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Abstract. Following the development of weighted asymptotic approximation proper-
ties of matrices, we introduce the analogous uniform approximation properties (that is,
study the improvability of Dirichlet’s Theorem). An added feature is the use of general
norms, rather than the supremum norm, to quantify the approximation. In terms of ho-
mogeneous dynamics, the approximation properties of an m× n matrix are governed by
a trajectory in SLm+n(R)/ SLm+n(Z) avoiding a compact subset of the space of lattices
called the critical locus defined with respect to the corresponding norm. The trajectory is
formed by the action of a one-parameter diagonal subgroup corresponding to the weights.
We first state a very precise form of Dirichlet’s theorem and prove it for some norms.
Secondly we show, for these same norms, that the set of Dirichlet-improvable matrices
has full Hausdorff dimension. Though the techniques used vary greatly depending on
the chosen norm, we expect these results to hold in general.

1. Introduction

Let m and n be positive integers and let d = m+ n. We will denote by Mm,n the space

of m×n real matrices, and by ‖ ·‖∞ the supremum norm on R
m, Rn and R

d. The classical
theorem of Dirichlet, see e.g. [C1, §I.1.5], asserts that for any A ∈ Mm,n and t > 1 there
exists (p,q) ∈ Z

m × (Zn
r {0}) satisfying

‖Aq− p‖m∞ ≤ 1/t and ‖q‖n∞ < t. (1.1)

Here A is viewed as a system of m linear forms A1, . . . , Am (rows of A) in n variables,
and the goal is to approximate the values of these forms at integer points by integers. A
natural question to ask is whether one can improve (1.1) by replacing 1/t with a smaller
function, that is, consider the following system of inequalities:

‖Aq− p‖m∞ < ψ(t) and ‖q‖n∞ < t, (1.2)

where ψ is a positive function such that ψ(t) is strictly less than ψ1(t) := 1/t for all large
enough t. One says that A is ψ-Dirichlet (see [KWa1, KWa2, KSY]) if the system (1.2)
has solutions in (p,q) ∈ Z

m × (Zn
r {0}) for all sufficiently large t. We will denote the

set of ψ-Dirichlet matrices by D∞(ψ). (The use of the subscript ∞ in (1.3) and in other
occurrences below refers to the use of the supremum norm in (1.2).)

The above set-up is usually referred to as uniform approximation, as opposed to asymp-
totic approximation dealing with the system (1.2) being solvable for an unbounded set of
t. Note that from Dirichlet’s Theorem it trivially follows that D∞(cψ1) = Mm,n if c > 1,
and with a little more work, caused by the difference between ‘<’ in (1.1) and ‘≤’ in (1.2),
one can show that D∞(ψ1) = Mm,n as well, see Theorem 1.1 below for a more general
statement.
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The problem of improving Dirichlet’s theorem was initiated by Davenport and Schmidt
[DS] who showed that the set

DI∞ :=
⋃

0<c<1

D∞(cψ1) (1.3)

of Dirichlet improvable matrices is of Lebesgue measure zero, while having full Hausdorff
dimension mn. Furthermore, Davenport and Schmidt showed that DI contains the set
BA of badly approximable matrices

BA :=

{

A ∈Mm,n : inf
p∈Zm,q∈Znr{0}

‖Aq− p‖m∞‖q‖n∞ > 0

}

,

which was known to be thick, that is, have full Hausdorff dimension at any point of Mm,n

[Sc2].
In this paper we will generalize the above set-up in several different ways. It is known

that many results in Diophantine approximation extend to approximation with weights,
an approach allowing to treat forms Ai and components of q differently. Namely, given a
tuple of positive weights

ω = (α,β) ∈ R
m
+ × R

n
+ with

m
∑

i=1

αi =

n
∑

i=1

βi = 1, (1.4)

one introduces quasi-norms associated with α and β respectively:

‖x‖α := max
i

|xi|1/αi and ‖y‖β := max
j

|yj |1/βj .

Then, for ψ as above, one says that A ∈Mm,n is (ψ,ω)-Dirichlet, denoted by A ∈ D∞,ω(ψ),
if the system of inequalities

‖Aq− p‖α < ψ(t) and ‖q‖β < t

in (p,q) ∈ Z
m × (Zn

r {0}) for all sufficiently large t. In other words, we are considering
the solvability of the system

{

|Ai · q− pi| < ψ(t)αi , i = 1, . . . ,m;

|qj | < tβj , j = 1, . . . , n.
(1.5)

Clearly the unweighted case corresponds to the choice

α = (1/m, . . . , 1/m) and β = (1/n, . . . , 1/n).

A lot of what can be proved for unweighted approximation easily extends to the weighted
case. A weighted analogue of Dirichlet’s theorem, which is a straightforward consequence
of Minkowski’s Convex Body Theorem [C1, §III.2.2], implies that Dω(cψ1) = Mm,n if
c > 1. And with a little more work one can prove a stronger result:

Theorem 1.1. For any choice of weights ω, we have D∞,ω(ψ1) =Mm,n.

As for the set

DI∞,ω :=
⋃

0<c<1

D∞,ω(cψ1),

the fact that it has Lebesgue measure zero was established by the first named author and
Weiss using the correspondence between Diophantine approximation and dynamics, see
[KWe1, Theorem 1.4]. In this paper we prove
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Theorem 1.2. For any choice of weights ω, the set DI∞,ω contains the set BAω of
ω-badly approximable matrices, defined by

BAω :=

{

A ∈Mm,n : inf
p∈Zm,q∈Znr{0}

‖Aq− p‖α‖q‖β > 0

}

. (1.6)

Note that the latter set is thick, as shown in [KWe1, §4.5], see also [PV] and [KWe2]. It
should also be noted that in [Su, Theorem 4.6], Suëss proved the above result in the case
when m = 1. Our proof here is different and is written in the language of dynamics on the
space of lattices.

We remark that the problem of determining conditions on ψ under which the set
D∞,ω(ψ) has zero/full measure is rather tricky. A complete solution for the case m = n = 1
is given in [KWa1], and a recent paper [KSY] by the first named author, Strombergsson
and Yu deals with the general case, including arbitrary weights, and provides a partial
result.

In order to generalize the set-up further, let us restate the definition of (ψ,ω)-Dirichlet
matrices in a geometric language. Let Xd denote the space of unimodular lattices in R

d,
identified with SLd(R)/ SLd(Z) via g 7→ gZd. Given A ∈Mm,n, we define

uA :=

[

Im A
0 In

]

, ΛA := uAZ
d.

Then it is easy to see that A ∈ D∞(ψ) if and only if

ΛA ∩
[

ψ(t)1/mIm 0

0 t1/nIn

]

B∞(1) 6= {0} (1.7)

for all sufficiently large t (here B∞(1) is the unit open ball centered at zero with respect
to the norm ‖ · ‖∞) And for a weighted version it will be convenient to use the following
notation for a number raised to a vector power: if c > 0 and x ∈ R

k, define

cx := diag(cx1 , . . . , cxk).

Then, similarly to (1.7), one can state that A ∈ D∞,ω(ψ) if and only if

ΛA ∩
[

ψ(t)α 0
0 tβ

]

B∞(1) 6= {0} (1.8)

for all sufficiently large t.
At this point one might wonder: what will change if in the above definition the supremum

norm ‖ · ‖∞ is replaced by some other norm ν? and indeed this type of questions have
appeared in the literature, first for the case m = n = 1 [AD], and then for arbitrary m,n
in the unweighted case [KR1]. We will now use (1.8) to state a general weighted definition.
In order to do that, for an arbitrary norm ν on R

d let us define the critical radius of ν as
follows:

rν := sup
{

r : Λ ∩Bν(r) = {0} for some Λ ∈ Xd

}

.

Here Bν(r) := {x ∈ R
d : ν(x) < r}; clearly r∞ = 1. (Throughout the paper we will use

the notation p when ν is the `p norm, in particular when p = ∞.)
Now let us define the most general sets of ψ-Dirichlet matrices.

Definition 1.3. Given a function ψ : R>0 → R>0 and a tuple of weights ω = (α,β) as in
(1.4), we say that A ∈Mm,n is (ψ, ν,ω)-Dirichlet if

ΛA ∩
[

ψ(t)α 0
0 tβ

]

Bν(rν) 6= {0}

for all sufficiently large t.
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For brevity, we write the set of (ψ, ν,ω)-Dirichlet matrices as Dν,ω(ψ). Note that the
above property in general cannot be written in a way similar to (1.5), with separate con-
ditions involving the linear forms Ai and the variables qj . For example, in the case where
m = n = 1, ν is the Euclidean norm on R

2 and ω = (1, 1) is the only possible choice

for the weights, it is easy to see that r2 =
(

4
3

)1/4
. The corresponding condition for a real

number α to be (ψ, ν,ω)-Dirichlet is that the inequality
(

αq − p

ψ(t)

)2

+
(q

t

)2
<

2√
3

has a solution in (p, q) ∈ Z× N for all sufficiently large t.
It immediately follows from the definition of rν that Dν,ω(cψ1) = Mm,n for any c > 1.

Also one can define

DIν,ω :=
⋃

0<c<1

Dν,ω(cψ1),

the set of weighted Dirichlet-improvable matrices with respect to ν, and use the same dy-
namical argument as in [KWe1, Theorem 1.4] to prove

Theorem 1.4. For any choice of a norm ν on R
d and a weight vector ω, the set DIν,ω

has Lebesgue measure zero.

We are thus left with the following two problems:

1. Find norms ν and weight vectors ω such that

Dν,ω(ψ1)
c = ∅. (1.9)

2. Find norms ν and weight vectors ω such that

DIν,ω is thick. (1.10)

Both problems will be addressed in this paper for some specific choices of norms ν, using
a dynamical restatement of the property of being (ψ, ν,ω)-Dirichlet. The choice of norms
in the theorems below arise from what is known or can be proved regarding the densest
lattice-packings of their unit balls. This will be made abundantly clear in the proofs.

With regards to problem 1 above, we have, like Theorem 1.1, a precise form of Dirichlet
theorem in the following additional cases.

Theorem 1.5. We have that Dν,ω(ψ1) =Mm,n

(a) when m = n = 1 and ν is any `p norm on R
2;

(b) when m = 2, n = 1, ω is arbitrary, and ν on R
3 is of the form

(x, y, z) 7→ max
{

η(x, y), |z|
}

for some norm η on R
2. (1.11)

For Problem 2, when m = n = 1 and with only one possible choice of weights, the
thickness result was established in [KR1, Theorem 1.3]. For the unweighted case of the
Euclidean norm in arbitrary dimensions it was established in [KR1, Theorem 3.7]. The
result for the weighted supremum norm in arbitrary dimension follows from Theorem 1.2.
Presently we prove

Theorem 1.6. The set DIν,ω is thick

(a) for any m,n,ω, and when ν is the Euclidean norm on R
d;

(b) when m = 2, n = 1, ω is arbitrary, and ν on R
3 is of the form (1.11).

Theorems 1.5 and 1.6 can be proved for certain other norms as well. See Proposition
3.2 and Corollary 5.4 below for general results applicable to other norms.
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One might also ask whether or not the inclusion

BAω ⊂ DIν,ω (1.12)

holds for some norms ν other than ‖ · ‖∞. In Proposition 4.1 we give a condition sufficient
for (1.12), which in particular is valid for norms of the form (1.11) as in Theorem 1.6(b).
However in general (1.12) is false: in fact for any A ∈ BAω one can find a norm ν such
that A /∈ DIν,ω. Moreover, the same holds for any A ∈ Mm,n except for the case when A
is ω-singular, or A ∈ Singω. The latter set is defined as

Singω :=
⋂

0<c<1

Dν,ω(cψ1).

(It is easy to see that the choice of the norm does not make a difference in this definition.)
We prove

Theorem 1.7. For any weight vector ω,

Singω =
⋂

ν a norm on Rd

DIν,ω

In fact, for any fixed norm ν on R
d, we have

Singω =
⋂

g∈SLd(R)

DIν◦g,ω.

This characterization of singular systems of linear forms is new even in the unweighted
case.

The structure of the paper is as follows; in the next section we give a dynamical inter-
pretation of Dirichlet-improvability. In particular, the relation to the critical locus of a
norm is clarified. An effective equidistribution result on the space of lattices then yields
the coarse form of Dirichlet’s theorem as in Theorem 1.4. Theorems 1.1, 1.2, 1.5, 1.6(b)
and 1.7 are proved in the next two sections by using the geometry of numbers to identify
certain divergent subsets in the space of lattices. Part (a) of Theorem 1.6 is proved in §5
using results of the first-named author along with An and Guan.

Acknowledgements. The authors are grateful to Nikolay Moshchevitin for helpful dis-
cussions, and to the anonymous referee for several useful comments.

2. Dirichlet improvable matrices form a null set

As before, Xd denotes the space of unimodular lattices in R
d, and ν stands for a norm

on R
d. For any r > 0 define

Kν(r) :=
{

Λ ∈ Xd : Λ ∩Bν (r) = {0}
}

.

These sets are compact in view of Mahler’s Compactness Criterion, and empty for r > rν ,
whereas for 0 < r < rν , these give a system of neighborhoods of the non-empty compact
critical locus Lν := Kν(rν). Up to scaling, Lν gives the set of lattices witnessing the
densest lattice-packings of the unit ball of ν. Further, given a weight vector as in (1.4), we
have the following one-parameter subgroup of SLd(R):

as =

[

(es)α 0

0 (e−s)
β

]

. (2.1)

Proposition 2.1. An m × n matrix A belongs to DIν,ω if and only if there is some
0 < r < rν and s0 > 0 such that

{asΛA : s > s0} ∩ Kν(r) = ∅.
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Proof. Say A ∈ DIν,ω, so that there is some 0 < c < 1 with A ∈ Dν,ω(cψ1). The defining
intersection condition for Dν,ω(cψ1) can be changed to

asΛA ∩ as
[ (

cψ1(t)
)α

0
0 tβ

]

Bν (rν) 6= {0}

for all sufficiently large t. Putting

s =
1

2
ln
t2

c
, (2.2)

the condition becomes

asΛA ∩
[

(
√
c)

α
0

0 (
√
c)

β

]

Bν (rν) 6= {0}

for all sufficiently large s. Let

r = rν ·max
{

cα1/2, . . . , cαm/2, cβ1/2, . . . , cβn/2
}

.

Since c < 1, r is less than rν . Thus, we have that

asΛA /∈ Kν(r) (2.3)

for all sufficiently large s.
Conversely, say we have a matrix A for which there is an 0 < r < rν such that (2.3)

holds for all sufficiently large s. Thus

asΛA ∩Bν (r) 6= {0} (2.4)

for all sufficiently large s. Condition (2.4) can be rewritten as

ΛA ∩
[

(e−s)
α

0

0 (es)β

]

Bν (r) 6= {0}. (2.5)

So, if we define

c :=

(

r

rν

)
2

γ

with γ := max{βj},

and define t > 0 by the equation (2.2), we see that

e−s =

√
c

t
= ψ1(t)

(

r

rν

)1/γ

and es =
t√
c
= t

(rν
r

)1/γ
.

From this we see that

r

rν
e−sαi =

(

r

rν

)1+αi/γ

ψ1(t)
αi and

r

rν
esβj =

(

r

rν

)1−
βj
γ

tβj .

By choice of γ, we see that
(

r
rν

)1−
βj
γ ≤ 1. Defining c1 :=

(

r
rν

)
1

αi
+ 1

γ
, which is less than 1,

condition (2.5) then implies

ΛA ∩
[
(

c1ψn/m(t)
)α

0

0 (t)β

]

Bν (rν) 6= {0}.

From this we can see that A ∈ DIν,ω. �

Propositions of the above sort first appeared in [D] and now go by the name ‘Dani’s
correspondence’.

Corollary 2.2. We have the equivalence

A /∈ Dν,ω(ψ1) ⇐⇒ asΛA ∈ Lν for an unbounded set of positive times s.
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Proof. It suffices to go through the above proof putting c = 1 and r = rν in the forward
and backward directions of the equivalence respectively. �

In order to prove Theorem 1.4 we need the following equidistribution theorem of Kleinbock–
Weiss [KWe1, Theorem 2.2], see also [KM, Theorem 1.3] for an effective version. The
argument appears in [KSY] in case of ν being the supremum norm and applies with little
changes to the general case.

Theorem 2.3. Let f ∈ Cc(Xd), B ⊂ Mm,n be bounded with positive Lebesgue measure,
and δ > 0 be given. Then there exists an s0 > 0 such that for all s > s0,

∣

∣

∣

∣

1

λ(B)

∫

B
f (asΛA) dλ(A)−

∫

Xd

f(x) dµ

∣

∣

∣

∣

< δ.

Here, the integrals are taken with respect to the Lebesgue measure λ on Mm,n and the Haar
probability measure µ on Xd. �

Proof of Theorem 1.4. We have c < 1. Let r be associated to c as in Proposition 2.1. We
aim to show that for almost every A ∈Mm,n, there is an unbounded positive sequence (sk)
such that

askΛA ∈ Kν(r). (2.6)

This and Proposition 2.1 then show that almost every A /∈ Dν,ω(cψ1). For i ∈ N, if the set

Bi :=
⋂

s>i

{A ∈Mm,n : asΛA /∈ Kν(r)}

has positive Lebesgue measure, choose B ⊂ Bi compact with positive measure as well.
Take a non-negative f ∈ Cc(Xd) which is supported on Kν(r), and choose δ = 1

2

∫

Xd
f dµ.

Applying Theorem 2.3 with s > i, we get a contradiction. Thus each Bi has measure zero
and thus so does their union. Hence we have shown that Lebesgue almost every A ∈Mm,n

has an unbounded positive sequence (sk) for which (2.6) holds. �

3. Dirichlet’s theorem via divergence

For the rest of the paper we fix a weight vector as in (1.4) and the one-parameter
subgroup {as} of SLd(R) as in (2.1). We now address Problem 1 regarding Dirichlet’s
theorem in the form (1.9). First, a general condition implying the result.

Proposition 3.1. Say ν is a norm in R
d with Lν =

⋃

Zi a finite union of compact subsets
such that each Zi has either one of the following properties.

(i) For every Λ ∈ Zi and compact K ⊂ Xd, there is a t0 such that for all s > t0,
asΛ /∈ K. That is, every Λ ∈ Zi is forward divergent.

(ii) For every Λ ∈ Zi and compact K ⊂ Xd, there is a t0 such that for all s < t0,
asΛ /∈ K. That is, every Λ ∈ Zi is backward divergent.

Then Dν,ω(ψ1) =Mm,n.

Proof. For the sake of contradiction, say that A /∈ Dν,ω(ψ1). By Corollary 2.2, there is
an unbounded positive sequence (sk) such that for each k, askΛA ∈ Lν . By the above
finiteness hypothesis we might as well assume Lν itself has one of the properties (i) or (ii).
Observe that compactness implies that there is a uniform t0 in the above conditions which
works for every Λ ∈ Lν . We now separate into two cases.

(i) We can find t0 such that for all s > t0,

asLν ∩ Lν = ∅. (3.1)

This contradicts the fact that for every k, askΛA(= ask−s1as1ΛA) belongs to Lν .
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(ii) Find t0 such that for all s < t0, (3.1) holds. This contradicts the fact that for every
k, as1ΛA(= as1−skaskΛA) ∈ Lν .

Thus Dν,ω(ψ1) =Mm,n. �

Proof of Theorem 1.1. Let B denote the set of upper triangular unipotent d× d matrices.
It is a well-known theorem of Hajós [H] that the set L∞ is exactly the union

⋃

{wBw SLd(Z) : w is a permutation matrix} . (3.2)

From this we get that for every permutation matrix w, there is some fixed standard basis
vector ei which belongs to every Λ ∈ wBw SLd(Z). From the description of as in (2.1),
we see that, according to whether m < i or i ≤ m, ei is contracted by as either for s > 0
or s < 0. Thus, for each permutation matrix w, we are in one of the two situations of
Proposition 3.1. �

Proof of Theorem 1.5(b). [KR2, Proposition 5.1] asserts that whenever ν is a cylindrical
norm on R

3 as in (1.11), the critical locus in X3 is contained in the union of

Z1 :=











∗ ∗ 0
∗ ∗ 0
∗ ∗ ∗



Z
3







and Z2 :=











∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗



Z
3







. (3.3)

Moreover, since we have m = 2 and n = 1 by hypothesis,

as =





esα1 0 0
0 esα2 0
0 0 e−s



 . (3.4)

Thus, if Λ ∈ Z1, it contains a vector contracted by as for s > 0. And if Λ ∈ Z2, it contains
a vector contracted by as for s < 0. Applying Proposition 3.1, we are done. �

We also have the following simple but useful result:

Proposition 3.2. Let ν be a norm on R
d such that the critical locus Lν is finite. Then

Dν,ω(ψ1) =Mm,n.

Proof. Again, by Proposition 2.1, any A /∈ Dν,ω would give rise to a periodic orbit {asΛA}.
On the other hand, ΛA is backward divergent under the flow as. �

Proof of Theorem 1.5(a). This has already been proved for p = 2 in [KR1, Theorem 1.4],
and for p = ∞ in Theorem 1.1. For the other cases, the work [GGM] shows that Lp is
finite. Thus we are done by applying Proposition 3.2. �

Remark 3.3. Other examples of norms which are known to have finite critical locus are
norms in R

2 induced by hexagons, as well as the `1 norm in R
3. For the former fact see

[C2, §V.8.4, Lemma 13] and for the latter see [M] or the discussion in the pages prior to
[GL, Equation (4), page 346].

4. Thickness results via divergence

Some similar observations about divergence in the space of lattices lead us to solutions
of Problem 2 as well. Recall the set BAω of ω-badly approximable matrices defined in
(1.6). It is well known (see [K, Theorem 2.5]) that

A ∈ BAω ⇐⇒ {asΛ : s > 0} is bounded in Xd.

We now give a general proposition giving sufficient conditions (on the norm ν) which ensure
that BAω is a subset of DIν .
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Proposition 4.1. If ν is a norm on R
d such that every Λ ∈ Lν has the property that

{asΛ : s ∈ R} is unbounded in Xd,

then BAω is contained in DIν,ω.

Remark 4.2. To be precise, being unbounded means that for each compact K ⊂ Xd, there
is some s ∈ R such that asΛ /∈ K.

Proof. We again use the characterization in Proposition 2.1. Say ν is a norm with the
property as above. Say A ∈ BAω. Say further, contrary to the theorem, that there is an
unbounded positive sequence (sk) and a lattice Λ ∈ Lν such that askΛA → Λ. Let K ⊂ Xd

be a compact set such that
{asΛA : s > 0} ⊂ K.

We consider two cases.

(i) {asΛ : s > 0} is unbounded. This implies that there is a positive time t for which
atΛ /∈ K. Let V be a neighborhood of Λ such that

atV ⊂ Xd rK. (4.1)

Thus, for large enough k, we have at+skΛA /∈ K, a contradiction.
(ii) For the second case, we assume that {asΛ : s < 0} is unbounded. This means we

have a negative t for which atΛ /∈ K. Let V again be a neighborhood such that
(4.1) holds. We have that for large k, at+skΛA /∈ K. On observing that t + sk is
positive for large k, we have a contradiction.

Thus, any A in BAω must belong to DIν,ω. �

Proof of Theorem 1.2. As was observed before, it follows from the expression (3.2) for the
critical locus L∞ that every Λ ∈ L∞ contains one of the basis vectors ei. So, according to
whether m < i or i ≤ m, ei is contracted by as either for s > 0 or s < 0. This, of course,
implies that {asΛ} is unbounded and we can apply Proposition 4.1. �

Proof of Theorem 1.6(b). Again, from (3.3) and (3.4) describing the critical locus and the
flow respectively, we see that each Λ ∈ Lν is either forward or backward divergent (hence
also unbounded) with respect to as. Thus Proposition 4.1 applies. �

Perhaps now is a good time to observe that the conclusion of Proposition 4.1 does not
always hold. More precisely, for any A /∈ Singω there exists a norm ν on R

d such that A
does not belong to DIω.

Proof of Theorem 1.7. It is well known (see [K, Theorem 7.4], or [D, Proposition 2.12] for
a version with equal weights) that A ∈ Singω if and only if ΛA is forward divergent under
as. And by divergence, any such element must avoid any given critical locus after a certain
time. Thus Singω is contained in each of the intersections in the theorem.

To complete the proof, it now suffices to show that, for a fixed norm ν,
⋂

g∈SLd(R)

DIν◦g,ω ⊂ Singω.

Take A ∈ Mm,n that is Dirichlet-improvable for all norms of the form ν ◦ g. In order to
show that A is singular, it suffices to show that for every Λ ∈ Xd, there is a neighborhood
V of Λ and some time s0 such that the orbit {asΛA : s > s0} avoids V .

Fix Λ ∈ Xd and pick some g ∈ SLd(R) such that gΛ ∈ Lν . Since g−1Lν = Lν◦g, we see
that Λ ∈ Lν◦g. By Dirichlet-improvability of A with respect to ν ◦ g, we see that there is
an r < rν◦g and some s0 such that

asΛA /∈ Kν◦g(r) for all s > s0.
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As observed before, Kν◦g(r) for r < rν◦g is an open neighborhood of Lν◦g, and so we are
done. �

5. Thickness results via transversality

In order to prove the thickness result for the Euclidean norm, we use a result of the
first-named author with An and Guan [AGK]. They give a very general condition on
the critical locus Lν which guarantees that the set of A ∈ Mm,n such that the trajectory
{ashx : s > 0} eventually stays away from Lν is winning in the sense of Schmidt. More
precisely, the results in [AGK] deal with a modified version of Schmidt’s winning property
called hyperplane absolute winning (HAW). For the definition of the HAW property, see
[BFKRW, §2] or [AGK, §2.1]. HAW implies winning in the sense of Schmidt [Sc1], and
this in turn implies thickness. Furthermore, the class of HAW sets, like those which are
winning, is closed under countable intersections.

To state the aforementioned condition we need some notation. Let G denote SLd(R),
and let g denote its Lie algebra sld(R). Let H ⊂ G denote the subgroup

H = {uA : A ∈Mm,n},
and let h denote its Lie algebra. Fixing weights ω = (α,β), let F ⊂ G denote the subgroup

F = {as : s ∈ R}
where as is as in (2.1). Let D ∈ g denote the the diagonal element

D =

[

(1)α 0

0 − (1)β

]

= diag(α1, . . . , αm,−β1, . . . ,−βn)

so that
as = exp(sD).

The adjoint action ad(D) : g → g is diagonable: If we let Ei,j denote the d × d matrix
with 1 in the (i, j)-entry and 0 everywhere else we see that, when i 6= j,

ad(D)Ei,j = (Dii −Djj)E
i,j ,

and that
ad(D)

(

Ei,i − Ej,j
)

= 0.

Here Dij denotes the (i, j)-entry of D. Thus, if we let λ run over the eigenvalues of ad(D),
we have an eigenspace decomposition

g =
⊕

gλ.

Let ρ denote the largest eigenvalue, and let q : g → g be the projection with image and
kernel

⊕

λ=ρ

gλ and
⊕

λ<ρ

gλ

respectively. Let hmax denote the image q(h), and let Hmax denote the connected subgroup
of G generated by hmax.

Remark 5.1. Note that, from the definition of D, the eigenvectors with maximal eigen-
values must occur as matrices Ei,j with i ≤ m and j ≥ n. Thus hmax (which is a subset of
h) is never the zero subspace.

We also use the notation Tx(M) to denote the tangent space of a submanifold M of Xd

at a point x ∈ Xd.

Definition 5.2. A compact submanifold Z ⊂ Xd is said to be (F,Hmax)-transversal if for
all z ∈ Z,
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(i) Tz(Fz) 6⊂ Tz(Z);
(ii) Tz(H

maxz) 6⊂ Tz(Z)⊕ Tz(Fz).

We can finally state the relevant result from [AGK, Theorem 2.8].

Theorem 5.3. Keeping with the notation above, if Z ⊂ Xd is an (F,Hmax)-transversal
compact submanifold, then for any x ∈ Xd,

{

h ∈ H : {ashx : s > 0} ∩ Z = ∅

}

is HAW in H.

Clearly zero-dimensional submanifolds are (F,Hmax)-transversal. And since countable
intersections of winning sets are winning, on applying the above theorem to the case where
x ∈ Xd is the standard lattice, we have

Corollary 5.4. If ν is a norm on R
d such that Lν is finite, then DIν,ω is thick. �

We can also apply Theorem 5.3 to get

Proof of Theorem 1.6(a). Recall from Proposition 2.1 that A ∈ DI2,ω if and only if there
is some r < rν such that

asΛA /∈ K2(r)

for all sufficiently large s. Here we are considering a neighborhood of the compact set L2 ⊂
Xd which is a finite union of SO(d)-orbits (see [KR1, Theorem 3.7]). The Lie algebra so(d)
consists of skew-symmetric matrices and it then becomes straightforward to check that
each SO(d)-orbit is an (F,Hmax)-transversal submanifold. Indeed, after identifying with
g, we see that Tz(Fz) = spanR{D}, while Tz(H

maxz) includes nonzero upper triangular
matrices, so that it is not contained in so(d)⊕ spanR{D}. Thus, Theorem 5.3 shows that
DI2,ω contains a finite intersection of winning sets, and thus is itself thick. �
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