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Abstract

The generalized conductance ¢(G, H) between two weighted graphs G and H
on the same vertex set V is defined as the ratio

9(G. H) = min m
where capg (S, S) is the total weight of the edges crossing from vertex set S C V
to S =V —S. We show that the minimum generalized eigenvalue \(Lg, Lz) of

the pair of Laplacians L and Ly satisfies

where ¢(G) is the standard conductance of G. A generalized cut that meets
this bound can be obtained from the generalized eigenvector corresponding to
MLa, Lu).
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1. Introduction

The discrete version of the Cheeger inequality [2] relates graph connectiv-
ity with the second eigenvalue of the normalized graph Laplacian [3]. It has
been a driving force in spectral graph theory, algorithm design and machine

learning (for example, see [4, 5, 6, 7, 8, 9, 10]). More recently, there have been
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improvements to the basic inequality that take into account higher order spec-
tral gaps [11], or extend it to inequalities reflecting multiway graph cuts [12].
The departure point of this article is the observation that the eigenvalues
of the normalized Laplacian can be viewed as the generalized eigenvalues of
a pair of graph Laplacians (L¢g, Lk ), where G is the given graph and K is a
complete weighted graph whose edge weights depend solely on the vertex degrees
of G. In turn, the generalized eigenvalue problem (L¢, Lk ) is a relaxation of a
simultaneous cut problem on (G, K), known as the sparsest cut problem. In this
work we present a generalization of the standard Cheeger inequality to arbitrary
pairs of graphs (G, H). The new inequality recovers, up to a constant factor,
the original Cheeger inequality for the case when H = K. Up to our knowledge,
a similar question was previously considered by Trevisan [13]; this is further

discussed in Section 2.4.

2. Background and Definitions

Let G = (V, E,w) be a weighted graph, where V is the set of vertices E C
V x V is the set of edges, and w : E — R* are positive weights on the edges.
ForveV and S CV we let

vol(v) = Z w(v, u) and vol(S) = Zvol(S).
(vw)EE vES

In order to avoid trivial considerations we assume that for every v, we have
vol(v) > 0. We also denote by cap(S, S) the total weight of edges with exactly
one endpoint in S and one endpoint in S = V — 5. The sparsity of a cut (S, S)

is defined as ~
B cap(S, S)
¢s(G) = min{vol(S), vol(S)}"

The conductance of GG is defined as

tuin ¢s(G)
520

The Laplacian of G is defined by

L(u,v) = —w(u,v) and L(u,u) = Z L(u,v).
vFEU
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The normalized Laplacian L of G is the matrix D~Y2LD~/2 where D is the
diagonal of L. It is well understood that the normalized Laplacian of a connected

graph is positive semi-definite with a unique zero eigenvalue.

2.1. The standard Cheeger inequality and cut algorithm

If X\s is the second eigenvalue of the normalized Laplacian, then the Cheeger

inequality relates it to ¢(G) as follows:
A2 > 6(G)?/2. (1)

At least one proof of the Cheeger inequality, due to Mihail [14], actually
shows something stronger. Namely, for any vector y_L Null (f/(;), we can find a

set Sy such that
¢s,(G) < 2(y" Lay)"/%. (2)

The cut can be found by letting S, consist of the vertices corresponding to the k

1/2y for some 1 < k < n. In particular, by letting 3 to be a

smallest entries of D~
standard approximation to the second eigenvector of the normalized Laplacian,
then we have that y” Loy = ©(AM(G)). Tt thus follows that we can compute a
cut with sparsity O(1/¢), in polynomial time. Some further algorithmic details

are discussed in Section 4.

2.2. Generalized cuts for graph pairs

We will now consider pairs of weighted graphs (G, H) on the same vertex
set V. We assume that G is connected. We define the generalized sparsity of a

cut (S, 9) as: -
capa (S, S)
capg (S, S)

We define the generalized conductance between G and H as follows:

¢s(G, H) =

S0

To see the utility of this definition, we observe that the sparsest cut problem

can be captured within a factor of 2 as a generalized cut problem between two



graphs. This is also known as the non-uniform sparsest cut problem. To this
end let us define the demand graph Dg = (V, E’,w’) with every edge being
present in E’ and the weights specified by

, _wvol(u)vol(v)
w(u,0) = vol(V)
Let S C V. Observe that by construction we have
- vol(S)vol (S
CaPDq (57 S) = ”E}Ol)(V)( )
Note now that
min{vol(S),vol(S)} > vol(S)vol(5) > min{vol(S),vol(S)}/2.
vol (V)
From this it can be seen that
G
%) < 4(G.D6) < 0(0). )

A number of other problems can be viewed as generalized cut problems.
For example, consider the isoperimetric number defined by:

capa (S, S)
h(G) = min ——————.
(@) scv, min{|S],|S|}
S£0
If K, is the complete graph on n vertices with edges weighted by 1/n, i.e. the
identity over the space of sets orthogonal to the constant vectors, it can be

verified that we have

$(G, Kn)

5 < h(G) < (G, Kp).

Another example is the min s-¢ cut problem which looks for a cut of minimum
value among all possible cuts that separate s and ¢. If we denote that value by

Ws,t, and let G, be the Laplacian of the edge (s,t), we have
Hs,t = ¢(G; Gs,t)-

2.3. The minimum generalized eigenvalue of a pair of Laplacians
Let (G, H) be a pair of graphs, where G is connected. Let 1 be the constant

vector. It is well understood that

1= Null(Lg) C Null(Ly).
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Hence, we consider the generalized eigenvalue problem
Lz = ALpyz, (4)
where z is constrained to satisfy 71 = 0. Then, equation 4 is equivalent to
L&Lpz = X""a = My =Xy,

where M = (L5)Y2Ly(LE)Y? and y = LlG/Qx. We have 1 € Null(M). Since
M is symmetric, it follows that M has a maximum eigenvalue A~! with a corre-
sponding eigenvector y, such that y”'1 = 0, which in turn implies that y can be
written as LgQIE for some vector x satisfying the constraint 271 = 0. Thus, un-
der that constraint, there is a minimum X that satisfies equation 4. Let A(G, H)
denote that minimum eigenvalue. By an application of the Courant-Fisher the-

orem [15] on M we get

2T Lax

A H) = i .
(G, H) rITnfgoxTLHx

(5)

Let now d be the vector containing the degrees of the vertices in G. If x is any
vector, the map y = x — &;—le) -1 satisfies y”d = 0. The map is clearly invertible.
This implies that there is a 1-1 map between vectors x with 271 = 0 and vectors
y with yTd = 0. Furthermore, for each pair (z,y) we have 27 Lx = y* Ly for

any Laplacian matrix L, because (y — ) is in the null space of L. We thus have

T
y' Lgy
: (6)

2.4. Cuts and Eigenvalues
The value of a cut between S and S can be expressed in terms of the graph
Laplacian as:
capa(S,8) = vk Loxs,
where xg is characteristic vector of S, i.e. the vector with ones in its entries
corresponding to S and zeros in all other entries. It follows that the generalized

conductance can be expressed as an optimization problem over the discrete 0-1

vectors:
T
. x' Lagx
¢(G,H) = min — .
ecfo}” gt Lgx
2T 140
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Theorem 1. We have \(G, H) < ¢(G, H).

Proof. Let z = {0,1}" and y = x — 1 (271)1. Note that for any Laplacian L we

n
have 27 Lz = y” Ly because y — z is in the null space of L. Because y71 = 0,

by equation 5, we have

TL TL
)\(G,H) < Yy GY _ xz GT

yI'Lyy «TLga’

The claims follows by letting x be the characteristic vector of the cut attaining

¢(G, H). O

Remark-1: The eigenvalue A(G, H), as expressed in 5, can be viewed as
a relaxation of ¢(G, H) over the reals.

The minimum eigenvalue Ao of the normalized Laplacian of G is equal to
the minimum eigenvalue of the generalized problem Lgx = ADz, under the
constraint z7d = 0, where d is the vector containing the degrees of the vertices
in G. Then, due to Lemma 2, s is equal to A(G, D¢) and thus it can be seen as
a relaxation of ¢(G, D¢) which is within a factor of 2 from ¢(G) (equation 3).
Thus the Cheeger inequality characterizes ¢(G, D¢g) in terms of A(G, Dg). We
alm to prove a similar characterization for the generalized conductance of any
pair of graphs.

Remark-2: In [13], Trevisan asked whether the Cheeger inequality can be
extended to the generalized cut on a pair of graphs (G, H), for arbitrary H.
They showed that under a complexity assumption known as the Unique Games
Conjecture, it is impossible to find a cut of sparsity O(1/¢(G, H)) in polynomial
time. That indicates that an analog of the Cheeger inequality and the associated
algorithm do not exist. Our result is compatible with Trevisan’s work, as it

provides a different type of bound.

3. Generalized Cheeger Inequality

We now present and prove our main theorem; the proof is based on lemmas

that are proved separately, in Section 3.1.
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Theorem 2. Let G and H be any two weighted graphs and d be the vector
containing the degrees of the vertices in G. For any vector x such that x7d = 0,

we have
2T Lax

2T Lygx
where Dg is the demand graph of G. If we let x be an eigenvector corresponding

to the minimum eigenvalue (G, H) we get that
NG, H) =z (G, Dg) - (G, H)/8.

We first introduce auxiliary notation. Let V'~ denote the set of u such that
2y < 0 and V7T denote the set such that xz, > 0. Then we can divide E¢ into
two sets: EE™¢ consisting of edges with both endpoints in V= or V', and Eéif
consisting of edges with one endpoint in each. We also define E}ijf and EF™¢

similarly.

Proof. Let

Sg = Z we (u,v) |22 — 22| + Z we(u,v) (22 +22). (7)

wwe Bgme we B

and

A = Z we(u,v)(x, — 1,) + Z we(u,v)(x? + 22).

uveEgrme uveEéif
B = Z we(u,v)(xy, + 1,)% + Z we(u,v)(x? + 22).
uwvEEZ™e quEéif

We define two vectors on the edges of G:

o ug(u,v) = Jwa(u,v)|z, — | if uv € EZ™me

o ug(u,v) = Jwg(u,v) (22 + 22) if uv € Eéif

and similarly

o up(u,v) = \/W|$u + x| if uv € Egme

o up(u,v) = /wg(u,v)(@2 +3) if ww € B!



We have A = (ug,u4) and B = (up,up). By the Cauchy-Schwarz inequality
we have

AB 2 <UA,UB>2.
This gives that:

AB > Z weg(u,v)|z2 — 22| + Z we(u,v) (22 +22) | =854, (8)

uvEEE™e quE‘éif

We also have

xTLGa: = Z wG(u7 'U)(xu - xv)Q
wveEq
= Z wG(u» 'U)(xu - xv)2 =+ Z ’LUC;(U, 'U)(xu - xv)Q
uvEE™e uveEéff
> A (9)

The last inequality follows by x,z, <0 as z, < 0 for allu € V~ and z, > 0 for
allv € V*. We also have (z, +,)? < 222 + 222, since 222 + 222 — (2, +7,)? =

(24 — )% > 0. Thus, we get

< Y welwn)@d e+ Y welwo)@ +ad)

wwEEL™e wve ESS

=2¢"Da = 22" Lp x, (10)

7 where D is the diagonal of Lg and the last equality comes from Lemma 2 and
the assumption that z7d = 0.
Applying inequalities 9, 10 and 8 we get

2T Loz A

2T Lgx = 2TLyx

A B > L Se¢  Sa (11)

1 1
> . ) -
—2 2TLyx :cgcx 2 2TLgzx zTLp.x

Finally with two applications of Lemma 3 on the pairs graph (G, H) and (G, D¢),

we have

2T Lax 1 Sa Sa 1
— . > — H D¢). 12
2 2TLyx xfyel’ = 8¢(G7 )¢(G> G) ( )

>

2T Ly

80 D
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Remark-1: By setting H = Dg and using equation 3, we get that
X2 =G, Da) > 6(G, Dg)* /8 > ¢(G)* /32,

which recovers the original Cheeger inequality up to a factor of 16.
Remark-2: Let G be the cycle graph on n vertices, and K be the complete
graph on n vertices. Using the well-known fact that A\2(G) = ©(1/n?) we have

2T Loz

=0(1/n?),

A2(G) = min 2" Lgz = min n- —
zT1=0 zT1=0 vt Lgx

where we used the identity 2 Lxx = n for all vectors x orthogonal to 1. It
thus follows that
2T Loz

MG, K) = i
(G K) = min “77

We also have ¢(G,K) = ©(1/n?), ¢(G,Dg) = O(1/n). It follows that the

= o(1/n%)

generalized Cheeger inequality is tight up to constants even when H = K.

3.1. Lemmas

We present and prove lemmas used in the proof of Theorem 2.

Lemma 1. For all a;,b; > 0 we have

Z'ai . 4%}
it =4
S b =\ b

Lemma 2. Let G be a graph, d be the vector containing the degrees of the
vertices, and D be corresponding diagonal matriz. For all vectors x where x27d =
0 we have

2T Dx = 2" Lp,,
where Dg is the demand graph for G.

Proof. Let d be the vector consisting of the entries along the diagonal of D. By

definition, we have
I _D_ dd”
Pe = vol(V)’

The lemma follows. ]
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The following lemma is similar to one used in the proof of Cheeger’s inequal-
ity [3]:
Lemma 3. Let G and H be any two weighted graphs on the same vertex set V.
partitioned into V™~ and V. For any vector x we have

SG > ¢(G7H)
2T Lyx — 2

(13)
where, as defined in equation 7,

Sa = Z wg(um)‘xi—xﬂ—i— Z we(u,v) (22 +22).

uveEg™me wweEES
Proof. We begin with two inequalities:
Note that 222 + 222 — (2, — x,)? = (2 + 2,)? > 0 gives:
(24 — my)° < 222 4 222
Also, suppose uv € E3™¢ and without loss of generality that |z,| > |z,]|.
Then letting y = |z,| — |2,|, we get:

ol

(lxvl + y>2 - ‘mv‘2

|2y —
= y2 + 2y‘xv‘

> = (zy —xv)Q.

The last equality follows because x, and z, have the same sign.

We then use the above inequalities to upper bound the 27 Ly term.

' Lyx = Z wi (u,v) (T, — x4)° + Z wi (u,v) (T, — x,)°

wweEjeme wwe B
< Z wy (u,v) |22 — 22| + Z wy (u,v) (2z) + 227)
wwe Egame wve BYT
< 2 Y wr(wo)lad —ail+ Y wrluw) (@] +23)
uve Egame uUeE}Jff
— 929y, (14)

10



Here Sy is analogous to the quantity Sg defined for G in the Lemma state-

ment. We thus have:

S S
> =7 (15)
SL‘TLH.%‘ QSH
We can now decompose the sum Sg further into parts for V=~ and VT
Sg = Z wa (um)’xi—xﬂ—i— Z we (u,v) (22 + 22)
uUEEé{“ne ’U,’UEEéif
= Ng+ Pq
where we set
Ng = Z we (u,v) ’a:i — |+ Z we (u,v) 22
ueV T weV ™ ueV - wevt
Pg = Z we (u,v) |22, — z2| + Z wg (u,v) 22.
ueV T veVT u€V " wevT
We similarly write Siy = Ny + Py and by applying Lemma 1 we get:
S¢ _ Ng+ Pg . {NG PG}
— = ———" >min¢ —, —
SH NH + PH NH PH
By symmetry in V'~ and V7T, it suffices to show that
N,
~ = ¢(G. H). (16)
Ny
Let V7~ = {uy,...,u;} and without loss of generality assume that
Tyy L Xy, < ... <y, <0.
Let r; = xit — xit+1, fort =1,...,k—1, and r;, = z3. Also, let S; denote
the set of nodes {uq,...,u;}.

Consider now a term |x3 - xij| where x,, < z,,. We can re-write it as

j—1
we (i, ug)al, =l | = we (i, u) (@, —a),) = weui, ) Y r.
t=1

2

Similarly for a term z7 associated with an edge from u; € V™ to v € V' we

have

k
we(ui, v)z?, = we(ug,v) Z Tt
t=1

11
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We re-write every term of Ng as suggested above. It can be seen that r; will
appear multiplied by wg(e) for each edge e whose one endpoint is in S; and
the other endpoint in V' — S;. Then the coefficient of r; in Lg will be equal to
cap(S;,V —S;). It follows that we have

k
Ng = capa(Si, Si)r:

i=1

and similarly for H
k

NH = Z CCLpH(Si, Sz)rl
i=1
By applying Lemma 1 and the definition of ¢(G, H), we have

N, K Si, Si)ri
6 _ S copa(S Sy

Ng cap(Si, Si)
N Zle capr (Si, Si)ri

capp (Si, S;)

%) > oG H).

i

This proves equation 16. Then by substituting in inequality 15 the Lemma
follows. O

4. Computation

In this section we —somewhat informally— discuss the computation of an
approximation to the minimum cut for the pair (G, H). To simplify our notation
let us denote Lg and Ly by A and B respectively.

Suppose z is an arbitrary vector not in the null space of B. Let S;; be
the set of nodes w such that xz(u) is among the 7 smallest entries of x. The

combination of Lemmas 3 implicitly show that

. CapG(Sw iy gx i) 8 JITAJ}
min K . .
i capy(Sy.i,Szi) ~ ¢(G,D¢g) zTBx

That means that given x one can compute a cut with sparsity at most

xT Az ' 8
TBr (G, D)

by sorting z, and then sweeping x for computing the smallest of the n — 1
generalized cuts defined by z, exactly as in the case of the standard Cheeger

inequality.

12



110

115

120

To obtain the best possible approximation within this context, we would
like to minimize (xT Ax/xT Bz); it is well understood that the minimizer of this
Rayleigh ratio is the associated eigenvector y. This suggests, similar to the
discussion in Section 2.1, that we can find in polynomial time a cut (.9, S) which
is at most 1/¢(G, Dg) larger than the ratio (z7 Az /2T Bx).

Faster approximate computation. We say that x is an (1+¢)-approximate
eigenvector if it satisfies

% < (14 €)Amin(A4, B). (17)

The computation of an approximate eigenvector can be done in near-linear
time. We informally describe the steps. Given any positive definite matrix A,
one can use the inverse power iteration y;4; = A~ 'y;, where yo is a random
vector, to find a vector x such that

xT Az

Ty

< (14 ) Amin(A). (18)

The number of rounds required for this is O(logn/¢); for a proof see [16]. Anal-
ogously, given a pair of positive definite matrices (A4, B), one can perform power
iteration with the matrix A= B to find a vector z such that
% < (14 €)Amin(4, B).

The proof is similar to the simple eigenvalue problem case, using only the ad-
ditional fact that the generalized eigenvectors of the pair (A=, B~!) are the
usual eigenvectors of the matrix A~ B, in addition with the fact that the eigen-
vectors are A-orthogonal and B-orthogonal [15]. Note that the iteration can
be extended to the case when A has a known null space (as in the case of
Laplacians), by simply operating on vectors orthogonal to the null space.

Additionally observe that each step of power iteration A~'By; can be im-
plemented as a linear system solve Az = By;. Instead of solving exactly a linear
system with the Laplacian A, one can use a more efficient iterative solver, and
compute a solution Z that satisfies ||Z — 2||4 < (1 + €/4)||[A™ y;||a. Using fast

Laplacian solvers, this can be computed in time near-linear time [17]. In such

13
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solvers, the approximate solution of a linear system Ay = b implements im-
plicitly a matrix-vector multiplications A=y, where A~ is spectrally close to
A=Y, Spielman and Teng [16] observe that this is sufficient for the computation
of an approximate eigenvector that satisfies inequality 18. This extends to the
generalized problem with Laplacians. Finally, a little more care has to be taken
for the case of Laplacian solvers that are randomized. In that case, O(log(1/p))
different runs of the inverse power method are needed to get a good approxi-
mate eigenvector with probability at least 1 — p. Overall, with the use of fast
Laplacian solvers [17], the running time required to compute a 2-approximate
eigenvector is O(nlog® nlog(1/p)), where n is the number of non-zero entries in

A and B.
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