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The challenge of quantum computing is
to combine error resilience with universal
computation. Diagonal gates such as the
transversal T gate play an important role
in implementing a universal set of quan-
tum operations. This paper introduces a
framework that describes the process of
preparing a code state, applying a diago-
nal physical gate, measuring a code syn-
drome, and applying a Pauli correction
that may depend on the measured syn-
drome (the average logical channel induced
by an arbitrary diagonal gate). It focuses
on CSS codes, and describes the interac-
tion of code states and physical gates in
terms of generator coefficients determined
by the induced logical operator. The in-
teraction of code states and diagonal gates
depends very strongly on the signs of Z-
stabilizers in the CSS code, and the pro-
posed generator coefficient framework ex-
plicitly includes this degree of freedom.
The paper derives necessary and sufficient
conditions for an arbitrary diagonal gate
to preserve the code space of a stabilizer
code, and provides an explicit expression
of the induced logical operator. When the
diagonal gate is a quadratic form diagonal
gate (introduced by Rengaswamy et al.),
the conditions can be expressed in terms
of divisibility of weights in the two clas-
sical codes that determine the CSS code.
These codes find application in magic state
distillation and elsewhere. When all the
signs are positive, the paper character-
izes all possible CSS codes, invariant under
transversal Z-rotation through π/2l, that
are constructed from classical Reed-Muller
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codes by deriving the necessary and suffi-
cient constraints on l. The generator coef-
ficient framework extends to arbitrary sta-
bilizer codes but there is nothing to be
gained by considering the more general
class of non-degenerate stabilizer codes.

1 Introduction and Review1

We approach quantum computing through fault
tolerant implementation of a universal set of
gates. There are many finite sets of gates that are
universal, and a standard choice is to augment
the set of Clifford gates by a non-Clifford uni-
tary [7] such as the T gate (π/8 rotation). Gottes-
man and Chuang [20] introduced the Clifford hi-
erarchy of unitary operators. The first level is
the Pauli group. The second level is the Clif-
ford group, which consists of unitary operators
that normalize the Pauli group. The l-th level
consists of unitary operators that map Pauli op-
erators to the (l − 1)-th level under conjugation.
The teleportation model of quantum computa-
tion introduced in [20] is closely related to the
structure of the Clifford hierarchy (for details,
see [1, 4, 5, 15, 33, 36, 42]). The diagonal gates
in the Clifford hierarchy form a group [15, 42],
and the diagonal entries are 2l-th roots of unity
raised to some polynomial function of the qubit
state. Cui et al. [15] determined the level of a
diagonal gate in the Clifford hierarchy in terms
of l and the degree of the polynomial function.
Quadratic form diagonal (QFD) gates are a fam-
ily of diagonal gates associated with quadratic
forms. The class of QFD gates includes transver-
sal Z-rotations through π/2l, and encompasses
all 2-local gates in the hierarchy [36].

Quantum error-correcting codes (QECCs) pro-
tect information as it is transformed by logical

1Section 2 introduces notation and provides technical

background for the results described in this section.
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Figure 1: The 2n−k1 rows of the array are indexed by the [[n, k1 − k2, d]] CSS codes corresponding to all possible
signings of the Z-stabilizer group. The 2k2 columns of the array are indexed by all possible X-syndromes µ. The
logical operator Bµ is induced by (1) preparing any code state ρ1; (2) applying a diagonal physical gate UZ to obtain
ρ2; (3) using X-stabilizers to measure ρ2, obtaining the syndrome µ with probability pµ, and the post-measurement
state ρ3; (4) applying a Pauli correction to ρ3, obtaining ρ4. The generator coefficients Aµ,γ are obtained by
expanding the logical operator Bµ in terms of Z-logical Pauli operators ε(0,γ)E(0,γ), where ε(0,γ) ∈ {±1}.

gates. In general, a logical non-Clifford gate is
more difficult to implement than a logical Clif-
ford gate [19]. Any non-Clifford operation on
the k logical qubits of an [[n, k, d]] QECC must
be induced by a non-Clifford operation on the n
physical qubits [15]. We derive a global necessary
and sufficient condition for any diagonal physi-
cal gate to preserve the code space of a stabilizer
code [11, 18]. A transversal gate [18] is a tensor
product of unitaries on individual code blocks. In
the case of transversal Z-rotation through π/2l,
we show that this global condition is equivalent
to the local trigonometric conditions derived by
Rengaswamy et al. [35]. Our approach has the
advantage of providing insight into the induced
logical operator.

It is essential that a set of gates be both
universal and fault-tolerant. Fault-tolerance of
transversal gates follows from the observation
that uncorrelated errors remain uncorrelated in
code blocks. The Eastin-Knill Theorem [17] re-
veals that we cannot implement a universal set
of logical operations on a QECC using transver-

sal operations alone. Magic state distillation
(MSD) combines transversal gates with an an-
cillary magic state to circumvent this restric-
tion [2, 9, 10, 13, 14, 22, 25, 26, 34, 39]. If the
initial fidelity of magic state exceeds a certain
threshold, then it can be purified by successive
application of the quantum teleportation pro-
tocol on stabilizer codes that are able to re-
alize a logical non-Clifford gate. (Generalized)
triorthogonal codes [9, 22] are Calderbank-Shor-
Steane (CSS) codes [12,37] designed to implement
a non-Clifford logical gate (up to some diagonal
Clifford logical gates). Hamming weights in the
classical codes that determine the CSS codes are
required to satisfy certain divisibility properties
[13, 21, 26, 31, 39]. Many examples employ Reed-
Muller (RM) codes. In Section 5 we characterize
CSS codes constructed from classical RM codes
that are fixed by transversal Z-rotation through
π/2l.

MSD provides a path to universal fault toler-
ant computation, where success depends on engi-
neering the interaction of code states and physi-
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cal gates. Here we consider the interaction of a
diagonal physical gate UZ with the code states
of a stabilizer code, as shown in Figure 1. We
prepare an initial code state, apply a physical
gate, then measure a code syndrome µ, and fi-
nally apply a correction based on µ. For each
syndrome, we expand the induced logical oper-
ator in the Pauli basis to obtain the generator
coefficients that capture state evolution. Intu-
itively, the diagonal physical gate preserves the
code space if and only if the induced logical op-
erator corresponding to the trivial syndrome is
unitary.

The effectiveness of magic state distillation
(MSD) depends on the probability of observing a
given syndrome, and it is possible to combine syn-
drome measurement with a decoder (see Krishna
and Tillich [25] for example). Generator coeffi-
cients provide a framework for investigating the
effectiveness and the threshold of distillation. We
describe the design space that is available through
a running example.

Example 1 (The [[7, 1, 3]] Steane code). Re-
ichardt [34] demonstrated that it is possible to
distill the magic state |A〉 = (|0〉 + eıπ/4|1〉)/

√
2

by post-selecting on the trivial syndrome, even
though the Steane code is not perfectly preserved
by the transversal T gate. He also demonstrated
the distillation threshold is optimal for |A〉. In
Section 4, we use generator coefficients to de-
scribe the average-logical channel induced by the
transversal T gate on the Steane code. When we
observe the trivial syndrome, the induced logical
operator is T †. Otherwise it is a logical Pauli
Z followed by a logical T †. The induced log-
ical operator becomes T † for all syndromes af-
ter applying a logical Pauli Z correction to all
non-trivial syndromes. However, the distillation
protocol no longer converges, despite the higher
probability of success2. Generator coefficients en-
code the probabilities of observing different syn-
dromes, which can be used to analyze variants of
the Steane protocol (such as applying a decoder
to subsets of syndromes), as well as MSD proto-
cols that use different codes (such as the [[15, 1, 3]]
code).

The introduction of magic state distillation by
Bravyi and Kitaev [10] led to the construction of
CSS codes where the code space is preserved by a

2See Appendix A

transversal Z-rotation of the underlying physical
space [9, 10, 13, 14, 22, 26, 34, 39]. The approach
taken in each paper is to examine the action of
a transversal Z-rotation on the basis states of
a CSS code. This approach results in sufficient
conditions for a transversal Z-rotation to realize
a logical operation on the code space. In contrast
we derive necessary and sufficient conditions by
analyzing the action of a transversal diagonal gate
on the stabilizer group that determines the code.
In effect, we study the code space by studying
symmetries of the codespace.

The interaction of transversal physical opera-
tors and code states depends very strongly on the
signs of stabilizers [16,23]. Consider for example,
the design of CSS codes that are oblivious to co-
herent noise. We can model the effective error as
a uniform Z-rotation on each qubit through some
(small) angle θ. We require the noise to preserve
the code space and to act trivially (as the log-
ical identity operator). It is possible to demon-
strate the existence of weight-2 Z-stabilizers, and
to show that their signs must be balanced [23].
Our generator coefficient framework includes the
freedom to choose signs and this degree of free-
dom is relatively unexplored. We describe the
design space that is available through a running
example.

Example 2 (The [[4, 2, 2]] code). Generator co-
efficients encode correlation between the initial
code state and syndrome measurement, which
may result in loss of logical information. The
[[4, 2, 2]] code shows that correlation can depend
very strongly on the signs of Z-stabilizers. The
stabilizer group is S = 〈X⊗4, Z⊗4〉. In Section
4 we show that if Z⊗4 has a positive sign, then
there is an embedded decoherence free subspace
spanned by the three encoded basis states |01〉,
|10〉, and |11〉. We also show that syndrome mea-
surement collapses logical information. If Z⊗4

has a negative sign, then we show that logical
information does not collapse, but the embedded
decoherence free subspace disappears. Generator
coefficients encode the different ways that code
states can evolve.

We now summarize our main technical contri-
butions.

1) We derive an explicit expression for the logical
channel induced by a diagonal physical gate
(Section 4, (75) describes the induced logical
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operator for each syndrome µ and (91) de-
scribes the probability of observing µ). We
quantify the correlation between initial code
state and measured syndrome by separating
the probability of observing a given syndrome
into two components, one depending on the
generator coefficients, the other on the choice
of initial state (Section 4.2). We analyze the
[[4, 2, 2]] code (Example 2) to show that each
component depends strongly on the choice of
signs in the stabilizer code, and that we can
choose signs to create a embedded decoher-
ence free subspace.

2) We derive necessary and sufficient conditions
for an arbitrary diagonal physical gate to pre-
serve the codespace of a CSS code with arbi-
trary signs (Section 5, Theorem 7), and de-
scribe the logical operator that results (Sec-
tion 5, Remark 8). These conditions gener-
alize earlier conditions found by Rengaswamy
et al [35] for transversal Z-rotation through
π/2l.

3) We further simplify the necessary and suffi-
cient conditions for a QFD gate to preserve
the code space of a CSS code (Section 5, The-
orem 9). These conditions govern divisibil-
ity of Hamming weights in the classical codes
that determine the CSS codes. In the case
of transversal Z-rotation through π/2l applied
to CSS codes with positive signs, we show
the necessity of divisibility conditions derived
in [26, 39].

4) We characterize all CSS codes with positive
signs, invariant under transversal Z-rotation
through π/2l, that are constructed from classi-
cal Reed-Muller (RM) codes (and their deriva-
tives obtained by puncturing or removing the
first coordinate). We derive necessary and suf-
ficient conditions that relate l to the param-
eters of the component RM codes (Section 5,
Theorem 14 and Remark 15).

5) We extend the generator coefficient frame-
work to stabilizer codes (Appendix B). This
extension shows that given an [[n, k, d]] non-
degenerate stabilizer code preserved by a diag-
onal gate UZ , we can construct an [[n, k, dZ ≥
d]] CSS code preserved by UZ with the same
induced logical operator. Note that dZ (the
minimum weight of any nontrivial Z-logical

Pauli operator) is the relevant distance for
MSD. Recall that an [[n, k, d]] stabilizer code
is non-degenerate if the weight of every stabi-
lizer element is at least d.

The rest of the paper is organized as follows.
Section 2 introduces notation and provides the
necessary background. Our review of stabilizer
codes takes account of the freedom to choose signs
in the stabilizer group, and provides the general
encoding map and logical Pauli operators for CSS
codes with arbitrary signs. Section 3 introduces
the generator coefficients that describe how a di-
agonal gate acts on a CSS code. Section 4 de-
scribes how generator coefficient govern the aver-
age logical channel. Section 5 establishes neces-
sary and sufficient conditions for a CSS code to
support a diagonal physical gate, and derives the
induced logical operator. We then derive the di-
visibility conditions and introduce RM construc-
tions. Section 6 concludes the paper and dis-
cusses future directions. In Appendix B, we ex-
tends the generator coefficient framework to gen-
eral stabilizer codes and show that CSS codes
perform at the least as well as non-degenerate
stabilizer codes for diagonal gates.

2 Preliminaries and Notation

2.1 Classical Reed-Muller Codes

Let F2 = {0, 1} denote the binary field. Let
m ≥ 1, and let x1, x2, . . . , xm be binary vari-
ables (monomials of degree 1). Monomials of
degree r can be written as xi1xi2 · · ·xir where
ij ∈ {1, 2, . . . ,m} are distinct. A boolean func-
tion with degree r is a binary linear combi-
nation of monomials with degrees at most r.
There is a one-to-one correspondence between
boolean functions h and evaluation vectors h =
[h(x1, x2, · · · , xm)](x1,x2,...,xm)∈Fm

2
. The degree 0

boolean function corresponds to the constant
evaluation vector 1 ∈ F

2m

2 .

For 0 ≤ r ≤ m, the Reed-Muller code
RM(r,m) is the set of all evaluation vectors h as-
sociated with boolean functions h(x1, x2, · · · , xm)
of degree at most r, RM(r,m) := {h ∈ F

2m

2 | h ∈
F2[x1, x2, · · · , xm], deg(h) ≤ r}. The length of
the RM(r,m) code is 2m, the dimension is given
by k =

∑r
j=0

(m
j

)

, and the minimal distance is

2m−r. The dual of RM(r,m) is RM(m−r−1,m),
and we can construct the RM codes by a recur-
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sively observing RM(r,m+1) = {(u,u+v) | u ∈
RM(r,m),v ∈ RM(r − 1,m)} [28]. Note that all
weights in RM(r,m) are multiples of 2b(m−1)/rc

[3,28,29], and the highest power of 2 that divides
all weights of codewords in RM(r,m) is exactly
2b(m−1)/rc [6].

2.2 The MacWilliams Identities

Let ı :=
√

−1 be the imaginary unit. We de-
note the Hamming weight of a binary vector v

by wH(v). The weight enumerator of a binary
linear code C ⊂ F

m
2 is the polynomial

PC(x, y) =
∑

v∈C

xm−wH(v)ywH(v). (1)

The MacWilliams Identities [27] relate the weight
enumerator of a code C to that of the dual code
C⊥, and are given by

PC(x, y) =
1

|C⊥|PC⊥(x+ y, x− y). (2)

Given an angle θ ∈ (0, 2π), we make the substi-
tution x = cos θ2 and y = −ı sin θ

2 , and define

Pθ[C] := PC

(

cos
θ

2
,−ı sin θ

2

)

(3)

=
∑

v∈C

(

cos
θ

2

)m−wH(v) (

−ı sin θ
2

)wH(v)

.

(4)

2.3 The Pauli Group

Any 2 × 2 Hermitian matrix can be uniquely ex-
pressed as a real linear combination of the four
single qubit Pauli matrices/operators

I2 :=

[

1 0
0 1

]

, X :=

[

0 1
1 0

]

, Z :=

[

1 0
0 −1

]

,

(5)

and Y := ıXZ. The operators satisfy X2 = Y 2 =
Z2 = I2, XY = −Y X, XZ = −ZX, and Y Z =
−ZY.

Let A⊗B denote the Kronecker product (ten-
sor product) of two matrices A and B. Let
n ≥ 1 and N = 2n. Given binary vectors
a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn] with
ai, bj = 0 or 1, we define the operators

D(a, b) := Xa1Zb1 ⊗ · · · ⊗XanZbn , (6)

E(a, b) := ıab
T mod 4D(a, b). (7)

We often abuse notation and write a, b ∈
F
n
2 , though entries of vectors are sometimes

interpreted in Z4 = {0, 1, 2, 3}. Note that
D(a, b) can have order 1, 2 or 4, but E(a, b)2 =

ı2ab
T
D(a, b)2 = ı2ab

T
(ı2ab

T
IN ) = IN . The n-

qubit Pauli group is defined as

HWN := {ıκD(a, b) : a, b ∈ F
n
2 , κ ∈ Z4}, (8)

where Z2l = {0, 1, . . . , 2l − 1}. The n-qubit Pauli
matrices form an orthonormal basis for the vector
space of N × N complex matrices (CN×N ) un-
der the normalized Hilbert-Schmidt inner prod-
uct 〈A,B〉 := Tr(A†B)/N [18].

We use the Dirac notation, |·〉 to represent the
basis states of a single qubit in C

2. For any v =
[v1, v2, · · · , vn] ∈ F

n
2 , we define |v〉 = |v1〉 ⊗ |v2〉 ⊗

· · ·⊗ |vn〉, the standard basis vector in C
N with 1

in the position indexed by v and 0 elsewhere. We
write the Hermitian transpose of |v〉 as 〈v| = |v〉†.
We may write an arbitrary n-qubit quantum state
as |ψ〉 =

∑

v∈Fn
2
αv|v〉 ∈ C

N , where αv ∈ C and
∑

v∈Fn
2

|αv|2 = 1. The Pauli matrices act on a

single qubit as X|0〉 = |1〉, X|1〉 = |0〉, Z|0〉 =
|0〉, and Z|1〉 = −|1〉.

The symplectic inner product is
〈[a, b], [c,d]〉S = adT + bcT mod 2. Since
XZ = −ZX, we have

E(a, b)E(c,d) = (−1)〈[a,b],[c,d]〉SE(c,d)E(a, b).
(9)

2.4 The Clifford Hierarchy

The Clifford hierarchy of unitary operators was
introduced in [20]. The first level of the hierarchy
is defined to be the Pauli group C(1) = HWN . For
l ≥ 2, the levels l are defined recursively as

C(l) := {U ∈ UN : UHWNU
† ⊂ C(l−1)}, (10)

where UN is the group of N×N unitary matrices.
The second level is the Clifford Group, C(2), which
can be generated (up to overall phases) using the
“elementary" unitaries Hadamard, Phase, and ei-
ther of Controlled-NOT (CX) or Controlled-Z
(CZ) defined respectively as

H :=
1√
2

[

1 1
1 −1

]

, P :=

[

1 0
0 ı

]

, (11)

CZab := |0〉〈0|a ⊗ (I2)b + |1〉〈1|a ⊗ Zb, (12)

CXa→b := |0〉〈0|a ⊗ (I2)b + |1〉〈1|a ⊗Xb. (13)
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Note that Clifford unitaries in combination
with any unitary from a higher level can be used
to approximate any unitary operator arbitrarily
well [7]. Hence, they form a universal set for
quantum computation. A widely used choice for
the non-Clifford unitary is the T gate in the third
level defined by

T :=

[

1 0

0 e
ıπ
4

]

= Z
1
4 ≡

[

e− ıπ
8 0

0 e
ıπ
8

]

= e− ıπ
8
Z .

(14)

2.5 Stabilizer Codes

We define a stabilizer group S to be a commu-
tative subgroup of the Pauli group HWN , where
every group element is Hermitian and no group
element is −IN . We say S has dimension r if it
can be generated by r independent elements as
S = 〈νiE(ci,di) : i = 1, 2, . . . , r〉, where νi ∈
{±1} and ci,di ∈ F

n
2 . Since S is commutative,

we must have 〈[ci,di], [cj ,dj ]〉S = cid
T
j +dic

T
j =

0 mod 2.

Given a stabilizer group S, the correspond-
ing stabilizer code is the fixed subspace V(S) :=
{|ψ〉 ∈ C

N : g|ψ〉 = |ψ〉 for all g ∈ S}. We re-
fer to the subspace V(S) as an [[n, k, d]] stabilizer
code because it encodes k := n− r logical qubits
into n physical qubits. The minimum distance d
is defined to be the minimum weight of any oper-
ator in NHWN

(S)\S. Here, the weight of a Pauli
operator is the number of qubits on which it acts
non-trivially (i.e., as X, Y or Z), and NHWN

(S)
denotes the normalizer of S in HWN defined by

NHWN
(S) := {ıκE (a, b) ∈ HWN :

E (a, b) SE (a, b) = S, κ ∈ Z4}
= {ıκE (a, b) ∈ HWN :

E (a, b)E (c,d)E (a, b) = E (c,d)

for all E (c,d) ∈ S, κ ∈ Z4}.
(15)

Note that the second equality defines the central-
izer of S in HWN , and it follows from the first
since Pauli matrices commute or anti-commute.

For any Hermitian Pauli matrix E (c,d) and

ν ∈ {±1}, the operator IN +νE(c,d)
2 projects onto

the ν-eigenspace of E (c,d). Thus, the projector
onto the codespace V(S) of the stabilizer code

defined by S = 〈νiE (ci,di) : i = 1, 2, . . . , r〉 is

ΠS =
r
∏

i=1

(IN + νiE (ci,di))

2

=
1

2r

2r
∑

j=1

εjE (aj , bj) , (16)

where εj ∈ {±1} is a character of the group
S, and is determined by the signs of the gen-
erators that produce E(aj , bj): εjE (aj , bj) =
∏

t∈J⊂{1,2,...,r} νtE (ct,dt) for a unique J .

Let |α〉L, α ∈ F
k
2 be the protected logical state.

We define the generating set {XL
j , Z

L
j ∈ HW2k :

j = 1, . . . k = k1 − k2} for the logical Pauli oper-
ators by the actions

XL
j |α〉L = |α′〉L, (17)

where

α′
i =

{

αi, if i 6= j,
αi ⊕ 1, if i = j,

(18)

and ZLj |α〉L = (−1)αj |α〉L. Let X̄j , Z̄j be the
n-qubit operators which are physical representa-
tives of XL

j , Z
L
j for j = 1, . . . , k. Then X̄j , Z̄j

commute with the stabilizer group S and satisfy

X̄iZ̄j =

{

Z̄jX̄i, if i 6= j,

−Z̄jX̄i, if i = j.
(19)

Remark 1. A stabilizer code determines a reso-
lution of the identity with the different subspaces
fixed by different signings of the stabilizer gener-
ators. When we correct stochastic and indepen-
dent Pauli errors, different signings of stabilizer
generators lead to quantum codes with identical
performance. However, when we consider corre-
lated errors such as the coherent errors (rotations
of Z axis for any angle θ), the signs of stabilizers
play an important role [16,23].

Example 3 (3-qubit bit flip code with negative
signs). Consider the stabilizer code defined by
the group S = 〈−Z1Z2, Z2Z3〉, which differs from
the stabilizer group of the 3-qubit bit flip code,
S ′ = 〈Z1Z2, Z2Z3〉, just by the sign of Z1Z2. The
encoding circuit of V(S ′) consist of CX1→2 and
CX1→3 gates, which maps |0〉L to |000〉 and |1〉L
to |111〉. Since XZX† = −Z, the encoding cir-
cuit of V(S) has an extra X gate on the first
qubit, which has |0̄〉 = |100〉 and |1̄〉 = |011〉.
Moreover, the physical representation of logical
Pauli X and Z for S is X1X2X3 and Z1 respec-
tively, i.e., X̄ = X1X2X3, Z̄ = −Z1.
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2.6 CSS Codes

A CSS (Calderbank-Shor-Steane) code is a partic-
ular type of stabilizer code with generators that
can be separated into strictly X-type and strictly
Z-type operators. Consider two classical binary
codes C1, C2 such that C2 ⊂ C1, and let C⊥

1 , C⊥
2

denote the dual codes. Note that C⊥
1 ⊂ C⊥

2 . Sup-
pose that C2 = 〈c1, c2, . . . , ck2

〉 is an [n, k2] code
and C⊥

1 = 〈d1,d2 . . . ,dn−k1
〉 is an [n, n − k1]

code. Then, the corresponding CSS code has the
stabilizer group

S = 〈ν(ci,0)E (ci,0) , ν(0,dj)E (0,dj)〉i=k2; j=n−k1
i=1; j=1

= {ε(a,0)ε(0,b)E (a,0)E (0, b) : a ∈ C2, b ∈ C⊥
1 },

where ν(ci,0), ν(0,dj), ε(a,0), ε(0,b) ∈ {±1}. The
CSS code projector can be written as the prod-
uct:

ΠS = ΠSX
ΠSZ

, (20)

where

ΠSX
:=

k2
∏

i=1

(IN + ν(ci,0)E(ci,0))

2

=

∑

a∈C2
ε(a,0)E(a,0)

|C2| , (21)

and

ΠSZ
:=

n−k1
∏

j=1

(IN + ν(0,dj)E(0,dj))

2

=

∑

b∈C⊥
1
ε(0,b)E(0, b)

|C⊥
1 | . (22)

Each projector defines a resolution of the identity,
and we focus on ΠSX

since we consider diagonal
gates. Note that any n-qubit Pauli Z operator
can be expressed as E(0, b)E(0,γ)E(0,µ) for a
Z-stabilizer representation b ∈ C⊥

1 , a Z-logical
representation γ ∈ C⊥

2 /C⊥
1 , and a X-syndrome

representation µ ∈ F
n
2/C⊥

2 . For µ ∈ F
n
2/C⊥

2 , we
define

SX(µ) :=
{

(−1)aµ
T
ε(a,0)E(a,0) : a ∈ C2

}

,

(23)

ΠSX(µ) :=
1

|C2|
∑

a∈C2

(−1)aµ
T
ε(a,0)E(a,0). (24)

Then, we have

ΠSX(µ)ΠSX(µ′) =

{

ΠSX(µ), if µ = µ′,

0, if µ 6= µ′,
(25)

and
∑

µ∈Fn
2 /C⊥

2

ΠSX(µ) = I2n . (26)

If C1 and C⊥
2 can correct up to t errors, then S

defines an [[n, k1 − k2, d]] CSS code with d ≥ 2t+
1, which we will represent as CSS(X, C2;Z, C⊥

1 ).
If G2 and G⊥

1 are the generator matrices for C2

and C⊥
1 respectively, then the (n−k1 +k2)× (2n)

matrix

GS =

[

G2

G⊥
1

]

(27)

generates S.

2.7 General Encoding Map for CSS codes

Given an [[n, k, d]] CSS(X, C2;Z, C⊥
1 ) code with all

positive signs, let GC1/C2
be the generator matrix

for all coset representatives for C2 in C1 (note that
the choice of coset representatives is not unique).
The canonical encoding map e : F

k
2 → V(S) is

given by e(|α〉L) := 1√
|C2|

∑

x∈C2
|αGC1/C2

⊕ x〉.
Note that the signs of stabilizers change the fixed
subspace by changing the eigenspaces that en-
ter into the intersection. Thus, the encoding
map needs to include information about nontriv-
ial signs.

B := {z ∈ C⊥
1 |εz = 1}

C⊥
1

D := {x ∈ C2|εx = 1}

C2

We capture sign information through character
vectors y ∈ F

n
2/C1, r ∈ F

n
2/C⊥

2 (note that the
choice of coset representatives is not unique) de-
fined for Z-stabilizers and X-stabilizers respec-
tively by

B = C⊥
1 ∩ y⊥, equivalently, B⊥ = 〈C1,y〉, (28)

and

D = C2 ∩ r⊥, equivalently, D⊥ = 〈C⊥
2 , r〉. (29)

Then, for ε(a,0)ε(0,b)E (a,0)E (0, b) ∈ S, we have

ε(a,0) = (−1)ar
T

and ε(0,b) = (−1)by
T
. In Ex-

ample 3, we may choose the character vectors
r = 0 (character vector of X-stabilizers) and
y = [1, 0, 0] (character vector of Z-stabilizers).
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The generalized encoding map ge : |α〉L ∈
F
k
2 → |α〉 ∈ V(S) is defined by

|α〉 :=
1

√

|C2|
∑

x∈C2

(−1)xr
T |αGC1/C2

⊕ x ⊕ y〉.

(30)

To verify that the image of the general en-
coding map ge is in V(S), we show that for
ε(a,0)ε(0,b)E (a,0)E (0, b) ∈ S (that is a ∈ C2,

ε(a,0) = (−1)ar
T
, b ∈ C⊥

1 , and ε(0,b) = (−1)by
T
),

ε(a,0)ε(0,b)E (a,0)E (0, b) |α〉

=
1

√

|C2|
∑

x∈C2

(

ε(a,0)(−1)xr
T
ε(0,b)(−1)b(αGC1/C2

⊕x⊕y)T |αGC1/C2
⊕ a ⊕ x ⊕ y〉

)

=
1

√

|C2|
∑

x∈C2

(−1)(a⊕x)rT |αGC1/C2
⊕ a ⊕ x ⊕ y〉

= |α〉. (31)

2.8 General Logical Pauli Operators for CSS

codes

Given the choice of GC1/C2
, there exists a unique

set of vectors {γ1, · · · ,γk ∈ C⊥
2 : GC1/C2

γi =
ei for all i = 1, . . . , k}, where {ei}i=1,...,k is the
standard basis of F

k
2. If γi is the i-the row of

generator matrix GC⊥
2 /C⊥

1
, then

GC1/C2
GT

C⊥
2 /C⊥

1
= Ik. (32)

Assume we have

GC1/C2
=













w1

w2
...

wk













, GC⊥
2 /C⊥

1
=













γ1

γ2
...
γk













. (33)

Thus, we have for i = 1, . . . , k

E(wi,0)|α〉

=
1

√

|C2|
∑

x∈C2

(−1)xr
T |αGC1/C2

⊕ wi ⊕ x ⊕ y〉

=
1

√

|C2|
∑

x∈C2

(−1)xr
T |(XL

i α)GC1/C2
⊕ x ⊕ y〉

= X̄i|α〉, (34)

and

(−1)γiy
T
E(0,γi)|α〉

=
1

√

|C2|
(

∑

x∈C2

(−1)xr
T ⊕γiy

T ⊕γi(αGC1/C2
⊕x⊕y)T

|αGC1/C2
⊕ x ⊕ y〉

)

=
1

√

|C2|
∑

x∈C2

(−1)xr
T

(−1)αeT
i |vGC1/C2

⊕ x ⊕ y〉

= Z̄i|α〉, (35)

where the second to last step follows from (32).
Thus we can choose

X̄i = E(wi,0) and Z̄i = ε(0,γi)E(0,γi), (36)

where wi,γi are the i-th rows of the above coset
generator matrices GC1/C2

, GC⊥
2 /C⊥

1
respectively.

Remark 2. Applying appropriate Pauli opera-
tors takes care of different signs in the stabilizer
group and changes the sign of logical Pauli oper-
ators. Although the sign for a single logical Pauli
operator is not observable, a general logical oper-
ator is a linear combination of logical Pauli oper-
ators, which may bring the global sign into some
local phase.

Example 2 (The basis state and logical Pauli
operators of the [[4, 2, 2]] code). Consider the
CSS(X, C2;Z, C⊥

1 ) code with C2 = C⊥
1 = {0,1}.

We may choose the generator matrices of C1/C2
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and C⊥
2 /C⊥

1 as

GC1/C2
=

[

0 1 1 0
0 0 1 1

]

, GC⊥
2 /C⊥

1
=

[

0 0 1 1
0 1 1 0

]

.

(37)

The encoded basis states and logical Pauli oper-
ators for two choices of the signs are given below.
If S = 〈X⊗4, Z⊗4〉 (r = y = 0), we have

|00〉 =
1√
2

(|0000〉 + |1111〉) ,

|01〉 =
1√
2

(|0011〉 + |1100〉) ,

|10〉 =
1√
2

(|0110〉 + |1001〉) ,

|11〉 =
1√
2

(|0101〉 + |1010〉) ,

X̄1 = X2X3, X̄2 = X3X4,

Z̄1 = Z3Z4, Z̄2 = Z2Z3.

When S ′ = 〈X⊗4,−Z⊗4〉 (r′ = 0, y′ =
[0, 0, 0, 1]), we have

|00〉 =
1√
2

(|0001〉 + |1110〉) ,

|01〉 =
1√
2

(|0010〉 + |1101〉) ,

|10〉 =
1√
2

(|0111〉 + |1000〉) ,

|11〉 =
1√
2

(|0100〉 + |1011〉) ,

X̄1 = X2X3, X̄2 = X3X4,

Z̄1 = −Z3Z4, Z̄2 = Z2Z3.

2.9 Quantum Channels

The quantum states defined in Section 2.3 are
called pure states. When a system contains mul-
tiple pure states |ψx〉 with probabilities px, the
ensemble {px, |ψx〉}, is described by a density op-
erator ρ given by

ρ :=
∑

x

px|ψx〉〈ψx| ∈ C
N×N . (38)

Every density operator is Hermitian, positive
semi-definite, with unit trace. Conversely, any
operator with these three properties can be writ-
ten in the form (38). Every ensemble determines
a unique density operator but a density operator
can describe different ensembles.

Suppose we measure the density operator ρ
with a finite set of projectors {Πj}j forming a
resolution of the identity. If the initial state in
the ensemble is |ψx〉, then we observe the out-
come j with probability p(j|x) = 〈ψx|Πj |ψx〉 =
Tr(Πj |ψx〉〈ψx|) and obtain the reduced state
Πj |ψx〉√
p(j|x)

. From the perspective of density oper-

ators, we observe the outcome j with probability
pj =

∑

x pxp(j|x) = Tr(Πjρ) and the density op-

erator evolves to be
ΠjρΠj

pj
. Thus, after measure-

ment, we have a ensemble of ensembles described
by a new density operator ρ′ given by [40]

ρ′ =
∑

j

pj
ΠjρΠj

pj
=
∑

j

ΠjρΠj . (39)

A quantum channel is linear, completely-
positive, and trace-preserving, and can be char-
acterized by a Kraus representation [32, 40]. A
map Φ : H → G is linear, completely-positive,
and trace-preserving if and only if there exists a
finite set of operators {Bk}k (from H to G) such
that for any ρ ∈ H

Φ(ρ) =
∑

k

BkρB
†
k. (40)

The operators {Bk}k are called Kraus operators
and satisfy

∑

k

B†
kBk = I2dim(H) (41)

and

|{Bk}k| ≤ dim(H) dim(G). (42)

Note that the Kraus representation of a quantum
channel is not unique.

3 Generator Coefficients

Starting from the general encoding map and log-
ical Pauli operators of CSS codes introduced in
Section 2.7, we study gates interacting with these
codes. We consider quantum gates for which the
Pauli expansion consists only of tensor products
of Pauli Z’s (or Pauli X’s). We partition F

n
2

into cosets of the Z-stabilizers (or X-stabilizers),
and define generator coefficients that take advan-
tage of the structure of stabilizer group. The
framework of generator coefficients provides in-
sight into the average logical channel, the nec-
essary and sufficient conditions for a CSS code
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to be invariant under a particular gate, and the
induced logical operator. We extend the frame-
work of generator coefficients to general stabilizer
codes in Appendix B.

Consider a 2n × 2n unitary matrix (quantum
gate) UZ =

∑

v∈Fn
2
f(v)E(0,v), where f(v) ∈ C.

Since

I = UZU
†
Z

=





∑

v∈Fn
2

f(v)E(0,v)









∑

v′∈Fn
2

f(v′)E(0,v′)





=
∑

w∈Fn
2





∑

v∈Fn
2

f(v)f(v ⊕ w)



E(0,w), (43)

we have

∑

v∈Fn
2

f(v)f(v ⊕ w) =

{

1, if w = 0,
0, if w 6= 0.

(44)

We define the generator coefficients for UZ acting
on a given CSS code as follows.

Definition 3 (Generator Coefficients for UZ).
Let CSS(X, C2;Z, C⊥

1 ) be an [[n, k1 − k2, d]] sta-
bilizer code defined by the stabilizer group S =

{ε(a,0)ε(0,b)E (a,0)E (0, b) : a ∈ C2, b ∈ C⊥
1 }

and the character vector y ∈ F
n
2/C1 for Z-

stabilizers. Let µ ∈ F
n
2/C⊥

2 be any X-syndrome
and γ ∈ C⊥

2 /C⊥
1 be any Z-logical. Then, for

any pair µ, γ, we define the generator coefficient
Aµ,γ corresponding to the diagonal unitary gate
UZ =

∑

v∈Fn
2
f(v)E(0,v) by

Aµ,γ :=
∑

z∈C⊥
1 +µ+γ

ε(0,z)f(z), (45)

where ε(0,z) = (−1)zy
T

.

Note that given a CSS code with not all posi-
tive signs, the character vector y is unique up to
an element of C1. A different choice of the coset
representatives of C1 in F

n
2 only changes the signs

of Aµ,γ , and leads to a global phase in the logical
quantum channel induced by UZ , which is given
in Section 4.

By partitioning F
n
2 into cosets of C⊥

1 , we gain
insight into the interaction of syndromes and log-
icals. The code projector is ΠS = ΠSX

ΠSZ
, and

we have

ΠSZ
UZ =

1

2n−k1

∑

b∈C⊥
1

ε(0,b)E(0, b)
∑

v∈Fn
2

f(v)E(0,v) =
1

2n−k1

∑

v∈Fn
2

f(v)
∑

b∈C⊥
1

ε(0,b)E(0, b ⊕ v)

=
1

2n−k1

∑

v∈Fn
2

ε(0,v)f(v)
∑

u∈C⊥
1 +v

ε(0,u)E(0,u) =
1

2n−k1

∑

µ

∑

γ

Aµ,γ

∑

u∈C⊥
1 +µ+γ

ε(0,u)E(0,u).

(46)

In the above summations, µ ∈ F
n
2/C⊥

2 and γ ∈
C⊥

2 /C⊥
1 , and Aµ,γ is given by (45). We now study

the generator coefficients associated with two dif-
ferent types of quantum gate UZ .

3.1 Transversal Z-Rotations RZ(θ)

There are two reasons to study how RZ(θ) :=
(

exp
(

−ı θ2Z
))⊗n

=
(

cos θ2I − ı sin θ
2Z
)⊗n

acts

on the states within a quantum error-correcting
code. The first is that when θ is not a multiple of
π
2 , RZ(θ) may realize a non-Clifford logical gate,
and the second is that coherent noise can be mod-
eled as {RZ(θ)}θ∈(0,2π). The Pauli expansion of

RZ(θ) is

∑

v∈Fn
2

(

cos
θ

2

)n−wH(v) (

−ı sin θ
2

)wH(v)

E(0,v).

(47)

As f(v) =
(

cos θ2

)n−wH(v) (

−ı sin θ
2

)wH(v)
, we

substitute it in (45), and obtain the generator
coefficients of RZ(θ),

Aµ,γ(θ) :=

∑

z∈C⊥
1 +µ+γ

ε(0,z)

(

cos
θ

2

)n−wH(z) (

−ı sin θ
2

)wH(z)

.

(48)
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We now compute the generator coefficients for
the [[7, 1, 3]] Steane code.

Example 1 (Generator Coefficients for RZ(θ)
applied to the [[7, 1, 3]] Steane code). The Steane
code is a perfect CSS(X, C2;Z, C⊥

1 ) code with all
positive signs and generator matrix

GS =

[

H

H

]

, (49)

where H is the parity-check matrix of the Ham-
ming code:

H =







1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1






. (50)

Then, we have C1/C2 = C⊥
2 /C

⊥
1 = {0,1}, where

0,1 are the vectors of all ones and all zeros re-
spectively. If we compute the generator coeffi-
cients directly from (48), then we need the weight
enumerators of all cosets of C⊥

1 . We may simplify
these calculations using the MacWilliams Identi-
ties. Consider for example the case µ = 0 and
γ = 1, where we may write

A0,1(θ)

=
∑

z∈C⊥
1 +1

(

cos
θ

2

)7−wH(z) (

−ı sin θ
2

)wH(z)

= Pθ[〈C⊥
1 ,1〉] − Pθ[C⊥

1 ], (51)

where Pθ[C] is defined in (4). We apply the
MacWilliams Identities to Pθ[C⊥

1 ] to obtain

Pθ[C⊥
1 ] =

1

|C1|PC1

(

cos
θ

2
− ı sin

θ

2
, cos

θ

2
+ ı sin

θ

2

)

=
1

|C1|
∑

z∈C1

(

e−ı θ
2

)n−2wH(z)
. (52)

We simplify the term P [〈C⊥
1 ,1〉] in the same way,

Pθ[〈C⊥
1 ,1〉] =

1

|〈C⊥
1 ,1〉|

∑

z∈〈C⊥
1 ,1〉⊥

(

e−ı θ
2

)n−2wH(z)

=
2

|C1|
∑

z∈C1∩1⊥

(

e−ı θ
2

)n−2wH(z)
.

(53)

It follows from (51), (52), and (53) that

A0,1(θ) =
1

|C1|
∑

z∈C1

(−1)1·zT
(e−ı θ

2 )7−2wH(z) (54)

=
1

8

(

−ı sin 7θ

2
+ 7ı sin

θ

2

)

, (55)

where (55) is obtained from (54) by substituting
in the weight enumerator of C1

PC1(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

We compute all the generator coefficients for the
Steane code in Table 1. We return to this data
in Section 4.1 to provide more insight into the
logical channel determined by RZ(θ), and in Sec-
tion 4.2 to calculate the probabilities of observing
different syndromes.

Table 1: Generator coefficients Aµ,γ(θ) for RZ(θ) ap-
plied to the Steane code. Each column corresponds to
a Z-logical. The first row corresponds to the trivial X-
syndromes, and second row represents the seven non-
trivial syndromes (they have equivalent behaviour due
to symmetry).

µ γ = 0 γ = 1

= 0
1
8

(

cos 7θ
2 + 7 cos θ2

)

ı
8

(

7 sin θ
2 − sin 7θ

2

)

6= 0 − ı
8

(

sin 7θ
2 + sin θ

2

)

1
8

(

cos 7θ
2 − cos θ2

)

Before introducing the Kraus decomposition of
RZ(θ) acting on a CSS code, we provide an alter-
native definition of generator coefficients which
simplifies calculations. We first write Aµ,γ(θ) as
a linear combination of weight enumerators, then
apply the MacWilliams Identities.

Lemma 4 (Simplified Definition of Genera-
tor Coefficients). Consider a CSS(X, C2;Z, C⊥

1 )
code, where y is the character vector for the Z-

stabilizers
(

ε(0,z) = (−1)zy
T
)

. Then, the gener-

ator coefficients Aµ,γ(θ) defined in (48) can be
written as

Aµ,γ(θ)

=
1

|C1|
∑

z∈C1+y

(−1)(µ⊕γ)(z⊕y)T
(

e−ı θ
2

)n−2wH(z)
.

(56)

Remark 5. The original definition (48) requires
a sum over the weights of every coset C⊥

1 . The
alternative definition (56) requires a sum over a
single coset C1 + y, where the syndrome µ and
logical γ determine the hyperplane that specifies
the signs in the sum.

Proof. See Appendix C.1.
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3.2 Quadratic Form Diagonal Gates

Rengaswamy et al. [36] considered diagonal uni-
taries of the form

τ
(l)
R =

∑

v∈Fn
2

ξvRvT mod 2l

l |v〉〈v|, (57)

where l ≥ 1 is an integer, ξl = e
ı π

2l−1 , and R is
an n × n symmetric matrix with entries in Z2l ,
the ring of integer modulo 2l. Note that the ex-
ponent vRvT ∈ Z2l . When l = 2 and R is binary,
we obtain the diagonal Clifford unitaries. QFD
gates defined by (57) include all 1-local and 2-
local diagonal unitaries in the Clifford hierarchy,
and they contain RZ(θ) for θ = 2π

2l , where l ≥ 1
is an integer.

Recall that N ×N Pauli matrices form an or-
thonormal basis for unitaries of size N with re-
spect to the normalized Hilbert-Schmidt inner
product 〈A,B〉 := Tr(A†B)/N . Hence,

|v〉〈v| =
∑

a,b∈Fn
2

Tr(|v〉〈v|E(a, b))

N
E(a, b)

=
1

2n

∑

b∈Fn
2

(−1)bv
T
E(0, b), (58)

and the Pauli expansion of a QFD gate becomes

τ
(l)
R =

1

2n

∑

u∈Fn
2

f(u)E(0,u), (59)

where

f(u) =
∑

v∈Fn
2

ξvRvT mod 2l

l (−1)uv
T
. (60)

Example 4. If n = 1, l = 3, ξ3 = eı
π
4 , R = [1],

then we have f(0) = 1 + eı
π
4 , f(1) = 1 − eı

π
4 , and

τ
(2)
R = 1

2

(

1 + eı
π
4

)

E(0, 0)+ 1
2

(

1 − eı
π
4

)

E(0, 1) =

T.

Example 5. Consider n = 2, and R =

[

0 1
1 0

]

.

If l = 2, then ξ2 = eı
π
2 = ı and τ

(2)
R = CZ :=

1
2 (E(0,0) + E(0, 01) + E(0, 10) − E(0,1)) . If

l = 3, then ξ3 = eı
π
4 and

τ
(3)
R = CP :=

1

4
((3 − ı)E(0,0) + (1 + ı)E(0, 01)

+ (1 + ı)E(0, 10) − (1 + ı)E(0,1)).
(61)

We substitute (60) in (45), and obtain the gen-
erator coefficients for QFD gates

Aµ,γ(R, l) :=

1

2n

∑

z∈C⊥
1 +µ+γ

ε(0,z)

∑

v∈Fn
2

ξvRvT mod 2l

l (−1)zv
T
.

(62)

Let y ∈ F
n
2/C1 be the character vector

(

ε(0,z) = (−1)zy
T
)

. Changing the order of sum-

mation, we have

Aµ,γ(R, l) =
1

2n

∑

v∈Fn
2

py(v,µ,γ)ξvRvT mod 2l

l ,

(63)
where

py(v,µ,γ)

=
∑

z∈C⊥
1 +µ+γ

(−1)zy
T

(−1)zv
T

= (−1)(µ⊕γ)(y⊕v)T ∑

u∈C⊥
1

(−1)u(y⊕v)T

=

{

|C⊥
1 |(−1)(µ⊕γ)(y⊕v)T

, if y ⊕ v ∈ C1,
0, otherwise.

(64)

Substituting (64) in (63), we obtain

Aµ,γ(R, l) =
1

|C1|
∑

v∈C1+y

(−1)(µ⊕γ)(y⊕v)T
ξvRvT

l .

(65)

When R = In, we obtain the transversal Z-
rotation RZ( π

2l−1 ) up to a global phase. We now
use (65) to calculate generator coefficients of the
[[4, 2, 2]] code.

Example 2 (Generator Coefficients of CZ and
CP for the [[4, 2, 2]] code). The [[4, 2, 2]] code is a
CSS code with C⊥

1 = C2 = {0,1}. The Z-logical
γ ∈ 〈[0, 0, 1, 1], [0, 1, 1, 0]〉 and the X-syndrome
µ ∈ 〈[1, 0, 0, 0]〉. Assume all the stabilizers have
positive signs (the character vector y = 0). Set

R =











0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0











. (66)

Setting l = 2, we list the generator coefficients for
CZ⊗2 in Table 2. Note that CZ and CP shared
the same symmetric matrix R but the level l is
different. Table 3 lists the generator coefficients
for CP⊗2.
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Table 2: Generator coefficients Aµ,γ(R, l = 2) for CZ⊗CZ applied to the [[4, 2, 2]] code with all positive signs.

X-syndromes

Z-logicals
γ = 0 γ = [0, 0, 1, 1] γ = [0, 1, 1, 0] γ = [0, 1, 0, 1]

µ = 0
1
2 −1

2
1
2

1
2

µ = [1, 0, 0, 0] 0

Table 3: Generator coefficients Aµ,γ(R, l = 3) of CP⊗CP for [[4, 2, 2]] code with all positive signs.

X-syndromes

Z-logicals
γ = 0 γ = [0, 0, 1, 1] γ = [0, 1, 1, 0] γ = [0, 1, 0, 1]

µ = 0
1
4(2 + ı) 1

4(−2 + ı) − ı
4 − ı

4

µ = [1, 0, 0, 0] 1
4

4 Average Logical Channel

We investigate the effect of UZ acting on a
CSS codespace V(S) by considering the following
steps:

1. Choose any initial density operator ρ1 in the
CSS codespace V(S). Then, we have ρ1 =
ΠSρ1ΠS .

2. Apply UZ physically. Then the system
evolves to

ρ2 = UZρ1U
†
Z = UZΠSρ1ΠSU

†
Z . (67)

3. Measure with X-stabilizers to obtain the
syndrome µ ∈ F

n
2/C⊥

2 . It follows from (39)
that the system evolves to

ρ3 =
∑

µ∈F2/C⊥
2

ΠSX(µ)
ρ2ΠSX(µ)

=
∑

µ∈F2/C⊥
2

(

ΠSX(µ)
UZΠS

)

ρ1

(

ΠSU
†
ZΠSX(µ)

)

(68)

4. Based on the syndrome µ, we apply a Pauli
correction to map the state back to V(S).
This correction may introduce some logical
operator ε(0,γµ)E(0,γµ). The final state ρ4

is in the CSS codespace.

Generator coefficients help describe the average
logical channel resulting from UZ acting on a CSS
codespace (steps 1-4). We extend our approach
to arbitrary stabilizer codes in Appendix B.

4.1 The Kraus Representation

Kraus operators describe the logical channels ob-
tained by averaging the action of UZ over density
operators in V(S). Generator coefficient appear
as the coefficients in the Pauli expansion of Kraus
operators. We use generator coefficients to sim-
plify the term UZΠS in (67). It follows from (46)
and the derivation in Appendix C.2 that

UZΠS =
∑

µ∈Fn
2 /C⊥

2

ΠSX(µ)

∑

γ∈C⊥
2 /C⊥

1

Aµ,γ q(µ,γ),

(69)

where ΠSX(µ) = 1
|C2|

∑

a∈C2
(−1)aµ

T
ε(a,0)E(a,0)

as described in (23), and

q(µ,γ) :=
1

2n−k1

∑

u∈C⊥
1 +µ+γ

ε(0,u)E(0,u). (70)

Since the projectors {ΠSX(µ)}µ∈Fn
2 /C⊥

2
are pair-

wise orthogonal, it follows from that for any fixed
µ0 ∈ F

n
2/C⊥

2 , we have

ΠSX(µ0)
UZΠS = ΠSX(µ0)

∑

γ∈C⊥
2 /C⊥

1

Aµ0,γ q(µ0,γ).

(71)

Since ρ1 describes an ensemble of states in the
codespace V(S), it follows from that for fixed
γ0 ∈ C⊥

2 /C⊥
1 , we have

q(µ0,γ0)ρ1q(µ0,γ0) = Kρ1K, (72)

where K := ε(0,µ0⊕γ0)E(0,µ0 ⊕ γ0). Thus, we
may write ρ3 as

ρ3 =
∑

µ∈Fn
2 /C⊥

2

ΠSX(µ)
K1ρ1K1 (73)
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where K1 :=
∑

γ∈C⊥
2 /C⊥

1
Aµ,γ ε(0,µ⊕γ)E(0,µ⊕γ).

Although the sign ε does not matter here, we
carry it along for consistency with the logical
Pauli Z operators derived in (36). Based on the
syndrome µ, the decoder applies a correction and
maps the quantum state back to the codespace
V(S). This correction might induce some unde-
tectable Z-logical ε(0,γµ)E(0,γµ) with γ0 = 0.
Hence, the final state after step 4 becomes

ρ4 =
∑

µ∈Fn
2 /C⊥

2

Bµρ1B
†
µ, (74)

where

Bµ := ε(0,γµ)E(0,γµ)
∑

γ∈C⊥
2 /C⊥

1

Aµ,γ ε(0,γ)E(0,γ)

=
∑

γ∈C⊥
2 /C⊥

1

Aµ,γ ε(0,γ⊕γµ)E(0,γ ⊕ γµ), (75)

is the effective physical operator corresponding
to syndrome µ. It follows from (36) that for γ ∈
C⊥

2 /C⊥
1 , ε(0,γ⊕γµ)E(0,γ ⊕ γµ) is a logical Pauli

Z, and (74), (75) can be considered just in the
logical space.

Note that the evolution described in (74) works
for any initial code state ρ1 in step 1. The in-
teraction between the diagonal gate UZ and the
structure of CSS code in step 2 is captured in
the generator coefficients Aµ,γ . The syndrome of
the measurement in step 3 is reflected by the sum
in (74), and the decoder chosen in step 4 is ex-
pressed by some logical Pauli Z determined by
γµ for each syndrome.

To show {Bµ}µ∈F2/C⊥
2

is the set of Kraus op-
erators, we need to verify that

∑

µ∈Fn
2 /C⊥

2

B†
µBµ = I. (76)

We may simplify the summation as
∑

µ

B†
µBµ

=
∑

µ

∑

γ

|Aµ,γ |2I

+
∑

µ

∑

γ 6=γ′

Aµ,γAµ,γ′ ε(0,γ⊕γ′)E(0,γ ⊕ γ′)

=
∑

η

ε(0,η)

(

∑

µ

∑

γ

Aµ,γAµ,η⊕γ

)

E(0,η),

(77)

where the new variable η = γ ⊕ γ′ ∈ C⊥
2 /C⊥

1 . In
Theorem 6, we verify (76) by showing that the

coefficient of E(0,0) = I is 1 and that the coeffi-
cients of E(0,η), η 6= 0 are all zero. Theorem 6
describes the general property of generator coef-
ficients, which mainly because quantum gates are
unitaries.

Theorem 6. Suppose that a Z-unitary gate
UZ =

∑

v∈Fn
2
f(v)E(0,v) induces generator co-

efficients Aµ,γ on a CSS(X, C2;Z, C⊥
1 ) code. If

η ∈ C⊥
2 /C⊥

1 , then

∑

µ∈Fn
2 /C⊥

2

∑

γ∈C⊥
2 /C⊥

1

Aµ,γAµ,η⊕γ =

{

1, if η = 0,
0, if η 6= 0.

(78)

Proof. See Appendix C.4.

We conclude that the Kraus operators describ-
ing the action of UZ on a CSS code are given by
(75).

When UZ = RZ(θ), the generator coeffi-
cients Aµ,γ take the form (48). Consider now
a one-logical-qubit system, where one of the pair
(Aµ=0,γ=0(θ), Aµ=0,γ 6=0(θ)) is real and the other
is pure imaginary. Then the logical qubit is ro-
tated with angle θL and we can express θL in
terms of the physical rotation angle θ [16] as

θL(θ) = 2 tan−1

(

ı
Aµ=0,γ 6=0(θ)

Aµ=0,γ=0(θ)

)

. (79)

See Appendix C.3 for details. We again take the
Steane code as an example, substitute the values
from Table 1 and obtain the logical rotation angle

θL(θ) = 2 tan−1

(

sin 7θ
2 − 7 sin θ

2

cos 7θ
2 + 7 cos θ2

)

= −28

15
θ3 +O(θ5). (80)

Figure 2 plots θL(θ) displaying third-order con-
vergence about θ = 0. Note that θL(π4 ) = −π

4 .
In Appendix A, we explain how RZ(π4 ) supports
magic state distillation with the aid of a logical
Phase gate. When θ < π

4 , θL < θ, and the Steane
code might be applied to convert 7 noisy copies
of the state (|0〉 + eıθ|1〉)/

√
2 into 1 copy of the

state (|0〉 + eıθL |1〉)/
√

2 with higher fidelity.

We now compute all Kraus operators induced
by RZ(θ) acting on the Steane code.
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Figure 2: The Steane Code: the logical angle θL in
terms of physical angle θ, assuming we observe the trivial
syndrome.

Example 1 (continued). We take the data in
Table 1 and substitute θ = π

4 to obtain

A0,0

(

π

4

)

=
3

4
cos

π

8
, A0,1

(

π

4

)

=
3

4
ı sin

π

8
,

Aµ 6=0,0

(

π

4

)

= −1

4
ı sin

π

8
,

Aµ 6=0,1

(

π

4

)

= −1

4
cos

π

8
. (81)

We assume γµ = 0 for all µ, and use these gener-
ator coefficients to compute the Kraus operators

Bµ=0

(

π

4

)

=
3

4
cos

π

8
Ī +

3

4
ı sin

π

8
Z̄ ≡ 3

4
T̄ †,

(82)

Bµ 6=0

(

π

4

)

= −1

4
ı sin

π

8
Ī − 1

4
cos

π

8
Z̄ ≡ 1

4
Z̄T̄ †,

(83)

which describe the average logical channel corre-
sponds to the transversal T gate. Reichardt [34]
discussed the [[7, 1, 3]] Steane code in magic state
distillation. The computed average logical chan-
nel makes it clear that we can choose proper cor-
rections based on syndromes (γµ = Z̄ for µ 6= 0)
to obtain the logical operator T † from all the syn-
dromes.

Note that the Steane code is not a triorthog-
onal code [9], but it can be used in state distil-
lation [34]. The generator coefficients framework
may help to characterize codes that are not pre-
served by transversal T but realize a logical T
gate when the trivial syndrome is observed. Re-
cently, Vasmer and Kubica [38] introduced a new

[[10, 1, 2]] code by morphing the [[15, 1, 3]] quantum
Reed-Muller code [10, 24] and the [[8, 3, 2]] color
code [14]. It provides the first protocol in state
distillation that supports a fault-tolerant logical
T gate from a diagonal physical gate that is not
transversal T . The generator coefficient frame-
work applies to arbitrary diagonal gates, and may
facilitate finding more examples of distillation.

When UZ is a QFD gate, the Kraus operators
can be derived in the same way. Table 2 in Exam-
ple 2 implies that the [[4, 2, 2]] code is preserved
by CZ⊗2 and that the induced logical operator is
ZL1 ◦ CZL.

4.2 Probability of Observing Different X-

Syndromes

The Kraus operators derived in Section 4.1 de-
scribe logical evolution conditioned on different
outcomes from stabilizer measurement, and it is
natural to calculate the probability of observ-
ing different syndromes µ. Generator coefficients
provide a means of calculating these probabilities
that illuminates dependence on the initial state,
and we will provide examples where the initial
state and the outcome of syndrome measurement
are entangled.

Consider a CSS(X, C2;Z, C⊥
1 ) code with

codespace V(S). For any fixed |φ〉 ∈ V(S)
, we first apply UZ , and then measure
with projectors {ΠSX(µ)

}µ∈Fn
2 /C⊥

2
, where

ΠSX(µ)
= 1

|C2|

∑

a∈C2
(−1)aµ

T
ε(a,0)E(a,0).

Then the probability of obtaining a syndrome
µ ∈ F

n
2/C⊥

2 is

pµ (|φ〉) = 〈φ|U †
ZΠSX(µ)UZ |φ〉. (84)

It follows from equation (46) that

UZ |φ〉 = UZΠSZ
|φ〉

=
∑

µ

∑

γ

Aµ,γ ε(0,µ⊕γ)E(0,µ ⊕ γ)|φ〉,

(85)

and similarly

〈φ|U †
Z = 〈φ|ΠSZ

U †
Z

= 〈φ|
∑

µ

∑

γ

Aµ,γ ε(0,µ⊕γ)E(0,µ ⊕ γ).

(86)
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For any fixed µ0 ∈ F
n
2/C⊥

2 , since
ΠSX(µ0)ΠSX(µ0) = ΠSX(µ0), we have

pµ0
= 〈φ|ΠSZ

U †
ZΠSX(µ0)ΠSX(µ0)UZΠSZ

|φ〉.
(87)

It follows from the simplification in Appendix C.5
of the later half in (87) that

ΠSX(µ0)UZΠSZ
|φ〉

=
1

|C2|
∑

µ

∑

γ

Aµ,γ ε(0,µ⊕γ)E(0,µ ⊕ γ)s(a)|φ〉,

(88)

where s(a) :=
∑

a∈C2
(−1)a(µ⊕µ0)T

. Note that
since a ∈ C2 and µ ⊕ µ0 ∈ F

n
2/C⊥

2 , the inner
summation is nonzero only when µ = µ0 so that

ΠSX(µ0)UZΠSZ
|φ〉 =

∑

γ∈C⊥
2 /C⊥

1

Aµ0,γ ε(0,µ0⊕γ)E(0,µ0 ⊕ γ)|φ〉.

(89)

Similarly, we have

〈φ|ΠSZ
U †
ZΠSX(µ0) =

〈φ|
∑

γ∈C⊥
2 /C⊥

1

Aµ0,γ ε(0,µ0⊕γ)E(0,µ0 ⊕ γ).

(90)

Thus, the probability of observing the syndrome
µ can be written as

pµ (|φ〉) =
∑

γ

|Aµ,γ |2+

∑

γ 6=γ′

Aµ,γAµ,γ′〈φ|ε(0,γ⊕γ′)E(0,γ ⊕ γ′)|φ〉.

(91)

Note that only the second term depends on the
initial state. If some |φi〉 ∈ {|+〉, |−〉} in the ini-
tial state |φ〉 = |φ1 ⊗ · · · ⊗ φk〉, then the second
term (the cross terms) in (91) vanishes since ev-
ery ε(0,γ⊕γ′)E(0,γ ⊕ γ′) with γ 6= γ′ is some
nontrivial Pauli Z logical. Note that it follows
from Theorem 6 that

∑

µ

∑

γ |Aµ,γ |2 = 1. Since
∑

µ pµ(|φ〉) = 1 for any initial state |φ〉 ∈ V(S),
it follows that the sum of the second term over
all the X-syndromes is 0, that is,

∑

µ

∑

γ 6=γ′

Aµ,γAµ,γ′〈φ|ε(0,γ⊕γ′)E(0,γ⊕γ′)|φ〉 = 0.

(92)

Note that Pauli Z logicals only change signs in
the |0〉&|1〉 basis. If the second term is the same
for all |0〉&|1〉 computational basis states in the
codespace, then the probability of observing dif-
ferent syndromes is the same for different initial
states |φ〉. If not, the probabilities depend on the
initial state, and encode the mutual information
between initial state and syndrome measurement.
In these circumstances, we cannot find a recov-
ery operator for UZ that is good for the entire
codespace. An important special case is when
a decoherence-free subspace is embedded in the
codespace (useful for passive control of coherent
errors UZ = RZ(θ)).

We now introduce two examples to illustrate
how (91) provides insight into invariance of the
codespace, the probability of success in magic
state distillation, and existence of an embedded
decoherence-free subspace. Continuing Example
1 below, we compute the probabilities of observ-
ing different syndromes for the [[7, 1, 3]] Steane
code and discuss implications. Continuing Ex-
ample 2 below, we demonstrate that by changing
signs of Z-stabilizers in the [[4, 2, 2]] code, we can
switch from the case where the second term is
the same for every initial state to the case of an
embedded decoherence-free subspace.

Example 1 (continued). The Steane [[7, 1, 3]]
code has only one logical qubit, and we let |0〉, |1〉
denote the the two computational basis states.
Given a syndrome µ, we observe that one of
the generator coefficients Aµ,γ=0(θ), Aµ,γ 6=0(θ),
is real and the other is purely imaginary, so that
the crossterms vanish in (91). Hence, the proba-
bilities of observing different syndromes are con-
stant for different initial states and are given by

pµ=0(|0〉, θ) = pµ=0(|1〉, θ) =
1

32
(7 cos 4θ + 25) ,

pµ 6=0(|0〉, θ) = pµ 6=0(|1〉, θ) =
1

32
(1 − cos 4θ) .

(93)

It is not hard to verify that
∑

µ pµ(|φ〉, θ) =
1
32 (7 cos 4θ + 25) + 7

32 (1 − cos 4θ) = 1 for all
|φ〉 ∈ V(S) and for all θ. Figure 3 plots the
probability of observing the trivial syndrome as
a function of the rotation angle.

We observe from Figure 3 that when θ is a
multiple of π

2 , pµ=0(|φ〉) = 1 for all the states |φ〉
in the Steane codespace V(S), which implies that
RZ(kπ2 ) preserves V(S). The angle θ = π

4 + kπ
2
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Figure 3: The probability of observing the trivial syn-
drome for the Steane Code under RZ(θ) for varying
physical angles θ.

minimizes the probability of obtaining the zero
syndrome and this minimum value relates to the
probability of success in magic state distillation.
Substituting θ = π

4 , we obtain pµ=0
(|φ〉, π4

)

=
9
16 , and pµ 6=0

(|φ〉, π4
)

= 1
16 , for all |φ〉 ∈ V(S).

Example 2 (continued). Recall the [[4, 2, 2]]
CSS(X, C2 = {0,1};Z, C⊥

1 = C2) code with two
different choices of signs defined by the char-
acter vectors y = 0 (all positive signs), and
y′ = [0, 0, 0, 1] (negative Z⊗4 in the stabilizer
group).

Table 4: Generator coefficients Aµ,γ(θ) for RZ(θ) of
the [[4, 2, 2]] code with all positive signs (y = 0).

γ = 0 γ 6= 0

µ = 0
1
4 (cos 2θ + 3) 1

4 (cos 2θ − 1)

µ = [1, 0, 0, 0] −1
4 ı sin 2θ

Table 4 lists the generator coefficients for all
positive signs (y = 0). We now use the data to
calculate the probabilities of observing different
syndromes as described in (91). For the encoded
|00〉 state, we have

pµ=0(|00〉, θ) =
1

2
cos 4θ +

1

2
,

pµ=[0,0,0,1](|00〉, θ) = −1

2
cos 4θ +

1

2
. (94)

The remaining three states have the same prob-

abilities of observing X-syndromes:

pµ=0(|φ〉 ∈ {|01〉, |10〉, |11〉}, θ) =

1

8
(cos 4θ + 7) +

1

8
(1 − cos 4θ) = 1,

(95)

pµ=[1,0,0,0](|φ〉 ∈ {|01〉, |10〉, |11〉}, θ) =

1

8
(1 − cos 4θ) − 1

8
(1 − cos 4θ) = 0.

(96)

If the initial state is among |01〉, |10〉, |11〉, then
it evolves within the codespace for all angles
θ, which implies that F := span(|01〉, |10〉, |11〉)
forms a embedded decoherence-free subspace
(DFS) inside the codespace [23].

Figure 4: The [[4, 2, 2]] code with all positive stabilizers.
The probability of observing the trivial syndrome for the
initial encoded state |00〉 under RZ(θ) for varying phys-
ical angles θ.

Figure 4 plots (94) for different physical angles
θ. When θ = π

4 + kπ
2 for some integer k, syndrome

measurement acts as projection from V(S) to the
embedded DFS, and we are able to learn whether
the initial state was |00〉; When θ = kπ

2 for some
integer k, the measurement outcome is always
the zero syndrome, which implies that RZ(π2 )
perserve the codespace and some logical opera-
tor is induced. The Kraus operators derived in
(75) imply that the induced logical operator is

Bµ=0

(

π

2

)

=
∑

γ

A0,γ

(

π

2

)

E(0,γ)

≡
(

Z̄ ⊗ Z̄
)

◦ CZ. (97)

Next, we compute the generator coefficients for
the same [[4, 2, 2]] code but with nontrivial signs
(character vector y = [0, 0, 0, 1]).
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Table 5: Generator coefficients Aµ,γ(θ) for RZ(θ) of the [[4, 2, 2]] code with negative Z⊗4 stabilizer (y = [0, 0, 0, 1]).

X-syndromes

Z-logicals
γ = 0 γ1 = [0, 0, 1, 1] γ2 = [0, 1, 1, 0] γ3 = γ1 ⊕ γ2

µ = 0 cos θ 0 0 0

µ = [1, 0, 0, 0] −1
2 ı sin θ

1
2 ı sin θ −1

2 ı sin θ −1
2 ı sin θ

It follows from (91) and Table 5 that

pµ=0(|φ〉 ∈ {|00〉, |01〉, |10〉, |11〉}, θ) = (cos θ)2,

pµ=[1,0,0,0](|φ〉 ∈ {|00〉, |01〉, |10〉, |11〉}, θ)
= (sin θ)2.

In this case, the probabilities are independent of
the different initial states and there is no embed-
ded decoherence-free subspace in the codespace.
This example shows that for the same code, state
evolution depends very strongly on signs of Z-
stabilizers.

In prior work [23], we have derived criteria
that ensure a stabilizer code is a DFS, and (91)
opens the door to developing criteria for em-
bedded DFS, in which the second term acts as
an amendment to the first term and implies the
probability is either 0 or 1 for a subset of initial
|0〉&|1〉-basis state in the codespace.

5 CSS codes Preserved by UZ

When a CSS code is preserved by a unitary UZ ,
the probability of observing the zero syndrome is
1, and the Kraus operators capture evolution of
logical states. Theorem 7 provides necessary and
sufficient conditions for a unitary UZ to preserve
a CSS code.

We prove Theorem 7 by writing ΠS as a prod-
uct ΠS = ΠSX

ΠSZ
, where UZ commutes with

the Z-projector ΠSZ
, and we then translate com-

mutativity to conditions on generator coefficients.
We generalize these conditions to arbitrary stabi-
lizer codes in Appendix B.

Theorem 7. Let CSS(X, C2 = 〈ci : 1 ≤ i ≤
k2〉;Z, C⊥

1 = 〈dj : 1 ≤ j ≤ n − k1〉) be an
[[n, k1 − k2, d]] CSS code V(S) defined by the sta-
bilizer group S with code projector ΠS . Then the
unitary UZ =

∑

v∈Fn
2
f(v)E(0,v) preserves V(S)

(i.e. UZΠSU
†
Z = ΠS) if and only if

∑

γ∈C⊥
2 /C⊥

1

|A0,γ |2 = 1. (98)

Proof. See Appendix C.6.

Remark 8 (Logical Operator induced by UZ).

We assume that UZΠSU
†
Z = ΠS for a CSS code

defined by S. By Theorem 7, (98) holds, so that
by Theorem 6 we only have one Kraus operator
left in (75) that is given by

Bµ=0 =
∑

γ∈C⊥
2 /C⊥

1

A0,γ ε(0,γ)E(0,γ). (99)

Note that F
k
2 ' C⊥

2 /C⊥
1 and we have a bijec-

tive map g : F
k
2 → C⊥

2 /C⊥
1 defined by g(α) =

αGC⊥
2 /C⊥

1
, where GC⊥

2 /C⊥
1

is the generator matrix

selected. Let ULZ be the logical operator induced
by UZ , and let αj be the jth entry of the vec-
tor α. Then, using (36), we translate the Kraus
operator into the logical space as

ULZ =
∑

α∈Fk
2

A0,g(α)





k
∏

j=1

(

ZLj

)αj





=
∑

α∈Fk
2

A0,g(α)E(0,α), (100)

Thus, if a CSS code is preserved by UZ =
∑

v∈Fn
2
f(v)E(0,v), then the generator coeffi-

cients corresponding to the zero syndrome are
simply the coefficients in the Pauli expansion of
the induced logical operator. We also observe
that ULZ given in (100) is unitary if and only if
(98) holds.

In the following subsections, we simplify (98) in
special cases when UZ is a QFD gate, and when
UZ = RZ(πp ) for some integer p. We then provide
necessary and sufficient conditions for quantum
Reed-Muller codes to be preserved by RZ(2π

2l ),
and connect to the conditions in [35, Theorem
17].

5.1 QFD Gates

Theorem 9 below specializes Theorem 7 to the

broad class of diagonal level-l QFD gates τ
(l)
R de-

termined by symmetric matrices R ∈ Z
n×n
2l . Note
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that Theorem 9 applies to CSS codes with arbi-

trary signs and RZ
(

2π
2l

)

form a subset of QFD

gates. Theorem 9 includes the divisibility condi-
tions derived in [26, 39,43] as a special case.

Theorem 9. Consider a CSS(X, C2;Z, C⊥
1 )code,

where y is the character vector of the Z-

stabilizers. Then, a QFD gate τ
(l)
R =

∑

v∈Fn
2
ξvRvT mod 2l

l |v〉〈v| preserves the codespace

V(S) if and only if

2l | (v1Rv
T
1 − v2Rv

T
2 ) (101)

for all v1,v2 ∈ C1 + y such that v1 ⊕ v2 ∈ C2.

Proof. It follows from (65) that
∑

γ∈C⊥
2 /C⊥

1

|A0,γ(R, l)|2 =

1

|C1|2
∑

v∈C1

s(v,y)
∑

γ∈C⊥
2 /C⊥

1

(−1)γv
T
,

(102)

where

s(v,y) :=
∑

v1∈C1+y

ξ
v1RvT

1
−(v⊕v1)R(v⊕v1)T mod 2l

l .

(103)
We simplify (98) using (102) to obtain

1 =
∑

γ∈C⊥
2 /C⊥

1

|A0,γ(R, l)|2

=
1

|C1|2
∑

v∈C1

s(v,y)
∑

γ∈C⊥
2 /C⊥

1

(−1)γv
T

=

∑

v∈C2

∑

v1∈C1+y ξ
v1RvT

1
−(v⊕v1)R(v⊕v1)T

l

|C1||C2| ,

(104)

which requires each term to contribute 1 to the
summation. We complete the proof by setting
v2 = v ⊕ v1.

Remark 10. When R = I, then vRvT = wH(v)
and the divisibility condition simplifies to the

condition previously obtained for RZ
(

2π
2l

)

. If a

CSS code is preserved by RZ
(

2π
2l

)

for all l ≥ 1,

then it follows (101) that for any fixed w ∈ C1 C2,
all elements in the coset C2 +w+y have the same
Hamming weight. It then follows from the gener-
alized encoding map given in (30) that any CSS

code invariant under RZ
(

2π
2l

)

for all l ≥ 1 is a

constant-excitation code [41].

We now explore the influence of signs by ana-
lyzing and separating the effect of the character
vector y.

Lemma 11. Consider a CSS(X, C2;Z, C⊥
1 ) code,

where y is the character vector of the Z-
stabilizers. Then, (101) holds for all v1,v2 ∈
C1 + y such that v1 ⊕ v2 ∈ C2 if and only if

2l | (v1Rv
T
1 − v2Rv

T
2 ), for all v1,v2 ∈ C2 + y;

(105)
2l−1 | (u1 − u2)RwT , (106)

for all u1,u2 ∈ C2 and w ∈ C1/C2.

Proof. See Appendix C.7.

Note that only (105) depends on the charac-
ter vector y, and its contribution is moving the
divisible requirement for a set to that for a coset.

Note that by varying the level l, the same sym-
metric matrixR can determine different gates (for
example, the gates CZ and CP in Example 5).
The divisibility conditions corresponding to suc-
cessive levels differ by a factor of 2. This suggests
using concatenation to lift a code preserved by a
level l QFD gate determined by R to a code pre-
served by a level l + 1 QFD gate determine by
I2 ⊗R. We defer investigation to future work.

5.2 Transversal θ Z-Rotation RZ(θ)

5.2.1 RZ(π/p) and RM Constructions

If the physical rotation angle θ is a fraction of
π, then the constraint on generator coefficients in
(98) is equivalent to conditions on the Hamming
weights that appear in the classical codes C1 and
C2 that determine the quantum CSS code.

Theorem 12. Let p ∈ Z. Then RZ
(

π
p

)

pre-

serves the CSS(X, C2;Z, C⊥
1 ) codespace if and

only if

2p | (wH(w) − 2wH(w ∗ z)) , (107)

for all w ∈ C2 and all z ∈ C1 + y, where y is
the character vector that determines signs of Z-
stabilizers and w ∗ z is the coordinate-wise prod-
uct of w and z.

Proof. See Appendix C.8.

Remark 13 (Transversal π/2l Z-rotation). As-
sume positive signs (character vector y = 0) and
set p = 2l−1 for some integer l ≥ 1. Since 0 ∈ C1
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and 0 ∈ C2, it follows from Theorem 12 that

RZ
(

π
2l−1

)

preserves a CSS codespace V(S) if and

only if

2l | wH(w) for all w ∈ C2, and (108)

2l−1 | wH(w∗z) for all w ∈ C2 and for all z ∈ C1.
(109)

This result coincides with the sufficient condi-
tions in [39, Proposition 4], which is a special
case of the quasitransversality introduced earlier
by Campbell and Howard [14]. For example, if
a CSS code with all positive stabilizers is invari-
ant under RZ

(

π
4

)

, then the weight of every X-

stabilizers needs to be divisible by 8. We note
that the [[8, 3, 2]] color code is the smallest error-
detecting CSS code with all positive signs that
is preserved by RZ

(

π
4

)

. We defer the study of
non-trivial character vectors y to future work.

The divisibility conditions (108), (109) sug-
gest constructing CSS codes from classical Reed-
Muller codes.

Theorem 14 (Reed-Muller Constructions).
Consider Reed-Muller codes C1 = RM(r1,m) ⊃
C2 = RM(r2,m) with r1 > r2. The [[n =
2m, k =

∑r1
j=r2+1

(m
j

)

, d = 2min{r2+1,m−r1}]]

CSS(X, C2;Z, C⊥
1 ) code with all positive stabiliz-

ers is preserved by RZ( π
2l−1 ) if and only if

l ≤






⌊

m−1
r1

⌋

+ 1, if r2 = 0,

min
{⌊

m−r2−1
r1

⌋

+ 1,
⌊

m−r1
r2

⌋

+ 1
}

, if r2 6= 0.
(110)

Proof. Note that all Z-stabilizers have positive
signs corresponding to the case y = 0 in Theorem

12. Then, RZ
(

π
2l−1

)

preserves a CSS codespace

if and only if (108) and (109) hold.

Let w ∈ C2 and z ∈ C1. If r2 = 0, then C2 =
{0,1} and wH(w) ∈ {0, 2m}. It follows from
McEliece [29] (see also Ax [3]) that

2

⌊

m−1
r1

⌋

| wH(w ∗ z), (111)

and this bound is tight. The two conditions be-

come l ≤ min{m,
⌊

m−1
r1

⌋

+ 1} =
⌊

m−1
r1

⌋

+ 1.

If r2 6= 0, then it follows from McEliece [6, 30]

that
⌊

m−1
r2

⌋

is the highest power of 2 that divides

wH(w) for all w ∈ C2 = RM(r2,m). We first
show (110) is necessary. It follows from (108)
that

l ≤
⌊

m− 1

r2

⌋

. (112)

We need to understand divisibility of weights
wH(w ∗ z) where w ∈ C2 and z ∈ C1. The code-
word w is the evaluation vector of a sum of mono-
mials, and we start by considering the case of a
single monomial. Consider a codeword w1 ∈ C2

corresponding to the evaluation of a monomial of
degree s. For all z ∈ C1, we observe that w1 ∗ z

is a codeword in RM(min{r1,m− s},m− s) sup-

ported on w1. Then,
⌊

m−s−1
max{r1,m−s}

⌋

is the highest

power of 2 that divides wH(w1 ∗z) for all z ∈ C1.
Note that since s takes values from 0 to r2, we
have

l ≤
⌊

m− r2 − 1

max{r1,m− r2}

⌋

+ 1

=







⌊

m−r2−1
r1

⌋

+ 1, if r1 + r2 ≤ m,

1 =
⌊

m−r1
r2

⌋

+ 1, if m < r1 + r2.

(113)

We now consider w ∈ C2 such that w = w1⊕w2,
where w1, w2 are evaluation vectors correspond
to monomials in C2. Then, for z ∈ C1, we have

wH(w ∗ z) = wH(w1 ∗ z) + wH(w2 ∗ z)

− 2wH(w1 ∗ w2 ∗ z). (114)

Since w,w1,w2 ∈ C2, it follows from (109) that
2l divides 2wH(w ∗ z), 2wH(w1 ∗ z), and so
2wH(w2 ∗ z). By (114), we have

2l|4wH(w1 ∗ w2 ∗ z). (115)

Since w1 ∗w2 is the evaluation vector of a mono-
mial with degree s′ ≤ min{m, 2r2}, w1 ∗w2 ∗z is
a codeword in RM(min{r1,m− s′},m− s′) sup-

ported on w1 ∗ w2. Then,
⌊

m−2r2−1
max{r1,m−2r2}

⌋

is the

highest power of 2 that divides wH(w1∗w2∗z) for
all w1∗w2 ∈ C2. The extremum is achieved when
the monimials corresponding to w1 and w2 have
degree r2 and do not share a variable. Hence,
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l ≤
⌊

m− 2r2 − 1

max{r1,m− 2r2}

⌋

+ 2 =







⌊

m−2r2−1
r1

⌋

+ 2, if r1 + 2r2 ≤ m,

2 =
⌊

m−r1
r2

⌋

+ 1, if r1 + r2 ≤ m < r1 + 2r2.
(116)

It remains to consider the case w = w1 ⊕ w2 ⊕
· · · ⊕ wt ∈ C2, where each wi is the evaluation

vector of a monomial. We use inclusion-exclusion
to rewrite (109) as

2l−1
∣

∣

∣

t
∑

i=1

(−2)i−1
∑

1≤j1≤···≤ji≤t

wH(wj1
∗ · · · ∗ wji

∗ z). (117)

We now use induction. Assume for 1 ≤ i ≤ t− 1, we have

l ≤
⌊

m− ir2 − 1

max{r1,m− ir2}

⌋

+ i =







⌊

m−ir2−1
r1

⌋

+ i, if r1 + ir2 ≤ m,

i =
⌊

m−r1
r2

⌋

+ 1, if (i− 1)r2 ≤ m− r1 < ir2.
(118)

Note that for 1 ≤ i ≤ t − 1, wj1
∗ · · · ∗ wji

corresponds to a monomial with degree s′′ ≤
min{m, ir}, hence wj1

∗ · · · ∗ wji
∗ z is a code-

word in RM(min{r1,m− s′′},m− s′′) supported
on wj1

∗ · · · ∗ wji
. Then, we have

2

⌊

m−ir2−1

max{r1,m−ir2}

⌋

+i | 2iwH(wj1
∗ · · · ∗ wji

∗ z),
(119)

in which the bound on the exponent is tight since

we can choose w1, · · · ,wi to be evulations vec-
tors corresponding to i disjoint monomials of de-
gree r2. Hence, 2l−1 divides all terms in (117) for
i = 1, 2, . . . , t − 1. Hence, for the last term, we
must have

2l−1|2t−1wH(w1 ∗ · · · ∗ wt ∗ z), (120)

which implies that

l ≤
⌊

m− tr2 − 1

max{r1,m− tr2}

⌋

+ t =







⌊

m−tr2−1
r1

⌋

+ t, if r1 + tr2 ≤ m,

t =
⌊

m−r1
r2

⌋

+ 1, if (t− 1)r2 ≤ m− r1 < tr2,
(121)

and the induction is complete. Note that since
r1 > r2, we have
⌊

m− tr2 − 1

r1

⌋

+ t ≥
⌊

m− r2 − 1

r1

⌋

+ 1 for t ≥ 1,

(122)
and the necessary condition reduces to

l ≤ min

{⌊

m− r2 − 1

r1

⌋

+ 1,

⌊

m− r1

r2

⌋

+ 1

}

.

(123)

To prove the sufficiency of the case r2 6= 0, we
simply reverse the steps.

Remark 15 (Puncturing RM codes by remov-
ing the first coordinate). Consider the classical
RM(r,m) code, and two elementary operations
on its generator matrix: 1. removing the first col-
umn which is [1, 0, . . . , 0]T ; 2. removing the first
row of all 1s. After either of the two operations,
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we observe that 2b
(m−1)

2
c is still the highest power

of 2 that divides all of its weights. Hence, the RM
constructions described in Theorem 14 can be ex-
tended to punctured RM codes. If operation 1 is
applied on C1 = RM(r1,m), and operations 1 and
2 are applied on C2 = RM(r2,m), then we can re-
lax the relation between r1 and r2 as r1 ≥ r2. It
follows from the same arguments that the result-
ing [[2m− 1,

∑r1
j−r2+1

(m
j

)

+ 1, 2min{r2+1,m−r1} − 1]]
CSS code is preserved by RZ( π

2l−1 ) with the same
constraint on l as described in (110). This fam-
ily contains the [[2m − 1, 1, 3]] triorthogonal codes
described in [9].

Remark 16 (QRM(r,m) Codes). When r1 = r
and r2 = r−1, this family of CSS codes coincides
with the QRM(r,m) [[2m,

(m
r

)

, 2min{r,m−r}]] codes
constructed in [22] and [35, Theorem 19]. The
code QRM(r,m) is preserved by RZ( 2π

2m/r ) if 1 ≤
r ≤ m/2 and r | m. When r2 = 0, we obtain the
[[2m,m, 2]] family that is preserved by RZ( 2π

2m ). If
r2 6= 0, since r | m, we have

l =
m

r
= min

{⌊

m− r

r

⌋

+ 1,

⌊

m− 1

r − 1

⌋}

= min

{⌊

m− (r − 1) − 1

r

⌋

+ 1,

⌊

m− r

r − 1

⌋

+ 1

}

,

(124)

which satisfies the necessary and sufficient con-
ditions in (110).

We now illustrate Theorem 7 and Theorem 12
through two CSS codes preserved by RZ

(

π
4

)

, one
with a single logical qubit, the other with multiple
logical quibts.

Example 6 (The [[15, 1, 3]] punctured
quantum Reed-Muller code [10, 24]).
Consider the CSS(X, C2;Z, C⊥

1 ) code de-
fined by C2 = 〈x1, x2, x3, x4〉 and C⊥

1 =
〈x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4〉,
with the first coordinate removed in both C2

and C⊥
1 . It is well-known [10, 35] that RZ(π4 )

preserves the CSS codespace when the signs of
Z-stabilizers are trivial. Since 8 | wH(v), for
v ∈ RM(1, 4) and 4 | wH(u) for u ∈ RM(2, 4)),
the code satisfies the divisibility conditions
in Theorem 12. We compute the induced
logical operator by computing the generator
coefficients for the zero syndrome. Note that
C⊥

2 /C⊥
1 = {0,1}. The weight enumerators of C1

and C1 + 1 are given by

PC1(x, y) = PC1+1(x, y)

= x15 + 15x8y7 + 15x7y8 + y15.

We have

A0,0

(

π

4

)

=
1

32

(

2 cos
15π

8
+ 30 cos

π

8

)

= cos
π

8
,

A0,1

(

π

4

)

= ı sin
π

8
. (125)

The constraint on generator coefficients in (98) is
satisfied:

∑

γ∈{0,1}

∣

∣

∣

∣

A0,γ

(

π

4

)∣

∣

∣

∣

2

=

(

cos
π

8

)2

+

(

sin
π

8

)2

= 1.

It follows from (100) that the logical operator
induced by RZ

(

π
4

)

is

RLZ

(

π

4

)

= A0,0

(

π

4

)

IL +A0,1

(

π

4

)

ZL

= cos
π

8
IL + ı sin

π

8
ZL = (T †)L.

Example 7 (The [[8, 3, 2]] code). The [[8, 3, 2]]
color code [14] is defined on 8 qubits which we
identify with vertices of the cube. All vertices
participate in the X-stabilizer and generators of
the Z-stabilizers can be identified with 4 indepen-
dent faces of the cube. The signs of all the sta-
bilizers are positive. The [[8, 3, 2]] color code can
also be thought as a Reed-Muller CSS(X, C2 =
{0,1}; Z, C⊥

1 = RM(1, 3)) code with generator
matrix

GS =















1

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1















. (126)

The [[8, 3, 2]] code can be used in magic state
distillation for the controlled-controlled-Z (CCZ)
gate in the third-level of Clifford hierarchy. To
verify that the code is preserved by RZ

(

π
4

)

and
the induced logical operator is CCZ (up to some
logical Pauli ZL), we first compute the genera-
tor coefficients corresponding to the trivial syn-
drome. The weight enumerators of C⊥

1 and C⊥
1 +γ

for γ ∈ C⊥
2 /C⊥

1 \ {0} are given by

PC⊥
1

(x, y) = x8 + 14x4y4 + y8,

PC⊥
1 +γ(x, y) = 4x6y2 + 8x4y4 + 4x2y6,
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so that

A0,0

(

π

4

)

=
3

4
, and A0,γ 6=0

(

π

4

)

= −1

4
(127)

for all the seven non-zero γ ∈ C⊥
2 /C⊥

1 . Then,

∑

γ∈C⊥
2 /C⊥

1

∣

∣

∣

∣

A0,γ

(

π

4

)∣

∣

∣

∣

2

=

(

3

4

)2

+ 7 ·
(

−1

4

)2

= 1,

so (98) holds, and the induced logical operator is

RLZ

(

π

4

)

=
∑

α∈F3
2

A0,g(α)

(

π

4

)

E(0,α)

≡ (ZL ⊗ IL ⊗ ZL) ◦ CCZL. (128)

5.2.2 Generator Coefficients and Trigonometric
Identities

When θ = π
2l for some integer l, Rengaswamy

et al. [35] derived necessary and sufficient condi-
tions for a stabilizer code to be invariant under
RZ(θ). This derivation depends on prior work
characterizing conjugates of arbitrary Pauli ma-
trices by RZ( π

2l ) [36]. The necessary and suffi-
cient conditions provided in [35, Theorem 17] are
expressed as two types of trigonometric identity.
We now show that our constraint on generator
coefficients is equivalent to the first trigonomet-
ric identity, and that the second trigonometric
identity follows from the first. Our main tool is
the MacWilliams Identities [27], and our analy-
sis extends from CSS codes to general stabilizer
codes.

We demonstrate equivalence through a se-
quence of three lemmas.

Lemma 17. Given a CSS(X, C2;Z, C⊥
1 ) code, let

B = {z ∈ C⊥
1 : εz = 1} and B⊥ = 〈C1,y〉. For all

nontrivial w ∈ C2, define Dw := {w∗v : v ∈ C1}.
Let θ ∈ (0, 2π). Then, (98) holds if and only if
for all non-zero w ∈ C2

1

|Dw|
∑

x∈Dw+w∗y

(

eıθ
)wH(w)−2wH(x)

= 1. (129)

Proof. See Appendix C.9.

The support of a binary vector x is the set of
coordinates for which the corresponding entry is
non-zero. Given two binary vectors x, y, we write
x � y to mean that the support of x is con-
tained in the support of y. Let supp(x) be the

support of x. We define y|supp(x) ∈ F
wH(x)
2 to

be the truncated binary vector that drops all the
coordinates outside supp(x). Given a space C,
we denote projx(C) := {v ∈ C : v � x}. The
next lemma finds equivalent representations of
the cosets Dw + w ∗ y for non-zero w ∈ C2.

Lemma 18. Given a CSS(X, C2;Z, C⊥
1 ) code,

define Dw and y as above. For any non-zero

w ∈ C2, define Zw := {z
∣

∣

supp(w)
∈ F

wH(w)
2 : z ∈

C⊥
1 and z � w} and Bw = {v ∈ Zw : εv = 1}.

Define Z̃w ⊂ F
n
2 (resp. B̃w ⊂ F

n
2 ) by adding all

the zero coordinates outside supp(w) back into
Zw (resp. Bw). Note that dim(projw(B̃⊥

w)) =
dim(projw(Z̃⊥

w)) + 1. Define y′ ∈ F
n
2 such that

projw(B̃⊥
w) = 〈projw(Z̃⊥

w),y′〉. Then for all non-
tirvial w ∈ C2,

Dw + w ∗ y = projw(Z̃⊥
w) + y′. (130)

Proof. See Appendix C.10.

Lemma 19. Given a CSS(X, C2;Z, C⊥
1 ) code, let

B = {z ∈ C⊥
1 : εz = 1}, and define Zw, Z̃w,

Bw, B̃w, y′ as above. Recall that projw(B̃⊥
w) =

〈projw(Z̃⊥
w),y′〉. For any θ and any nontrivial

w ∈ C2,

1 =

1
∣

∣

∣projw(Z̃⊥
w)
∣

∣

∣

∑

v∈projw(Z̃⊥
w)+y′

(

eiθ
)wH(w)−2wH(v)

,

(131)

if and only if

∑

v∈Zw

εv (ı tan θ)wH(v) = (sec θ)wH(w) . (132)

Proof. See Appendix C.11.

Theorem 20. The unitary RZ(θ) realizes a
logical operation on the codespace V (S) of an
[[n, k, d]] CSS(X,C2;Z,C⊥

1 ) code if and only if for
all non-zero w ∈ C2,

∑

v∈Zw

εv (ı tan θ)wH(v) = (sec θ)wH(w) . (133)

Proof. By Lemma 18, we know (129) equals
(131). It now follows from Lemma 17 and Lemma
19 that (98) equals (133). It then follows directly
from Theorem 7.
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Remark 21. Rengaswamy [35, Theorem 17] de-
rived a pair of necessary and sufficient conditions
for a CSS code to be invariant under RZ( π

2l ).
Theorem 20 shows that the first of these condi-
tions implies the second and also generalizes the
first condition to arbitrary angle θ. Note that the
trigonometric conditions are local whereas the
square sum constraint on generator coefficients
is global.

6 Conclusion

We have introduced a framework that describes
the process of preparing a code state, applying
a diagonal physical gate, measuring a code syn-
drome, and applying a Pauli correction. We have
described the interaction of code states and phys-
ical gates in terms of generator coefficients deter-
mined by the induced logical operator, and have
shown that this interaction depends strongly on
the signs of Z-stabilizers in a CSS code. We have
derived necessary and sufficient conditions for a
diagonal gate to preserve the code space of a CSS
code, and have provided an explicit expression of
its induced logical operator. When the diagonal
gate is a transversal Z-rotation through an angle
θ, we derived a simple global condition that can
be expressed in terms of divisibility of weights in
the two classical codes that determine the CSS
code. When all signs in the CSS code are posi-
tive, we have proved the necessary and sufficient
conditions for Reed-Muller component codes to
construct families of CSS codes invariant under
transversal Z-rotation through π/2l. It remains
open to investigate the constraints for a CSS code
determined by two classical decreasing monomial
codes to be invariant under transversal π/2l Z-
rotation.

The generator coefficient framework provides
a tool to analyze the evolution under any given
diagonal gate of stabilizer codes with arbitrary
signs, and we are working to characterize more
valid CSS codes can be used in magic state dis-
tillation.
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A Magic State Distillation Using the Steane Code

We use the Steane code as an example to show the trade-off between fidelity and the probability of
success in magic state distillation. Classical magic state distillation post-selects on the trivial syndrome
without considering the error correction. If we follow this procedure, then the [[7, 1, 3]] Steane code
can be used to distill the state with linear convergence as described in Case 1. In Case 2, we try
to increase the probability of success by introducing error-correction instead of post-selecting on the
trivial syndrome. In Case 3, we consider only correcting one of non-trivial syndromes.

Case 1: Reichardt [34] calculated error rate by tracking evolution of code states. The generator
coefficient framework makes it possible to calculate the output error rate by tracking operators.

(i) Encode to get the |+〉 of the Steane codestate.

(ii) Given seven copies of |A〉 := T |+〉 = (|0〉 + eıπ/4|1〉)/
√

2 and ancillary qubits, we can realize the
phsyical transversal T⊗7 = [exp(−ıπ8Z)]⊗7 with the help of Clifford gates and Pauli measure-
ments. If the states |A〉 are exact, the probability of observing the trivial syndrome is peµ=0 = 9

16

and the probability of observing each non-trivial syndrome is peµ 6=0 = 1
16 (Take θ = π

4 in (93)).
When the trivial syndrome is observed, it follows from Example 1 that the induced logical op-
erator is T †

L = exp(ıπ8ZL). We then apply a physical representation of the logical Phase gate P

to obtain |A〉 = PLT
†
L|+〉. In practice, each of the input magic states |A〉 is noisy. We assume

dephasing noise: ρ → (1 − p)ρ+ pZρZ with the same probability p of a Pauli Z error for each of
the seven physical qubits. The probability of observing the trivial syndrome involves two terms.
The first term captures the event that upon observing the trivial syndrome µ = 0, the dephasing
error is undetectable. The second term captures the event that upon observing the non-trivial
syndrome µ 6= 0, the dephasing error cancels the observed syndrome. The probability of success
is given by

Pµ=0 = peµ=0P (Z-error in C⊥
2 ) +

∑

µ 6=0

peµP (Z-error in C⊥
2 + µ) (134)

=
9

16

∑

v∈C⊥
2

(1 − p)7−wH(v)pwH(v) +
∑

µ 6=0

1

16

∑

v∈C⊥
2 +µ

(1 − p)7−wH(v)pwH(v) (135)

=
9

16

1

|C2|
∑

v∈C2

(1 − 2p)wH(v) +
7

16

1

|C2|
∑

v∈C2

(−1)ve
T
1 (1 − 2p)wH(v) (136)

=
1

16

(

2 + 7(1 − 2p)4
)

. (137)

Note that the 7 cosets corresponding to non-trivial syndromes have identical weight enumerators.

(iii) If we observe the non-trivial syndrome µ 6= 0, we declare failure and restart. Upon observing the
trivial syndrome, we decode and the output mixed state is

ρout =
1

Pµ=0
(p0
out|A〉〈A| + p1

outZ|A〉〈A|Z) (138)

where

p0
out = peµ=0P (Z-error in C⊥

1 ) +
∑

µ 6=0

peµP (Z-error in C⊥
1 + µ + γ for γ 6= 0) (139)

=
9

16

∑

v∈C⊥
1

(1 − p)n−wH(v)pwH(v) +
∑

µ 6=0

1

16

∑

v∈C⊥
1 +µ+1

(1 − p)n−wH(v)pwH(v) (140)

=
1

32

(

2 + 7(1 − 2p)3 + 7(1 − 2p)4 + 2(1 − 2p)7
)

. (141)
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The first term captures the event that upon observing the the trivial syndrome µ = 0, the
dephasing error acts as a Z-stabilizer (Bµ=0 = 3

4 T̄
†). The second captures the event that upon

observing the the non-trivial syndrome µ 6= 0, the dephasing error lies in C⊥
1 + µ + γ (Bµ 6=0 =

1
4 T̄

†Z̄). In this case, the dephasing error appears as the error correction that maps back to the
code space and results in a logical T † gate. We now write the output error rate q as a function
of the initial error rate p, and calculate its Taylor expansion at 0

q(p) = 1 − p0
out

Pµ=0
=

7

9
p+

14

81
p2 +O(p3). (142)

This implies that the threshold for the initial error rate is 0.1464... (the same as [34]), while that
of the [[15, 1, 3]] code is 0.1415.. [10].

Case 2: Note that probability of success in Case 1 is upper bounded by 9/16 = 56.25%. It is natural
to ask whether we may introduce error correction to increase the probability of success. It follows from
(81) that we can choose proper corrections based on syndromes (γµ = Z̄ for µ 6= 0) to obtain the
logical operator T † with probability 1 if the physical transversal T is exact. The output error-rate now
becomes

q(p) = 1 − p0
out = 1 − P (Z-error in C⊥

1 ) =
∑

v∈C⊥
1

(1 − p)n−wH(v)pwH(v) =
1

8

(

1 + 7(1 − 2p)4
)

. (143)

The output error rate does not fall below the line y = x in the positive orthant, and we say that the
protocol does not converge.

Case 3: We balance Case 1 and Case 2 by implementing error correction for only one of the seven
non-trivial syndromes, say µ = e1. Although the probability of success increases slightly to

PS = Pµ=0 + Pµ=e1 =
1

16

(

2 + 7(1 − 2p)4
)

+
1

16

(

2 − (1 − 2p)4
)

=
1

8

(

2 + 3(1 − 2p)4
)

, (144)

the prefactor of the linear term of the output error rate is greater than 1. We conclude that the
protocol does not converge.

The same analysis can be performed for a code that is perfectly preserved by the transversal T gate,
such as the [[15, 1, 3]] code. The analysis provides insight into the trade-off between the probability of
success and the fidelity of the output magic states.

B Generator Coefficient Framework for Stabilizer codes

We described the generator coefficient framework for CSS code and we now extend it to arbitrary
stabilizer codes. We consider a general stabilizer code generated by the matrix

GS =







K 0

0 J

D






, (145)

where D = (Dx, Dz) such that Dx is the X-component of D and Dz is the Z-component of D. We
assume that the row space of D contains no non-zero vector c = (cX , cZ) with cX = 0 or cZ = 0.
Assume the dimensions of K, J , and D are nx, nz, nxz respectively. Then, we have

ΠS = ΠSX
ΠSZ

ΠSXZ
, (146)

where

ΠSX
=

1

2nx

∑

a∈K=〈K〉

ε(a,0)E(a,0), ΠSZ
=

1

2nz

∑

b∈J =〈J〉

ε(0,b)E(0, b), and (147)

ΠSXZ
=

1

2nxz

∑

(c,d)∈D=〈D〉

ε(c,d)E(c,d). (148)

Let T := 〈K,Dx〉. Then, J ⊂ T ⊥ ⊂ F
n
2 as described below.
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{0}

C2

C1

F
n
2

{0}

C⊥
1

C⊥
2

F
n
2

{0}

K

〈J,Dz〉⊥

F
n
2

{0}

J

T ⊥ = 〈K,Dx〉⊥

F
n
2StabilizerCSS

µ

γ

µ

γ

Then (46) becomes

ΠSZ
UZ =





1

2nz

∑

b∈J

ε(0,b)E(0, b)









∑

v∈Fn
2

f(v)E(0,v)





=
1

2nz

∑

µ∈Fn
2 /T ⊥

∑

γ∈T ⊥/J





∑

z∈J +µ+γ

ε(0,v)f(z)





∑

u∈J +µ+γ

ε(0,u)E(0,u), (149)

and the generator coefficients of UZ for the stabilizer code S are given by

AS
µ,γ :=

∑

z∈J +µ+γ

ε(0,z)f(z), (150)

where µ ∈ F
n
2/T ⊥ and γ ∈ T ⊥/J . These generalized generator coefficients inherit the properties

described in Theorem 6, that is,

∑

µ∈Fn
2 /T ⊥

∑

γ∈T ⊥/J

AS
µ,γA

S
µ,η⊕γ =

{

1 if η = 0,
0 if η 6= 0,

(151)

for η ∈ T ⊥/J . Grouping together the projectors ΠSX
and ΠSXZ

, we consider the new family of
projectors

L := ΠSX
ΠSXZ

=





1

2nx

∑

a∈K=〈K〉

ε(a,0)E(a,0)









1

2nxz

∑

(c,d)∈D=〈D〉

ε(c,d)E(c,d)





=
1

2nx+nxz

∑

a∈K,
(c,d)∈D

ε(a⊕c)ı
−adT

(−1)d(a∗c)T
E(a ⊕ c,d). (152)

For µ ∈ F
n
2/T ⊥, we write

L(µ) :=





1

2nx

∑

a∈K=〈K〉

(−1)µaT
ε(a,0)E(a,0)









1

2nxz

∑

(c,d)∈D=〈D〉

(−1)µcT
ε(c,d)E(c,d)



 , (153)

and note that {L(µ)}µ∈Fn
2 /T ⊥ is a resolution of identity.

Replacing the resolution of identity {ΠSX(µ)}µ∈Fn
2 /C⊥

2
by {L(µ)}µ∈Fn

2 /T ⊥ , we conclude that the gen-

erator coefficients {AS
µ,γ}µ∈Fn

2 /T ⊥,γ∈T ⊥/J describe the same average logical channel as in (74) and (75)

since the logical Pauli Z for stabilizer codes can be chosen as γ ∈ T ⊥/J up to a sign. Based on the
description of the average logical channel, we study the conditions for the invariance of a stabilizer
code as below.

Theorem 22. Consider a general stabilizer code defined by (145). Consider T = 〈K,Hx〉, and we have

J ⊂ T ⊥ ⊂ F
n
2 . Then, a Z-unitary gate UZ =

∑

v∈Fn
2
f(v)E(0,v) preserves V(S) (i.e. UZΠSU

†
Z = ΠS)

if and only if
∑

γ∈T ⊥/J

|AS
0,γ |2 = 1. (154)
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Proof. ⇐: We assume (154) holds and derive UZΠS = ΠSUZ . It follows from (151) that AS
µ,γ = 0

when µ 6= 0. Then, by (149), we have

UZΠSZ
= ΠSZ

UZ =
1

2n−k1

∑

γ∈T ⊥/J

AS
0,γ







∑

u∈C⊥
1 +γ

ε(0,u)E(0,u)






. (155)

For any γ ∈ T ⊥/J and u ∈ C⊥
1 + γ ⊂ T ⊥, we have E(0,u)L = LE(0,u), where L = ΠSX

ΠSXZ
.

Hence,

UZΠS = UZΠSZ
L = LUZΠSZ

= LΠSZ
UZ = ΠSUZ . (156)

⇒: We assume UZΠS = ΠSUZ and show (154). The idea is the same as in the proof of Theorem 7,
and it remains to show that each term in (152) is distinct in order to use the independence of Pauli
matrices. Assume (a ⊕ c,d) = (a′ ⊕ c′,d′) for some a,a′ ∈ K and (c,d), (c′,d′) ∈ D. Then, d = d′

and a ⊕ c = a′ ⊕ c′. Note that (c,d) ⊕ (c′,d′) = (c ⊕ c′,0) ∈ D. Since J ∩ Dx = {0}, we have
c ⊕ c′ = 0, which means c = c′ and a = a′.

Theorem 23. Consider an [[n, k, d]] stabilize code generated by the matrix GS =







K 0

0 J

D






that

satisfies Theorem 22. Let J be the space defined by the generator matrix J . Assume the minimum

weight in J is at least d (i.e. minz∈J wH(z) ≥ d). Then the CSS code generated by GS′ =







K 0

0 J

Dx 0







satisfies Theorem 7. Moreover, the CSS code has parameters n′ = n, k′ = k, and the Z-distance
d′
Z = minz∈〈K,Dx〉⊥\J wH(z) ≥ d.

Proof. From the construction of GS′ , the number of physical qubits does not change (n′ = n). Also,
k′ = k follows from the fact that Dx ∩K = {0}. It remains to show that the new Z-distance d′

Z ≥ d.
Assume there exists (s, t) ∈ N (S ′) \ S ′ such that h(s, t) < d and t 6= 0, where h is the Pauli weight

(number of nontrivial Pauli matrices) defined by

h(s, t) = wH(s) + wH(t) − wH(s ∗ t). (157)

Then, h(0, t) < d and t ∈ M⊥ ∩D⊥
x , which implies that (0, t) ∈ N (S). Also by definition, we have

J ∩Dz = {0} and thus (0, t) ∈ N (S) \ S. However, by assumption the distance of V(S) is d and thus
N (S) \ S has minimum weight d, which is a contradiction. Therefore, d′

Z ≥ d.

Remark 24. Note that the values of generator coefficients are the same for the [[n, k, d]] stabilizer
code and the [[n′ = n, k′ = k, d′

Z ≥ d]] CSS code. The induced logical operator by UZ remains the
same. It follows from Theorem 23 that given an [[n, k, d]] non-degenerate stabilizer code supporting a
physical UZ =

∑

v∈Fn
2
f(v)E(0,v) quantum (unitary) gate, there exists an equivalent CSS code (since

the Pauli expansion of the physical gate UZ has support only on Pauli Z, we only compare the distance
d of stabilizer code with the Z-distance of the equivalent CSS code) supporting the same operation.
Note that a similar argument applies to UX =

∑

v∈Fn
2
f(v)E(v,0).

C Proofs for All Results

C.1 Proof of Lemma 4

Setting B = {z ∈ C⊥
1 | ε(0,z) = 1}, we have B⊥ = 〈C1,y〉. Setting

Sp =
∑

z∈B+µ+γ

(

cos
θ

2

)n−wH(z) (

−ı sin θ
2

)wH(z)

, (158)
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and

Sn =
∑

z∈C⊥
1 +µ+γ

(

cos
θ

2

)n−wH(z) (

−ı sin θ
2

)wH(z)

, (159)

we may rewrite (48) as

(−1)(µ⊕γ)yT
Aµ,γ(θ) = 2Sp − Sn. (160)

Since B + µ + γ = 〈B,µ ⊕ γ〉 \ B and C⊥
1 + µ + γ = 〈C⊥

1 ,µ ⊕ γ〉 \ C⊥
1 , we have

(−1)(µ⊕γ)yT
Aµ,γ(θ) = 2(Pθ[〈B,µ ⊕ γ〉] − Pθ[B]) − (Pθ[〈C⊥

1 ,µ ⊕ γ〉] − Pθ[C⊥
1 ]). (161)

We may apply the MacWilliams Identities to obtain

Pθ[〈B,µ ⊕ γ〉] =
1

|B⊥ ∩ (µ ⊕ γ)⊥|PB⊥∩(µ⊕γ)⊥

(

cos
θ

2
− ı sin

θ

2
, cos

θ

2
+ ı sin

θ

2

)

=
1

|B⊥ ∩ (µ ⊕ γ)⊥|
∑

z∈B⊥∩(µ⊕γ)⊥

(

cos
θ

2
− ı sin

θ

2

)n−2wH(z)

=
2

|B⊥|
∑

z∈B⊥∩(µ⊕γ)⊥

(

e−ı θ
2

)n−2wH(z)
, (162)

and similarly

Pθ[B] =
1

|B⊥|
∑

z∈B⊥

(

e−ı θ
2

)n−2wH(z)
. (163)

We combine (162) and (163) to obtain

Pθ[〈B,µ ⊕ γ〉] − Pθ[B] =
2

|B⊥|
∑

z∈B⊥∩(µ⊕γ)⊥

(

e−ı θ
2

)n−2wH(z)
− 1

|B⊥|
∑

z∈B⊥

(

e−ı θ
2

)n−2wH(z)

=
1

|B⊥|





∑

z∈B⊥∩(µ⊕γ)⊥

(

e−ı θ
2

)n−2wH(z)
−

∑

z∈B⊥\(µ⊕γ)⊥

(

e−ı θ
2

)n−2wH(z)





=
1

|B⊥|
∑

z∈B⊥

(−1)(µ⊕γ)zT
(

e−ı θ
2

)n−2wH(z)
. (164)

Similarly,

Pθ[〈C⊥
1 ,µ ⊕ γ〉] − Pθ[C⊥

1 ] =
1

|C1|
∑

z∈C1

(−1)(µ⊕γ)zT
(

e−ı θ
2

)n−2wH(z)
. (165)

Since B⊥ \ C1 = C1 + y, it follows from (161), (164), (165) that

(−1)(µ⊕γ)yT
Aµ,γ(θ) =

2

|B⊥|
∑

z∈B⊥

(−1)(µ⊕γ)zT
(

e−ı θ
2

)n−2wH(z)
− 1

|C1|
∑

z∈C1

(−1)(µ⊕γ)zT
(

e−ı θ
2

)n−2wH(z)

=
1

|C1|
∑

z∈C1+y

(−1)(µ⊕γ)zT
(

e−ı θ
2

)n−2wH(z)
, (166)

which completes the proof.
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C.2 Derivation of (69)

UZΠS = UZΠSZ
ΠSX

=
1

2n−k1+k2

∑

µ∈Fn
2 /C⊥

2

∑

γ∈C⊥
2 /C⊥

1

Aµ,γ







∑

u∈C⊥
1 +µ+γ

ε(0,u)E(0,u)











∑

a∈C2

ε(a,0)E(a,0)





=
1

2n−k1+k2

∑

µ∈Fn
2 /C⊥

2

∑

γ∈C⊥
2 /C⊥

1

Aµ,γ





∑

a∈C2

(−1)aµ
T
ε(a,0)E(a,0)











∑

u∈C⊥
1 +µ+γ

ε(0,u)E(0,u)







=
1

2n−k1

∑

µ∈Fn
2 /C⊥

2

ΠSX(µ)







∑

γ∈C⊥
2 /C⊥

1

Aµ,γ







∑

u∈C⊥
1 +µ+γ

ε(0,u)E(0,u)












, (167)

where ΠSX(µ) = 1
|C2|

∑

a∈C2
(−1)aµ

T
ε(a,0)E(a,0).

C.3 Derivation of θ(θL)

Since there is only one logical qubit, γ is either zero or non-zero. It then follows from (76) and (77)
that the effective physical operator corresponding to the syndrome µ = 0 is

Bµ=0 = Aµ=0,γ=0E(0,0) +Aµ=0,γ 6=0E(0,γ 6= 0). (168)

Thus, if we observe the trivial syndrome, then the induced logical portion is

ULZ (µ = 0) = Aµ=0,γ=0IL +Aµ=0,γ 6=0ZL =

[

A0,γ=0 +A0,γ 6=0 0
0 A0,γ=0 −A0,γ 6=0

]

. (169)

Since we also assume that one of the pair (Aµ=0,γ=0, Aµ=0,γ 6=0) is real and the other is pure imaginary,
we can consider ULZ (µ = 0) as a Z-rotation with angle θL up to some logical Pauli ZL:

ULZ (µ = 0) =

{

cos(θL/2)IL + ı sin(θL/2)ZL = RZ(θL) if Aµ=0,γ=0 is real
ı sin(θL/2)IL + cos(θL/2)ZL = ZLRZ(θL) if Aµ=0,γ 6=0 is real

, (170)

with θL/2 = tan−1
(

sin(θL/2)
cos(θL/2)

)

= tan−1
(

ıAµ=0,γ 6=0

Aµ=0,γ=0

)

.

C.4 Proof of Theorem 6

It follows from (48) that

Aµ,γAµ,η⊕γ =







∑

z∈C⊥
1 +µ+γ

ε(0,z)f(z)













∑

z′∈C⊥
1 +µ+η+γ

ε(0,z′)f(n, z′)







=
∑

w∈C⊥
1 +η

ε(0,w)







∑

z∈C⊥
1 +µ+γ

f(z)f(z ⊕ w)






. (171)
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Then, we have

∑

µ∈Fn
2 /C⊥

2

∑

γ∈C⊥
2 /C⊥

1

Aµ,γAµ,η⊕γ =
∑

µ∈Fn
2 /C⊥

2

∑

γ∈C⊥
2 /C⊥

1

∑

w∈C⊥
1 +η

ε(0,w)







∑

z∈C⊥
1 +µ+γ

f(z)f(z ⊕ w)







=
∑

w∈C⊥
1 +η

ε(0,w)







∑

µ∈Fn
2 /C⊥

2

∑

γ∈C⊥
2 /C⊥

1

∑

z∈C⊥
1 +µ+γ

f(z)f(z ⊕ w)







=
∑

w∈C⊥
1 +η

ε(0,w)





∑

z∈Fn
2

f(z)f(z ⊕ w)





=

{

ε(0,0) = 1 if η = 0

0 if η 6= 0
, (172)

where the last step follows from the fact that UZ is unitary (44).

C.5 Derivation of (88)

ΠSX(µ0)UZΠSZ
|φ〉 =

1

|C2|
∑

a∈C2

(−1)aµ
T
0 ε(a,0)E(a,0)

∑

µ∈Fn
2 /C⊥

2

∑

γ∈C⊥
2 /C⊥

1

Aµ,γε(0,µ⊕γ)E(0,µ ⊕ γ)|φ〉

=
1

|C2|
∑

µ

∑

γ

Aµ,γε(0,µ⊕γ)E(0,µ ⊕ γ)
∑

a∈C2

(−1)a(µ+µ0)T
ε(a,0)E(a,0)|φ〉

=
1

|C2|
∑

µ

∑

γ

Aµ,γε(0,µ⊕γ)E(0,µ ⊕ γ)
∑

a∈C2

(−1)a(µ⊕µ0)T |φ〉, (173)

where (173) follows from the fact ε(a,0)E(a,0) ∈ S.

C.6 Proof of Theorem 7

Recall from (46) that UZΠSZ
= ΠSZ

UZ simplifies to

UZΠSZ
=

1

2n−k1

∑

µ∈Fn
2 /C⊥

2

∑

γ∈C⊥
2 /C⊥

1

Aµ,γ







∑

u∈C⊥
1 +µ+γ

ε(0,u)E(0,u)






. (174)

⇐: We assume (98) holds and derive UZΠS = ΠSUZ . By Theorem 6, we have Aµ,γ = 0 when
µ 6= 0. It follows from (46) that

UZΠSZ
= ΠSZ

UZ =
1

2n−k1

∑

γ∈C⊥
2 /C⊥

1

A0,γ







∑

u∈C⊥
1 +γ

ε(0,u)E(0,u)






. (175)

For any γ ∈ C⊥
2 /C⊥

1 and u ∈ C⊥
1 + γ ⊂ C⊥

2 , we have E(0,u)ΠSX
= ΠSX

E(0,u). Hence,

UZΠS = UZΠSZ
ΠSX

=
1

2n−k1

∑

γ∈C⊥
2 /C⊥

1

A0,γ







∑

u∈C⊥
1 +γ

ε(0,u)ΠSX
E(0,u)







= ΠSX
UZΠSZ

= ΠSX
ΠSZ

UZ = ΠSUZ . (176)
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⇒: We assume UZΠS = ΠSUZ and show (98). It follows from (69) that

UZΠS = UZΠSZ
ΠSX

=
1

2n−k1

∑

µ∈Fn
2 /C⊥

2






ΠSX(µ)

∑

γ∈C⊥
2 /C⊥

1

Aµ,γ







∑

u∈C⊥
1 +γ+µ

ε(0,u)E(0,u)












= ΠSUZ . (177)

Pairwise orthogonality of projectors implies ΠSX(µ)ΠSX(µ′) = 0 when µ 6= µ′ in F
n
2/C⊥

2 . Hence, for any

µ0 ∈ F
n
2/C⊥

2 \ {0}, we have we have 0 = ΠSX(µ0)ΠSX
ΠSZ

UZ = ΠSX(µ0)(ΠSUZ) = ΠSX(µ0)(UZΠS),
which implies that

0 =
1

2n−k1

∑

µ∈Fn
2 /C⊥

2






ΠSX(µ0)ΠSX(µ)

∑

γ∈C⊥
2 /C⊥

1

Aµ,γ







∑

u∈C⊥
1 +γ+µ

ε(0,u)E(0,u)













=
1

2n−k1
ΠSX(µ0)

∑

γ∈C⊥
2 /C⊥

1

Aµ0,γ







∑

u∈C⊥
1 +γ+µ0

ε(0,u)E(0,u)







=
1

2n−k1





1

2k2

∑

a∈C2

(−1)aµ
T
0 ε(a,0)E(a,0)











∑

γ∈C⊥
2 /C⊥

1

Aµ0,γ







∑

u∈C⊥
1 +γ+µ0

ε(0,u)E(0,u)













=
1

2n−k1+k2

∑

γ∈C⊥
2 /C⊥

1

∑

u∈C⊥
1 +γ+µ0

∑

a∈C2

Aµ0,γ(−1)aµ
T
0 ıaµ

T
0 ε(a,u)E(a,u). (178)

Since Pauli matrices are linear independent, we have Aµ0,γ = 0 for all µ ∈ F
n
2/C⊥

2 \ {0} and all
γ ∈ C⊥

2 /C⊥
1 , and (98) holds.

C.7 Proof of Lemma 11

⇒: Assume (101) holds for all v1,v2 ∈ C1 + y such that v1 ⊕ v2 ∈ C2. Then, (105) is satisfied. Let
v1,v2 ∈ (C1 +y)/(C2 +y) and v1 ⊕v2 ∈ C2. Then we can write v1 = u1 +w+y and v2 = u2 +w+y

for u1,u2 ∈ C2 and w ∈ C1/C2. We simplify (101) as

2l | (u1 + w + y)R(u1 + w + y)T − (u2 + w + y)R(u2 + w + y)T (179)

2l |
(

(u1 + y)R(u1 + y)T − (u2 + y)R(u2 + y)T
)

+ 2
(

(u1 + y)RwT − (u1 + y)RwT
)

(180)

2l | 2(u1 − u2)RwT , (181)

since u1 + y,u2 + y ∈ C2 + y. Thus, (106) is also satisfied.

⇐: We simply reverse (179), (180), and (181).

C.8 Proof of Theorem 12

The proof idea is the same as that of Theorem 9 We take UZ = RZ
(

π
p

)

and simplify (56) using (98):

1 =
∑

γ∈C⊥
2 /C⊥

1

∣

∣

∣

∣

A0,γ

(

π

p

)∣

∣

∣

∣

2

=
∑

γ∈C⊥
2 /C⊥

1

1

|C1|2
∑

z1,z2∈C1+y

(−1)γ(z1⊕z2)T
(

e
ıπ

p

)wH(z1)−wH(z2)
. (182)
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Setting w = z1 ⊕ z2 and z = z2, we obtain

1 =
1

|C1|2
∑

w∈C1

∑

z∈C1+y

(

e
ıπ

p

)wH(w⊕z)−wH(z) ∑

γ∈C⊥
2 /C⊥

1

(−1)γw
T

=
1

|C1|2
|C1|
|C2|

∑

w∈C2

∑

z∈C1+y

(

e
ıπ

p

)wH(w⊕z)−wH(z)

=
1

|C1||C2|
∑

w∈C2

∑

z∈C1+y

(

e
ıπ

p

)wH(w)−2wH(w∗z)
, (183)

Note that (183) implies every term in the double sum is equal to 1, which completes the proof.

C.9 Proof of Lemma 17

It follows from (56) that

|A0,γ(θ)|2 =
1

|C1|
∑

w∈C1

(−1)γw
T
sw, (184)

where

sw :=
1

|C1|
∑

z∈C1+y

(

eıθ
)wH(w)−2wH(w∗z)

. (185)

Then

∑

γ∈C⊥
2 /C⊥

1

|A0,γ(θ)|2 =
1

|C1|
∑

γ∈C⊥
2 /C⊥

1





∑

w∈C2

(−1)γw
T
sw +

∑

w∈C1\C2

(−1)γw
T
sw





=
1

|C1|
∑

γ∈C⊥
2 /C⊥

1

∑

w∈C2

sw +
1

|C1|
∑

w∈C1\C2

∑

γ∈C⊥
2 /C⊥

1

(−1)γw
T
sw

=
1

|C1|
|C1|
|C2|

∑

w∈C2

sw =
1

|C2|
∑

w∈C2

sw, (186)

where the last step follows from the fact for any w ∈ C1 \ C2,
∑

γ∈C⊥
2 /C⊥

1
(−1)γw

T
= 0. Thus, (186)

equals 1 if and only if sw = 1 for all w ∈ C2. Note that s0 = 1, and for all non-zero w, we have

sw =
1

|C1|
∑

z∈C1

(

eıθ
)wH(w)−2wH(w∗(z⊕y))

=
1

|Dw|
∑

v∈Dw

(

eıθ
)wH(w∗(v⊕y))

=
1

|Dw|
∑

x∈Dw+w∗y

(

eıθ
)wH(w)−2wH(x)

. (187)

Thus,
∑

γ∈C⊥
2 /C⊥

1
|A0,γ(θ)|2 = 1 if and only if (129) holds for all non-zero w ∈ C2.

C.10 Proof of Lemma 18

We first show that Dw + w ∗ y ⊆ projw(Z̃⊥
w) + y′. Let z ∈ C1. Then, w ∗ z ⊕ w ∗ y ∈ Dw + w ∗ y.

Let v ∈ Zw ⊆ C⊥
1 . We observe

(

w ∗ (z ⊕ y) ⊕ y′) ∗ v = z ∗ w ∗ v ⊕ y ∗ w ∗ v ⊕ y′ ∗ v = z ∗ v ⊕ y ∗ v ⊕ y′ ∗ v, (188)

where the last step follows from supp(x) ⊆ supp(w). Since x ∈ C⊥
1 and z ∈ C1, wH(z ∗ v) = 0 mod 2.

We consider two cases. If v ∈ Bw ⊆ Zw, then wH(y ∗ v) = 0 mod 2 and wH(y′ ∗ v) = 0 mod 2.
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Otherwise, v ∈ Zw \ Bw. Then wH(y ∗ v) = 1 mod 2 and wH(y′ ∗ v) = 1 mod 2. For both cases,
wH((w ∗ (z ⊕ y) ⊕ y′) ∗ v) = 0 mod 2. Thus, w ∗ (z ⊕ y) ⊕ y′ ∈ projw(Z̃⊥

w), which implies that
w ∗ (z ⊕ y) ∈ projw(Z̃⊥

w) + y′. Then, we have Dw + w ∗ y ⊆ projw(Z̃⊥
w) + y′.

It remains to show that |Dw| = |projw(Z̃⊥
w)|. We observe that Dw = C1

∣

∣

1−w
= (C⊥

1

∣

∣

1−w
)⊥. Thus,

dim(Dw) = wH(w) − dw = dim(Z⊥
w) = dim(projw(Z̃⊥

w)), which completes the proof.

C.11 Proof of Lemma 19

We rewrite (132) as

2
∑

v∈Bw

(ı tan θ)wH(v) −
∑

v∈Zw

(ı tan θ)wH(v) = (sec θ)wH(w) , (189)

and rearrange to obtain

2
∑

v∈Bw

(cos θ)wH(w)−wH(v) (sin θ)wH(v) −
∑

v∈Zw

(cos θ)wH(w)−wH(v) (sin θ)wH(v) = 1. (190)

We apply the MacWilliams Identities to P2θ[Bw] and P2θ[Zw] (Pθ[C] is deifned in (4) for any angle θ
and linear code C) to obtain

2

|B⊥
w|

∑

z∈B⊥
w

(

eıθ
)wH(w)−2wH(z)

− 1

|Z⊥
w|

∑

z∈Z⊥
w

(

eıθ
)wH(w)−2wH(z)

= 1. (191)

Since |B⊥
w| = 2|Z⊥

w|, B⊥
w = projw(B̃⊥

w), and Z⊥
w = projw(Z̃⊥

w), we obtain

1
∣

∣

∣projw(Z̃⊥
w)
∣

∣

∣

∑

v∈projw(Z̃⊥
w)+y′

(

eiθ
)wH(w)−2wH(v)

= 1, (192)

which completes the proof.
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