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Perennial grassland agriculture
restores critical ecosystem
functions in the U.S. Upper
Midwest
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Dominant forms of agricultural production in the U.S. Upper Midwest are
undermining human health and well being. Restoring critical ecosystem
functions to agriculture is key to stabilizing climate, reducing flooding,
cleaning water, and enhancing biodiversity. We used simulation models to
compare ecosystem functions (food-energy production, nutrient retention,
and water infiltration) provided by vegetation associated with continuous
corn, corn-soybean rotation, and perennial grassland producing feed for
dairy livestock. Compared to continuous corn, most ecosystem functions
dramatically improved in the perennial grassland system (nitrate leaching
reduced ~90%, phosphorus loss reduced ~88%, drainage increased ~25%,
evapotranspiration reduced ~29%), which will translate to improved ecosystem
services. Our results emphasize the need to incentivize multiple ecosystem
services when managing agricultural landscapes.
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Introduction

Agriculture is central to the fundamental challenges facing human society (Godfray
et al,, 2010; Foley et al., 2011; Wheeler and von Braun, 2013; Amundson et al., 2015;
Kremen and Merenlender, 2018). We must develop and grow agricultural systems that
provide for our well being while building the capacity of future generations to do the
same. These agricultural systems must be resilient in the face of drought, flooding, and
extreme weather, as well as socio-economic shocks such as pandemics and market failures
(Lesk et al., 2016; Lioutas and Charatsari, 2021; Ortiz-Bobea, 2021).
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Critical ecosystem functions of agricultural systems include
plant and animal productivity, soil carbon storage (Rowntree
et al., 2020; Guillaume et al., 2022; Rui et al,, 2022), soil
stabilization (Montgomery, 2007; Palm et al., 2014; Schulte et al.,
2017), nutrient retention (Schulte et al., 2017; Hussain et al,,
2019; Jackson, 2020), water infiltration and storage (Basche and
DeLonge, 2019; Baker et al., 2022), and wildlife habitat (Kimoto
etal.,, 2012; Tsiafouli et al., 2015; Schulte et al., 2017). While these
factors range in their scale of influence (e.g., soil carbon storage
influences greenhouse gas concentrations globally while habitat
for soil arthropods is quite local), each of the functions have
practical relevance for those living in the U.S. Upper Midwest
where surface and groundwater pollution, flooding, soil erosion,
and plummeting biodiversity undermine human welfare and
well being (Werling et al., 2014; Hussain et al., 2019; Antolini
et al., 2020; Bendorf et al., 2021; Borchardt et al., 2021; Burch
et al., 2021; Raff and Meyer, 2022; Wisconsin Groundwater
Coordinating Council Report to the Legislature, 2022).

Solutions to this multifaceted dilemma require holistic
approaches that consider land management effects on ecosystem
functions that underpin ecosystem services provided by farms
and, more broadly, the landscapes or regions in which they
are nested (Strauser et al, 2022). Holistic solutions are
required because of the complexity and connectedness of these
landscapes, where focusing on a single dimension typically
exacerbates problems in others. We must understand and
develop systems that solve for multiple variables simultaneously.
While the currently dominant form of agriculture is immensely
productive, it is also the world’s leading driver of environmental
change (Foley et al, 2005, 2011). Fortunately, agricultural
approaches exist that have the potential to help stabilize global
change as we move further into the Anthropocene (Campbell
et al., 2017; Rockstrom et al., 2017).

The dominant agricultural system of the U.S. Upper
Midwest is based on monocultures of corn and soybeans
grown to feed mostly confined livestock. This system is
incentivized by rewarding farmers almost exclusively for more
production (Jordan et al., 2018), which comes at the expense
of other functions critical to ecological and societal well being
[e.g., purification of water, stabilization of soil, regulation of
infectious disease, provisioning of wildlife habitat; Alexander
et al. (2008), Wepking et al. (2017), Christianson et al. (2018)].
Currently, critical ecosystem functions and the services that
they underpin are not properly valued, so their costs are
externalized; borne by society as a whole (Suparak Gibson,
2022). An alternative agricultural system, based on perennial
grassland, is possible (Jackson, 2022) but requires society to
pivot away from the status quo toward a system that rewards
a range of ecosystem services. Currently, farmers’ individual
decisions to participate in the corn and soybean dominated
agricultural system are driven by constructed narratives around
productivism and maximizing food production (Burton, 2004;
McGuire et al., 2013), aesthetic preferences about the 'neatness’
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and perceived care of the landscape (Nassauer, 1988), and
definitions of place at regional scales (Strauser et al., 2022).
To incentivize agricultural systems that simultaneously provide
multiple ecosystem services to farmers and society, we must
understand tradeoffs and synergies in ecosystem functions
provided by alternative cropping systems.

To further this understanding we used Agro-IBIS
[Integrated Biosphere Simulator; Kucharik et al. (2000),
Kucharik (2003), Kucharik and Brye (2003)] to represent
a variety of biophysical and biogeochemical processes.
These processes included nitrate leaching and phosphorus
loss as indicators of nutrient retention and drainage and
evapotranspiration as indicators of water retention. These
indicators were then simulated across vegetation types
associated with three dairy cropping systems (see Methods).
In addition to controlling the type of vegetation grown in the
model, different simulated land-use decisions can be made
regarding fertilizer and manure applications and crop rotations.

Recent work with Agro-IBIS has focused on meeting
targeted policy goals with increasing grassland cover. In
particular, Campbell et al. (2022) estimated the amount of
perennial grassland cover needed to meet water quality goals
within the Yahara River Watershed in southern Wisconsin to
the year 2070. Similarly, water quality outcomes were assessed
with simulations designed to achieve the goals of the Renewable
Fuel Standard providing insight into the beneficial water quality
effects of improved miscanthus and switchgrass cover (Ferin
et al, 2021). Other models, such as DairyMod, APSIM, and
DayCent have been used to simulate soil N mineralization and
pasture growth (Bilotto et al., 2021), and DairyMod in particular
has been instrumental in simulating ammonia volatilization
in pastures (Smith et al., 2020), but with a specific focus on
Australia and New Zealand where DairyMod was calibrated
(Johnson et al., 2008).

Within this stream of the literature, there is no work
addressing regional variation in a broad suite of ecosystem
services across the U.S. Upper Midwest. In particular, we
contribute to the literature by including water quantity in
addition to water quality, and matching regional variation
these
production outcomes. By simulating these ecosystem functions

within environmental outcomes to food-energy
across three common land cover-land use scenarios (described
below), we are better able to anticipate how a wider range of
ecosystem services might vary with management.

We examined ecosystem functions under three types of land
cover associated with cropping systems typical of the U.S. Upper
Midwest. We gathered site-specific data (previous cropping
practices, soil type, slope, aspect) from five Wisconsin farms—
two in the “Ridge & Valley” region of southwest Wisconsin
(Vernon County) and three in the “Cloverbelt” region of central
Wisconsin (Marathon County). While both of these regions
have a strong agricultural focus, they vary in their topography

as well as their edaphic and environmental characteristics.
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TABLE 1 General descriptions of the five farms used in this analysis.

10.3389/fsufs.2022.1010280

Farm Location Size (acres) Primary soil type Soil P SoilpH Slope Slopelength Primary land use

1 Vernon County, WI, USA 145 Pepin 20 6.70 17.6 110 Grazing

2% Vernon County, WI, USA 40 Arenzville na na 2 250 Grazing

3 Marathon County, W1, USA 483 Loyal 28.0 6.59 3.97 284 Corn-soy with some no till
4 Marathon County, W1, USA 407 Loyal 204 6.60 3.84 294 Grazing with some corn-soy
5 Marathon County, WI, USA 280 Loyal 30.9 7.05 3.67 292 Dairy rotation

Characteristics represent the acres that the operator of each farm uses for agricultural production. *Despite the listed slope, Farm 2 and its productive acreage are located at the base of a

steep (>50°) ridge and is located in a highly flood-prone area. All soil types listed are silt loam.

We used simulation models and literature estimates to predict
outcomes of ecosystem functions under three land cover-
land use scenarios—continuous corn, corn-soy rotation, and
grassland. Ecosystem functions included estimates of food-
energy production as well as water and nutrient dynamics. We
expected that increasing perennial cover would improve a range
of ecosystem services with potential tradeoffs in food-energy
(meat and dairy) production.

Methods
Study region

The Cloverbelt and Ridge & Valley of
Wisconsin are both known for dairy, beef, and crop

regions

production and each region has a strong identity and
ethos associated with agriculture and the environment
(Supplementary Figure S1, Supplementary Tables S2-54).
In each region annual grain crops (mainly corn and
soybeans) are grown on most agricultural land to feed
confined livestock whose genetic improvements and
concentration in space continue to increase production
and efficiency when the latter is assessed as calories produced
per input.

While similar in many ways, these regions are quite different.
The Cloverbelt is relatively flat with moderate- to poorly-
drained soils where local climate and edaphic conditions are
favorable to clover production in pastures, giving the agriculture
of the region a distinctive Dairyland signature. The Ridge
& Valley region is characterized by silty, erodible soils on
highly dissected topography that make the region flood prone.
Annual average precipitation and temperature for the last
10 years (2010 through 2020) were 107.2cm and 7.1°C for
Vernon County (Ridge & Valley) and 93.7cm and 6.4°C for
Marathon County [Cloverbelt; PRISM Climate Group, Oregon
State University (2022)]. This variation between farms and
regions provides a representation of a significant part of
farming in the U.S. Upper Midwest (see Tables S2-54 for

additional details).
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Data collection

We gathered crop histories and soil tests from reports
submitted by the operators of each of the five farms (Table 1).
To protect the privacy of these farm operators, we retain the
confidentiality of each farm and report only overall summaries
of each. Data included farm size, individual field delineation,
soil types, soil phosphorus, slope, slope length, and previous
land use.

The physical characteristics of these farms are highly variable
(Table 1) and they currently use a mix of row-crop rotations,
tillage and no till, and managed grazing. Importantly, especially
for water quality, soil P levels varied considerably among farms.
Also, the slope and slope length of each farm likely affect water
quality in different ways. Consistent with regional descriptions
above, Cloverbelt farms were larger, flatter, and participated
primarily in more row-crop agriculture for dairy production
while Ridge & Valley farms were smaller, on steeper slopes, and
used more pasture. We reported land in agricultural production
only, not including some forested land, which for one farm
was steep. Therefore, while the slope was relatively shallow for
Farm 2 the adjacent forested land was steep and listed as highly
flood prone.

Simulation models

Agro-IBIS is a spatially explicit agroecosystem and land
surface model that simulates the movement of water, energy,
momentum, carbon, nitrogen, and phosphorus, in both natural
and managed ecosystems. The structure of Agro-IBIS has been
described in detail (Kucharik et al., 2000; Kucharik, 2003;
Kucharik and Brye, 2003; Motew et al, 2017) and many
components and output variables of the model (e.g., crop
yield, net primary productivity (NPP), net ecosystem exchange
(NEE), evapotranspiration and drainage, nitrate leaching, soil
temperature and moisture) have been validated across a
range of ecosystems at various spatial and temporal scales
(Kucharik et al., 2000, 2006; Kucharik, 2003; Kucharik and Brye,
2003; Kucharik and Twine, 2007; Motew and Kucharik, 2013;
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Soylu et al., 2014; Zipper et al., 2015; Motew et al., 2017). Agro-
IBIS was integrated with the variably saturated soil water
flow model HYDRUS-1D to enable simulation of groundwater-
vegetation interactions (Soylu et al., 2014), and P cycling and
dynamics were recently added based on SurPhos, a state-of-
the-art dissolved P loss model for agricultural systems receiving
manure (Vadas et al., 2004, 2005, 2007; Motew et al., 2017).
The P module features P application, transformation, and loss
of dissolved P to runoff; in-soil cycling of organic and inorganic
forms of P; and loss of particulate-bound P with erosion (Motew
et al., 2017).

Before running the scenarios of land cover-land use, a long-
term model spin-up run was executed from 1650 to 1961 to
achieve a steady-state equilibrium in soil biogeochemical cycling
that reflects changes in land use and build-up of soil organic C
and N pools (Donner and Kucharik, 2003). Agro-IBIS model
simulations were executed using a 60-min time-step on a 1
x 1-km regularly spaced grid; the model uses SSURGO soil
textural data to delineate dominant soil texture and soil physical
properties for each grid cell and soil layer, and daily weather
data (air temperature, precipitation, relative humidity, solar
radiation, and wind speed) from the gridMET (gridMET, 2013)
that was interpolated from 4- to 1-km spatial resolution. Agro-
IBIS uses statistical models to interpolate daily weather variables
to the hourly time-step (Kucharik et al., 2000). During the
model simulation period from 1650 through 1978, a random
draw of weather years was taken from the actual data time-
series of 1979 through 2016; simulation years from 1979 through
2016 represent the actual weather time-series from gridMET.
Nutrient inputs (inorganic fertilizer and manure) originate from
a spatiotemporal database of linked agricultural, environmental,
and economic data (Lark et al., 2022).

We simulated three different agricultural scenarios or
vegetation types: continuous corn, corn-soybean rotation, and
generalized C4-dominant perennial grassland for five locations
described in Table 1. Continuous corn and corn-years in the
corn-soybean rotation received between 91.8 and 180kg N
ha=! yr~! and 9 and 22kg P ha—! yr~! based on historical
fertilization for that location, which varied by year; soybean
and grass did not receive any N and P fertilizer because
neither receive N and P fertilization as part of typical grass or
soy production. Soil was tilled in continuous corn and corn-
soybean rotation was tilled before planting while the grass was
never tilled.

For the corn-soy rotation, we ran two scenarios starting with
both corn and soybean and then aggregated the output. Annual
estimates of nitrate leaching, phosphorus loss (including both
sediment and dissolved phosphorus), evapotranspiration, and
groundwater recharge (drainage) were gathered after running
those different vegetation scenarios from 1961 through 2016.
We then filtered out the first 18 years of data (keeping the
38 years from 1979 through 2016), as the model output took
approximately 10 years after a restart simulation (the restart year
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was 1961 for each scenario) to reach equilibrium, and because
the time-series of actual weather begins in 1979.

After gathering the output data, we used linear mixed
effects models (one for each of the above dependent variables)
using the nlme package in R (Pinheiro et al., 2022) to limit
the effects of vegetation type and year (fixed effects) and
farm nested within region (random effects) to account for
site/geographical variation.

Food-energy calculations

We examined another important ecosystem function,
agricultural production, for each of the three scenarios by
calculating their food-energy output from harvested biomass.
We used the historical cropping data for each farm to generate
average farm-level output (bushels ha=1). We then used this past
output and created a “target” output to use in the counterfactual
simulations. As a specific example, the average farm-level
production at Farm 3 during the pre-simulation period was
354.1 bushels ha=! yr=! (9.6 Mg ha=! yr=!) of corn grain
and 49.8 bushels ha=! yr~=! (3.3 Mg ha=! yr™!) of soybeans.
We therefore simulated food-energy production for Farm 3
using these values as output, while averaging the output over
two years for the corn-soy rotation. We did not have farm-
specific yield data for farms that did not practice a cropping
system during the years for which we obtained observational
data, so for these farms we used USDA Census of Agriculture
average yield maps for that county and set the target yield at the
value given in the map (USDA—National Agricultural Statistics
Service, 2022). For pastures without yield data, we assumed an
average height of the grass of 63.5 cm and multiplied that by an
estimated harvest of 326 kg DM ha=! (Barnhart, 1998), which
is equivalent to 8.4 Mg ha~! yr~! of harvested dry matter. We
then converted these target yields for each farm to food-energy
using the process described in Sanford et al. (2021). Like Sanford
et al. (2021), our representative farms and cropping systems
represent agricultural production in the U.S. Upper Midwest
(WTI), which is a major producer of dairy products. We therefore
examined food-energy in the form of milk and dairy beef (Gcal
ha=! yr_l). Briefly, Sanford et al. (2021) make their conversion
from harvested yield to food-energy using the following steps:

1. Convert volume yield (bushels ac™!) to mass yield (Mg
ha~!), while assuming that 79.2% of soybean grain results
in soybean meal and 18.7% results in soybean oil. We
used national data from 1980 to 2016 to estimate these
percentages (USDA-ERS, 2018).

2. Convert dry matter yield to total digestible nutrients
(TDN) using mean nutrient content values from Dairy One
Cooperative (Feed Composition Library | Dairy One, 2022):
88% for corn, 80% for soybeans, and 60% for grass.
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3. Convert TDN yield to milk and dairy beef food-energy
using conversions from Peters et al. (2014) and USDA
(USDA—FoodData Central, 2022). We used the same
process as Sanford et al. (2021) to calculate a conversion
factor of 1.04 Geal Mg~! for milk (1,042 keal kg~! TDN)
and 0.37 Geal Mg ™! for dairy beef (366 kcal kg~! TDN).

Finally, we compared observable farm factors and ecosystem
functions by assessing correlations among these variates.

Results

Across the five farms and two regions, vegetation

type
Supplementary Table S1,

significantly ~affected nitrate leaching (Figure 1A,

Supplementary Figure S2).  This

Frontiers in Sustainable Food Systems

05

effect was driven by the low average level of nitrate leaching
over the 38 years analyzed in the grass system (4.1 + 0.2kg
ha~!) compared to continuous corn (39.9 #+ 1.0kg ha—!) and
the corn-soy rotation (33.5 £ 0.8kg ha—1). Both continuous
corn and the corn-soy rotation leached significantly more
than the grass system in a pairwise comparison (P < 0.001
and P < 0.001, respectively), but continuous corn also leached
significantly more than corn-soy (P < 0.001). Across the
three vegetation types nitrate leaching generally increased
over time, on average increasing 0.4kg ha=! yr=! [P <
0.001 (Supplementary Figure S2)]. Annual variation in nitrate
leaching was driven by precipitation and management
When
across the five farms and two regions separately within

differences  (Supplementary Figure S3). considered

the grass vegetation, nitrate leaching appeared to vary by
region with Marathon County (6.0 £ 0.1kg ha™!) exhibiting
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Multiple linear regression between annual drainage and annual
precipitation across the three vegetation types investigated. The
grass system showed a stronger positive relationship between
annual drainage and precipitation.

greater leaching than Vernon County [1.3 £ 0.04kg ha~!
(Supplementary Figure S4)].

Continuous corn was found to have the highest level of
phosphorus loss (0.35 + 0.02kg ha™!) followed by the corn-
soy rotation (0.28 + 0.02kg ha~!); grass had the lowest
level of phosphorus loss (0.042 + 0.004kg ha™!) across
the five farms and two counties investigated (Figure 1B,
Supplementary Table S1). Phosphorus runoff with continuous
corn vegetation was found to be significantly greater than both
the corn-soy rotation (P < 0.001) and the grass vegetation types
(P < 0.001). The grass vegetation type was found to exhibit
significantly lower phosphorus than the corn-soy rotation
vegetation type (P < 0.001). Phosphorus tended to decrease
over time as well [P < 0.001 (Supplementary Figure S2)].
However, this decline over time appears to be driven by
the row-crop vegetation types; the grass vegetation type held
relatively steady over the course of the 38 years analyzed
(Supplementary Figure S2).

The amount of annual drainage, or recharge to
groundwater, was shown to vary by vegetation type (Figure 1C,
Supplementary Table S1). The grass system showed the highest
annual drainage (449 + 7.4 mm yr~!), significantly greater than
both the continuous corn (286 4 6.3 mm yr_l; P < 0.001), and
corn-soy rotation (317 &= 6.4 mm yr—!; P < 0.001). The corn-soy
rotation was shown to have significantly greater drainage than
the continuous corn vegetation (P < 0.001). Over the course of
the 38 years analyzed, annual drainage shows a general decrease
over time, on average 2.23-mm lower annually (P < 0.001). In
addition, grass vegetation was shown to have a stronger positive
relationship than the other two vegetation types between annual
drainage and annual precipitation (Figure 2).
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TABLE 2 Average + standard errors for food-energy production
across three vegetation types.

Vegetation Milk (Gcalha=! yr  Dairy beef (Gcal
-1 ) ha— 1 yr~ 1 )
Continuous corn 8.45+0.32 2.97 £ 0.11
Corn-Soybean rotation 5.36 £0.19 1.88 £ 0.07
Grass 527 £0.11 1.8540.04

Values are calculated using the methodology of Sanford et al. (2021) and represent means
and standard errors for the two counterfactual years given past production on each farm.

Evapotranspiration trends were opposite of drainage
(Figure 1D, Supplementary Table S1). Grass systems had the
lowest evapotranspiration (358 + 3.1 mm yr_l; P < 0.001),
corn-soy systems had the second-highest evapotranspiration
(477 4+ 2.5mm yrfl; P < 0.001), and continuous corn had
the highest (504 £ 2.7mm yr—!; P < 0.001). Generally,
evapotranspiration was higher in the Ridge & Valley than the
Cloverbelt (Supplementary Figure S5). In addition, across all
vegetation types, the annual average ET trend was 0.91 mm yr—!
(P < 0.001).

Finally, the vegetation types differed in their levels of food-
energy production. Across all cropping systems, the same level
of harvested dry matter produced higher amounts of food-
energy in the form of milk compared to dairy beef (Table 2).
Continuous corn had the highest food-energy output, producing

-1

over 3 Gecal ha! yr more milk energy and over 1 Gceal

ha=! yr ~! more beef energy (~60% for each) than the corn-
soy rotation and grass (P < 0.001). However, no significant
difference in food-energy production was observed between
corn-soy rotation and grass for both milk (P = 0.70) and dairy

beef (P = 0.71) output.

Discussion

Nitrate leaching was greatly reduced under grass vegetation
compared to both continuous corn and corn-soy rotation
because no manure or fertilizer was added to grass vegetation,
which aligns with empirical field studies. Under most perennial
grass bioenergy and grazed systems, nitrate leaching is much
lower than corn-based cropping systems (Hussain et al., 2019;
Jackson, 2020), differences that can lead to significant disparities
in water quality for rural regions, where nitrate leaching
contributes to impaired health and infant mortality (Knobeloch
et al., 2013). Further, nitrate leaching from common corn-
based systems contributes to eutrophication and consequently
impaired rivers, lakes, and oceans (Orth et al., 2006; Liu et al,,
2022). These waterways arguably are more impaired from
phosphorus runoff, with nitrogen potentially working in concert
with phosphorus to induce further eutrophication (Dodds and
Smith, 2016; Schindler et al., 2016). As mentioned in the
introduction, there is promise for reducing eutrophication and
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meeting established water quality goals by reducing nutrients
in watersheds and increasing perennial cover as shown by
Campbell et al. (2022).

From a water quantity perspective, grassland promoted
higher water drainage (i.e., more infiltration and less runoff)
and lower evapotranspiration than the other systems. Increasing
evapotranspiration reduces local temperatures through
increasing latent heat flux, and has been shown to mitigate
increased temperatures, e.g., the urban heat island effect
(Qiu et al, 2013). In an agricultural context, however, higher
evapotranspiration (e.g., continuous corn, corn-soy rotation)
is linked to higher water demand and consequently higher
irrigation rates or water demand for crops. Systems that
promote higher evapotranspiration and lower recharge have
a direct impact on the volume of surface water bodies. In the
case of irrigation, this has been shown to deplete groundwater
levels, especially as climate change increases evapotranspiration
rates over time (Condon et al., 2020). While only 1.5 and 0.4%
of agricultural land in Marathon County and Vernon County
are irrigated, this is an important consideration in drier areas.
While we found lower evapotranspiration rates in grasses than
continuous corn or the corn-soy rotation, some grasslands can
be comparable to corn-based systems (Abraha et al., 2020).
Agricultural impacts on groundwater depend in large part
on irrigation (which was zero in our modeled grassland) and
drainage (which was highest in our modeled grassland) back
into groundwater systems. While beyond the scope of our
modeling study, many studies have also shown the potential of
perennial grassland to reduce runoff and flood risk downstream
because of its ability to enhance infiltration (Jackson and
Keeney, 2010; Schilling et al., 2014).

Balancing our current emphasis on agricultural production
with other ecosystem services is critical. The continuous corn
system produced more food-energy than the corn-soy and
grass systems, which is consistent with previous work (Peters
et al, 2014). However, while the grass and corn-soy systems
produced similar output from a food-energy perspective, the
grass system outperformed the corn-soy rotation on all other
ecosystem metrics. While recent research has shown that the
current amount of beef raised within the U.S. could be raised
entirely on grass—and without adding acreage not already
in some form of agricultural production (Jackson, 2022)—
more work is needed to better understand the ramifications of
transformative changes to our agricultural landscape. Spatially
explicit research that can show where various forms of
agriculture can either do the least damage, or conversely, can
promote the most beneficial ecosystem services, is a clear need
in improving our understanding and decision making around
agricultural production.

From a dairy perspective, milk yields dropped when cows
were fed from grassland exclusively (Jackson, 2022). However,
this drop in milk production with the grass-based system can
be countered by a dramatic drop in production costs (Dartt
etal., 1999; Kriegl, 2005; Hanson et al., 2013) making grass-based

Frontiers in Sustainable Food Systems

07

10.3389/fsufs.2022.1010280

dairies economically competitive with confinement dairies;
work that shows that grass-based systems can outperform
others from a multifunctionality perspective. Other work shows
that from a true-cost accounting perspective, grass-based farms
provide much more value to society than what are considered
conventional farms, and are dramatically undervalued (Suparak
Gibson, 2022). Instances such as this require a framework to
reward farmers for the societal good produced, whether it be
from a policy perspective or some other structure (Rissman et al.,
in this volume).

While we focused on agricultural production from an
energetics perspective to broadly compare the vegetation types
in question, there is more to food than energy. Nutritional
profiles are an important consideration to include in future
analysis of tradeoffs among ecosystem services. Research on
this topic shows that grassfed livestock production improves
both animal health and the nutritional profile of livestock
products compared to conventionally raised livestock (van Vliet
et al., 2021b). A key driver of this improvement in nutritional
profile was the biodiversity of the plants consumed by grassfed
livestock, suggesting that the promotion of biodiversity is
strongly linked with human health (Provenza et al., 2021; van
Vliet et al., 2021a).

Our model did not include a grazing module that mimicked
disturbance-plant growth dynamics, nutrient uptake and NPP,
which would likely be stimulated to an even greater degree
under well-managed grazing resulting in improvement in most
ecosystem functions. Current work is adding grazing and cover
crop modules to further explore continuous living cover in
agroecosystems. These types of modeling advances, integrated
with the other capabilities of Agro-IBIS, will allow scientists to
develop advanced decision support tools (DSTs) that contain
model output data from many scenarios representing the
potential impacts of a changing climate and land management
on ecosystem services. The goal is to have crop consultants,
land managers, farmers and other end users use DSTs to guide
future agroecosystem management decision-making to meet
sustainable development goals for humanity.

Conclusions

With the exception of food-energy yield, all the ecosystem
functions we explored were improved under the grassland-
based system compared to annual grain crops. If agricultural
policy continues to reward yield exclusively, it will be difficult
to transition to more multifunctional agricultural systems.
Continuous corn yielded more food-energy than corn-soy
rotation and perennial grassland, but a significant tradeoff
was observed: this system had the poorest performance across
all other ecosystem functions - nitrate leaching, phosphorus
loss, drainage, and evapotranspiration. While the corn-soy
rotation provided slightly better outcomes than continuous
corn (except for yield), it was inferior to perennial grassland
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for most outcomes and not significantly different in food
calorie yield. A more balanced delivery of ecosystem functions
underpinning critical ecosystem services will require more
reliance on perennial grassland for livestock production.
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