

A Generalized Cheeger Inequality

Ioannis Koutis^a, Gary Miller^b, Richard Peng^c

^a*Department of Computer Science, New Jersey Institute of Technology*

^b*Computer Science Department, Carnegie Mellon University*

^c*Cheriton School of Computer Science, University of Waterloo*

Abstract

The generalized conductance $\phi(G, H)$ between two weighted graphs G and H on the same vertex set V is defined as the ratio

$$\phi(G, H) = \min_{S \subseteq V} \frac{cap_G(S, \bar{S})}{cap_H(S, \bar{S})},$$

where $cap_G(S, \bar{S})$ is the total weight of the edges crossing from vertex set $S \subseteq V$ to $\bar{S} = V - S$. We show that the minimum generalized eigenvalue $\lambda(L_G, L_H)$ of the pair of Laplacians L_G and L_H satisfies

$$\phi(G, H) \geq \lambda(L_G, L_H) \geq \phi(G, H)\phi(G)/16,$$

where $\phi(G)$ is the standard conductance of G . A generalized cut that meets this bound can be obtained from the generalized eigenvector corresponding to $\lambda(L_G, L_H)$.

Keywords: Spectral graph theory, Generalized cuts, Cheeger inequality

1. Introduction

The discrete version of the Cheeger inequality [2] relates graph connectivity with the second eigenvalue of the normalized graph Laplacian [3]. It has been a driving force in spectral graph theory, algorithm design and machine learning (for example, see [4, 5, 6, 7, 8, 9, 10]). More recently, there have been

*This work has previously appeared as non-reviewed supplementary material in [1].
URL: ikoutis@njit.edu (Ioannis Koutis), gmliller@cs.cmu.edu (Gary Miller), y5peng@uwaterloo.ca (Richard Peng)

improvements to the basic inequality that take into account higher order spectral gaps [11], or extend it to inequalities reflecting multiway graph cuts [12].

The departure point of this article is the observation that the eigenvalues of the normalized Laplacian can be viewed as the *generalized eigenvalues* of a pair of graph Laplacians (L_G, L_K) , where G is the given graph and K is a complete weighted graph whose edge weights depend solely on the vertex degrees of G . In turn, the generalized eigenvalue problem (L_G, L_K) is a relaxation of a simultaneous cut problem on (G, K) , known as the sparsest cut problem. In this work we present a generalization of the standard Cheeger inequality to arbitrary pairs of graphs (G, H) . The new inequality recovers, up to a constant factor, the original Cheeger inequality for the case when $H = K$. Up to our knowledge, a similar question was previously considered by Trevisan [13]; this is further discussed in Section 2.4.

2. Background and Definitions

Let $G = (V, E, w)$ be a weighted graph, where V is the set of vertices $E \subseteq V \times V$ is the set of edges, and $w : E \rightarrow \mathbb{R}^+$ are positive weights on the edges. For $v \in V$ and $S \subseteq V$ we let

$$vol(v) = \sum_{(v,w) \in E} w(v, u) \quad \text{and} \quad vol(S) = \sum_{v \in S} vol(v).$$

In order to avoid trivial considerations we assume that for every v , we have $vol(v) > 0$. We also denote by $cap(S, \bar{S})$ the total weight of edges with exactly one endpoint in S and one endpoint in $\bar{S} = V - S$. The **sparsity** of a cut (S, \bar{S}) is defined as

$$\phi_S(G) = \frac{cap(S, \bar{S})}{\min\{vol(S), vol(\bar{S})\}}.$$

The **conductance** of G is defined as

$$\min_{\substack{S \subseteq V, \\ S \neq \emptyset}} \phi_S(G)$$

The Laplacian of G is defined by

$$L(u, v) = -w(u, v) \quad \text{and} \quad L(u, u) = \sum_{v \neq u} L(u, v).$$

20 The normalized Laplacian \tilde{L} of G is the matrix $D^{-1/2}LD^{-1/2}$ where D is the diagonal of L . It is well understood that the normalized Laplacian of a connected graph is positive semi-definite with a unique zero eigenvalue.

2.1. The standard Cheeger inequality and cut algorithm

If λ_2 is the second eigenvalue of the normalized Laplacian, then the Cheeger inequality relates it to $\phi(G)$ as follows:

$$\lambda_2 \geq \phi(G)^2/2. \quad (1)$$

At least one proof of the Cheeger inequality, due to Mihail [14], actually shows something stronger. Namely, for any vector $y \perp \text{Null}(\tilde{L}_G)$, we can find a set S_y such that

$$\phi_{S_y}(G) < 2(y^T \tilde{L}_G y)^{1/2}. \quad (2)$$

25 The cut can be found by letting S_y consist of the vertices corresponding to the k smallest entries of $D^{-1/2}y$, for some $1 \leq k \leq n$. In particular, by letting y to be a standard approximation to the second eigenvector of the normalized Laplacian, then we have that $y^T \tilde{L}_G y = \Theta(\lambda_2)$. It thus follows that we can compute a cut with sparsity $O(\sqrt{\phi})$, in polynomial time. Some further algorithmic details are discussed in Section 4.

30 2.2. Generalized cuts for graph pairs

We will now consider pairs of weighted graphs (G, H) on the same vertex set V . We assume that G is connected. We define the generalized sparsity of a cut (S, \bar{S}) as:

$$\phi_S(G, H) = \frac{\text{cap}_G(S, \bar{S})}{\text{cap}_H(S, \bar{S})}.$$

We define the **generalized conductance** between G and H as follows:

$$\phi(G, H) = \min_{\substack{S \subset V, \\ S \neq \emptyset}} \phi_S(G, H).$$

To see the utility of this definition, we observe that the sparsest cut problem can be captured within a factor of 2 as a generalized cut problem between two

graphs. This is also known as the non-uniform sparsest cut problem. To this end let us define the **demand graph** $D_G = (V, E', w')$ with every edge being present in E' and the weights specified by

$$w'(u, v) = \frac{\text{vol}(u)\text{vol}(v)}{\text{vol}(V)}.$$

Let $S \subseteq V$. Observe that by construction we have

$$\text{cap}_{D_G}(S, \bar{S}) = \frac{\text{vol}(S)\text{vol}(\bar{S})}{\text{vol}(V)}.$$

Note now that

$$\min\{\text{vol}(S), \text{vol}(\bar{S})\} \geq \frac{\text{vol}(S)\text{vol}(\bar{S})}{\text{vol}(V)} \geq \min\{\text{vol}(S), \text{vol}(\bar{S})\}/2.$$

From this it can be seen that

$$\frac{\phi(G)}{2} \leq \phi(G, D_G) \leq \phi(G). \quad (3)$$

A number of other problems can be viewed as generalized cut problems.

For example, consider the **isoperimetric number** defined by:

$$h(G) = \min_{\substack{S \subseteq V, \\ S \neq \emptyset}} \frac{\text{cap}_G(S, \bar{S})}{\min\{|S|, |\bar{S}|\}}.$$

If K_n is the complete graph on n vertices with edges weighted by $1/n$, i.e. the identity over the space of sets orthogonal to the constant vectors, it can be verified that we have

$$\frac{\phi(G, K_n)}{2} \leq h(G) \leq \phi(G, K_n).$$

Another example is the min s - t cut problem which looks for a cut of minimum value among all possible cuts that separate s and t . If we denote that value by $\mu_{s,t}$, and let $G_{s,t}$ be the Laplacian of the edge (s, t) , we have

$$\mu_{s,t} = \phi(G, G_{s,t}).$$

2.3. The minimum generalized eigenvalue of a pair of Laplacians

Let (G, H) be a pair of graphs, where G is connected. Let $\mathbf{1}$ be the constant vector. It is well understood that

$$\mathbf{1} = \text{Null}(L_G) \subseteq \text{Null}(L_H).$$

Hence, we consider the generalized eigenvalue problem

$$L_G x = \lambda L_H x, \quad (4)$$

where x is constrained to satisfy $x^T \mathbf{1} = 0$. Then, equation 4 is equivalent to

$$L_G^+ L_H x = \lambda^{-1} x \Rightarrow M y = \lambda^{-1} y,$$

where $M = (L_G^+)^{1/2} L_H (L_G^+)^{1/2}$ and $y = L_G^{1/2} x$. We have $\mathbf{1} \in \text{Null}(M)$. Since M is symmetric, it follows that M has a maximum eigenvalue λ^{-1} with a corresponding eigenvector y , such that $y^T \mathbf{1} = 0$, which in turn implies that y can be written as $L_G^{1/2} x$ for some vector x satisfying the constraint $x^T \mathbf{1} = 0$. Thus, under that constraint, there is a minimum λ that satisfies equation 4. Let $\lambda(G, H)$ denote that minimum eigenvalue. By an application of the Courant-Fisher theorem [15] on M we get

$$\lambda(G, H) = \min_{x^T \mathbf{1} = 0} \frac{x^T L_G x}{x^T L_H x}. \quad (5)$$

Let now d be the vector containing the degrees of the vertices in G . If x is any vector, the map $y = x - \frac{x^T d}{(\mathbf{1}^T d)} \cdot \mathbf{1}$ satisfies $y^T d = 0$. The map is clearly invertible.

³⁵ This implies that there is a 1-1 map between vectors x with $x^T \mathbf{1} = 0$ and vectors y with $y^T d = 0$. Furthermore, for each pair (x, y) we have $x^T L x = y^T L y$ for any Laplacian matrix L , because $(y - x)$ is in the null space of L . We thus have

$$\lambda(G, H) = \min_{y^T d = 0} \frac{y^T L_G y}{y^T L_H y}. \quad (6)$$

2.4. Cuts and Eigenvalues

The value of a cut between S and \bar{S} can be expressed in terms of the graph Laplacian as:

$$\text{cap}_G(S, \bar{S}) = x_S^T L_G x_S,$$

where x_S is characteristic vector of S , i.e. the vector with ones in its entries corresponding to S and zeros in all other entries. It follows that the generalized conductance can be expressed as an optimization problem over the discrete 0-1 vectors:

$$\phi(G, H) = \min_{\substack{x \in \{0, 1\}^n \\ x^T \mathbf{1} \neq 0}} \frac{x^T L_G x}{x^T L_H x}.$$

Theorem 1. *We have $\lambda(G, H) \leq \phi(G, H)$.*

Proof. Let $x = \{0, 1\}^n$ and $y = x - \frac{1}{n}(x^T \mathbf{1})\mathbf{1}$. Note that for any Laplacian L we have $x^T L x = y^T L y$ because $y - x$ is in the null space of L . Because $y^T \mathbf{1} = 0$, by equation 5, we have

$$\lambda(G, H) \leq \frac{y^T L_G y}{y^T L_H y} = \frac{x^T L_G x}{x^T L_H x}.$$

⁴⁰ The claims follows by letting x be the characteristic vector of the cut attaining $\phi(G, H)$. \square

Remark-1: The eigenvalue $\lambda(G, H)$, as expressed in 5, can be viewed as a relaxation of $\phi(G, H)$ over the reals.

⁴⁵ The minimum eigenvalue λ_2 of the normalized Laplacian of G is equal to the minimum eigenvalue of the generalized problem $L_G x = \lambda D x$, under the constraint $x^T d = 0$, where d is the vector containing the degrees of the vertices in G . Then, due to Lemma 2, λ_2 is equal to $\lambda(G, D_G)$ and thus it can be seen as a relaxation of $\phi(G, D_G)$ which is within a factor of 2 from $\phi(G)$ (equation 3).
⁵⁰ Thus the Cheeger inequality characterizes $\phi(G, D_G)$ in terms of $\lambda(G, D_G)$. We aim to prove a similar characterization for the generalized conductance of any pair of graphs.

Remark-2: In [13], Trevisan asked whether the Cheeger inequality can be extended to the generalized cut on a pair of graphs (G, H) , for arbitrary H . They showed that under a complexity assumption known as the Unique Games Conjecture, it is impossible to find a cut of sparsity $O(\sqrt{\phi(G, H)})$ in polynomial time. That indicates that an analog of the Cheeger inequality and the associated algorithm do not exist. Our result is compatible with Trevisan's work, as it provides a different type of bound.

3. Generalized Cheeger Inequality

⁶⁰ We now present and prove our main theorem; the proof is based on lemmas that are proved separately, in Section 3.1.

Theorem 2. Let G and H be any two weighted graphs and d be the vector containing the degrees of the vertices in G . For any vector x such that $x^T d = 0$, we have

$$\frac{x^T L_G x}{x^T L_H x} \geq \phi(G, D_G) \cdot \phi(G, H)/8,$$

where D_G is the demand graph of G . If we let x be an eigenvector corresponding to the minimum eigenvalue $\lambda(G, H)$ we get that

$$\lambda(G, H) \geq \phi(G, D_G) \cdot \phi(G, H)/8.$$

We first introduce auxiliary notation. Let V^- denote the set of u such that $x_u \leq 0$ and V^+ denote the set such that $x_u > 0$. Then we can divide E_G into two sets: E_G^{same} consisting of edges with both endpoints in V^- or V^+ , and E_G^{dif} consisting of edges with one endpoint in each. We also define E_H^{dif} and E_H^{same} similarly.

Proof. Let

$$S_G = \sum_{uv \in E_G^{same}} w_G(u, v) |x_u^2 - x_v^2| + \sum_{uv \in E_G^{dif}} w_G(u, v) (x_u^2 + x_v^2). \quad (7)$$

and

$$\begin{aligned} A &= \sum_{uv \in E_G^{same}} w_G(u, v) (x_u - x_v)^2 + \sum_{uv \in E_G^{dif}} w_G(u, v) (x_u^2 + x_v^2). \\ B &= \sum_{uv \in E_G^{same}} w_G(u, v) (x_u + x_v)^2 + \sum_{uv \in E_G^{dif}} w_G(u, v) (x_u^2 + x_v^2). \end{aligned}$$

We define two vectors on the edges of G :

- $u_A(u, v) = \sqrt{w_G(u, v)} |x_u - x_v|$ if $uv \in E_G^{same}$
- $u_A(u, v) = \sqrt{w_G(u, v)} (x_u^2 + x_v^2)$ if $uv \in E_G^{dif}$

and similarly

- $u_B(u, v) = \sqrt{w_G(u, v)} |x_u + x_v|$ if $uv \in E_G^{same}$
- $u_B(u, v) = \sqrt{w_G(u, v)} (x_u^2 + x_v^2)$ if $uv \in E_G^{dif}$

We have $A = \langle u_A, u_A \rangle$ and $B = \langle u_B, u_B \rangle$. By the Cauchy-Schwarz inequality we have

$$AB \geq \langle u_A, u_B \rangle^2.$$

This gives that:

$$AB \geq \left(\sum_{uv \in E_G^{same}} w_G(u, v) |x_u^2 - x_v^2| + \sum_{uv \in E_G^{diff}} w_G(u, v) (x_u^2 + x_v^2) \right)^2 = S_G^2. \quad (8)$$

We also have

$$\begin{aligned} x^T L_G x &= \sum_{uv \in E_G} w_G(u, v) (x_u - x_v)^2 \\ &= \sum_{uv \in E_G^{same}} w_G(u, v) (x_u - x_v)^2 + \sum_{uv \in E_G^{diff}} w_G(u, v) (x_u - x_v)^2 \\ &\geq A \end{aligned} \quad (9)$$

The last inequality follows by $x_u x_v \leq 0$ as $x_u \leq 0$ for all $u \in V^-$ and $x_v \geq 0$ for all $v \in V^+$. We also have $(x_u + x_v)^2 \leq 2x_u^2 + 2x_v^2$, since $2x_u^2 + 2x_v^2 - (x_u + x_v)^2 = (x_u - x_v)^2 \geq 0$. Thus, we get

$$\begin{aligned} B &\leq 2 \left(\sum_{uv \in E_G^{same}} w_G(u, v) (x_u^2 + x_v^2) + \sum_{uv \in E_G^{diff}} w_G(u, v) (x_u^2 + x_v^2) \right) \\ &= 2x^T D x = 2x^T L_{D_G} x, \end{aligned} \quad (10)$$

⁷⁵ where D is the diagonal of L_G and the last equality comes from Lemma 2 and the assumption that $x^T d = 0$.

Applying inequalities 9, 10 and 8 we get

$$\frac{x^T L_G x}{x^T L_H x} \geq \frac{A}{x^T L_H x} \geq \frac{1}{2} \cdot \frac{A}{x^T L_H x} \cdot \frac{B}{x_{D_G}^T x} \geq \frac{1}{2} \cdot \frac{S_G}{x^T L_H x} \cdot \frac{S_G}{x^T L_{D_G} x} \quad (11)$$

Finally with two applications of Lemma 3 on the pairs graph (G, H) and (G, D_G) , we have

$$\frac{x^T L_G x}{x^T L_H x} \geq \frac{1}{2} \cdot \frac{S_G}{x^T L_H x} \cdot \frac{S_G}{x_{D_G}^T x} \geq \frac{1}{8} \phi(G, H) \phi(G, D_G). \quad (12)$$

Remark-1: By setting $H = D_G$ and using equation 3, we get that

$$\lambda_2 = \lambda(G, D_G) \geq \phi(G, D_G)^2/8 \geq \phi(G)^2/32,$$

which recovers the original Cheeger inequality up to a factor of 16.

Remark-2: Let G be the cycle graph on n vertices, and K be the complete graph on n vertices. Using the well-known fact that $\lambda_2(G) = \Theta(1/n^2)$ we have

$$\lambda_2(G) = \min_{x^T \mathbf{1} = 0} x^T L_G x = \min_{x^T \mathbf{1} = 0} n \cdot \frac{x^T L_G x}{x^T L_K x} = \Theta(1/n^2),$$

where we used the identity $x^T L_K x = n$ for all vectors x orthogonal to $\mathbf{1}$. It thus follows that

$$\lambda(G, K) = \min_{x^T \mathbf{1} = 0} \frac{x^T L_G x}{x^T L_K x} = \Theta(1/n^3)$$

We also have $\phi(G, K) = \Theta(1/n^2)$, $\phi(G, D_G) = \Theta(1/n)$. It follows that the generalized Cheeger inequality is tight up to constants even when $H = K$.

85 3.1. Lemmas

We present and prove lemmas used in the proof of Theorem 2.

Lemma 1. *For all $a_i, b_i > 0$ we have*

$$\frac{\sum_i a_i}{\sum_i b_i} \geq \min_i \left\{ \frac{a_i}{b_i} \right\}.$$

Lemma 2. *Let G be a graph, d be the vector containing the degrees of the vertices, and D be corresponding diagonal matrix. For all vectors x where $x^T d = 0$ we have*

$$x^T D x = x^T L_{D_G} x,$$

where D_G is the demand graph for G .

Proof. Let d be the vector consisting of the entries along the diagonal of D . By definition, we have

$$L_{D_G} = D - \frac{dd^T}{\text{vol}(V)}.$$

The lemma follows. \square

The following lemma is similar to one used in the proof of Cheeger's inequality [3]:

Lemma 3. *Let G and H be any two weighted graphs on the same vertex set V partitioned into V^- and V^+ . For any vector x we have*

$$\frac{S_G}{x^T L_H x} \geq \frac{\phi(G, H)}{2}, \quad (13)$$

where, as defined in equation 7,

$$S_G = \sum_{uv \in E_G^{same}} w_G(u, v) |x_u^2 - x_v^2| + \sum_{uv \in E_G^{diff}} w_G(u, v) (x_u^2 + x_v^2).$$

Proof. We begin with two inequalities:

Note that $2x_u^2 + 2x_v^2 - (x_u - x_v)^2 = (x_u + x_v)^2 \geq 0$ gives:

$$(x_u - x_v)^2 \leq 2x_u^2 + 2x_v^2.$$

Also, suppose $uv \in E_H^{same}$ and without loss of generality that $|x_u| \geq |x_v|$.

Then letting $y = |x_u| - |x_v|$, we get:

$$\begin{aligned} |x_u^2 - x_v^2| &= (|x_v| + y)^2 - |x_v|^2 \\ &= y^2 + 2y|x_v| \\ &\geq y^2 = (x_u - x_v)^2. \end{aligned}$$

The last equality follows because x_u and x_v have the same sign.

We then use the above inequalities to upper bound the $x^T L_H x$ term.

$$\begin{aligned} x^T L_H x &= \sum_{uv \in E_H^{same}} w_H(u, v) (x_u - x_v)^2 + \sum_{uv \in E_H^{diff}} w_H(u, v) (x_u - x_v)^2 \\ &\leq \sum_{uv \in E_H^{same}} w_H(u, v) |x_u^2 - x_v^2| + \sum_{uv \in E_H^{diff}} w_H(u, v) (2x_u^2 + 2x_v^2) \\ &\leq 2 \left(\sum_{uv \in E_H^{same}} w_H(u, v) |x_u^2 - x_v^2| + \sum_{uv \in E_H^{diff}} w_H(u, v) (x_u^2 + x_v^2) \right) \\ &= 2S_H \end{aligned} \quad (14)$$

Here S_H is analogous to the quantity S_G defined for G in the Lemma statement. We thus have:

$$\frac{S_G}{x^T L_H x} \geq \frac{S_G}{2S_H} \quad (15)$$

We can now decompose the sum S_G further into parts for V^- and V^+ :

$$\begin{aligned} S_G &= \sum_{uv \in E_G^{same}} w_G(u, v) |x_u^2 - x_v^2| + \sum_{uv \in E_G^{diff}} w_G(u, v) (x_u^2 + x_v^2) \\ &= N_G + P_G \end{aligned}$$

where we set

$$\begin{aligned} N_G &= \sum_{u \in V^-, v \in V^-} w_G(u, v) |x_u^2 - x_v^2| + \sum_{u \in V^-, v \in V^+} w_G(u, v) x_u^2 \\ P_G &= \sum_{u \in V^+, v \in V^+} w_G(u, v) |x_u^2 - x_v^2| + \sum_{u \in V^+, v \in V^-} w_G(u, v) x_v^2. \end{aligned}$$

We similarly write $S_H = N_H + P_H$ and by applying Lemma 1 we get:

$$\frac{S_G}{S_H} = \frac{N_G + P_G}{N_H + P_H} \geq \min \left\{ \frac{N_G}{N_H}, \frac{P_G}{P_H} \right\}$$

By symmetry in V^- and V^+ , it suffices to show that

$$\frac{N_G}{N_H} \geq \phi(G, H). \quad (16)$$

Let $V^- = \{u_1, \dots, u_k\}$ and without loss of generality assume that

$$x_{u_1} \leq x_{u_2} \leq \dots \leq x_{u_k} \leq 0.$$

Let $r_t = x_{u_t}^2 - x_{u_{t+1}}^2$, for $t = 1, \dots, k-1$, and $r_k = x_{u_k}^2$. Also, let S_i denote the set of nodes $\{u_1, \dots, u_i\}$.

Consider now a term $|x_{u_i}^2 - x_{u_j}^2|$ where $x_{u_i} \leq x_{u_j}$. We can re-write it as

$$w_G(u_i, u_j) |x_{u_i}^2 - x_{u_j}^2| = w_G(u_i, u_j) (x_{u_i}^2 - x_{u_j}^2) = w_G(u_i, u_j) \sum_{t=i}^{j-1} r_t.$$

Similarly for a term $x_{u_i}^2$ associated with an edge from $u_i \in V^-$ to $v \in V^+$ we have

$$w_G(u_i, v) x_{u_i}^2 = w_G(u_i, v) \sum_{t=i}^k r_t.$$

We re-write every term of N_G as suggested above. It can be seen that r_i will appear multiplied by $w_G(e)$ for each edge e whose one endpoint is in S_i and the other endpoint in $V - S_i$. Then the coefficient of r_i in L_G will be equal to $cap(S_i, V - S_i)$. It follows that we have

$$N_G = \sum_{i=1}^k cap_G(S_i, \bar{S}_i) r_i$$

and similarly for H

$$N_H = \sum_{i=1}^k cap_H(S_i, \bar{S}_i) r_i.$$

By applying Lemma 1 and the definition of $\phi(G, H)$, we have

$$\frac{N_G}{N_H} = \frac{\sum_{i=1}^k cap_G(S_i, \bar{S}_i) r_i}{\sum_{i=1}^k cap_H(S_i, \bar{S}_i) r_i} \geq \min_i \frac{cap_G(S_i, \bar{S}_i)}{cap_H(S_i, \bar{S}_i)} \geq \phi(G, H).$$

This proves equation 16. Then by substituting in inequality 15 the Lemma follows. \square

4. Computation

In this section we –somewhat informally– discuss the computation of an approximation to the minimum cut for the pair (G, H) . To simplify our notation let us denote L_G and L_H by A and B respectively.

Suppose x is an arbitrary vector not in the null space of B . Let $S_{x,i}$ be the set of nodes u such that $x(u)$ is among the i smallest entries of x . The combination of Lemmas 3 implicitly show that

$$\min_i \frac{cap_G(S_{x,i}, \bar{S}_{x,i})}{cap_H(S_{x,i}, \bar{S}_{x,i})} \leq \frac{8}{\phi(G, D_G)} \cdot \frac{x^T A x}{x^T B x}.$$

That means that given x one can compute a cut with sparsity at most

$$\frac{x^T A x}{x^T B x} \cdot \frac{8}{\phi(G, D_G)}$$

by sorting x , and then sweeping x for computing the smallest of the $n - 1$ generalized cuts defined by x , exactly as in the case of the standard Cheeger inequality.

To obtain the best possible approximation within this context, we would like to minimize $(x^T Ax / x^T Bx)$; it is well understood that the minimizer of this Rayleigh ratio is the associated eigenvector y . This suggests, similar to the discussion in Section 2.1, that we can find in polynomial time a cut (S, \bar{S}) which is at most $1/\phi(G, D_G)$ larger than the ratio $(x^T Ax / x^T Bx)$.

Faster approximate computation. We say that x is an $(1+\epsilon)$ -approximate eigenvector if it satisfies

$$\frac{x^T Ax}{x^T Bx} \leq (1 + \epsilon) \lambda_{\min}(A, B). \quad (17)$$

The computation of an approximate eigenvector can be done in near-linear time. We informally describe the steps. Given any positive definite matrix A , one can use the inverse power iteration $y_{i+1} = A^{-1}y_i$, where y_0 is a random vector, to find a vector x such that

$$\frac{x^T Ax}{x^T x} \leq (1 + \epsilon) \lambda_{\min}(A). \quad (18)$$

The number of rounds required for this is $O(\log n/\epsilon)$; for a proof see [16]. Analogously, given a pair of positive definite matrices (A, B) , one can perform power iteration with the matrix $A^{-1}B$ to find a vector x such that

$$\frac{x^T Ax}{x^T Bx} \leq (1 + \epsilon) \lambda_{\min}(A, B).$$

The proof is similar to the simple eigenvalue problem case, using only the additional fact that the generalized eigenvectors of the pair (A^{-1}, B^{-1}) are the usual eigenvectors of the matrix $A^{-1}B$, in addition with the fact that the eigenvectors are A -orthogonal and B -orthogonal [15]. Note that the iteration can be extended to the case when A has a known null space (as in the case of Laplacians), by simply operating on vectors orthogonal to the null space.

Additionally observe that each step of power iteration $A^{-1}By_i$ can be implemented as a linear system solve $Az = By_i$. Instead of solving exactly a linear system with the Laplacian A , one can use a more efficient iterative solver, and compute a solution \tilde{z} that satisfies $\|\tilde{z} - z\|_A \leq (1 + \epsilon/4)\|A^{-1}y_i\|_A$. Using fast Laplacian solvers, this can be computed in time near-linear time [17]. In such

solvers, the approximate solution of a linear system $Ay = b$ implements implicitly a matrix-vector multiplication $\tilde{A}^{-1}y$, where \tilde{A}^{-1} is spectrally close to A^{-1} . Spielman and Teng [16] observe that this is sufficient for the computation of an approximate eigenvector that satisfies inequality 18. This extends to the generalized problem with Laplacians. Finally, a little more care has to be taken for the case of Laplacian solvers that are randomized. In that case, $O(\log(1/p))$ different runs of the inverse power method are needed to get a good approximate eigenvector with probability at least $1 - p$. Overall, with the use of fast Laplacian solvers [17], the running time required to compute a 2-approximate eigenvector is $O(n \log^2 n \log(1/p))$, where n is the number of non-zero entries in A and B .

5. Acknowledgements

I. Koutis was partially supported by NSF awards #1813374 and #2039863. G. Miller was partially supported by NSF award #1637523. R. Peng was partially supported by NSF award #1846218.

References

- [1] M. Cucuringu, I. Koutis, S. Chawla, G. Miller, R. Peng, Simple and scalable constrained clustering: a generalized spectral method, Vol. 51 of Proceedings of Machine Learning Research, PMLR, Cadiz, Spain, 2016, pp. 445–454.
URL <http://proceedings.mlr.press/v51/cucuringu16.html>
- [2] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, in: Proceedings of the Princeton conference in honor of Professor S. Bochner, 1969, pp. 195–199.
- [3] F. Chung, Spectral Graph Theory, Vol. 92 of Regional Conference Series in Mathematics, American Mathematical Society, 1997.

150 [4] B. Mohar, Difference equations, isoperimetric inequality and transience of
certain random walks, *Trans. Am. Math. Soc* 284 (1984) 787–794.

[5] N. Alon, V. D. Milman, λ_1 , isoperimetric inequalities for graphs, and superconcentrators, *Journal of Combinatorial Theory, Series B* 38 (1) (1985) 73–88. doi:10.1016/0095-8956(85)90092-9.

155 [6] N. Alon, Eigenvalues and expanders, *Combinatorica* 6 (2) (1986) 83–96.
doi:10.1007/BF02579166.

[7] C. Thomassen, Isoperimetric Inequalities and Transient Random Walks on Graphs, *Ann. Probab.* 20 (3) (1992) 1592–1600. doi:10.1214/aop/1176989708.

160 URL <https://doi.org/10.1214/aop/1176989708>

[8] J. Tan, On Cheeger Inequalities of a Graph, *Discrete Math.* 269 (1–3) (2003) 315–323. doi:10.1016/S0012-365X(03)00127-4.
URL [https://doi.org/10.1016/S0012-365X\(03\)00127-4](https://doi.org/10.1016/S0012-365X(03)00127-4)

[9] J. Shi, J. Malik, Normalized cuts and image segmentation, *IEEE Trans. on Pattern Analysis and Machine Intelligence* 22 (8) (2000) 888–905. doi:10.1109/34.868688.

165 [10] U. Luxburg, A Tutorial on Spectral Clustering, *Statistics and Computing* 17 (4) (2007) 395–416. doi:10.1007/s11222-007-9033-z.
URL <https://doi.org/10.1007/s11222-007-9033-z>

170 [11] T. C. Kwok, L. C. Lau, Y. T. Lee, S. Oveis Gharan, L. Trevisan, Improved Cheeger’s Inequality: Analysis of Spectral Partitioning Algorithms through Higher Order Spectral Gap, in: *Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’13*, Association for Computing Machinery, New York, NY, USA, 2013, p. 11–20. doi:10.1145/2488608.2488611.
URL <https://doi.org/10.1145/2488608.2488611>

[12] J. R. Lee, S. O. Gharan, L. Trevisan, Multiway Spectral Partitioning and Higher-Order Cheeger Inequalities, *J. ACM* 61 (6). doi:10.1145/2665063. URL <https://doi.org/10.1145/2665063>

¹⁸⁰ [13] L. Trevisan, Is Cheeger-type Approximation Possible for Nonuniform Sparsest Cut?, *CoRR* abs/1303.2730. URL <http://arxiv.org/abs/1303.2730>

¹⁸⁵ [14] M. Mihail, Conductance and convergence of markov chains-a combinatorial treatment of expanders, in: 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, IEEE Computer Society, 1989, pp. 526–531. doi:10.1109/SFCS.1989.63529. URL <http://doi.ieee.org/10.1109/SFCS.1989.63529>

¹⁹⁰ [15] G. Stewart, J.-G. Sun, *Matrix Perturbation Theory*, Academic Press, Boston, 1990.

[16] D. A. Spielman, S. Teng, Nearly-linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems, *SIAM J. Matrix Anal. & Appl.* 35(3) (2014) 835–885.

¹⁹⁵ [17] I. Koutis, G. L. Miller, R. Peng, A fast solver for a class of linear systems, *Commun. ACM* 55 (10) (2012) 99–107. doi:10.1145/2347736.2347759. URL <https://doi.org/10.1145/2347736.2347759>