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Abstract. This paper concerns the rigorous periodic homogenization for a nonlinear strongly
coupled system, which models a suspension of magnetizable rigid particles in a nonconducting carrier
viscous Newtonian fluid. The fluid drags the particles and thus alters the magnetic field. Vice versa,
the magnetic field acts on the particles, which in turn affect the fluid via the no-slip boundary
condition. As the size of the particles approaches zero, it is shown that the suspension’s behavior is
governed by a generalized magnetohydrodynamic system, where the fluid is modeled by a stationary
Navier—Stokes system, while the magnetic field is modeled by Maxwell equations. A corrector result
from the theory of two-scale convergence allows us to obtain the limit of the product of several weakly
convergent sequences, where the div-curl lemma, which is a typical tool in these types of problems,
is not applicable.
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1. Introduction. This paper is a counterpart of our previous works [15, 16],
where we carried out the rigorous periodic homogenization of a weakly (one-way)
coupled nonlinear system modeling a nondilute suspension of magnetizable particles
in a viscous Newtonian fluid. In [15, 16], the fluid is assumed to be described by the
stationary Stokes flow, and the particles are either paramagnetic or diamagnetic. The
one-way coupling is understood as follows: the magnetic field alters the movement
of the magnetizable particles, then the particles affect the fluid flow via a no-slip
boundary assumption; however, the reverse effect is assumed to be negligible. For
details and information about the manifestations of the one-way coupling (as well as
of the full coupling), its applications, and further literature on the subject, we refer
the reader to [15, 16] and references cited therein. In this paper, the full (two-way)
coupling is considered, i.e., we also take into account the reverse effect: the fluid flow
pushes the particles and thus generates an induced magnetic field that acts back on
the original one. The mathematical formulation of the fully coupled model of the
magnetic nondilute suspension is given in section 2 below.

Starting with the seminal work of Einstein on the effective viscosity of a suspension
[24], there have been numerous studies on this subject, ranging from formal asymptotic
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analysis such as [43, 44, 45] to rigorous analysis, e.g., [7, 8, 18, 20, 21, 22, 23, 29, 33,
38, 41, 42, 46, 49] and references cited therein. The coupling between the velocity and
the magnetic fields distinguishes our paper from the previously cited. In this paper, we
propose a nonlinear system to model the two-way coupling in the magnetorheological
fluid and derive, and rigorously justify, the corresponding effective system.

To overview the literature on this topic, we start with the phenomenological mod-
els proposed in, e.g., [25, 34, 47, 51, 53], whose well-posedness was studied in, e.g., [6,
28, 35, 52, 54]. A coupling mechanism, similar to the one discussed in this paper, was
also considered in [50], where a different model describing fluids was used. The au-
thors in [50] though obtained the results using formal asymptotic analysis. Although
similar models in different contexts were also studied in [26, 57], to the best of our
knowledge, this paper is the first one to deal with the fully coupled model for mag-
netorheological fluids using the rigorous homogenization approach. Last, we mention
that the rigorous homogenization for the system described by one-way fluid-particle
coupling was solved in [15, 16] with a fairly general assumption on the smoothness of
the coefficients.

In what follows below, after a nonlinear model for the magnetorheological fluid
is established, we obtain the well-posedness and a priori estimates for its solution by
adapting the general functional analysis framework of stationary magnetohydrody-
namics; cf. [30, 36, 37, 55] and references therein. Then, the two-scale convergence
method (cf. [3, 9, 14, 48]) is utilized to obtain the effective, or homogenized, system.
The main difficulty lies in the nonlinearity of the system (cf. (2.7a) and (2.7f)) and the
full coupling mechanism captured by (2.7a), (2.7f), and (2.11) that make the choice
of suitable oscillating test functions in the energy method by Tartar [56], which is a
typical tool in homogenization problems, become extremely tricky. To overcome this
difficulty, we rely on the corrector result from the two-scale convergence method (see
Theorem 2.7). The results obtained in this paper can be extended to the stochastic
setting, thanks to the work on stochastic two-scale convergence; cf. [11, 39, 40, 58]
and references cited therein.

This paper is organized as follows. In section 2, the main notation is introduced
and the formulation of the fine-scale problem is discussed. Our main result is stated
in Theorem 3.1, and the conclusions are given in section 4.

2. Formulation.

2.1. Notation. Throughout this paper, the scalar-valued functions, such as the
pressure p, are written in usual typefaces, while vector-valued or tensor-valued func-
tions, such as the velocity u and the Cauchy stress tensor o, are written in bold.
Sequences are indexed by superscripts (¢?), while elements of vectors or tensors are
indexed by numeric subscripts (z;). Finally, the Einstein summation convention is
used whenever applicable; d;; is the Kronecker delta, and ¢;;; is the Levi-Civita per-
mutation symbol.

2.2. Set up of the problem. Consider Q C R? for d > 2 a simply connected
and bounded domain of class C1'1, and let Y := (0,1)? be the unit cell in R%. The
unit cell Y is decomposed into

Y =Y,UY;UT,

where Y, representing the magnetic inclusion, and Y}, representing the fluid domain,
are open sets in R%, and T is the closed C'! interface that separates them. Let
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Fic. 1. Reference cell Y and domain Q.

i = (i1,...,iq) € Z% be a vector of indices and {e',...,e?} be the canonical basis of
R?. For a fixed small € > 0, we define the dilated sets:

Y=Y +14), Vi i=e(Ys +14), Vi i=e(Yy +1), [T =0V,

i,

Typically, in homogenization theory, the positive number ¢ < 1 is referred to as
the size of the microstructure. The effective or homogenized response of the given
suspension corresponds to the case ¢ = 0, whose derivation and justification is the
main focus of this paper.

We denote by n;, nr, and nso the unit normal vectors to I'{ pointing outward
Y7, on I' pointing outward Y5, and on 9 pointing outward, respectively; and also,
we denote by dH?~! the (d — 1)-dimensional Hausdorff measure. In addition, we
define the sets:

F={iezhyFcQ}, 0= V5, 5=\ "= T}
ic€le ic€le

see Figure 1.

2.3. The model. Denote by p¢, ps, Ves, i1, and g the (mass) density of fluid, the
density of inclusions, the electric conductivity of inclusions, the magnetic permeability,
and the external force field, respectively. The unknowns include the fluid velocity
u®, the fluid pressure p®, and the magnetic field B¢ (which in turn determines the
magnetizing field H®). For simplicity, we assume that the magnetic permeability is
piecewise-constant and given by

- if x € Q5
n(x) = {"f . !
ws ifx e Q8

where pg, ps > 0.
We consider the following nonlinear system modeling a suspension of rigid inclu-
sions in a nonconducting carrier fluid:

€
(2.1a) Py {85'1:5 + (u®- V)us] —div o° = psg in QF,
(2.1b) divu® =0 in QF%,
(2.1c) D(u®) =0 in QF,
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(2.1d) curl H* =0 in QF,
oB® .
(2.1e) 5 + —curl curl H* = curl (u® x B?) in QF,
l/es
(2.1f) div B =0 in Q,
(2.1g) B® = uH*® in Q.

Suppose that the induced electric field is negligible; then the Lorentz force can be
written as

i QF
(2.2) % = curl H®* x B® = 0 Tn .
curl H* x B® in QS.

Thus, by the law of inertia [32, Axiom 5.2, p. 171], we obtain the balance equations
of force and torque:

(2.3a) / psu'sdx:/ ae(us,pf)ndF+/ curl H® XBde+/ psgdz,
Yi,s Fi )/i,s 1/1@

J,

ps (x — Gy) x usdr = / (x — G;) x o°(u®, p°)ndl’
I';

+ / (z — Gy) X (curl H® x B¥)dz
Yi,s

(2.3b) + / ps (x — G;) x gdu,
Y,

i,8

where u® := % + (u® - V) u® is the convective derivative, and G; is the center of

mass of the particle Y; 5. The (outer) boundary conditions on the external boundary
0f) are

(2.4) u*=0, curl H* xn=0, B -n=gq,

5 e T
where o¢(u®, pf) := 2nD(u®) — p°I, D(u®) := %, and g € HY/?(09), satisfy-
ing the compatibility condition qd3H4=1 = 0. Since y is piecewise-constant, from
oN
now on, we write

BE

ifxEQ‘},
K
€ _
H® = Be
—  ifx e Q5.
s

Remark 2.1. The physical meaning of the system (2.1) is as follows. Model
(2.1a) is the momentum equation, which is the Navier—Stokes equation. The effect of
the magnetic field on the fluid is expressed in the two balance equations (2.3). The
incompressibility of the fluid is described by (2.1b). Equation (2.1c) describes the
rigid body motion of the particles and (2.1g) provides the linear constitutive relation
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between the magnetic field B¢ and the magnetic induction field H?, an assumption
used in this paper.

Equations (2.1d), (2.1e), and (2.2) are derived from the Maxwell’s equations as

follows. In our applications, the electric conductivity constants of fluid phase and
solid phase are 0 and v,s, respectively. Then, by Ohm’s law, the free current satisfies

(2.5a) Jfee =01in Q% and

(2.5b) J5o = Ves (E° + u° x BY) in Q5.

In other words, the induced electric field E° satisfies E* = % —u® x B® in QF.

Substituting into Faraday’s law of induction, curl E¢ = —38—]37:57 vevbe obtain
oB® Jg
(2.6) 5+ curl (Vf —u® x BE> =0in Q°.

Let D¢ denote the displacement field. In the current context, we may assume that
the Maxwell displacement term in Ampere’s Law, curl H® = Jg . + aa—D:, is negligible
(cf. [17, Chapter 2]), so curl H® = J§__ in Q, which, together with (2.5a) and (2.6),
implies (2.1d) and (2.1e). Moreover, if the induced electric field E is negligible, and

then the Lorentz force is f™2¢ = J§ __ x B¢ = curl H® x B¢, yielding (2.2).

free

2.4. Dimensional analysis. Let L,U, B, and ps; be the characteristic scales
corresponding to length, velocity, magnetic field, and magnetic permeability, respec-
tively. The characteristic time 7' and body density force F are defined by T = £ and

, U
F=4Y.
Let z* := F,u™ = 5,p*" = %,g* = gU—%, and p* = Hﬁ The dimension-
less quantities that appear are the hydrodynamic Reynolds number R, = #, the
magnetic Reynolds number R, = usvesUL, the Alfven number A; = %, and the

density ratio, which, for simplicity, is assumed to satisfy S—; = 1. Also, in what follows,

we drop the star to lighten the notation. The dimensionless versions of (2.1), (2.3),
and (2.4) are

a €
(2.7a) R, (;:; + (u® - V)u®| —div o (u®,p°) = R.g in QF,
(2.7b) divu®*=0 in QF,
(2.7¢) D(u®) =0 in QF,
(2.7d) curl B =0 in QF,
oB* 1
(2.7e) a0 + R—curl curl B = curl (u® x Bf) in QF,
m
(2.71) div B =0 in €,
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equipped with the balance equations

Re/ u'Eda::/ of(uf, pf)ndH4!
v re

0,8

(2.8a) + Al/ curl B x B°dx + R, gdzx,
Ye

Ys<
i,8

i,8

Re/ (x — G§) x uedw = / (z — Gf) x o°(u®, p°)ndHI !
}/7;55 Ff

+ Al/ (x — Gf) x (curl B* x B¥)dz

(2.8b) + Re/ (x — G) x gdz

and the boundary conditions
(2.9) u®* =0, cwrl B xn=0, B°-n=gq,

where now o (u®,p®) := 2D(u°) — p°L

107

Hereafter, we consider the stationary flow, i.e., the time derivative is ignored,

(2.10a) R.(u® - V)u® —div o°(u®,p°) = R.g
(2.10D) divus =0
(2.10c) D(u®) =0
(2.10d) curl B =0
1
.10e ——curl cur —curl (u® x =
(2.10¢) ——cwl cwrl BY —cwl (u x BY) = h
(2.10f) div B =0

equipped with the balance equations

Re/ (u® - V)u® :/ ofndH4!
Yis rg

(2.11a) + Al/ curl B® x Bdz + Re/
Y Y,

€
i,8 i,8

Re/ (r—GE) x (u® - V)u® = / (x — Gf) x ofndH?
Yiag Ff

+ Al/ (x — G$) x (curl B* x B¥)dx
v

i,8

(2.11b) + R, (x — Gf) x gdz,
Yis

: €
in QF,
in Q%,
in Qf

59

: g
in %,
in Qf

S

in Q

)

gdz,
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the boundary conditions
(2.12) u"=0, curl BSxn=0, B* - n=0,

and the compatibility condition
(2.13) / h - Vydz = 0 for all Vi € H}(Q,R?).
QS

We note that the function h € L2?(2,R%) appears in (2.10e) due to a lifting of the
nonhomogeneous magnetic condition (2.4) to the homogeneous condition (2.12), i.e.,
substracting B¢ by a suitable function (see [37] and [30, section 3.8]. Here, H!(Q, R?)
is the set of weakly differentiable functions from 2 to R? with vanishing normal trace;
see subsection 2.5.1 below.

2.5. Useful results from functional analysis. In this section, we collect some
background results from functional analysis used in what follows. We separate the
functional spaces and theorems of the two-scale convergence method from the ones of
saddle point problems to make it easier to keep track.

2.5.1. Abstract framework for our nonlinear problem. The results for
linear saddle point problems date back to the seminal works by Babuska and Brezzi
(cf. [4, 10]). They are then adapted to the nonlinear cases such as the Navier—
Stokes equations and magnetorhydrodynamic equations (cf. [30, 31, 36, 37, 55]). We
summarize here the results used in our paper and refer readers to the works cited
above for their proofs.

Let X and P be two real Hilbert spaces, and f € X. Leta(-;-,-): XxXxX - R
be a nonlinear form such that for any w € X, a(w;-,-) is a bilinear continuous form
on X x X. Let b: X x P — R be a continuous bilinear form. Consider the following
nonlinear problem:

Find (u,p) € X x P, such that for all (v,q) € X x P,

(2.14a) a(u;u,v) + b(v,p) = (f,v),

(2.14b) b(u,q) =0,

where (-,-) is the dual pairing. The unknown p can be regarded as the Lagrange
multiplier associated with the constraint (2.14b). The idea is to embed the constraint
(2.14b) into X by introducing the space

M ={ue X:b(u,q) =0 forall ¢ € P}

and consider a simpler problem that reads as follows: Find u € M such that for all
veM,

(2.15) a(u;u,v) = (f,v).

The continuity of b implies that M is a closed linear subspace of X, and, thus, M is
also a Hilbert space.

THEOREM 2.2 (existence and uniqueness of solution of (2.15)). If the following
conditions hold,

(i) there exists o > 0 such that for all ve M,

2
(2.16) a(v;v,v) > allv|y,
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(ii) the space M is separable and such that for any sequence v, that weakly con-
verges to v in M, a(v,;v,, w) converges to a(v;v,w) for all w € M,
then there exists at least one solution of problem (2.15): w € M. If in addition,
we assume that

(iii) the elliptic property (i) holds uniformly with respect to the first variable, i.e.,
there exists a > 0 such that for all v,w € M,

(2.17) a(w;v,v) > alfv|

(iv) there exists a constant v > 0 such that, for all uy,us,v,w € M,
(2.18) la(uz; v, w) — a(ui;v,w)| < lluz — urlly vlly wlly,
then problem (2.15) has a unique solution u € M, provided that

7 lwllar

(2.19) o2

<1,

where w € M is such that (f|a,v) = (w,v)x for all v € M, with f|y being the
restriction of f on M.

Theorem 2.2 allows us to establish the existence and uniqueness of the solution
u of (2.15). To recover the unknown p that solves (2.14), we need to introduce the
following definition.

DEFINITION 2.3. The following is called the inf-sup condition or the Babuska—
Brezzi condition or the Ladyzhenskaya—Babuska—Brezzi condition:

(2.20) 38 >0 such that inf sup M > .
9€P\{0} vex\{0} IVl x llall p
If the bilinear form b in (2.14) satisfies the inf-sup condition (2.20), then, by the
Riesz representation theorem and the closed range theorem [13], the existence and
uniqueness of the solution u of (2.15) implies the existence and uniqueness of the
solution (u,p) of (2.14).
The inf-sup condition can be verified by the following.

PROPOSITION 2.4. Let B: X — P be the continuous linear operator associated to
the continuous bilinear form b by (Bv,q)p = b(v,q) for all (v,q) € X x P. (Here we
use the Riesz representation theorem). Then the following statements are equivalent:

(i) The inf-sup condition (2.20) holds.
(ii) BT: P — X is injective and B has a closed range. Here BT is the transpose
of B, i.e., (v,BTq)x = (Bv,q)p for all (v,q) € X x P.
(ili) B: X — P is surjective.

2.5.2. The two-scale convergence method. Two-scale convergence was in-
vented by Nguetseng and further developed by Allaire. We collect here the important
notions and results relevant to this paper, whose proofs can be found in [11, 39, 40,
58]. The following spaces are used in the paper below:

Cper(Y)-the subspace of C(R?) of Y-periodic functions;
Cper(Y)—the subspace of C>° (R?) of Y-periodic functions;

H! . (Y)-the closure of C% (V) in the H'-norm;

per per

D(Q, X), where X is a Banach space—the space infinitely differentiable func-
tions from ©Q to X, whose support is a compact set of R? contained in Q;
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e [P(Q), X), where X is a Banach space and 1 < p < oo—the space of measurable
1
functions w: = € Q = w(x) € X such that [[w]| 1, x) = (Jq lw(@)[% dz)?
00; B
o LB, (Y,C(£))-the space of measurable functions w:y € Y — w(,
C(9), such that w is periodic with respect to y and [, (sup,cq|w(z,y)
< 00.

A

y) €
|)Pdy

DEFINITION 2.5 (LP—admissible test function). Let 1 < p < oco. A function
Y e LP(Q xY), Y-periodic in the second component, is called an LP— admissible test
function if for all € > 0, 9 (~, g) is measurable and

(2.21) 31_13%/9 ‘w (m,g)‘pdx = %/Q/Y [¢(x,y)|” dydz.

It is known that functions belonging to the spaces D(2, C22,(Y)), C(, Cper(Y)),

LP (Y,C(Q)), or LP(, Cper(Y)) are admissible [3], but the precise characterization
of those admissible test functions is still an open question.

DEFINITION 2.6. A sequence {v¥}cso in L*(Q) is said to two-scale converge to

2
v=uv(z,y), with v € L>(Q x Y), and we write v° — v, if and only if

(2.22) lim ., v® () (x, g) dz = % /Q /Y v(z, y)Y(x, y)dyde

e—0
for any test function ¢ = (z,y) with ¢ € D(Q, Cpe,(Y)).

In (2.22), we can choose 9 be any (L?—)admissible test function. Any bounded
sequence v¢ € L?(Q) has a subsequence that two-scale converges to a limit v0 €
L?(Q x Y). Moreover, from [3, Theorem 1.8, Remark 1.10, and Corollary 5.4], we
have the following.

THEOREM 2.7 (corrector result). Let u® be a sequence of functions in L?(S)) that
two-scale converges to a limit u®(z,y) € L*(Q x Y). Assume that

(2.23) lim [ull 20y = H“0||L2(QxY)'

Then for any sequence v¢ in L?() that two-scale converges to v° € L2(Q2 x Y), one
has

(2.24) uv® — % u®(z,y)0°(z, y)dzdy in D'(Q).
Y

Furthermore, if u®(z,y) belongs to L*(Q, Cper(Y)) or L2, (Y,C(2)), then

per

(2.25) lim

e—0

=0.
L2(Q)

uf (z) — u’ (x, E)’

3

In fact, the smoothness assumption on u° in (2.25) is needed only for u° (x, %)
to be measurable and to belong to L?(f2). Finally, we recall that if » € L?(Q x Y)
is a Carathéodory function, then (-, g) is measurable. This fact is used later on to
prove that 1gxy, is an admissible test function.
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3. Main results. We now define the admissible spaces on the C1' —domain 2
for the fluid velocity u®, the magnetic field B¢, and the fluid pressure p®. Let

H(Q,RY) := {C € H'(Q,R?): C-npg =0},

L(Q) == {q € L*(Q): / qdx = 0} ,
Q
§:={Ce L*Q,RY: curl C € L*(Q,R%),div C € L*(),C - nyg =0},
DISEES {V € H}(Q,R%): D(v) =0 in Qi},
P :=div (V%) = {q € L§(Q): Iv € V* such that ¢ = div v},
U= {v € H}(Q,RY): D(v) =0in Q, div v =0 in Q;} ,
X =9 x {C e H\(Q,RY): curl C=01in Q3 },
9 =4 x {Ce HYQ,RY): curl C=0in Q;}}
These spaces are equipped with natural Sobolev norms. Moreover, given normed
spaces A and B, the norm of its product space A x B is defined by ||(a,b)|%. 5 =
llall4 + ||b]|% for a € A,b € B.
As we will see later, to utilize the framework presented in subsection 2.5.1, we
choose X = X, M =9)°, and P =L°.
In addition, let Iﬁ:é}z, be the norm of the embedding $ — H', kg the norm of the

Sobolev embedding H' — L*, and li;(l the constant in Korn’s inequality, respectively.
Then the main result of this paper is summarized in the following theorem.

THEOREM 3.1. Suppose the data g and h are small enough such that

(min{ AL kar, ki })?
3.1 Re Ar|lz= < x
(3.1) lgllzz + Ar bl < ks max{Re,24;}

Then, for ¢ > 0, the system (2.10) has a unique solution u® € H} (2, RY), p* € LE(Q),
Be € H}(Q,RY). Moreover, there exist a constant, symmetric, and elliptic fourth-rank
tensor N and two constant, symmetric, and elliptic matrices M, € such that

(32) u —u’in H'(Q,RY), B —B%in H'(Q,RY), p° — I in L3(Q),

where u® € H (Q,R?), I € LE(Q), and B® € H}(Q,R?) satisfy the following effective
system of equations, all defined on the domain ):

(3.3)
div u® = div B® =0,
Y
(u” - V) u — div (zNijmn [}D)(uo)]ij " ®em — HI) = R.g+ A ||y|| curl B x B,
1 OBY Y|
1 Mjneije——te™ ) —curl (Eppespul Be™) = ~th.
mcur ( j ejkaxke ) cur ( kn€ijkU; Dje ) \Y|

Remark 3.2. The solution mentioned in Theorem 3.1 is understood in the weak
sense, which will be clarified in subsection 3.1. In that weak formulation, the pressure
p° is extended to the entire domain 2 by setting it equal to a constant, e.g., zero, on
each Y. This explains why p® is defined in the entire domain {2 in Theorem 3.1.

The road map of the proof of Theorem 3.1 goes as follows:
e First, we present the variational formulation for problem (2.10)—(2.13) and
prove their equivalence in subsection 3.1.
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e Second, the existence and a priori estimates for the fine-scale velocity u® and
the magnetic field B® are established in subsection 3.2, thanks to
Theorem 2.2. The first two steps are adapted from the classical theory of
magnetohydrodynamics (cf. [30, 31, 36, 37, 55]). In particular, the presenta-
tion of those two steps is inspired by [30, 37, 55].

e Third, in subsection 3.3, the existence and a priori estimate for the fine-scale
pressure p° are recovered by an inf-sup condition. A construction based on
the Bogovskii map allows us to control the norm of the pressure p® uniformly
with respect to € (cf. [1, 2, 5, 19, 21, 22, 42]).

e Next, the two-scale homogenized problem is derived in subsection 3.4. Here,
a corrector result of two-scale convergence [3] is crucial for passing to the
limit of several integrals over a changing domain.

e Finally, the local and homogenized problems are recovered in subsections 3.5
and 3.6. Explicit formulas for the effective viscosity N, the effective magnetic
reluctivity M, and the effective electric conductivity € are provided in (3.61).

3.1. Variational formulation. We define bilinear, trilinear, and linear forms
Af(y) s XEx X =5 R, Be(+,) : X x P — R, and C°(+,-,-) : X x X* x X* = R,
LE(): X = R by

Af ((u,B), (v,C)) := 2/

D(u) : D(v)dz + A
Q R,

/divB~didex
Q

€
f

9

+/ curl B - curl C dz
Qg

B ((v,C),p) := / p div v dz,
Q

e ((ulv Cl)’ (u2a C2)v (113703)) = Re /Q (ul : V) uy - uz dr

— Al/ [(curl C2 X Cl) - us
+ (112 X Cl) - curl C3] dl’,

LE(v,C) ::Re/govdx+Al/ h.Cdz.
Q Q

€
s

We consider the weak formulation of problem (2.10):
Find ((u®,B?),p%) € X° x PB= such that for all ((v,C),q) € X° x P*,

(3.4)
A% ((u®,B%), (v, C)) + B° ((v, C),p) + € ((u", BY), (u", BF), (v, C)) = £L°(v, C),
B° ((u®,B%),q) = 0.

Before showing that the weak formulation (3.4) is equivalent to the strong formulation
(2.10), we recall the following.

LEMMA 3.3 ([30, Lemma 3.17]). If B € HL(Q,R%), then there exists 1) € H?*(Q)

such that
—Ay =divB inQ,
3.5
(3:5) oY =0 on 0§
on
In particular, Vi) € H}(Q,R9).
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PROPOSITION 3.4. Suppose that h satisfies (2.13). Then ((u®,B?),p°) € X° xP°
is a weak solution of (3.4) if and only if it is a solution of (2.10)—(2.12).

Proof. The incompressibility condition (2.10b) is straightforward from the second
equation of (3.4). We rewrite the first equation of (3.4) as

(3.6)

2/ D(u®) : D(v) dz + ;—l
j, m

/div B¢ - div Cda:+/ curl B® - curl C dz
Q £

—|—/p6div vda:—i—Re/(uE-V)us-vdx
Q Q
—Al/ (curlBst€)~vdx—Al/ (u® x B®) - curl C dz
=R, g-vdx—|—Al/ h-C dz.

Q <
Letting C = 0 and choosing v € C2°(Q7, R?), we have

2/ D(u®) : D(v) dx—|—/ p=div vdx—&-Re/ (u®-V)u® - vdz

Q5 Q5 Q5
:Re/ g - vdz.
7

Then using integration by parts, we obtain (2.10a). In (3.6), setting C = 0 again and
choosing v € H(Q, R?) such that D(v) = 0 on Qf, we obtain

2/ D(u®) : D(v) do + /padiv vdz + Re/ (u®-V)u® - vde
e Q Q
— Al/ (curl Bf x B) - vdz

QE

:Re/g-vd:t.
Q

Using integration by parts and the fact that p© = 0 in Q¢ (because p° € 3°), we have
/ (Re(u® - V)u® —div o°(u®,p°) vdm—l—Z/ v, p)n - v dH!
S E

+ R, (uE-V)us-vdx—Al/ (curl B® x B¥) - v dx
Qe Qg

:Re/g~vdx.
Q

y (2.10a), this equation reduces to

Z/ u®, p%) nvdf}{d1
+Re/ (ugv)uEVdCC*Al/ (CurlBexBE).vdz

=R, g vdz.
Q3
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The rigid body motion equation D(v) = 0 in Y/ is equivalent to the existence of
U;,w; € R?, and R; € [0,00) such that v = U; + Ryw; x n in Y. This together
with the last equation yields the balance laws (2.11).

Next, choosing v = 0 in (3.6) results in

% [/ div Bf -div Cdz —|—/ curl B¢ - curl Cdx}

(3.7) oL s

—Al/ (u® x Bf) - curl Cdz = Al/ h- Cdz.
Q Q

Let ¢ as in Lemma 3.3 and select C = V4 in (3.7); then by (2.13),
A
R Jo
so we obtain (2.10f). Therefore, (3.7) is simplified to

(div B®)?dz = 0

1
—/ curl Bf - curl Cdz — / (u® x Bf) - curl Cdz = / h - Cdz.
Ry, Q, Qg Q,

Choosing C € C°(Q,, R?) and integrating by parts, this implies (2.10e). 0
3.2. Existence and a priori estimates for the fine-scale velocity and the
magnetic field. First, we recall an important estimate for proving ellipticity (2.17).
PROPOSITION 3.5 ([31, Theorem 3.8]). There exists kgr > 0 such that, for any
B e 9,
2 2 . 2
(3.8) KGR 1Bl orey < llewrl Bl[72(g gay + [|div Bl[72(q) -

LEMMA 3.6. The form AF is continuous and coercive on X¢ x X¢, with coercivity
constant « independent of €. In fact, « = min{ I‘;?l KGR, kK } > 0, where kg is the

constant in (3.8) and /ﬁ;{l 1s the constant in Korn’s inequality.

Proof. For any ((u,B), (v,C)) in X° x X¢, we have
A= (0, B) , (v, C))| < 2[[D(u)]| g2 gaxay D(V)]| L2 (0 peaxay

Al :
+ R [Hdlv B||L2(Q) [|div C||L2(Q)
+ [leurl Bl 2 oy llcurl CIILz(Q,Rd>]

A

<0 (25 ) Bl [l
m

Therefore, A® is continuous. Moreover, by (3.8) and Korn’s inequality,

A (). (0 B) = [ pfast 5| [javBlacs [ ot B a)
Qf Rm Q Qg

:/ \D(u)|2dx+ﬁ U |div B|2dx+/ |curlB|2dx}
Q Ry LJa Q

> a/(u,B)J2. . 0

LEMMA 3.7. The trilinear form C¢ is continuous on X° x X° x X°. Moreover,
suppose py = ps; then for all ((u,B), (v,C),(w,D)) € X° x X° x X° with divu =0,
one has

e ((u7 B)7 (V7 C)a (Wa D)) =€ ((uvB)’ (WvD)v (V) C)) :
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Proof. We write

€° (4w, B), (v, C), (w, D))|
< C(lall g VI 1wl g+ ICH s Bl g (Wl e+ IvI g 1Bl D1 1)
< C[(a, B)[[x- 1(v; ©)llx [[(w, D) - -

The second part is a consequence of the following identities:
(Bxcurl C)-v=(vxB)-curl C,
1 1
/ (u-V)v-vder= —7/ |V|2divudx+f/ |v|*u-n dH??
U 2 Ju 2 Jou

for U= Q5 or U = Q5.
Indeed, from the above identities and the definition of €%, one has

¢ ((u,B), (v,C),(v,C)) =0
for all (v, C) € X¢; therefore,
“(

e (
e (
—{

(
0

|
)

(u,B),(v—w,C—D),(v—w,C—-D))
(u,B),(v,C),(v—w,C-D))—C€°((u,B),(w,D),(v—w,C—-D))
(u,B),(v,C),(v,C)) — € ((u,B), (v, C), (w,D))

€ ((u,B), (w, D), (v,C)) + € ((u,B), (w,D), (w, D))}

=—C° ((U-?B)v (V? C)? (W, D)) - ((uvB)v (W7 D)= (V7 C)) . 0

)

(3.9)

)

‘We now define

(3.10)
a® ((u,B); (v, C), (w, D)) := A° ((v, C), (w, D)) + € ((u, B), (v, C), (w,D)).

LEMMA 3.8. The following properties hold:
(i) For any (v,C) in 9, we have
(3.11) a® ((v,C); (v,C), (v, C)) > a||(v, C)|[3- -

Here « is the coercivity constant of A in Lemma 3.6.

(i) If (un,By) weakly converges to (u,B) in °, then for all (v,C) in X° we
have

(3.12) lim a° ((up,By); (up, By), (v, C)) = a® ((u,B); (u,B), (v,C)).

n—oo

(iii) For all (u1,B4), (uz,B2), (v,C) and (w,D) in X°, we have

|a€ ((ulaBl); (V’ C)’ (W7 D)) —a’ ((u2’ BQ); (Vv C)v (WaD))|

(3.13)
< ks maX{LQAl} H(uhBl) - (u27B2>”xf ||(V7 C)”:{E ”(WﬂD)HXE ’

where ks = ks(d, Q) is the norm of the Sobolev embedding H* to L*.
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Proof.

(i) This is a direct consequence of (3.10) and Lemmas 3.6 and 3.7.
(ii) Suppose (up,B,) — (u,B) in Y°. Write

|la® ((un; By); (un, Br), (v, C) — a® ((u, B); (u, B), (v, C)))|
< |A® ((up —u, B, — B), (v, C))|
+ 1€ ((uy, —u,B,, — B), (u,,B,), (v,C))|
+ 1¢° ((u,B), (u, —u,B,, — B),(v,C))|.

(3.14)

Next, we have
A* (un —u, Bn - B)7 (Va C))
= 2/ D(u, —u) : D(v)dx

f

A
+ =L / div (B,, — B) - div Cdz + / curl (B, — B) - curl Cdx
Q Qg

= 2/9]]))(un —u) : D(v)dz

A
+ 2L / div (B, — B) - div Cdx +/ curl (B, — B) - curl Cdz |,
Q Qs

and thus, for each fixed € > 0, the right hand side converges to 0 as n — oco. For the
second term on the right hand side of (3.14), we have by Holder’s inequality

|(\36 ((un —u, BTL - B)7 (una Bn)7 (V’ C))|

Re/gl((un —u)-V)u, - vdzx

— 4 / [(curl B,, x (B,, — B)) - v + (u, x (B, — B)) - curl C]dz]|,
Qg

< Re [[un = ulfl g [V 2 V]| s
+ 2A[[IVBall 2 [1Br = Bl [Vl L+ + l[anl s [[Br = Bl 4 [lcurl CJ[ 2] .
By the Rellich-Kondrachov theorem, we have that, up to a subsequence, (u,,B,)
strongly converges to (u, B) in L*(Q, R%) x L*(Q, R?%). Therefore, the estimate above
shows that the second term on the right hand side of (3.14) also converges to 0 as

n — 00.
The last term on the right hand side of (3.14) is

c* ((u,B), (u, —u,B, —B),(v,C))| = ’Re /Q (u-V)(u, —u) - vde
— A /Qs(curl (B, —B) x B) ~vda:—/Q€ ((u, —u) x B) - curl Cdz|.

The first and the last integrals converge to 0 by a similar argument as above. The
middle one converges to 0 due to the weak convergence B,, — B in H'(Q, R?).
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(iii) From definition (3.10) and the Sobolev embedding H' to L%, where the norm
of the embedding is denoted by xs(d,2), we obtain

|a8 ((U-l’ Bl); (V> C)7 (Wa D)) —a’ ((u27B2); (V7 C)7 (W’ D))l
= 1€ ((u1, B1); (v, C), (W, D)) — € ((ug, By); (v, C), (w, D))
= |€° ((u1 — uz, By — By); (v, C), (w, D))
< Re [lur — s, [VVl 2 [Wll Lo + 24 [VC| 2 [Br = Ba| 4 [[wll s
+ 241 [[vI s By = Bal| 14 [[VD] 12
< kis(d, Q) max{Re, 24} [[luy — vl g [V g [[W][ g
+ Cll g [B1 = Ball g Wl s + [Vl 2 [B1 = Bal[ g1 [VD ] 111]
< ris(d, Q) max{Re, 241} [|(u1, By) — (02, Bo)[[x- (v, C)[[2- (W, D)l[x-- D

From Theorem 2.2 and Lemmas 3.6, 3.7, and 3.8, we conclude the following.

PROPOSITION 3.9. Let o = min{RA—;nGm KK} be the coercivity constant of A® in
Lemma 3.6 and kg = kg(d, Q) be the norm of the Sobolev embedding H' to L*. Then
the variational problem (3.4) has a solution ((u®,B¢),p%) € X° x P such that

el
(3.15) O
Moreover, if

(3.16) ks max{R,24;} HL‘EH@ K <a?

then the solution is unique.
By Holder’s inequality,

1£5(v, C) < Re gl 2 [V 2 + Ar[[hll 2 |C[
< 2(Re|lgllz + Ar B 2) 1(v: C)llx- -

Thus, from (3.15), we obtain the following a priori estimate:

€ € 2
(3.17) 10", B) Iz < — (Rellgllz2 + Arllhllz2),

where the right hand side is surely independent of €.

3.3. Existence and a priori estimate for the fine-scale pressure. The
following result is adapted from [2, Theorem 4.1] (see also [1, Theorem 2.6], and [27,
Theorem III.3.1]),

THEOREM 3.10. Let Q C R? be a Lipschitz domain with Lipschitz constant (.
Then, there erists a bounded linear operator Bog: L2(Q) — H}(,R?), f +— Bogf,
called the Bogovskii map, such that, for all f € L3(),

(3.18) div Bogf = f.

Moreover, the norm ||Bog|| depends only on d, ¢, and diam(Q).

For p € P, there exists v € U® such that p = div v. Thus p = 0 in £ since
D(v) = 0 in Q. Adapting the construction in [22, Step 1, Proof of Lemma 3.3] (see
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also [21, Step 4, Proof of Proposition 2.1], [19, Lemma 3.2], [5, Theorem 2.1}, and [42,
Lemma 4.8]) and using Theorem 3.10, we obtain the following.

LEMMA 3.11. For each p € 53¢, there exists v € H(Q,RY) such that the following
hold:

1. v is constant on Y, for all i (and thus v € T*).
2. divv =np.
3. [Ivllmy < [IBogllpll 2

Note that we don’t necessarily have v = Bogp. Actually, v is obtained by modi-
fying Bogp so that 1 and 3 are satisfied.

LEMMA 3.12. The space B¢ defined in section 3 is a Hilbert space with respect to
the L?—inner product.

Proof. Let the space B¢ be equipped with the L?—inner product. It is well-
known that L3(€2) is a Hilbert space with respect to this inner product (see [12, Lemma
IV.1.9]). Since B¢ is a subset of L3(Q2) closed under addition and scalar multiplication,
we only need to show that 3¢ is closed. For that, let B° > q,, — qo € L3(Q2), and we
will prove that gy € J3¢.

Since ¢, € B¢ = div (V¢), by Lemma 3.11, we have g,, = div v,, for some v,, € U¢
and

IVl s ety < I1Bogll lanlagcn -

Since g, converges to qo in LZ(Q), it is bounded in L2(£2), which implies that
v, is also bounded in H}(2,R?). On the one hand, since H}(2,R%) is reflexive,
the Eberlain-Smulian theorem states that, up to a subsequence, there exists a vo €
H}(Q,RY) such that v,, — vy weakly in H}(Q,R?). Testing this convergence with
Q € CX(Q,R¥*?) with suppQ C Qf, shows that vy € U°. On the other hand, by

CR

letting 1 € C2°(§2), we observe that

/ (go — div vo)vdz = / (g0 — gn)dx + / (div v,, — div vo)pdz =22 0.
Q Q Q

Therefore, gy = div vg, which means that gy € J3¢. O

LEMMA 3.13. The bilinear form B is continuous on X° X B¢ and satisfies the
inf-sup condition

Be C
(3.19) 38 >0 such that inf sup (v, C).9) > B.
g€P\{0} (v,c)ex=\{(0,0)} (Vs C)|lx- ||QHr,pe

Moreover, the constant [ is independent of . In particular, one can choose B =
|Bog|| =1, where Bog is the Bogovskii map defined in Theorem 3.10.

Proof. Recall that 3¢ inherits the L?2—norm from LZ(Q2). We have
1B (v, C), @)l < Cllgllz |div vz < Cllgllge (v, C)ll - »

so BF is continuous on X° x P°.

Since P3¢ is a Hilbert space by Lemma 3.12, there exists a Riesz isomorphism
1g: P — (P). Let B:=1xodiv and then B is a continuous surjective map from
0 to (P°)'. Moreover, for v € U and ¢ € =,

(820) gy (BY. P = (quoy(om (diV ¥) 0o = (div v.0) 2 = B (v, C). ).
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so B is the operator associated to B¢. Therefore, the inf-sup condition follows by
Proposition 2.4.

Fix a function ¢ € ‘B® and denote by v, the corresponding field obtained from
Lemma 3.11. We have

B ((v,C),q) B ((v,C),q)
sup = sup
v.0)ex\{(0,0)} [|(V: C)llx- lallp: — (v.oyex=\{0.003 (Vs C)ll %= llallgp-
(3.21) . . c=0
— sup fQ qdiv vdz S fQ qdiv vodz _ llgll 2 1
vewe [Vl lallze — [1vallgg lall2 Ivallyy — [Bogll
Therefore, we choose 3 = ||Bog||~!, which is independent of e. d

Proposition 3.9 and Lemma 3.13 imply the existence and uniqueness of the fine-
scale pressure p°. Moreover, from (3.19) (with 8 = ||Bog||~!), (3.4), and (3.17), we
have

B° ((v,C).p%)
1p°[I 2 < [|Bog]| sup oA
L (v,C)ex=\{(0,0)} ||(V7C)||3es
1
< [|Bog| sup T UAT (U, B%), (v, ©))|
v.C)ex=\{(0,0)} (v, C)llx-
+ 1€ ((u, B%), (0", B), (v, C))| + [£5(v, C)[}

< 0 (100" B + (0", BY) 3. + Be gl s + Ar ] )
In particular, by (3.17), we obtain
(3.22) Ip°lx < C (R lgll e + Al 2 + D2,
where C' is independent of €.

3.4. The two-scale homogenized problem. By (3.17) and (3.22), there exist
u’ € Hy(Q,RY), B® € H,, (2, RY), u' € L*(Q,H,..(Y,RY)/R), B! € L*(Q,H}.(Y,R?) /R),
and p® € L3(2 x Y) such that, up to a subsequence,

u® — u’, B® — B? weakly in H'(Q,R?),
2 2
u® — u’, BE — BY two-scale,
(3.23) ) )
vu© — vu'(z) + V,u'(z,y), VB* — VB’(z) + V,B'(z,y) two-scale,
p° — [2]p° two-scale.

Let v = v(-) +ev! (-, £) and C = C(:) + C* (-, 2) with v?,C° € D(Q,R?)
a?d vl,C!' € D(Q,Cx(Y,RY). Let ¢ = ¢°() + e¢* (,g) with ¢ € D(Q) and
¢ € D(Q, CF. (V).

The effective form corresponding to A°.

By definition and (2.7c),
A ((u, B%), (v, C))

A
= 2/ D(u®) : D(v)dx + Zt / div B® - div Cdz —|—/ curl B® - curl Cdz
Q R Q Qs

? m

A
= 2/ D(u®) : D(v)dx + =t / div B¢ - div Cdz + / curl B® - curl Cdz
Q Ry \ Jo Qs

- 2Q1+%(Q2+Q3).
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Then (3.23) implies

811_1}(1) Q= 811_1}(1) Q]D)(u ) : D(v)dz

(3.24) = lim [ D(u®): [ID)(VO)(x) +eD (v') (x, g) + D, (vh) (x, g)} dx

e—=0 Jq

= i/ / [D(u’) + Dy (u")] : [D(v?) + Dy (v')] dydz.
Yl JaJy

Similarly, we have

lim Q2 = lim [ div B® - div Cdz

e—0 e—0 Q

(3.25) )
= —/ / (div B? + div ,B") - (div C° 4 div ,C") dyda.
Yl JaJy

To compute the limit of the integral (J3, we make use of the following limiting

behaviors of the domain Qf, which varies as € goes to 0. Clearly,

2 .
(3.26) Lo: — loxy, and iﬂ%“ﬂﬂ? L@y = I Laxy, |l L2 xy) -
Since loxy, € L2, (Y, C(Q)), we obtain from Theorem 2.7 that
x
3.97 li Hn S(z)—1 ( 7)) —0.
(3.27) limy [Tz (z) = Taxve (= 2 )|, o)

Now we write

Qs = / curl Bé(z) - curl C%(z)dx + 5/
Q5

€ . 1 f
o curl B*(x) - curl C (Jc, 5) dz

+/ curl B® -CulrlyC1 (m, f) dx
Qs €
= L1 + L2 + L3.

Clearly, lim._,g L2 = 0. By (3.26), (3.23), and (2.24) of Theorem 2.7 we have

lim L; = lim [ g (z)curl B(z) - curl C%(z)dx
e—0 e—=0 o s

1
= 1] /Q~/Y (curl B®(z) + curl,B'(z,y)) - curl C°(z)dyda.
And finally, for L3, we have
Ls = / curl B¥(x) - (]193 (x) — Laxy. (x, g)) curl, C! (a:, g) dx
Q
€ T 1 Z
+ | curl B(x) - 1axy, (x, 7> curl, C (m, f) dz.
Q g S
For the first integral above, we obtain
/ curl B*(z) - (]IQ; () — Loxy (:1:, E)) curl, C! (x, f) dx
Q ° 5 £

< OV, 0 VB2 2 | s () — Ly, (2|

—0
L2
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as € — 0 due to (3.27) and Holder’s inequality. By the latter and (3.23), we have

lim Ly = lim [ curl B*(2) - 1oxy,curl,C" (m, f) dx
5

e—0 e—=0 Jo
_ 1 0 1 1
= —/ / (curl B(z) + curl,B'(z,y)) - curl, C'(z,y)dydz.
Yl Ja v,
In conclusion, we have
1
(3.28) lim Q3 = —/ / (curl B® + curl,B') - (curl C° + curl,C") dyda.
e—0 |Y| QJy,

From (3.24), (3.25), and (3.28), the effective form A", corresponding to the limit
as € — 0 of A®, is given by

2
AY = m// (D() + Dy(u)) : [D®) + Dy (v})] dyda
QJY
(3.29) Nl i/ / (div B® + div ,B') - (div C° + div ,C") dyda
Rm |Y| QJY
+ |11/|/ / (curl BY + curl,B') - (curl C° + curl,C") dydx} .
QJYs

The effective forms corresponding to B and L. From the last limit of (3.23), we
have

(3.30)
e o 1 1
E11_%25 ((v,C),p°) = gl_r% Qp div vdz
T £ : 0 : 1 g i 1 E
= 21_1)% Qp (x) (le v (z) +edivv (33, €> +div ,v <ac, 6)) dz
1
= —/ / p° (div v0 + div yvl) dydz.
Yl JaJy
Moreover,
liné B ((u®,B%),q) = lim | ¢div u®dx
—
(331) °©

e=0 Jo
1

From (3.26), we have

lim £¢(v,C) = lim (Re/ g-vdzr + Al/ h- Cdx)
e—0 e—0 Q Qs

Y|
:Re/g~v0dx+Al
0 Y] Ja

The effective form corresponding to C°. Recall that
C* ((u®, B%), (u*,B), (v,C))

:Re/ (u®-V)u® - vdz
Q

(3.32)

h-C%z.

- Al/ (curl B x Bf) - vdx — Al/ (u® x Bf) - curl Cdz
Qs Qs

= Refl - AZIQ - Al.[3
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e To obtain lim._,q I7, we split
I :/ (u®-V)u® - vde
Q
(3.33) = / (u® =) -V)u® - vdz + / (u’ - V)u® - vdz
Q

Q
:J1+J2.

From (3.17) and (3.23), we have

. . € _ 0 £
lim [ 73] < Tim [lu® —u®|[ ;|| Vo&]| s V]~
_ 1
< lim [u = . = (Re [l 2 + Au [[bl]2) 1] o = 0.

e—0

From the above and (3.23), and since (u - V) u® = uf 52-u®, we obtain

(3.34)

lim I; = lim Jp = lim [ u$() 0 u®(z) - (vo(x) +ev! (x, g)) dx

e—0 e—0 e—=0 Jo 8%
1 0 ( a d 4 > 0
= — u; (x u(x)+ —u(z, v (z)dydzx.

e Similarly, to obtain lim._,q I5, we split

Iy = / (curl B x Bf) - vdz
Qg

= / [curlB‘S X (BE — BO)] -vdx +/ (curlBE X BO) -vdx
Qe Q5

: Kl + Kg.
From (3.17) and (3.23), we have
: o 0
tim K| = lim [lcurl B2 [ B° — BY|, [V
< lim 2 [VBF| . [ B~ B, ]
o1 c
< lim 2 (Re gl + Al 2) 1B~ B . V] = 0.
From the above, (3.23), (3.26), and (2.24) of Theorem 2.7, we obtain
g 1 = i
BT 5 0 . 0 1 E
= ;I—I}(l)/ﬂ]lﬂi (z) (curl B*(z) x B(x)) (v (x) +ev (x, 5)> dz

= % /Q/Y (curl BO(;[;) + CurlyBl(:zc7y)) ~ Bo(x) -Vo(x)dydx.
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e Finally, to obtain lim._,q I3,
I3 = / (uf(x) x B%(z)) - (curl C°(z) + & curl C* (x, E)
Qs €

+ curl,C! (az, g)) dz

/Q]lgi (uf(x) x B%(z)) - curl C°(x)dz
+ /Q]lgi (u®(z) x B¢(z)) - curl, C* (:Jc7 g) dz

+ 6/9]193 (uf(x) x B%(z)) - curl C! (x, g) dz

M40+ [ T (06 < BE@) - eunl © (1,2
Q

The last term converges to zero as ¢ — 0 since u® and Bf are bounded in the
H'—norm, and C! is continuous and compactly supported in Q x Y. By the Rellich—
Kondrachov theorem, we have that u® and B¢ strongly converge to u’ and B in
L*(Q,R?), respectively. Moreover, since C? is smooth, we have that (u® x B¢)-curl C°
strongly converges to (u® x B?) - curl C% in L2, Also 1ge — ﬁ [y Laxy,dy in L2,
SO

e—0

1
lim M; = —/ / (u’(z) x B%(2)) - curl C°(z)dydz.
Y1 Ja vy,
Next, rewrite M as
€ € 0 0 1 €
M,y = / Lo: (u®(z) x B¥(z) — u’(z) x B(z)) - curl,C (x, g) dz
Q

+ / Lge (u’(z) x B(2)) - curl,C" (x, f) dx,
0 €

Since u® x B strongly converges to u® x B? in L2, we have

‘/Q Lo: (u®(z) x BS(z) — u’(z) x B°(2)) - curl, C! (x, g) dx

< |lu® xB® —u’ x B

I [leurly G| o —0 a5 e 0.

2
Thus, using lo: — Taxy,, we obtain

lim My = Dl// / (u’(z) x B(2)) - curl,C'(z, y)dyda.
oy,

e—0

Therefore,

e—0

. 1 1
(3.35)  lim I3 = iG] /Q /Y (u’(z) x B°(2)) - (curl C°(2) + curl,C*(z,y)) dydz.

Summary. We now collect all relevant results obtained above in order to derive the
two-scale homogenized system. In the weak formulation (3.4), we choose v = v%(-) +
evl (12),C=C%)+eC'(-,2),and ¢ = ¢° () + ¢* (-, £) with v0,C° € D(,R?),
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¢° € D(Q), and v, C! € D(Q, CL, (Y, RY)), ¢* € D(Q,CZ,.(Y)). Then, letting ¢ — 0,

per per
we obtain

336
¥ / [ (0@ + Byl ) : (O (@) + By (v )y

ﬂi iv B(x iv,B'(z - (div C%(z iv ,Cl(z x
+Rm{y|/ﬂfy(d BY(z) + div ,B'(z,y)) - (div C°(z) + div ,C'(z,y)) dyd
1 ) X
+ m /Q /Y (curl B’(z) + curl, B (x,y)) : (Curl C'x) + curl, C (z,y)) dydz}
1 . o
+|Y|/ [ Pl (@iv @) + div v o.9) dyda

+ R. |Y\ // (89:1 O(x) + aiul(x,y)> v (z)dydz
—Alm / / (curl BO(z) + curl, B! (2,y)) x B%(z) - v(z)dyda

—Aiss Y] / / ) x B(z)) - (curl C°(z) + curl,C'(z,y)) dydz
|
=R, / x)dz + Al (z)dz,
] @)
and
(3.37) |Y| / / d1v u’(z) + div yu Y, y)) dydz = 0.

Finally, testing (2.10b), (2.10c), (2.10d), and (2.10f) with suitable test functions
and applying (3.23), we obtain

divu’ =0in Q, div ,ut =0in Q x Y,
(3.38) D(u0)+Dy (ul) =0in Q x Y,
' div B =0in Q, div,B'=0in Q x Y,

curl B® + curl,B' = 01in Q x Y;.
These identities allow us to simplify (3.36)—(3.37) in later calculations.

3.5. The local problem. The local problem is derived from (3.36)—(3.37) by
letting v0 = C° = 0 and ¢° = 0,

1 | | (0@ + B @) : D, (v (@) duda
+{|y|/ﬂ/ (div B(2) + div ,B(z,y)) - div ,C (=, y)dydz
+ m / / (curl B(z) + curl, B (z, ) - curl, C (x,y)dydx}

|Y| /Q/ (z,y)div ,v' (2, y)dydz
—A— |Y\ / / ) x B(z)) - curl,C' (2, y)dydz

(3.39)
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Letting v} (z,) = w(y)o(z) and C'(z,y) = G(y)p(x) for w, G € Hlyy(¥,R)
and ¢ € D(Q), we deduce from (3.39) that, for a.e. x € Q,

2 /Y (D)) + Dy (u'(z,)) : Dy(w(y))dy

+ % {/Y (div B(z) + div ,B'(z,y)) - div ,G(y)dy
(3.40) + / (curl B(z) + curl, B'(z,v)) ocurlyG(y)dy}
/ (x,y)div yw(y)dy — Al/ (u’(z) x B°(2)) - curl, G(y)dy
Y
=0.
Define

div jw=0inY
(w,0) € H (Y,RY) x HL (VR | Dy(w)=0inY,
curl,® =0 in Y}

So for (w, G) € Xy, from (3.40) the following holds a.e. = € Q,:
2 [ (B(@) + D, (0! (@) : Dy (w(y)dy

A
+ R—l {/Y (div B(z) + div ,B'(z,y)) - div ,G(y)dy

(3.41) + / (curl BY(x) + curlyBl(l"a y)) : curlyG(y)dy}

s

- Al/y (u’(z) x B(2)) - curl,G(y)dy

s

=0,
or equivalently,
(3.42)
2/YJD)y(u1) : Dy (w)dy + }?—l {/Y div ,B* - div ,Gdy + /Y curl, B ~curldey}

= 7/ D(u’) : D, (w)dy
Y

A
- L {/ div BY - div ,Gdy —|—/ curl B -curldey}
Rm Y Ys

+ Al/ (u’(z) x B%(2)) - curl, G(y)dy.

Clearly, for fixed 2 € Q, problem (3.42) has a unique solution (u'(z, ), B(z,-)) €
Xy, because the left hand side of (3.42) is coercive, which in turn comes from the
inequality (3.8) (note that this estimate also holds for a convex polyhedron, which is
why we can replace 2 by Y). Therefore, as long as u’ and B? are well-defined, u'
and B! are independent of the choice of subsequences u® and B¢ in (3.23). Finally,
p°(x,-) € L(Y) is also unique due to the inf-sup condition (repeating the first part
of the proof of Lemma 3.13).
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First, we calculate u! in terms of u®. In (3.41), let G = 0, and then
(3.43) /Y (D (0°(2)) + Dy (u'(z,y))) : Dy (w(y))dy =0

with w € H} (Y, RY) satisfying div ,w = 0 in Y and Dy(w) = 0 in Y. For 1 <
i,j < d, define the function UY := y;d;,e"; then, by direct calculation, D, (U%) =

2 (8jmOin + 0jnbim) €™ @e™. Let w € Hl (Y,R?) and 7/ € L(Y) be the solutions

Of per
div , (D, (UY —&7) —7%) =0 in Y,
div & =0 in Yy,
D, (U7 — &) =0 in Y,
(3.44)

/ (D, (U — &) — i9T) npd}i=! =0,

r

/ (D, (UY — &%) — 7¥T) nr x npdH*! = 0.
r

Then, integrating by parts (3.43) and using (3.38) and (3.44), we see that u! is
given by

(3.45) u'(z,y) =—[D (uo(x))]ij G (y).

We now calculate B! in terms of BY. In (3.41), let w = 0 and use (3.38) to obtain
(3.46) / (curl B®(z) — R,u’(z) x B(2) + curl,B'(z,y)) - curl,G(y)dy = 0
Y

with G € H}, (Y,R?) satisfying curl,G = 0 in Y;. For 1 < j < d, let 67 ¢

per

H! (Y,R%) and W7 € H! (Y,R%) be the solutions of

per per

curlycurly, (éj + ej) = 0in Yj, - A i
curl, (@7 + eJ) =0in Yy,
(3.47) (@j + ej) -npr =0on T, - .
N curly, <®J+e]> xnr=0onT,

div ,©’ =0inY,

and

curlycurly, <\I_)J + Rmej) =01in Y5, o
curl, W7 =0 in Yy,

348 _»j ] . = . i
( ) (\I/ + R,,e ) nr=0on T, Curly (q,g + Rmej) xnr=0onT,

div , 97 =0 in Y,
respectively. Then, integrating by parts (3.46), we see that B! is given by

0 o -
(3.49) B (2,9) = ei gt (0)6 () — e B B 1),

and here €1 is the (Levi-Civita) permutation symbol.
Now, we find a formula for p® € L3(2 x Y). Suppose

(3.50) P(z,y) =2 [D (u’(2))],, 7 (y) + (z,y)
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for some I € L2(Q x V). We claim II is independent of y. To see this, substitute
(3.45) and (3.49) and use the local problems (3.44), (3.47), and (3.48) in (3.40) to
obtain

/ p°(z,y)div yw(y)dy = 0 for any w € H. (V).
%

Substituting (3.50) into the above equation and integrating by parts, all terms cancel
by periodicity, except
per

/ V, 1% (z,y) - w(y)dy = 0 for any w € H_ (Y).
Y

Therefore, V,II(z,y) = 0, i.e., II is independent of y, and we write II(z, y) = II(z).
Clearly, p° — II in L?(Q).

3.6. The homogenized problem. The variational form of the homogenized
equation is derived by letting v! = C! = 0 and ¢! = 0 in (3.36)—(3.37), and then
simplifying it by using (3.38):

IYI// ) + Dy (u'(z,y))) : D(v(z))dyde

|Y\ // (curl B(z) + curl,B' (2, y)) - curl C°(z)dydz

+ Dl,/ / PP (x, y)div vO(z)dyda

(3.51) + R, ¥ // ( u’(z) 3?/ (a:,y)) v (x)dydz
Aly// curl BY(z) x B%(z) - v0(x)dydz

— X 0 - cur O:v X
Alyf/ BY(x)) - curl C°(x)dyd

Yyl
=R, / x)dx + Al C%(z)dx.
Y]

In (3.51), letting C° = 0 and v € H&(Q,Rd), we obtain

IYI// ) + Dy (u'(2,9))) : D(v°(x))dydz

+ Y/ / p°(z,y)div v° (z)dydz
(3.52) + R, ¥ // <8x1 u’(z) + a?ﬁu%x,y)) v (z)dydz

Y| 0 0(2) - vO(x)da
V] /chrlB (z) x B (z) (x)d

= X VOJ) X
_m4a> (2)d

Define the effective viscosity N, which is a fourth-rank tensor, by

1 ij _ —ij
(353) Nijmn = M/Y [Dy (UU —w J)]mn dy

— A
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Substituting (3.45) and (3.50) into (3.52), we obtain

(3.54) /QNW" u’)],; ()], do+ /

(uO . V) u’ - vOdz + / IIdiv vdz

Q Q

—Al| Y| curl B’ x B’ .v'dz =R, [ g-v'da.
1Y Q

Here, we use the fact that fya%fijdy = 0 due to periodicity and that
[y @dy = 0 because 7/ € L§(Y). Integrating by parts (3.54), we have, on Q,
that

(3.55)
(uo . V) u’ — div <2Nijmn []D)(uo)]ij e e — HI) = R.g+ Al||Y||cur1 B? x B,
In (3.51), letting v = 0 and C° € H}(Q,R?), we obtain
A1 0 1 0
— (curl B%(z) + curlyB'(z,y)) - curl C°(z)dydx
RTYL |Y|

(3.56) — A V] / / ) x B(z)) - curl C°(z)dydz

| | 0
l|}| Q () ()

Define the matrices M and &, which represent the effective magnetic reluctivity and
the effective electric conductivity, respectively, by

(3.57)
M, = i/ [(curl (=Y, —l—ej)} d &, = L/ [(curl gk —I—ek)} d
Ty v, y . Y, kq YT Jy. Y . Y.

Then, by substituting (3.49) into (3.56), and using (3.57), we obtain

(3.58)

1 0B 9CY | ocy [y
-_— M; 17 T L & 7 T OBO 2 h- Cod .
RnL A jaciik€ra 83:16 8377 / kq€ijkCpart a |Y| Q !

Using integration by parts, with C° € H!(Q,R9), we conclude that, on (2,

Y|

h.
Y

1 aB? n 0 R0 n
(359) Fcurl Mjneijk’Tka — curl (Ekneijkui Bje ) =

m

In summary, from (3.38), (3.55), and (3.59), we obtain the macroscopic system
that is about finding u® € H}(Q,RY), I € L3(), and BY € H!(Q,R?) satisfying
on {2,

(3.60)
div u’ = div B =0,
(- V) u® = div (2Nijmn [D(0)] €™ @ " ~TIT) = Reg + Al||Y||cur1 B° x B,
Y5 |

h.
Y

1 oBY
mcurl <Mjn€ijkaq;]:en> — curl (EknGiij?B?en) =
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Here N and M, & are defined in (3.53), and (3.57), respectively. It is worth
mentioning that by using the variational formulation of the local problem (3.44) and
(3.47)—(3.48), we have

1 ij —ij mn —mn
Nijmn:7/Dy(Uj*WJ):Dy(U — &™) dy,
Yl Jy
1 . o
(3.61) M;; = m/y curl, (@l + e’) - curly, (93 + eJ) dy,

1 o . o ,
m/ curl, <\Iﬂ + e’) - curl, (\Iﬂ + eJ) dy.
Ys

Thus, the tensors are symmetric and elliptic. The well-posedness of system (3.60)
now follows from the classical theory of one-fluid magnetohydrodynamics (cf. [30, 31,
36, 37, 55]). By the uniqueness of u, B®, u!, B!, and p°, we conclude that the limits
in (3.23) hold for the full sequence. Theorem 3.1 is proved.

Eij =

4. Conclusions. The results obtained in subsection 3.1 demonstrate the ef-
fective response of a viscous fluid with a locally periodic array of magnetic parti-
cles suspended in it. The original fine-scale problem is described by the system of
equations (2.10)—(2.13), and the effective equations are given by (3.60), in subsec-
tion 3.6, with the effective coefficients defined by (3.61). As evident from the effec-
tive system obtained, these effective quantities depend on the instantaneous position
of the particles, their geometry, and the magnetic and flow properties of the origi-
nal suspension decoded in the cell problems (3.44) and (3.47)—(3.48). The effective
medium is an incompressible electromagnetic fluid described by the coupled set of
Navier—Stokes and Maxwell’s equations. The effective Cauchy stress of the fluid is
2N, jmn[D(u?)];;™ @ e" — M1, where N is the effective viscosity, and the coupling
between the homogenized fluid velocity u and the homogenized magnetic field B is
given through the Lorentz force. The Maxwell’s equations are represented by the
combination of Ampere’s law, Ohm’s law, and Faraday’s law, where the first two laws
eliminate the electric field from the equation.

It is worth mentioning that this paper is not concerned with modeling issues for
colloids with magnetizable particles, but rather focuses on the homogenization results.
This study is the promised follow-up of the work in [16] by the authors, where they
considered a one-way coupling mechanism between the viscous fluid and the magnetic
particles that are suspended in a viscous fluid and described by the linear relation
between the magnetic flux density B and the magnetic field strength H. In contrast
to [16], this paper focuses on a nonlinear model of the given magnetorheological fluid,
where the two phases are interacting via the full (two-way) coupling mechanism. And,
as in [16], the rigorous justification of the obtained effective system is derived. This is
also differing from previous contributions on the topic [44, 50], which dealt only with
formal asymptotics and did not consider the complicated nonlinear model discussed
in this paper.
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