping coefficient of single-crystal YIG can
be enhanced to close to 0.1 through bi-doping without signi-
ficant changes in the other materials parameters such as the
saturation magnetization [47]. Figure 3(a) shows the spatial
profiles of the injected acoustic wave (f3pp = 10 GHz) in the
200 pm-thick YIG films with the magnetic damping coeffi-
cient a = 0.001, 0.002 and 0.1 at t = 52 ns, with compar-
ison to the profile in the bottom panel of figure 2(a) where
a =8 x 107>, Here, we focus on the first 50 zm of the acoustic
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Figure 3. (a) Spatial profiles of the acoustic wave €,;(z) in a

200 pm-thick (001) YIG film at t = 52 ns with effective magnetic
damping coefficient o = 0.001, 0.002, and 0.1. (b) Their
wavenumber spectra obtained by performing discrete Fourier
transforms of the first 50 pm of the e,;(z) profile in (a). (c) The
acoustic wave attenuation ratio / as a function of the «, under
different frequencies of the injected acoustic wave (fapp).

wave packet (z = 0-50 pm) where the phonon and magnon
had interacted for long enough time (up to 52 ns). As shown
by their corresponding wavenumber spectra in figure 3(b),
the formation of magnon polaron (a nonzero IAkl) is seen
only in the case of @ = 0.001. This is because a larger
magnetic damping would lead to a larger amount of energy
dissipation and ultimately suppress the magnon polaron
formation.

Figure 3(c) presents the attenuation ratio & of the acous-
tic waves ey(z,7) as a function of the o where the f,p, var-
ies from 9.8 GHz to 10 GHz. Given that the magnon—phonon
coupling strength |Akl increases monotonically to its max-
imum when f,,, increases from 9.8 GHz to 10 GHz (see
figure 2(c)), two conclusions can be made. First, the lar-
ger the Akl is, the higher the acoustic attenuation. This is
because stronger coupling strength enables the conversion of
more elastic energy into the magnetic energy. As shown in
figure 3(c), the curve with f,,, = 10 GHz is above all the other
curves with lower ;. Second, for a given value of f,p, the

highest acoustic attenuation appears at an intermediate value
of a. For example, & reaches its peak of 96.5% at o = 0.001
for fapp = 10 GHz. This is due to the following two compet-
ing effects. On one hand, a larger « leads to a smaller [AXl
(shown in figure 3(b)) and hence lower acoustic attenuation.
On the other hand, it yields a more significant magnetic energy
dissipation, which would lead to higher acoustic attenuation
because fewer amount of magnetic energy is converted back
to the elastic energy.

Our time-domain simulations also allow for evaluating the
minimum time required for the magnon polaron formation,
denoted as fin, Which is important to both the fundamental
understanding of the acoustically driven magnon propagation
and the design of the novel spin interconnect based on this
phenomenon. However, such #.,,i, is hardly possible to determ-
ine with classical analytical theories and has not yet been
investigated by computation or experiment. Here we evaluate
the 7, based on the moment the initially zero |Akl starts to
increase significantly. Figure 4(a) shows the spatial profiles
of the ,,(z¢) at t = 7.8 ns, 13 ns, and 26 ns in the 200 ym
thick YIG film. As shown by their wavenumber spectra in
figure 4(b), the |Akl is still zero at ¢ = 7.8 ns with a single peak
wavenumber at 2.6 um~'. As the time increases to 13 ns and
26 ns, the |Akl is nonzero, indicating the formation of magnon
polarons. By tracing the peaks in the wavenumber spectra, we
plot the temporal evolution of IAkl in figure 4(c), where it is
found that the Akl becomes nonzero at f ~ 9 ns, indicating the
formation of magnon polarons. Akl then increases monotonic-
ally and saturates at r ~ 13 ns. Note that the saturation value of
|Akl (~0.033 um~") is smaller than its theoretical upper bound
of 0.04 um_l (cf figure 1(c)). This is due to either the nonzero
(albeit small) magnetic and elastic damping coefficients used
in the dynamical phase-field simulations and/or the numerical
noise from the discrete Fourier transformation used for obtain-
ing the wavenumber spectra. Moreover, since the onset of
nonzero |Akl should be associated with the appearance of the
nodes in an acoustic wave packet (where spin wave amplitude
is significant or maximized, as discussed in figure 2(a)), we
also plot the spatiotemporal profile of the u,(z,f) during the first
52 ns in the 200 pm thick YIG film. As shown in figure 4(d),
the node starts to appear at t = 9.6 ns, which is almost the
same as the moment when the Akl starts to increase signific-
antly in figure 4(c). More detailed analyses indicate that such a
threshold duration f,;, decreases as the magnetoelastic coup-
ling coefficients increase (see supplementary material 6), and
increases when the « gets larger (see supplementary material
7). However, if the « is too large, the formation of magnon
polarons would not be possible since the enhanced energy dis-
sipation would diminish the coherent energy transfer between
the spin and lattice subsystems [24]. Furthermore, our con-
trol simulations show that the #,, is barely influenced by the
wave reflection at the interfaces. For example, in the case of
the 10 pm thick YIG film, our simulations reveal a similar #,;,
of ~9.2 ns (see supplementary material 4) despite the strong
interference between the incident and reflected spin waves.

The knowledge of t,i, allows us to design a fast elec-
trical switch that permits a spatially precise, ns-scale control



J. Phys. D: Appl. Phys. 56 (2023) 054004

S Zhuang and J-M Hu

0.04

3 S
= Magnon:O
< polaron b5
forms !
1 ©
tmin = 40
96ns o
0 T T . T O
50 100 24 26 28 5 10 15
4 z (um) k (um) t(ns)
50— = r
:}wx e
%f = b
40 & =
30 = —
@ e 1.225
£ " l
20
v Uy (pm)
10 g  [.=96ns
. - 1.225
0 50 100 150 200
z (um)

Figure 4. (a) Spatial profiles of the £,.(z,7) wave packet in a 200 um-thick (001) YIG film at t = 7.8 ns, t = 13 ns, and r = 26 ns, and

(b), their wavenumber spectra. t = 0 is the moment that the acoustic wave propagates into the YIG film from its bottom surface (z = 0).

(¢) Temporal evolution of the amplitude of the negative wavenumber shift IAkl = Ik — kol in (b), where ko = 2.6 pm ™" and k < ko.

(d) Spatiotemporal profile of the mechanical displacement u.(z,7) in a 200 pm-thick (001) YIG film within # = 0-52 ns. The minimum time

required for the magnon polaron formation #yi, is indicated.

of the acoustic/spin wave profile by applying a local dynam-
ical magnetic field HPY" via a patterned microstrip. As illus-
trated in figure 5(a), such an envisaged scheme can incorpor-
ate a dynamical tuning capability into the earlier-mentioned
concept of spin interconnect that operates based on acous-
tically driven spin wave propagation. The principle of such
dynamical tuning is clear: varying the magnetic field can shift
the frequency of the exceptional point fy (see figure 1(b)) and
therefore turn the system on/off the resonance. For quasi-static
magnetic-field control [48], the knowledge of 7, is not crit-
ical. However, the acoustic/spin wave profile can be very sens-
itive to the duration of HPY" when the latter is at the ns-scale,
particularly in the vicinity of the #;,.

To provide a proof-of-principle demonstration of such
dynamical tuning of both the acoustic and spin wave, we

simulate the time-domain evolution of acoustic wave profiles
exz(z1) across a (001) YIG(20 pm)/GGG(substrate) and the
acoustically excited spin wave in the YIG under pulsed HPY".
Likewise, a 10 GHz continuous acoustic wave was injected
and the magnetic damping coefficient o is 8 x 107>, The bias
magnetic field HY® = 2000 Oe. Both the HPY" and the H*4S
are along the +x direction. Figures 5(b)—(d) shows the tem-
poral evolution of the local strain €,,(¢) and the local magnet-
ization m, () at the YIG/GGG interface under pulsed HDP" of
three different durations. In all three cases, when HPY" reaches
its maximum, the YIG film would be on magnon—phonon res-
onance (i.e. fo = fapp = 10 GHz). As shown in figure 5(b),
the influence of HPY" on the acoustic wave amplitude is not
appreciable when the maximum value of H®" is only held
transiently. The amplitude of the acoustically excited spin
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Figure 5. (a) Schematic of an envisaged electrical switch for
achieving ns-scale control of the injected acoustic wave and the
acoustically excited spin wave for spin interconnect application.

A piezoelectric (PE) transducer can be used for injecting acoustic
wave. Pulsed dynamical magnetic field H>*" produced by the
microstrip is used to shift the frequency of the exceptional point fo
to turn the system on/off the magnon—phonon resonance. The
detector can be a heavy metal that can detect the spin wave

signal based on spin pumping and spin-charge conversion.

(b)—(d) Temporal profiles of the local strain €,,(¢) (blue) and
magnetization my(t) (red) at the YIG/GGG interface of a (001) YIG
(20 pm)/GGG heterostructure, after injecting a 10 GHz continuous
acoustic wave £(£). The H™" is held at its peak value of 605 Oe for
(b) O ns, (c) 5 ns, and (d) 50 ns, as indicated by its temporal profiles
shown by the black lines.

wave is relatively weak since the system is only on reson-
ance transiently. When H™" is held for longer time at its
maximum value, the acoustic attenuation is more signific-
ant, as shown in figure 5(c), yet the spin wave has a lar-
ger amplitude since the system is on resonance for a longer
time. When the duration of the HP¥" is long enough to enable
the formation of magnon polarons, significant acoustic wave
attenuation occurs over the entire ‘ON’ phase of the pulsed
HP" with clear back-and-forth oscillation in amplitude (see
figure 5(d)), which is a signature feature of strong coherent
magnon—phonon coupling in the time-domain known as the
coherent beating oscillation [34]. The acoustically excited spin
wave shows a largely complementary oscillatory feature in the
time domain and has the largest amplitude due to the high

energy conversion efficiency from the high magnon—phonon
coupling strength.

5. Conclusions

In conclusion, we have performed dynamical phase-field sim-
ulations to model the attenuation of a bulk acoustic wave in
a magnetic insulator film when this injected acoustic wave
is converted to a magnetoelastic wave (the formation of
magnon polarons). Our simulation results show that the acous-
tic attenuation in magnetic insulator films is larger under a
stronger magnon—phonon coupling strength which is indicated
by the magnitude of wavenumber splitting/shift |Akl, where
a nonzero |Akl indicates the formation of magnon polaron.
Yet, perhaps somewhat counterintuitively, the results show
that the attenuation is the strongest when the effective mag-
netic damping coefficient « takes an intermediate value. Fur-
thermore, the results also demonstrate the existence of a min-
imum interaction time between magnons and phonons (#in)
required for the magnon polaron formation, and reveal how
the 7, 1 influenced by key materials parameters such as the
magnetoelastic coupling and magnetic damping coefficients.
These simulation results can be utilized to guide the materi-
als and heterostructure design to achieve a spatially precise,
ns-scale magnetic-field control of acoustic/spin wave profiles
for spin interconnect applications. The conceptual understand-
ing of the minimum interaction time #,;, can be extended to
the hybridization between magnons and other quasiparticles
such as the magnon—photon [27, 28] and magnon—qubit [29]
coupling.

Moreover, although a bulk TA wave is considered in this
work, the theoretical and numerical analyses can be exten-
ded to the interaction between the bulk longitudinal or sur-
face acoustic waves and spin waves and to more complex mag-
netic heterostructures (e.g. superlattices, nanostructure arrays)
[24, 25, 36, 49, 50]. Finally, beyond the magnetic systems,
we note that the enhanced acoustic attenuation due to the
magnon—phonon hybridization is analogous to the enhanced
acoustic attenuation in ferroelectrics near the Curie temperat-
ure, which results from the strong coupling between the acous-
tic phonons and softened optical soft mode phonons [51-53].
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