WEIGHTED UNIFORM DIOPHANTINE APPROXIMATION
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ABSTRACT. Following the development of weighted asymptotic approximation proper-
ties of matrices, we introduce the analogous uniform approximation properties (that is,
study the improvability of Dirichlet’s Theorem). An added feature is the use of general
norms, rather than the supremum norm, to quantify the approximation. In terms of ho-
mogeneous dynamics, the approximation properties of an m X n matrix are governed by
a trajectory in SLy,4n(R)/ SLm+n(Z) avoiding a compact subset of the space of lattices
called the critical locus defined with respect to the corresponding norm. The trajectory is
formed by the action of a one-parameter diagonal subgroup corresponding to the weights.
We first state a very precise form of Dirichlet’s theorem and prove it for some norms.
Secondly we show, for these same norms, that the set of Dirichlet-improvable matrices
has full Hausdorff dimension. Though the techniques used vary greatly depending on
the chosen norm, we expect these results to hold in general.

1. INTRODUCTION

Let m and n be positive integers and let d = m + n. We will denote by M, , the space
of m x n real matrices, and by || - ||oo the supremum norm on R™, R” and R?. The classical
theorem of Dirichlet, see e.g. [C1, §1.1.5], asserts that for any A € M,, , and ¢t > 1 there
exists (p,q) € Z™ x (Z™ \ {0}) satisfying

lAq —pllze <1/t and lqfl5, <t. (1.1)

Here A is viewed as a system of m linear forms Aj,..., A, (rows of A) in n variables,
and the goal is to approximate the values of these forms at integer points by integers. A
natural question to ask is whether one can improve (1.1) by replacing 1/t with a smaller
function, that is, consider the following system of inequalities:

[Aq —pllsc < () and qf% <t (1.2)

where 9 is a positive function such that ¢ (t) is strictly less than v (t) := 1/t for all large
enough t. One says that A is ¢-Dirichlet (see [KWal, KWa2, KSY]) if the system (1.2)
has solutions in (p,q) € Z™ x (Z™ ~. {0}) for all sufficiently large t. We will denote the
set of ¢-Dirichlet matrices by Do (). (The use of the subscript co in (1.3) and in other
occurrences below refers to the use of the supremum norm in (1.2).)

The above set-up is usually referred to as uniform approximation, as opposed to asymp-
totic approzimation dealing with the system (1.2) being solvable for an unbounded set of
t. Note that from Dirichlet’s Theorem it trivially follows that D (ct1) = My p if ¢ > 1,
and with a little more work, caused by the difference between ‘<’ in (1.1) and ‘<’ in (1.2),
one can show that Dy (1)1) = M, as well, see Theorem 1.1 below for a more general
statement.
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The problem of improving Dirichlet’s theorem was initiated by Davenport and Schmidt
[DS| who showed that the set

DI := |J Doo(cin) (1.3)

0<c<1

of Dirichlet improvable matrices is of Lebesgue measure zero, while having full Hausdorff
dimension mn. Furthermore, Davenport and Schmidt showed that DI contains the set
BA of badly approzrimable matrices

BA:=<AcM,,: inf Aq—plZllqll% > 03,
{aen,: e laa-plzlalz > o)

which was known to be thick, that is, have full Hausdorff dimension at any point of M, ,
[Sc2].

In this paper we will generalize the above set-up in several different ways. It is known
that many results in Diophantine approximation extend to approzimation with weights,
an approach allowing to treat forms A; and components of q differently. Namely, given a
tuple of positive weights

w= (o, ) €RY xR} with Y ;=Y Bi=1, (1.4)
=1 =1

one introduces quasi-norms associated with « and 3 respectively:

HXHa = InzaX|xi|1/ai and HyHﬁ = m?X\yjll/B"-

Then, for ¢ as above, one says that A € My, ,, is (¢, w)-Dirichlet, denoted by A € Do (1),
if the system of inequalities

[Aq = plla <¥(t) and [qfg <t

in (p,q) € Z™ x (Z™ ~ {0}) for all sufficiently large ¢t. In other words, we are considering
the solvability of the system

1.5
lgj|l <tfi, j=1,...,n. (1.5)

Clearly the unweighted case corresponds to the choice
a=(1/m,...,1/m)and B8 = (1/n,...,1/n).

A lot of what can be proved for unweighted approximation easily extends to the weighted
case. A weighted analogue of Dirichlet’s theorem, which is a straightforward consequence
of Minkowski’s Convex Body Theorem [C1, §III.2.2|, implies that D (ci)1) = My, if
¢ > 1. And with a little more work one can prove a stronger result:

Theorem 1.1. For any choice of weights w, we have Doo (1) = My, p.

As for the set
DIoo,w = U Doo,w(cwl)a
0<ce<1

the fact that it has Lebesgue measure zero was established by the first named author and
Weiss using the correspondence between Diophantine approximation and dynamics, see
[KWel, Theorem 1.4]. In this paper we prove
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Theorem 1.2. For any choice of weights w, the set Dl ., contains the set BA,, of
w-badly approximable matrices, defined by

BA, : {A € My, : pezm,ggzn\{o} lAq — pllallallg > 0} : (1.6)

Note that the latter set is thick, as shown in [KWel, §4.5], see also [PV] and [KWe2|. It
should also be noted that in [Su, Theorem 4.6], Suéss proved the above result in the case
when m = 1. Our proof here is different and is written in the language of dynamics on the
space of lattices.

We remark that the problem of determining conditions on  under which the set
D, (1) has zero/full measure is rather tricky. A complete solution for the case m =n =1
is given in [KWal|, and a recent paper [KSY] by the first named author, Strombergsson
and Yu deals with the general case, including arbitrary weights, and provides a partial
result.

In order to generalize the set-up further, let us restate the definition of (1, w)-Dirichlet
matrices in a geometric language. Let Xy denote the space of unimodular lattices in R,
identified with SL4(R)/SLy4(Z) via g — gZ%. Given A € My, ,,, we define

0 I,
Then it is easy to see that A € Do (%)) if and only if

/m
aan| YO0 ] B 2 ) (17)

up = [ Im A ], AA ::uAZd.

for all sufficiently large ¢t (here Boo(1) is the unit open ball centered at zero with respect
to the norm || - ||oo) And for a weighted version it will be convenient to use the following
notation for a number raised to a vector power: if ¢ > 0 and x € R* define

= diag(c™, ..., c").

Then, similarly to (1.7), one can state that A € Dy o, (?) if and only if

aan| Y0 5 | e 2 10 (18)

for all sufficiently large t.

At this point one might wonder: what will change if in the above definition the supremum
norm || - ||« is replaced by some other norm v? and indeed this type of questions have
appeared in the literature, first for the case m = n =1 [AD], and then for arbitrary m,n
in the unweighted case [KR1|. We will now use (1.8) to state a general weighted definition.
In order to do that, for an arbitrary norm v on R¢ let us define the critical radius of v as
follows:

ry :=sup {r : AN B,(r) = {0} for some A € X,}.

Here B,(r) := {x € R? : v(x) < r}; clearly ro = 1. (Throughout the paper we will use
the notation p when v is the /P norm, in particular when p = c0.)
Now let us define the most general sets of 1-Dirichlet matrices.

Definition 1.3. Given a function ¢ : Rsg — Rs¢ and a tuple of weights w = (a, B) as in
(1.4), we say that A € My, p, is (¢, v, w)-Dirichlet if

A [ Vo o ] By(r,) # {0}

for all sufficiently large t.
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For brevity, we write the set of (¢, v,w)-Dirichlet matrices as D, ,,(¢). Note that the
above property in general cannot be written in a way similar to (1.5), with separate con-
ditions involving the linear forms A; and the variables ¢;. For example, in the case where
m = n = 1, v is the Euclidean norm on R? and w = (1,1) is the only possible choice
for the weights, it is easy to see that ro = (%)1/ . The corresponding condition for a real
number « to be (¢, v, w)-Dirichlet is that the inequality

<aq - p>2 q\2 _ 2

el
¥(t) t V3
has a solution in (p,q) € Z x N for all sufficiently large ¢.

It immediately follows from the definition of r, that D, . (ci)1) = My, for any ¢ > 1.
Also one can define

DIy,w = U Dy,w(cwl)7
0<ce<1
the set of weighted Dirichlet-improvable matrices with respect to v, and use the same dy-
namical argument as in [KWel, Theorem 1.4| to prove

Theorem 1.4. For any choice of a norm v on R% and a weight vector w, the set DI, .,
has Lebesque measure zero.

We are thus left with the following two problems:

1. Find norms v and weight vectors w such that

Dy, ()" =@. (1.9)
2. Find norms v and weight vectors w such that
DI, ., is thick. (1.10)

Both problems will be addressed in this paper for some specific choices of norms v, using
a dynamical restatement of the property of being (v, v, w)-Dirichlet. The choice of norms
in the theorems below arise from what is known or can be proved regarding the densest
lattice-packings of their unit balls. This will be made abundantly clear in the proofs.

With regards to problem 1 above, we have, like Theorem 1.1, a precise form of Dirichlet
theorem in the following additional cases.

Theorem 1.5. We have that D, (1) = My, p
(a) when m =n =1 and v is any £P norm on R?;
(b) when m =2, n =1, w is arbitrary, and v on R3 is of the form
(z,y,z) — max {n(x,y), ]z|} for some norm n on R2. (1.11)

For Problem 2, when m = n = 1 and with only one possible choice of weights, the
thickness result was established in [KR1, Theorem 1.3|. For the unweighted case of the
Euclidean norm in arbitrary dimensions it was established in [KR1, Theorem 3.7|. The
result for the weighted supremum norm in arbitrary dimension follows from Theorem 1.2.
Presently we prove

Theorem 1.6. The set DI, , is thick

(a) for any m,n,w, and when v is the Buclidean norm on RY;
(b) when m =2, n =1, w is arbitrary, and v on R? is of the form (1.11).

Theorems 1.5 and 1.6 can be proved for certain other norms as well. See Proposition
3.2 and Corollary 5.4 below for general results applicable to other norms.
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One might also ask whether or not the inclusion
BA, CcDIL . (1.12)

holds for some norms v other than || - [|s. In Proposition 4.1 we give a condition sufficient
for (1.12), which in particular is valid for norms of the form (1.11) as in Theorem 1.6(b).
However in general (1.12) is false: in fact for any A € BA,, one can find a norm v such
that A ¢ DI, ,,. Moreover, the same holds for any A € M,y, , except for the case when A
is w-singular, or A € Sing,,. The latter set is defined as

Sing,, := (]| Diwl(cih).
0<ce<1

(It is easy to see that the choice of the norm does not make a difference in this definition.)
We prove

Theorem 1.7. For any weight vector w,

Sing,, = (1l DL

v a norm on R4

In fact, for any fized norm v on R, we have

Sing , = ﬂ DI, ogw-
g€SLy(R)

This characterization of singular systems of linear forms is new even in the unweighted
case.

The structure of the paper is as follows; in the next section we give a dynamical inter-
pretation of Dirichlet-improvability. In particular, the relation to the critical locus of a
norm is clarified. An effective equidistribution result on the space of lattices then yields
the coarse form of Dirichlet’s theorem as in Theorem 1.4. Theorems 1.1, 1.2, 1.5, 1.6(b)
and 1.7 are proved in the next two sections by using the geometry of numbers to identify
certain divergent subsets in the space of lattices. Part (a) of Theorem 1.6 is proved in §5
using results of the first-named author along with An and Guan.

Acknowledgements. The authors are grateful to Nikolay Moshchevitin for helpful dis-
cussions, and to the anonymous referee for several useful comments.

2. DIRICHLET IMPROVABLE MATRICES FORM A NULL SET

As before, X, denotes the space of unimodular lattices in R?, and v stands for a norm
on R%. For any r > 0 define

Ku(r):={A e Xq: ANB,(r)={0}}.

These sets are compact in view of Mahler’'s Compactness Criterion, and empty for r > r,,
whereas for 0 < r < r,, these give a system of neighborhoods of the non-empty compact
critical locus L, = K,(r,). Up to scaling, £, gives the set of lattices witnessing the
densest lattice-packings of the unit ball of v. Further, given a weight vector as in (1.4), we
have the following one-parameter subgroup of SL4(R):

(%)™ 0
= . 2.1

=0 oy 2
Proposition 2.1. An m x n matrix A belongs to DI, ., if and only if there is some

0<r<ry, and sg > 0 such that
{asAa:s>s0} NK,(r) =2.
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Proof. Say A € DI,,,,, so that there is some 0 < ¢ < 1 with A € D, ,(ct1). The defining
intersection condition for D, ,(ct1) can be changed to

ashaNag [ (Cd)lét)) toﬁ :| By (r,) # {0}

for all sufficiently large ¢t. Putting

1.t
=—In— 2.2
s=ght, (22)
the condition becomes
aan| VO 0B ) £ 403
a r
Lo e
for all sufficiently large s. Let
r=r, -max{ca1/2,...,cam/2,051/2,...,cﬁn/2} .
Since ¢ < 1, r is less than r,. Thus, we have that
asAa ¢ ICV(T) (23)

for all sufficiently large s.
Conversely, say we have a matrix A for which there is an 0 < r < r, such that (2.3)
holds for all sufficiently large s. Thus

asAaN By, (r) # {0} (2.4)
for all sufficiently large s. Condition (2.4) can be rewritten as
(e7)® 0
AaN [ 0 (68)5 B, (r) # {0}. (2.5)

So, if we define

<T> with v := max{5;},

r
and define ¢ > 0 by the equation (2.2), we see that

_ 1 t .\ /7
e :——wl < ) ande:%:t(7) .

From this we see that

B.
1+ai/y -2
r T v
o (2) e ana Lo (1)
Ty Ty Ty Ty
_5i 141
a; Ly

By choice of v, we see that (%) 7 < 1. Defining ¢ := (%) :
condition (2.5) then implies
)
AA A (Clwn/m( )) 3 Bl/ (TZ/) 7& {0}
0 (t)
From this we can see that A € DI, ,. O

, which is less than 1,

Propositions of the above sort first appeared in [D] and now go by the name ‘Dani’s
correspondence’.

Corollary 2.2. We have the equivalence
A¢ D, () < asAa € L, for an unbounded set of positive times s.
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Proof. 1t suffices to go through the above proof putting ¢ = 1 and r = r, in the forward
and backward directions of the equivalence respectively. O

In order to prove Theorem 1.4 we need the following equidistribution theorem of Kleinbock—
Weiss [KWel, Theorem 2.2], see also [KM, Theorem 1.3| for an effective version. The
argument appears in [KSY] in case of v being the supremum norm and applies with little
changes to the general case.

Theorem 2.3. Let f € C.(Xq), B C My, be bounded with positive Lebesque measure,
and & > 0 be given. Then there exists an sg > 0 such that for all s > sg,

1
\w) [ 7t axa) - [ s

Here, the integrals are taken with respect to the Lebesque measure X on My, ,, and the Haar
probability measure p on Xg. O

< 0.

Proof of Theorem 1.4. We have ¢ < 1. Let r be associated to ¢ as in Proposition 2.1. We
aim to show that for almost every A € M,, ,, there is an unbounded positive sequence (s)
such that

ag, Ao € KC,(r). (2.6)
This and Proposition 2.1 then show that almost every A ¢ D, ,(ci1). For i € N, if the set

Bi:=(){A € Mypn:aha ¢ Ku(r)}
§>1
has positive Lebesgue measure, choose B C B; compact with positive measure as well.
Take a non-negative f € C.(Xy) which is supported on K, (r), and choose § = %fXd fdpu.
Applying Theorem 2.3 with s > i, we get a contradiction. Thus each B; has measure zero
and thus so does their union. Hence we have shown that Lebesgue almost every A € M, ,,
has an unbounded positive sequence (si) for which (2.6) holds. O

3. DIRICHLET’S THEOREM VIA DIVERGENCE

For the rest of the paper we fix a weight vector as in (1.4) and the one-parameter
subgroup {as} of SL4(R) as in (2.1). We now address Problem 1 regarding Dirichlet’s
theorem in the form (1.9). First, a general condition implying the result.

Proposition 3.1. Say v is a norm in R? with £, = J Z; a finite union of compact subsets
such that each Z; has either one of the following properties.
(i) For every A € Z; and compact K C Xy, there is a to such that for all s > to,
as\ ¢ K. That is, every A € Z; is forward divergent.
(ii) For every A € Z; and compact K C Xy, there is a ty such that for all s < to,
as\ ¢ K. That is, every A € Z; is backward divergent.

Then Dy (1) = My n.

Proof. For the sake of contradiction, say that A ¢ D, (¢1). By Corollary 2.2, there is
an unbounded positive sequence (si) such that for each k, a;, Ay € L£,. By the above
finiteness hypothesis we might as well assume £, itself has one of the properties (i) or (ii).

Observe that compactness implies that there is a uniform ¢y in the above conditions which
works for every A € £,. We now separate into two cases.

(i) We can find ¢y such that for all s > to,
as L, NL, =a. (3.1)
This contradicts the fact that for every k, as, Aa(= as,—s,as,Aa) belongs to L.
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(ii) Find to such that for all s < tg, (3.1) holds. This contradicts the fact that for every
k, as,Aa(= as,—s,as,Ma) € Ly.
Thus Dy, (1) = Mp - O

Proof of Theorem 1.1. Let B denote the set of upper triangular unipotent d x d matrices.
It is a well-known theorem of Hajés [H| that the set L is exactly the union

U {wBwSL4(Z) : w is a permutation matrix} . (3.2)

From this we get that for every permutation matrix w, there is some fixed standard basis
vector e; which belongs to every A € wBwSLg4(Z). From the description of as in (2.1),
we see that, according to whether m < i or i < m, e; is contracted by ag either for s > 0
or s < 0. Thus, for each permutation matrix w, we are in one of the two situations of
Proposition 3.1. 0

Proof of Theorem 1.5(b). [KR2, Proposition 5.1| asserts that whenever v is a cylindrical
norm on R3 as in (1.11), the critical locus in X3 is contained in the union of

* x 0 S
Z) = x x 0| 2% and 2 := % x| 233, (3.3)
* ok ok 0 *x =%
Moreover, since we have m = 2 and n = 1 by hypothesis,
e 0 0 ]
as = 0 €e* 0 . (3.4)
0 0 e |
Thus, if A € Z1, it contains a vector contracted by as for s > 0. And if A € Z5, it contains
a vector contracted by as for s < 0. Applying Proposition 3.1, we are done. O

We also have the following simple but useful result:

Proposition 3.2. Let v be a norm on R® such that the critical locus L, is finite. Then
Du,w(¢1) = Mm,n'

Proof. Again, by Proposition 2.1, any A ¢ D, ,, would give rise to a periodic orbit {asA}.
On the other hand, A4 is backward divergent under the flow as. O

Proof of Theorem 1.5(a). This has already been proved for p = 2 in [KR1, Theorem 1.4],
and for p = oo in Theorem 1.1. For the other cases, the work [GGM] shows that £, is
finite. Thus we are done by applying Proposition 3.2. U

Remark 3.3. Other examples of norms which are known to have finite critical locus are
norms in R? induced by hexagons, as well as the £* norm in R3. For the former fact see
[C2, §V.8.4, Lemma 13| and for the latter see [M] or the discussion in the pages prior to
|GL, Equation (4), page 346].

4. THICKNESS RESULTS VIA DIVERGENCE

Some similar observations about divergence in the space of lattices lead us to solutions
of Problem 2 as well. Recall the set BA,, of w-badly approximable matrices defined in
(1.6). It is well known (see [K, Theorem 2.5]) that

AeBA, < {asA:s> 0} is bounded in X,.

We now give a general proposition giving sufficient conditions (on the norm ) which ensure
that BA, is a subset of DI,,.
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Proposition 4.1. If v is a norm on R?® such that every A € L, has the property that
{asA : s € R} is unbounded in X,
then BA,, is contained in DI, .

Remark 4.2. To be precise, being unbounded means that for each compact IC C Xy, there
is some s € R such that asA ¢ K.

Proof. We again use the characterization in Proposition 2.1. Say v is a norm with the
property as above. Say A € BA,,. Say further, contrary to the theorem, that there is an
unbounded positive sequence (s;) and a lattice A € £, such that ag, Ay — A. Let £ C Xy
be a compact set such that

{asAa:s>0} C K.
We consider two cases.

(i) {asA : s> 0} is unbounded. This implies that there is a positive time ¢ for which
atA ¢ K. Let V be a neighborhood of A such that

aV C Xg~ K. (4.1)

Thus, for large enough k, we have a;y5, Aa ¢ K, a contradiction.

(ii) For the second case, we assume that {asA : s < 0} is unbounded. This means we
have a negative ¢ for which a;A ¢ K. Let V again be a neighborhood such that
(4.1) holds. We have that for large k, atys,Aa ¢ K. On observing that ¢ + s, is
positive for large k, we have a contradiction.

Thus, any A in BA,, must belong to DI, . O

Proof of Theorem 1.2. As was observed before, it follows from the expression (3.2) for the
critical locus L, that every A € L., contains one of the basis vectors e;. So, according to
whether m < ¢ or ¢ < m, e; is contracted by as either for s > 0 or s < 0. This, of course,
implies that {as;A} is unbounded and we can apply Proposition 4.1. d

Proof of Theorem 1.6(b). Again, from (3.3) and (3.4) describing the critical locus and the
flow respectively, we see that each A € L, is either forward or backward divergent (hence
also unbounded) with respect to as. Thus Proposition 4.1 applies. (|

Perhaps now is a good time to observe that the conclusion of Proposition 4.1 does not
always hold. More precisely, for any A ¢ Sing,, there exists a norm v on R such that A
does not belong to DI,,.

Proof of Theorem 1.7. 1t is well known (see |K, Theorem 7.4], or |D, Proposition 2.12| for
a version with equal weights) that A € Sing,, if and only if A4 is forward divergent under
as. And by divergence, any such element must avoid any given critical locus after a certain
time. Thus Sing,, is contained in each of the intersections in the theorem.

To complete the proof, it now suffices to show that, for a fixed norm v,

m DI, .4 C Sing,,.
g€SL4(R)

Take A € M,,, that is Dirichlet-improvable for all norms of the form v o g. In order to
show that A is singular, it suffices to show that for every A € Xy, there is a neighborhood
V of A and some time sy such that the orbit {asA4 : s > so} avoids V.

Fix A € X, and pick some g € SL4(R) such that gA € £,,. Since gL, = L,04, We see
that A € £,.4. By Dirichlet-improvability of A with respect to v o g, we see that there is
an r < 7,04 and some sg such that

asAa ¢ Koog(r) for all s > sq.
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As observed before, KCpoq (r) for r < Twog is an open neighborhood of £,.4, and so we are
done. O

5. THICKNESS RESULTS VIA TRANSVERSALITY

In order to prove the thickness result for the Euclidean norm, we use a result of the
first-named author with An and Guan [AGK]|. They give a very general condition on
the critical locus £, which guarantees that the set of A € M,,,, such that the trajectory
{ashz : s > 0} eventually stays away from £, is winning in the sense of Schmidt. More
precisely, the results in [AGK]| deal with a modified version of Schmidt’s winning property
called hyperplane absolute winning (HAW). For the definition of the HAW property, see
[BFKRW, §2] or [AGK, §2.1]. HAW implies winning in the sense of Schmidt [Scl|, and
this in turn implies thickness. Furthermore, the class of HAW sets, like those which are
winning, is closed under countable intersections.

To state the aforementioned condition we need some notation. Let G denote SL4(R),
and let g denote its Lie algebra sl3(R). Let H C G denote the subgroup

H = {uA A€ ]Wm,n}7
and let h denote its Lie algebra. Fixing weights w = («, 3), let F' C G denote the subgroup
F={as:seR}
where a, is as in (2.1). Let D € g denote the the diagonal element

D= |: (13 _((:)I_)ﬁ :| :djag(al,...,ama_ﬁla"w—ﬁn)

so that
as = exp(sD).

The adjoint action ad(D) : g — g is diagonable: If we let E%/ denote the d x d matrix

with 1 in the (7, j)-entry and 0 everywhere else we see that, when i # j,
ad(D)E" = (D;; — Dy;) E™,
and that B N
ad(D) (E"" — E?7) = 0.
Here D;; denotes the (i, j)-entry of D. Thus, if we let A run over the eigenvalues of ad(D),
we have an eigenspace decomposition
s=Pan.

Let p denote the largest eigenvalue, and let ¢ : g — g be the projection with image and

kernel
P o and P
A=p

A<p
respectively. Let h* denote the image ¢(h), and let H™** denote the connected subgroup
of G generated by h"%*.

Remark 5.1. Note that, from the definition of D, the eigenvectors with mazimal eigen-
values must occur as matrices E with i < m and j > n. Thus §™** (which is a subset of
b) is never the zero subspace.

We also use the notation T, (M) to denote the tangent space of a submanifold M of X,
at a point x € Xg.

Definition 5.2. A compact submanifold Z C X4 is said to be (F, H™%)-transversal if for
all z € Z,
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(i) T.(F2) ¢ T.(Z);
(i) T.(H™z2) ¢ T.(Z) ® To(F2).

We can finally state the relevant result from [AGK, Theorem 2.8|.

Theorem 5.3. Keeping with the notation above, if Z C X4 is an (F, H™*)-transversal
compact submanifold, then for any r € Xy,

{heH:{ashm:s>0}ﬁZ:®}
is HAW in H.

Clearly zero-dimensional submanifolds are (F, H™*")-transversal. And since countable
intersections of winning sets are winning, on applying the above theorem to the case where
x € X, is the standard lattice, we have

Corollary 5.4. If v is a norm on RY such that L, is finite, then DI, ,, is thick. O
We can also apply Theorem 5.3 to get

Proof of Theorem 1.6(a). Recall from Proposition 2.1 that A € DI, if and only if there
is some r < 7, such that
ashy & Ko(r)

for all sufficiently large s. Here we are considering a neighborhood of the compact set Lo C
X4 which is a finite union of SO(d)-orbits (see [KR1, Theorem 3.7]). The Lie algebra so(d)
consists of skew-symmetric matrices and it then becomes straightforward to check that
each SO(d)-orbit is an (F, H™%")-transversal submanifold. Indeed, after identifying with
g, we see that T,(Fz) = spang{D}, while T, (H™*2) includes nonzero upper triangular
matrices, so that it is not contained in so(d) @ spang{D}. Thus, Theorem 5.3 shows that

DI, ., contains a finite intersection of winning sets, and thus is itself thick. O
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