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Abstract

The generalized conductance ϕ(G,H) between two weighted graphs G and H

on the same vertex set V is defined as the ratio

ϕ(G,H) = min
S⊆V

capG(S, S̄)

capH(S, S̄)
,

where capG(S, S̄) is the total weight of the edges crossing from vertex set S ⊆ V

to S̄ = V −S. We show that the minimum generalized eigenvalue λ(LG, LH) of

the pair of Laplacians LG and LH satisfies

ϕ(G,H) ≥ λ(LG, LH) ≥ ϕ(G,H)ϕ(G)/16,

where ϕ(G) is the standard conductance of G. A generalized cut that meets

this bound can be obtained from the generalized eigenvector corresponding to

λ(LG, LH).

Keywords: Spectral graph theory, Generalized cuts, Cheeger inequality

1. Introduction

The discrete version of the Cheeger inequality [2] relates graph connectiv-

ity with the second eigenvalue of the normalized graph Laplacian [3]. It has

been a driving force in spectral graph theory, algorithm design and machine

learning (for example, see [4, 5, 6, 7, 8, 9, 10]). More recently, there have been5
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improvements to the basic inequality that take into account higher order spec-

tral gaps [11], or extend it to inequalities reflecting multiway graph cuts [12].

The departure point of this article is the observation that the eigenvalues

of the normalized Laplacian can be viewed as the generalized eigenvalues of

a pair of graph Laplacians (LG, LK), where G is the given graph and K is a10

complete weighted graph whose edge weights depend solely on the vertex degrees

of G. In turn, the generalized eigenvalue problem (LG, LK) is a relaxation of a

simultaneous cut problem on (G,K), known as the sparsest cut problem. In this

work we present a generalization of the standard Cheeger inequality to arbitrary

pairs of graphs (G,H). The new inequality recovers, up to a constant factor,15

the original Cheeger inequality for the case when H = K. Up to our knowledge,

a similar question was previously considered by Trevisan [13]; this is further

discussed in Section 2.4.

2. Background and Definitions

Let G = (V,E,w) be a weighted graph, where V is the set of vertices E ⊆
V × V is the set of edges, and w : E → R

+ are positive weights on the edges.

For v ∈ V and S ⊆ V we let

vol(v) =
∑

(v,w)∈E

w(v, u) and vol(S) =
∑

v∈S

vol(S).

In order to avoid trivial considerations we assume that for every v, we have

vol(v) > 0. We also denote by cap(S, S̄) the total weight of edges with exactly

one endpoint in S and one endpoint in S̄ = V −S. The sparsity of a cut (S, S̄)

is defined as

ϕS(G) =
cap(S, S̄)

min{vol(S), vol(S̄)} .

The conductance of G is defined as

min
S⊂V,
S ̸=∅

ϕS(G)

The Laplacian of G is defined by

L(u, v) = −w(u, v) and L(u, u) =
∑

v ̸=u

L(u, v).
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The normalized Laplacian L̃ of G is the matrix D−1/2LD−1/2 where D is the20

diagonal of L. It is well understood that the normalized Laplacian of a connected

graph is positive semi-definite with a unique zero eigenvalue.

2.1. The standard Cheeger inequality and cut algorithm

If λ2 is the second eigenvalue of the normalized Laplacian, then the Cheeger

inequality relates it to ϕ(G) as follows:

λ2 ≥ ϕ(G)2/2. (1)

At least one proof of the Cheeger inequality, due to Mihail [14], actually

shows something stronger. Namely, for any vector y⊥Null(L̃G), we can find a

set Sy such that

ϕSy
(G) < 2(yT L̃Gy)

1/2. (2)

The cut can be found by letting Sy consist of the vertices corresponding to the k

smallest entries ofD−1/2y, for some 1 ≤ k ≤ n. In particular, by letting y to be a25

standard approximation to the second eigenvector of the normalized Laplacian,

then we have that yT L̃Gy = Θ(λ(G)). It thus follows that we can compute a

cut with sparsity O(
√
ϕ), in polynomial time. Some further algorithmic details

are discussed in Section 4.

2.2. Generalized cuts for graph pairs30

We will now consider pairs of weighted graphs (G,H) on the same vertex

set V . We assume that G is connected. We define the generalized sparsity of a

cut (S, S̄) as:

ϕS(G,H) =
capG(S, S̄)

capH(S, S̄)
.

We define the generalized conductance between G and H as follows:

ϕ(G,H) = min
S⊂V,
S ̸=∅

ϕS(G,H).

To see the utility of this definition, we observe that the sparsest cut problem

can be captured within a factor of 2 as a generalized cut problem between two
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graphs. This is also known as the non-uniform sparsest cut problem. To this

end let us define the demand graph DG = (V,E′, w′) with every edge being

present in E′ and the weights specified by

w′(u, v) =
vol(u)vol(v)

vol(V )
.

Let S ⊆ V . Observe that by construction we have

capDG
(S, S̄) =

vol(S)vol(S̄)

vol(V )
.

Note now that

min{vol(S), vol(S̄)} ≥ vol(S)vol(S̄)

vol(V )
≥ min{vol(S), vol(S̄)}/2.

From this it can be seen that

ϕ(G)

2
≤ ϕ(G,DG) ≤ ϕ(G). (3)

A number of other problems can be viewed as generalized cut problems.

For example, consider the isoperimetric number defined by:

h(G) = min
S⊂V,
S ̸=∅

capG(S, S̄)

min{|S|, |S̄|} .

If Kn is the complete graph on n vertices with edges weighted by 1/n, i.e. the

identity over the space of sets orthogonal to the constant vectors, it can be

verified that we have

ϕ(G,Kn)

2
≤ h(G) ≤ ϕ(G,Kn).

Another example is the min s-t cut problem which looks for a cut of minimum

value among all possible cuts that separate s and t. If we denote that value by

µs,t, and let Gs,t be the Laplacian of the edge (s, t), we have

µs,t = ϕ(G,Gs,t).

2.3. The minimum generalized eigenvalue of a pair of Laplacians

Let (G,H) be a pair of graphs, where G is connected. Let 1 be the constant

vector. It is well understood that

1 = Null(LG) ⊆ Null(LH).
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Hence, we consider the generalized eigenvalue problem

LGx = λLHx, (4)

where x is constrained to satisfy xT1 = 0. Then, equation 4 is equivalent to

L+
GLHx = λ−1x ⇒ My = λ−1y,

where M = (L+
G)

1/2LH(L+
G)

1/2 and y = L
1/2
G x. We have 1 ∈ Null(M). Since

M is symmetric, it follows that M has a maximum eigenvalue λ−1 with a corre-

sponding eigenvector y, such that yT1 = 0, which in turn implies that y can be

written as L
1/2
G x for some vector x satisfying the constraint xT1 = 0. Thus, un-

der that constraint, there is a minimum λ that satisfies equation 4. Let λ(G,H)

denote that minimum eigenvalue. By an application of the Courant-Fisher the-

orem [15] on M we get

λ(G,H) = min
xT 1=0

xTLGx

xTLHx
. (5)

Let now d be the vector containing the degrees of the vertices in G. If x is any

vector, the map y = x− xT d
(1T d)

·1 satisfies yT d = 0. The map is clearly invertible.

This implies that there is a 1-1 map between vectors x with xT1 = 0 and vectors35

y with yT d = 0. Furthermore, for each pair (x, y) we have xTLx = yTLy for

any Laplacian matrix L, because (y−x) is in the null space of L. We thus have

λ(G,H) = min
yTd=0

yTLGy

yTLHy
. (6)

2.4. Cuts and Eigenvalues

The value of a cut between S and S̄ can be expressed in terms of the graph

Laplacian as:

capG(S, S̄) = xT
SLGxS ,

where xS is characteristic vector of S, i.e. the vector with ones in its entries

corresponding to S and zeros in all other entries. It follows that the generalized

conductance can be expressed as an optimization problem over the discrete 0-1

vectors:

ϕ(G,H) = min
x∈{0,1}n

xT 1 ̸=0

xTLGx

xTLHx
.
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Theorem 1. We have λ(G,H) ≤ ϕ(G,H).

Proof. Let x = {0, 1}n and y = x− 1
n (x

T1)1. Note that for any Laplacian L we

have xTLx = yTLy because y − x is in the null space of L. Because yT1 = 0,

by equation 5, we have

λ(G,H) ≤ yTLGy

yTLHy
=

xTLGx

xTLHx
.

The claims follows by letting x be the characteristic vector of the cut attaining40

ϕ(G,H).

Remark-1: The eigenvalue λ(G,H), as expressed in 5, can be viewed as

a relaxation of ϕ(G,H) over the reals.

The minimum eigenvalue λ2 of the normalized Laplacian of G is equal to

the minimum eigenvalue of the generalized problem LGx = λDx, under the45

constraint xT d = 0, where d is the vector containing the degrees of the vertices

in G. Then, due to Lemma 2, λ2 is equal to λ(G,DG) and thus it can be seen as

a relaxation of ϕ(G,DG) which is within a factor of 2 from ϕ(G) (equation 3).

Thus the Cheeger inequality characterizes ϕ(G,DG) in terms of λ(G,DG). We

aim to prove a similar characterization for the generalized conductance of any50

pair of graphs.

Remark-2: In [13], Trevisan asked whether the Cheeger inequality can be

extended to the generalized cut on a pair of graphs (G,H), for arbitrary H.

They showed that under a complexity assumption known as the Unique Games

Conjecture, it is impossible to find a cut of sparsity O(
√

ϕ(G,H)) in polynomial55

time. That indicates that an analog of the Cheeger inequality and the associated

algorithm do not exist. Our result is compatible with Trevisan’s work, as it

provides a different type of bound.

3. Generalized Cheeger Inequality

We now present and prove our main theorem; the proof is based on lemmas60

that are proved separately, in Section 3.1.
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Theorem 2. Let G and H be any two weighted graphs and d be the vector

containing the degrees of the vertices in G. For any vector x such that xT d = 0,

we have
xTLGx

xTLHx
≥ ϕ(G,DG) · ϕ(G,H)/8,

where DG is the demand graph of G. If we let x be an eigenvector corresponding

to the minimum eigenvalue λ(G,H) we get that

λ(G,H) ≥ ϕ(G,DG) · ϕ(G,H)/8.

We first introduce auxiliary notation. Let V − denote the set of u such that

xu ≤ 0 and V + denote the set such that xu > 0. Then we can divide EG into

two sets: Esame
G consisting of edges with both endpoints in V − or V +, and Edif

G

consisting of edges with one endpoint in each. We also define Edif
H and Esame

H65

similarly.

Proof. Let

SG =
∑

uv∈Esame
G

wG (u, v)
∣

∣x2
u − x2

v

∣

∣+
∑

uv∈Edif

G

wG(u, v)
(

x2
u + x2

v

)

. (7)

and

A =
∑

uv∈Esame
G

wG(u, v)(xu − xv)
2 +

∑

uv∈Edif

G

wG(u, v)(x
2
u + x2

v).

B =
∑

uv∈Esame
G

wG(u, v)(xu + xv)
2 +

∑

uv∈Edif

G

wG(u, v)(x
2
u + x2

v).

We define two vectors on the edges of G:

• uA(u, v) =
√

wG(u, v)|xu − xv| if uv ∈ Esame
G

• uA(u, v) =
√

wG(u, v)(x2
u + x2

v) if uv ∈ Edif
G70

and similarly

• uB(u, v) =
√

wG(u, v)|xu + xv| if uv ∈ Esame
G

• uB(u, v) =
√

wG(u, v)(x2
u + x2

v) if uv ∈ Edif
G

7



We have A = ⟨uA, uA⟩ and B = ⟨uB , uB⟩. By the Cauchy-Schwarz inequality

we have

AB ≥ ⟨uA, uB⟩2.

This gives that:

AB ≥





∑

uv∈Esame
G

wG(u, v)|x2
u − x2

v|+
∑

uv∈Edif

G

wG(u, v)(x
2
u + x2

v)





2

= S2
G. (8)

We also have

xTLGx =
∑

uv∈EG

wG(u, v)(xu − xv)
2

=
∑

uv∈Esame
G

wG(u, v)(xu − xv)
2 +

∑

uv∈Edif

G

wG(u, v)(xu − xv)
2

≥ A (9)

The last inequality follows by xuxv ≤ 0 as xu ≤ 0 for all u ∈ V − and xv ≥ 0 for

all v ∈ V +. We also have (xu+xv)
2 ≤ 2x2

u+2x2
v, since 2x

2
u+2x2

v−(xu+xv)
2 =

(xu − xv)
2 ≥ 0. Thus, we get

B ≤2





∑

uv∈Esame
G

wG(u, v)(x
2
u + x2

v) +
∑

uv∈Edif

G

wG(u, v)(x
2
u + x2

v)





= 2xTDx = 2xTLDG
x, (10)

where D is the diagonal of LG and the last equality comes from Lemma 2 and75

the assumption that xT d = 0.

Applying inequalities 9, 10 and 8 we get

xTLGx

xTLHx
≥ A

xTLHx
≥ 1

2
· A

xTLHx
· B

xL
DG

x
≥ 1

2
· SG

xTLHx
· SG

xTLDG
x

(11)

Finally with two applications of Lemma 3 on the pairs graph (G,H) and (G,DG),

we have

xTLGx

xTLHx
≥ 1

2
· SG

xTLHx
· SG

xL
DG

x
≥ 1

8
ϕ(G,H)ϕ(G,DG). (12)

80
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Remark-1: By setting H = DG and using equation 3, we get that

λ2 = λ(G,DG) ≥ ϕ(G,DG)
2/8 ≥ ϕ(G)2/32,

which recovers the original Cheeger inequality up to a factor of 16.

Remark-2: Let G be the cycle graph on n vertices, and K be the complete

graph on n vertices. Using the well-known fact that λ2(G) = Θ(1/n2) we have

λ2(G) = min
xT 1=0

xTLGx = min
xT 1=0

n · x
TLGx

xTLKx
= Θ(1/n2),

where we used the identity xTLKx = n for all vectors x orthogonal to 1. It

thus follows that

λ(G,K) = min
xT 1=0

xTLGx

xTLKx
= Θ(1/n3)

We also have ϕ(G,K) = Θ(1/n2), ϕ(G,DG) = Θ(1/n). It follows that the

generalized Cheeger inequality is tight up to constants even when H = K.

3.1. Lemmas85

We present and prove lemmas used in the proof of Theorem 2.

Lemma 1. For all ai, bi > 0 we have

∑

i ai
∑

i bi
≥ min

i

{

ai
bi

}

.

Lemma 2. Let G be a graph, d be the vector containing the degrees of the

vertices, and D be corresponding diagonal matrix. For all vectors x where xT d =

0 we have

xTDx = xTLDG
x,

where DG is the demand graph for G.

Proof. Let d be the vector consisting of the entries along the diagonal of D. By

definition, we have

LDG
= D − ddT

vol(V )
.

The lemma follows.
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The following lemma is similar to one used in the proof of Cheeger’s inequal-

ity [3]:90

Lemma 3. Let G and H be any two weighted graphs on the same vertex set V

partitioned into V − and V +. For any vector x we have

SG

xTLHx
≥ ϕ(G,H)

2
, (13)

where, as defined in equation 7,

SG =
∑

uv∈Esame
G

wG (u, v)
∣

∣x2
u − x2

v

∣

∣+
∑

uv∈Edif

G

wG(u, v)
(

x2
u + x2

v

)

.

Proof. We begin with two inequalities:

Note that 2x2
u + 2x2

v − (xu − xv)
2 = (xu + xv)

2 ≥ 0 gives:

(xu − xv)
2 ≤ 2x2

u + 2x2
v.

Also, suppose uv ∈ Esame
H and without loss of generality that |xu| ≥ |xv|.

Then letting y = |xu| − |xv|, we get:

|x2
u − x2

v| = (|xv|+ y)
2 − |xv|2

= y2 + 2y|xv|

≥ y2 = (xu − xv)
2
.

The last equality follows because xu and xv have the same sign.

We then use the above inequalities to upper bound the xTLHx term.95

xTLHx =
∑

uv∈Esame
H

wH(u, v) (xu − xv)
2
+

∑

uv∈Edif

H

wH(u, v) (xu − xv)
2

≤
∑

uv∈Esame
H

wH(u, v)|x2
u − x2

v|+
∑

uv∈Edif

H

wH(u, v)
(

2x2
u + 2x2

v

)

≤ 2





∑

uv∈Esame
H

wH(u, v)|x2
u − x2

v|+
∑

uv∈Edif

H

wH(u, v)
(

x2
u + x2

v

)





= 2SH (14)
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Here SH is analogous to the quantity SG defined for G in the Lemma state-

ment. We thus have:
SG

xTLHx
≥ SG

2SH
(15)

We can now decompose the sum SG further into parts for V − and V +:

SG =
∑

uv∈Esame
G

wG (u, v)
∣

∣x2
u − x2

v

∣

∣+
∑

uv∈Edif

G

wG (u, v)
(

x2
u + x2

v

)

= NG + PG

where we set

NG =
∑

u∈V −,v∈V −

wG (u, v)
∣

∣x2
u − x2

v

∣

∣+
∑

u∈V −,v∈V +

wG (u, v)x2
u

PG =
∑

u∈V +,v∈V +

wG (u, v)
∣

∣x2
u − x2

v

∣

∣+
∑

u∈V −,v∈V +

wG (u, v)x2
v.

We similarly write SH = NH + PH and by applying Lemma 1 we get:

SG

SH
=

NG + PG

NH + PH
≥ min

{

NG

NH
,
PG

PH

}

By symmetry in V − and V +, it suffices to show that

NG

NH
≥ ϕ(G,H). (16)

Let V − = {u1, . . . , uk} and without loss of generality assume that

xu1
≤ xu2

≤ . . . ≤ xuk
≤ 0.

Let rt = x2
ut

− x2
ut+1

, for t = 1, . . . , k − 1, and rk = x2
k. Also, let Si denote

the set of nodes {u1, . . . , ui}.
Consider now a term |x2

ui
− x2

uj
| where xui

≤ xuj
. We can re-write it as

wG(ui, uj)|x2
ui

− x2
uj
| = wG(ui, uj)(x

2
ui

− x2
uj
) = wG(ui, uj)

j−1
∑

t=i

rt.

Similarly for a term x2
ui

associated with an edge from ui ∈ V − to v ∈ V + we

have

wG(ui, v)x
2
ui

= wG(ui, v)

k
∑

t=i

rt.

11



We re-write every term of NG as suggested above. It can be seen that ri will

appear multiplied by wG(e) for each edge e whose one endpoint is in Si and

the other endpoint in V − Si. Then the coefficient of ri in LG will be equal to

cap(Si, V − Si). It follows that we have

NG =

k
∑

i=1

capG(Si, S̄i)ri

and similarly for H

NH =
k

∑

i=1

capH(Si, S̄i)ri.

By applying Lemma 1 and the definition of ϕ(G,H), we have

NG

NH
=

∑k
i=1 capG(Si, S̄i)ri

∑k
i=1 capH(Si, S̄i)ri

≥ mini
capG(Si, S̄i)

capH(Si, S̄i)
≥ ϕ(G,H).

This proves equation 16. Then by substituting in inequality 15 the Lemma

follows.100

4. Computation

In this section we –somewhat informally– discuss the computation of an

approximation to the minimum cut for the pair (G,H). To simplify our notation

let us denote LG and LH by A and B respectively.

Suppose x is an arbitrary vector not in the null space of B. Let Sx,i be

the set of nodes u such that x(u) is among the i smallest entries of x. The

combination of Lemmas 3 implicitly show that

min
i

capG(Sx,i, S̄x,i)

capH(Sx,i, S̄x,i)
≤ 8

ϕ(G,DG)
· x

TAx

xTBx
.

That means that given x one can compute a cut with sparsity at most

xTAx

xTBx
· 8

ϕ(G,DG)

by sorting x, and then sweeping x for computing the smallest of the n − 1105

generalized cuts defined by x, exactly as in the case of the standard Cheeger

inequality.
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To obtain the best possible approximation within this context, we would

like to minimize (xTAx/xTBx); it is well understood that the minimizer of this

Rayleigh ratio is the associated eigenvector y. This suggests, similar to the110

discussion in Section 2.1, that we can find in polynomial time a cut (S, S̄) which

is at most 1/ϕ(G,DG) larger than the ratio (xTAx/xTBx).

Faster approximate computation. We say that x is an (1+ϵ)-approximate

eigenvector if it satisfies

xTAx

xTBx
≤ (1 + ϵ)λmin(A,B). (17)

The computation of an approximate eigenvector can be done in near-linear

time. We informally describe the steps. Given any positive definite matrix A,

one can use the inverse power iteration yi+i = A−1yi, where y0 is a random

vector, to find a vector x such that

xTAx

xTx
≤ (1 + ϵ)λmin(A). (18)

The number of rounds required for this is O(log n/ϵ); for a proof see [16]. Anal-

ogously, given a pair of positive definite matrices (A,B), one can perform power

iteration with the matrix A−1B to find a vector x such that

xTAx

xTBx
≤ (1 + ϵ)λmin(A,B).

The proof is similar to the simple eigenvalue problem case, using only the ad-

ditional fact that the generalized eigenvectors of the pair (A−1, B−1) are the

usual eigenvectors of the matrix A−1B, in addition with the fact that the eigen-115

vectors are A-orthogonal and B-orthogonal [15]. Note that the iteration can

be extended to the case when A has a known null space (as in the case of

Laplacians), by simply operating on vectors orthogonal to the null space.

Additionally observe that each step of power iteration A−1Byi can be im-

plemented as a linear system solve Az = Byi. Instead of solving exactly a linear120

system with the Laplacian A, one can use a more efficient iterative solver, and

compute a solution z̃ that satisfies ||z̃ − z||A ≤ (1 + ϵ/4)||A−1yi||A. Using fast

Laplacian solvers, this can be computed in time near-linear time [17]. In such
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solvers, the approximate solution of a linear system Ay = b implements im-

plicitly a matrix-vector multiplications Ã−1y, where Ã−1 is spectrally close to125

A−1. Spielman and Teng [16] observe that this is sufficient for the computation

of an approximate eigenvector that satisfies inequality 18. This extends to the

generalized problem with Laplacians. Finally, a little more care has to be taken

for the case of Laplacian solvers that are randomized. In that case, O(log(1/p))

different runs of the inverse power method are needed to get a good approxi-130

mate eigenvector with probability at least 1 − p. Overall, with the use of fast

Laplacian solvers [17], the running time required to compute a 2-approximate

eigenvector is O(n log2 n log(1/p)), where n is the number of non-zero entries in

A and B.
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