A MEASURE ESTIMATE IN GEOMETRY OF NUMBERS AND
IMPROVEMENTS TO DIRICHLET’S THEOREM
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Abstract. Let be a continuous decreasing function dened on all large positive real numbers. We
say that a real m n matrix A is -Dirichlet if for every suciently large real number t onecan nd p 2
Z™, q2 Z" r fOg satisfying kAqg pk™ < (t) and kgk" < t. This property was introduced by
Kleinbock and Wadleigh in 2018, generalizing the property of A being Dirichlet improvable which
dates back to Davenport and Schmidt (1969). In the present paper, we give sucient conditions
on to ensure that the set of -Dirichlet matrices has zero or full Lebesgue measure.
Our proof is dynamical and relies on the eective equidistribution and doubly mixing of certain
expanding horospheres in the space of lattices. Another main ingredient of our proof is an
asymptotic measure estimate for certain compact neighborhoods of the critical locus (with respect to
the supremum norm) in the space of lattices. Our method also works for the analogous weighted
problem where the relevant supremum norms are replaced by certain weighted quasi-norms.
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1. Introduction

1.1. Background. Let m;n be two positive integers and let Mm.n(R) be the space of m by n real
matrices. The starting point of our work is the following higher dimensional generalization of the
classical Dirichlet’s Diophantine approximation theorem, see e.g. [2, §1.5].

Theorem 1.1. For any A 2 Mm;n(R) and t > 1, there exists (p;q) 2 Z™ (Z" r fOg) satisfying
the following system of inequalities:

(1.1) kAg pk™ t} and kgk" < t:

Here k k denotes the supremum norm on R™M and R" respectively.

A natural question to ask is whether one can improve (1.1) by replacing 1=t by a smaller function,
that is, consider the following system of inequalities:
(1.2) kAg pk™< (t) and kqgk"< t
where is a positive, continuous, decreasing function which decays to zero at innity. Historically
there have been two directions to pursue in this regard: looking for solvability of (1.2) for an
unbounded set of t > 0 vs. for all large enough t. The former is sometimes referred to as asymptotic
approximation, and has culminated in denitive results such as the Khintchine-Groshev theorem. In
this paper we are interested in the latter, less studied set-up of uniform approximation. Following the
denition in Kleinbock and Wadleigh [25], we say that an m by n real matrix A is -Dirichlet if
the system of inequalities (1.2) has solutions in (p;q) 2 Z™ (Z" r fOg) for all suciently large t. It is
clear that A 2 M. (R) is -Dirichlet if and only if A+ A® is -Dirichlet for any A 2 M., (2).
Thus with slight abuse of notation, we denote by Dlm.n( ) Mm:n(R=Z) the set of -Dirichlet
matrices.

Let 1(t) = 1=t. The problem of improving Dirichlet’s theorem was initiated by Davenport and
Schmidt [10, 9] where they showed that the set

[
(1.3) Dlm;:n := Dlm:n(c 1)
O<c<1
of Dirichlet improvable matrices is of Lebesgue measure zero, while having full Hausdor dimension
mn. More recently, Kleinbock and Mirzadeh [22, Theorem 1.5] showed that for any xed 0 < c< 1, the
Hausdor dimension of DIm:n(c 1) is strictly smaller than mn. There have also been extensive studies
on the Hausdor dimensions of the (even smaller) set of the singular matrices,

Singm,n 1= Dlm;n(c 1):
O<c<1
After a series of breakthrough work, it is now known that the Hausdor dimension of Sing,,., is

mn 00 whenever maxfm; ng > 1; see [3, 4, 13, 7, 8].

On the other hand, for a general decreasing function witht! t (t) increasing, Kleinbock and
Wadleigh proved a zero-one law for the Lebesgue measure of DI1.1( ) depending on the divergence or
convergence of a certain series involving [25, Theorem 1.8]. See also [12] for the relevant
dimension theory of DI1.1( ), [23] for a similar zero-one law with the supremum norm replaced by the
Euclidean norm and [26, 15] for analogous results in the inhomogeneous setting.

The arguments in [25] rely on the theory of continued fractions and are not applicable for higher
dimensions. Nevertheless, for general dimensions, building on ideas from [6, 19], a dynamical
approach was proposed in [25, §4], reformulating the problem as a shrinking target problem, which
asks whether a generic orbit in a dynamical system hits a given sequence of shrinking targets
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innitely often. To describe this dynamical interpretation, let us rst x some notation. Letd =
m+n and let X4 := SLg(R)=SL4(Z) be the homogeneous space which parameterizes the space of
unimodular lattices in R via gSL4(Z) $ gZ . We note that SLq(R) acts on X4 naturally via the
regular action: g= ghZ forahy g2 SL4(R) and = hZ 2 X4. for any s 2 R, let a5 be the diagonal
matrix

e~ M, 0
1= 2 SLq(R):
as 0 NEUR d(R)
Let : X L [0;1) be the function dened by
1
(1.4) () := sup log :
v2rfog m
Finally, let us denote
! "
(1.5) =A== g " f‘*zxd : A2 Mm;n(R)

The submanifold Y X4 can be naturally identied with the mn-dimensional torus Mn,.,(R=Z) via
A S A 2 Mpn;n(R=Z). Throughout the paper, we denote by Leb the probability Lebesgue measure
onY = Mm;n(R=Z&; for simplicity of notation, for any funﬁtion f on Y we will abbreviate the space
average , f(a)dLeb(A) by either Leb(f) or | f(a) dA.

It was shown in [25, Proposition 4.5] that for any given as above, there exists a unique
continuous functionr = r :[sg;1)! (0; 1) such that

(1.6) A 2 Mm;n(R) is not -Dirichlet, asa 2 110; r(s)] for an unbounded set of s > sg.

This equivalence is usually called the Dani Correspondence. In view of this interpretation, our task
is to nd conditions which ensure that for almost every (or almost no) A 2 Mm:n(R), the orbit
fasagsss ohits the shrinking target 1[0; r(s)] for an unbounded set of s-values. We note that this
was also the strategy used in [19] giving a dynamical proof of the classical Khintchine-Groshev
Theorem, where the relevant shrinking targets are certain cusp neighborhoods in X . For our case, by
Mahler’s compactness criterion, the shrinking targets 1[0;r(s)] are compact neighborhoods of the
critical locus 1f0g, whose explicit description is given by Hajos’s Theorem [11] (cf. Theorem 2.3
below). The fact that these shrinking targets are compact sets causes new diculties compared to the
situation in [19], see the discussion in Section 1.3.

1.2. Main results. In the present paper, based on the dynamical interpretation described above, we
give sucient conditions on implying that DIm;n( ) is of zero or full Lebesgue measure. In
fact, with some modications, our arguments also work for the analogous weighted problem where the
supremum norms in (1.2) are replaced by certain weighted quasi-norms, as introduced in [16]. We
thus prove our main result in that generality. We rst introduce the relevant notation.

Let 2 R™ and 2 R" be two weight vectors, that is

= (15::1;m) 2 (Rso)™ and = (1;:::;n) 2 (Rs0)"
P P
with ;i = ji = 1. Wesay that A 2 My.n(R) is  .-Dirichlet if the system of inequalities
(1.7) kAg pkc< (t) and kgk< t

has solutions in (p;q) 2 Z™ (Z" r fOg) for all suciently large t. Here
n o n o
kxk := max jxij™ :1i m and kyk := max jyjj1=i 1) n
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are the two quasi-norms associated with and respectively. Again it is easy to see that A 2

Mm:n(R) is .-Dirichlet if and only if A + AC is .-Dirichlet for any A° 2 Mp,.n(Z), and we
denote by DI;( ) Mm;n(R=Z) the set of -Dirichlet matrices. We note that when = (_;:::;
n)and = (Lo ), thenlDI;( 3= Dlm;n( ).

We now state our main result which gives sucient conditions on determining when DI.( ) is

of full or zero Lebesgue measure.

Theorem 1.2. Fix m;n 2 N and two weight vectors 2 R™ and 2 R". Let d= m+ n, and let {4

2
= d +di4 and 4= du

2 2
Let to > Oand let :[tg;1)! (0; 1) be a continuous, decreasing function such that
(1.8) the function t! t (t) is increasing
and
(1.9) (t) < 1(t)= 1=t for all t tg:
Let F (t):=1 t (t). If the series

X k *F (k) loge

(1.10) t F e

converges, then DI;( ) is of full Lebesgue measure. Conversely, if the series (1.10) diverges, and

P
k 'F (k){elogett 2

k
(1.11) lim inf Pt“ : LI
t1! 1
! okt K TF (K)o log? .

0;

then DI.( ) is of zero Lebesgue measure.

Remark 1. When m = n = 1, Theorem 1.2 is not new; in fact [25, Theorem 1.8] is stronger in the
sense that it gives a tight zero-one law without the extra assumption (1.11). We believe that an
analogous tight zero-one law should also hold for general dimensions m;n, i.e. that Theorem 1.2
should hold with the assumption (1.11) removed. See Remark 8 for a discussion of why assumption
(1.11) is needed in our proof.

Remark 2. The function F (t)=1 t (t) encodes via (t)= LF ® n view of the assump-

tions (1.8) and (1.9), F is a decreasing function and takes values in (0; 1). In particular, the limit

lim¢rg F () exists and lies in [0;1).

If lim¢i1 F (t) > 0, then the conclusion of Theorem 1.2 follows from the work of Kleinbock

and Weiss [27]. Indeed, in this case the series (1.10) diverges, and for any xed we have
tokty k 1F (k){d Iog_g—(k) logt; as t; ! 1, so that also the assumption (1.11) holds;

moreover, limyi11 F (t) > 0 implies that there exists some c 2 (0; 1) such that (t) < c=t, implying

that DI.( ) DI.(c 1); and by [27, Theorem 1.4], DI.(c 1) is a null set.

P

Remark 3. Let us give some explicit examples to illustrate our results. We note that each function
appearing below is strictly decreasing on [tg; 1) for tp suciently large.

(1) Let (t) = %( , F (t) = c(logt) ) for some c> 0and 0. In this case the series
(1.10) diverges if and only if L. It is{zj\lso easy to check that condition (1.11) is satised
whenever L. Hence Theorem 1.2 implies that for such , DI.( ) is of full
measure if > (> and of ‘zero measure if (q- 4



(2) Let (t)= Lcllogt) lz(dt('og"’gt) ¢, F (t) = c(logt) *“td(loglogt) ) forsomec> Oand 2 R.
In this case the series (1.10) diverges if and only if a*1 while the ggndition (1.11) is satised
if and only if < 2. Hence Theorem 1.2 implies that for such ,DI.( )
is of full measure if > d"?a
{% , 'Imeorem 1.2 gives no information (although we believe that DI.( )
is of zero measure also for these ; cf. Remark 1). We point out that in the special case
= {j—, the quotient in (1.11) remains bounded ast; ! 1; in this case our method of proof
allows us to conclude that at least the set DI.( ) is not of full Lebesgue measure; see
Remark 16.
Remark 4. Let us also point out that the assumption (1.9) is imposed only to avoid making the
statement of Theorem 1.2 unnecessarily complicated (since otherwise F (t) could be negative and
then the series (1.10) is not well-dened). Indeed, if (1.9) fails but satises the other assumptions
in Theorem 1.2, then DI.( ) is certainly of full Lebesgue measure. This is true since in this case after

possibly enlarging tg, we have (t) 1=t 1 “%ﬂmall t to and 0, and therefore
DI.( ) DI, t! ! ('°gt)ﬁ4tuhene the last set is of full Lebesgue measure whenever >
by Remark 3(1).

d . .
and of zero measure if < {‘i. However, for in the range
d

g+l

1
{ 4

One of the main ingredients in our proof of Theorem 1.2 is a measure estimate in geometry of
numbers, which we believe is of independent interest. Let 4 be the unique left SLy(R)-invariant
probability measure on X4 = SLgq(R)=SL4(Z). We are interested in the sets [0;r] in X4, asr !
0 . As we have discussed, these sets shrink toward the critical locus 1fog asr ! 0+, and
by Hajs’s Theorem [11] (cf. Theorem 2.3 below), the set 1fOg has a simple explicit description as a
nite union of compact submanifolds of positive codimension 92*9 1= {4+ 1in Xq. In particular
this implies that 4 1f0g = 0O and 4 1[0;r] ! Oasr ! OF. Thé following theorem gives an
asymptotic estimate on the exact rate of convergence in the limit just mentioned.

Theorem 1.3. We have
(1.12) ¢ YOo;rlar

(d 1)(d+2) d(d 1)
1 = rlatlpge 1. asr! 0%

r? - r

Our proof of Theorem 1.3 proceeds by bounding the sets 1[0; r] from above and below by more
explicit sets whose Haar measure we can estimate directly. In the proof of the upper bound we make
crucial use of Haje's Theorem. We remark that Hajos’s proof (from 1941) of the theorem, which
settled a conjecture of Minkowski from 1896, is surprisingly complicated, with the rst step being a
translation of the question into an algebraic statement about factorizations of nite abelian groups (see
also [35] for a nice presentation). It seems dicult to extend this proof in any direct way from the
case of 1fOg to deduce restrictions on the sets 1[0;r] which are suciently strong to imply the
desired upper bound on 4 1[0;r] . Instead we apply Haj§’s Theorem, in combination with a
compactness argument, to obtain a convenient containment relation for 1[0;r] valid for all
suciently small r (see Lemma 4.5 and Remark 11). This initial restriction serves as the starting
point for our analysis where we use direct, geometric arguments to derive further, r-dependent
restrictions on 1[0;r] for r small, strong enough to nally imply the desired upper bound on 4 1[0;r] .

Remark 5. In the case d = 2, the following explicit formula holds [36, p. 74]:
12 e2r42r 1+ (e ?) ifOr €25

1
[0;r] =
’ 1 12 2 ifr g2



where the function :(0;1]! R isdened by (1)= 0and 9(x)= (x * 1)log(x 1 1). It
follows that in this case we have an explicit asymptotic expansion sharpening (1.12):
, o Prieg + P2E O 2820 B0 g asrl 0
2r 2 2 r
The explicit formula for ,  1[0;r] , stated in a dierent notation, was independently obtained in
[28] using a dierent method.

Remark 6. Theorem 1.3 is also relevant for the study of the Hausdor dimension of the set
Dlm:n(c 1). As we have mentioned, Kleinbock and Mirzadeh recently proved that the Hausdor
dimension of DIm;n(c 1) is less than mn for every 0 < c< 1[22, Theorem 1.5]. They derived this as
an application of their main result, [22, Theorem 1.2], which gives an explicit upper bound on the
Hausdor dimension of a certain kind of dynamically dened subsets in the space X4. It seems that by
using Theorem 1.3 (cf. also Theorem 5.1 below), together with a further analysis of the quantities
appearing in [22, Theorem 1.2], it should be possible to sharpen the conclusion of [22, Theorem 1.5]
into a bound of the form

dimy Dlm:n(c 1) < mn (1 c)leloge (1 c) !

for all ¢ < 1 suciently near 1, whered = m+ n and > 0 is a constant which only depends on
m; n.

1.3. Discussion of the proof of Theorem 1.2. We next give a more detailed outline of our
proof of Theorem 1.2. For simplicity of presentation, we will only focus on the special case when
= (i;r:n: :;i)nqnd = (1;:: o 1), we comment in Remark 9 below on the modications needed to treat
general weights.

We start from the Dani Correspondence, (1.6), and discretize the shrinking target problem which

appears there by introducing the following thickened targets:
By := a s 0;r(k+ s); for any integer k > sq:
0Os<1

It follows from this denition that for any 2 X4, ax 2 By if and only if as 2 1[0; r(s)] for some k s
< k+ 1. In particular, by (1.6), A 2 Mm:n(R) is not -Dirichlet if and only if
aka 2 By for innitely many integers k. For any k > sg let us dene

Ex :=fa2Y : aka 2 Bkg:
Then, in view of the previous discussion and the identication Y = Mm.n(R=Z), we have

Dlgn.n )= limsup E:

( ki1
Hence, by the Borel-Cantelli lemma,
p kLeb(Ek) <1 =) Leb DIg.n( ) =0;
« Leb(Ex) = 1 & \quasi-independence conditions" =) Leb DI, $.n( ) = 1:

P
We thus need to understand when the sum kLeb(Ek) diverges or converges, respectively. It
follows from our denitions that Ve

Leb(Ek) = B (kakA) dA: v



It is well known that the as-translates asY equidistribute in X4 as s ! 1; since our shrinking
target By varies in the parameter k, we require an eective version of this fact. Such a result was
rst proved by Kleinbock and Margulis [18, Proposition 2.4.8] building on Margulis’s original
thickening arguments [30] and the exponential mixing of the diagonal ow fasgs>r. Here we use the
following explicit version (see Corollary 6.4 below): there exists > 0such thatforanyf 2 C (ng) and

any s> 0,
v z

(1.13) f(asa) dA = 4(f)+ O e °N(f) ;v
where the norm N () is the maximum of a Lipschitz norm and a Sobolev L2-norm (see Section 6.2).

By approximating fg gkss fkrom %bove and below by smooth functions and applying (1.13) together

with an explicit bound on the norm N () (see Lemma 6.5), it follows that (see Lemma 7.1)

X X
Leb(Ex) = 1 () d(Bk) = 1:«

k
P
Furthermore, it is not dicult to see from Theorem 1.3 that the series L d (Bk) diverges if and
only if the series in (1.10) diverges (see Theorem 5.1 and Lemma 6.1). This in particular settles the
convergence case of Theorem 1.2.

For the di}gergence case, in addition to the assumption that the series in (1.10) diverges (which
implies that ‘ Leb(Ex) = 1), one also needs to establish a certain quasi-independence condition,
see (7.8). Roughly speaking, we need to show that the quantities

jLeb (Ei\ Ej) Leb(Ei)Leb(Ej)j; i=j> sg

are small on average. Here note that 5

Leb (Ei \ Ej) = , B (aia)s;(aja) dA:

We now apply the eective doubly mixing for the as-translates fasYgs>o. This result is due to
Kleinbock-Shi-Weiss [24, Theorem 1.2]; we use a more explicit version due to Bj.orklund—Gorodnik

[1, Corollary.4] which states that for any f;;f, 2 C ¢(Xgq4) and any sq;s2 > 0,

(1.14) f1(as;a)f2(as,a) dA = 4(f1)a(f2) + O e POUS2IN(f1)N (fy) ;
Y
where D(s1;s2) := minfsy;sy;js1 s2jg. Combining this result with (1.13) we get
Z 2
. Y
f1(as,a)f2(as,a) dA Leb(f1)Leb(f;) e Plouis2) max N (fi); o(fi)g :
Y i=1

Finally, by approximating fg gk>s , from below by smooth functions, applying the above estimate
(together with a trivial estimate when D(s1;s>) is small, see (7.13)) and the bounds on the norm
N () (see Lemma 6.5), we show that the divergence of the series in (1.10) together with the addi-
tional technical assumption (1.11), implies that the required quasi-independence condition (7.8) is
satised, thus concluding the proof of the divergence case of Theorem 1.2.

We end our discussion with a few remarks.

Remark 7. Our argument should be compared to that of Kleinbock and Margulis [19], where the
shrinking targets are certain cusp neighborhoods: In [19] the relevant shrinking target problem is
rst solved for the case of as-orbits starting at 4-generic points in the ambient space Xq4; for this
task it suces to use, in place of (1.13) and (1.14) respectively, the invariance of the measure 4 and the
exponential mixing of the as-ow. Then by an approximation argument [19, §8.7], the shrinking
target property for 4-generic points in X4 is shown to imply the same property for generic points 7



in the submanifold Y. A key observation in this approximation step is that all shrinking targets, by
virtue of being cusp neighborhoods, remain essentially unaected by perturbations from a xed
neighborhood of the identity in the neutral leaf of the as-ow, i.e. the centralizer of the as-ow in
SL4(R). This, however, is no longer the case in our setting, with the shrinking targets being
compact sets. This is why we take the more direct approach using eective equidistribution and
doubly mixing of the as-translates of Y, that is, (1.13) and (1.14).

One potential advantage of this more direct approach is that if (1.13) could be rened by replacing the
measure Leb by a natural measure on some submanifold of Y, then by mimicking our analysis, one
could establish the -Dirichlet property for generic points in that submanifold, for any  such
that (1.10) converges. See Remark 14 below for a discussion of the application along these lines of a
recent eective equidistribution result obtained by Chow and Yang [5].

We note that the use of equidistribution of as-translates of Y in the study of the Dirichlet im-
provability problem is not new; it has been applied several times in the more well-studied setting of
Dirichlet improvable vectors and matrices. For minfm; ng = 1 and | Y being an analytic curvein
Y satisfying certain explicit conditions, Shah [32, Theorem 1.2] proved that the as-translates of |
equidistribute in X4 with respect to 4 as s ! 1. Shah’s proof relies on Ratner’s classication of
measures invariant under unipotent ows [31], and his equidistribution theorem is not eective; still it
suces for the deduction of the fact that generic points on the curve | are Dirichlet non-improvable,
that s, lie outside of the set (1.3). (This is so since in this case, the relevant \shrinking" target is in fact
a xed set of positive measure.) Shah’s results have been generalized and strength-ened in various
directions [33, 34, 37, 17]. In a recent breakthrough of Khalil and Luethi [14], the authors rened
(1.13) (for the case when n = 1) by replacing Leb with a certain fractal measure, from which they
deduced a complete analogue of Khintchine’s theorem with respect to this fractal measure.

Remark 8. Another diculty, which also stems from the fact that our targets are shrinking
compact sets, is the fact that the norm N () unavoidably grows (polynomially) for the smooth
functions approximating the shrinking targets from above and below (see Lemma 6.5). While the
impact of this polynomial growth of the norm can be eliminated in the convergence case due to the
exponential decay in the parameter s (i.e. the factor e $ in the error term in (1.13)), it causes
serious problems in the divergence case, and this is exactly why we need to impose the extra
assumption (1.11). Let us here also note that this assumption (1.11) can be rephrased in terms of the
measure of the shrinking targets as follows:

P 1
(B )log—1
L so<ks 1 d k B X
liminf = 0:
sl 1 P 2
so<ksi d(Bk)

Remark 9. In order to extend the argument outlined above to the case of general weight vectors
and , we have to consider a more general one-parameter ow fgsgs>0 SL4(R) associated to and (see
(5.1)), and use a dynamical interpretation of .-Dirichlet matrices which involves
this gs-ow and generalizes (1.6); see Proposition 6.2 and Remark 13. We therefore need analogous
eective equidistribution and doubly mixing results for the gs-translates of Y. Fortunately, such
more general (and considerably more dicult) eective results are known to hold, thanks to the work
of Kleinbock-Margulis [20, Theorem 1.3] and, again, Kleinbock-Shi-Weiss [24, Theorem 1.2] and
Bjerklund-Gorodnik [1, Corollary 2.4] (see Theorem 6.3 below). In fact in [1] a uniform
treatment was given proving eective mixing of arbitrary order for the gs-translates of Y; however we
will not make use of this.



Notation and conventions. Throughout the paper, the notation k k denotes the supremum
norm on various Euclidean spaces or matrix spaces (which can be viewed as Euclidean spaces on the
matrix entries). Let | R be an interval (not necessarily bounded). A functionf : 1 | R is called
increasing (resp. decreasing) if f(t1) f(t2) (resp. f(t1) f(t2)) whenever t; < t,. All the vectors in
this paper are column vectors. For two positive quantities A and B, we will use the notation A B
or A = O(B) to mean that there is a constant ¢ > 0 such that A c¢B, and we will use subscripts to
indicate the dependence of the constant on parameters. We will write A B for A B A.

2. Some preliminaries for Theorem 1.3

Fix an integer d 2. In what follows we always denote G = SL4(R), = SLg(Z) and X4 = G=
the space of unimodular lattices in R 9 Let 4 be the unique G-invariant probability measure on Xg4.
Let : Xq ! [0; 1) be the function on X4 dened asin (1.4). In this section, we collect some preliminary
results for our proof of Theorem 1.3. In fact, for simplicity of presentation we will prove an equivalent
measure estimate result. For any r 2 [0;1) let C, RY be the open \(1 r)-cube",
i.e.

Cr:=(r 1;1 r)%:
Let K. X4 be the set of unimodular lattices having no nonzero points in C,, i.e.
Kr:= 2Xg4 : \C = fOg :

We note that by denition of , K, = 1[0; log (1 r)], or equivalently, [0;r]= K , . .
Sincel e "=r+0(r2) rforallr2 (0;1), Theorem 1.3 can be equivalently restated as follows.

Theorem 2.1. Let {4 = 92%4 and 4 = d%be as in Theorem 1.2. Then
d(Kr)dr{d”Iogdr; 1 asr! 0":

We will prove Theorem 2.1 by proving a lower bound and an upper bound separately.

2.1. Haar measure and coordinates. Let P < G be the maximal parabolic subgroup xing the line
spanned by e 2 (Bd, and let N < G be the transpose of the unipotent radical of P. Here and
hereafter, fe; : 1 i dg denotes the standard orthonormal basis of R9. Explicitly,

P=1fp2G : peg= teq for some t= Og;
and

n (o}

N = uy:= 'f(‘)t“; :x 2 Rd 1

is uniquely determined by bq;:::;bg 1; we will sometimes denote p2 P by py ;...p , , to indicate

this dependence. For any g 2 G, let us denote by §2 My 1,4 1(R) the top left (d 1) (d 1) block of
g. If detg = 0, then g can be written uniquely as a product

(2.1) g = Pby:p® ,Ux  forsome pp...opd ;2 P and uy 2 N:

Let be the (left and right) Haar measure on G, normalized so that it agrees locally with 4. In
terms of the coordinates in (2.1), is given by
1 Y
2.2 d( )= ————dx— db;
( ) g (2)(d) "



where () is the Riemann zeta function, and where dx and db; denote Lebesgue measure on Rd 1
and R, respectively. For later purpose, we also note that the lattice represented by Pby;:b¢ 4 Ux,
i.e. = Pbyisb? ,UxZ ,%has a basis

= Zb1 Zbyg 1 Zbg;

where by := P jd=11 xjb; + (detp) leq is the d-th column vector of the matrix pp,;::::p ,Ux. Here p

is the top left (d 1) (d 1) block of pp,;:p L

For our computation of the upper bounds, it will be more convenient to use another set of
coordinates: For any g = (gij)1i;ja 2 G with detg = 0, as mentioned above, we can write g
uniquely as in (2.1). It is clear from this relation that g and Pb b share the same rst d 1
column vectors, i.e. ge; = bj forall1 j d 1. Moreover, as noted above, for the d-th column
vector we have

X1 X 1
geq = xjbj + (detp) leg = Xj (gej) + (detg) leg:
j=1 j=1

dx = (detg) !dgiq: 1id 1
This relation, together with the relations ge; = bj;1 j d 1 and the Haar measure description
(2.2), immediately implies the following:
Lemma 2.2. For any (Borel) subset K of g2 G : jdetg 1j< 1, we have
Y 2
A
(2.3) (K) 4q dgij:
K 1i;jd
(i;7)=(d;d)

2.2. A small parameter for the lower bound. To prove the lower bound, we will construct a
subset of K, whose measure is of the same magnitude as K,. For a lattice = gZ% 2 Xq4, toshow 2
K, by denition one needs to show gm 2 C, for all nonzerom 2 Z . If g 2 G issukciently close to
the identity element | 2 G, so that has 3 basis close to the standard basis

fe; : 1 i dg, then one only needs to consider vectors m 2 Z9 with small supremum norms.

For this reason, we will only focus on lattices that are close to Z4. Recall that the set K . certainly
does not get concentrated near the lattice Z9 asr | 0*; indeed, we have \;>oK, = Ko = 1fOg,
which as we have mentioned is a nite union of compact submanifolds of positive codimension
{4 + 1in X4 (see also Section 2.3). The fact that it still suces to consider a small neighborhood of
Z when proving the lower bound in Theorem 2.1 is related to the fact that the mass of K
(with respect to 4) becomes concentrated near the lattice Z9 asr ! 0*; see Remark 10.

Explicitly, we x a small norm ball in X4 around Z¢ as follows: For any c > 0, let
(2.4) Ge:=fg2G : kg Igk< cg

be the open ball in G of radius c, centered at 14 with respect to the supremum norm on Mgy;4(R). Let
:G | X4 be the natural projection from G to X4. We x a parameter cg 2 (0; 1) (which only depends
on d) so small that jg. is injective and, for any vectors b1;:::;bg 2 R satisfying kb; ¢ ejk< ¢p
for all 1 i d, every hyperplane of the form

X
mbj+ Rb-



with m 2 R, jmj 2and 1 j d, is disjoint from the cube [ 1;1]9. In particular, if = gzdfor
some g 2 G , then has a basis fge; : 1 i dg satisfying kge; ejk cpforall 1 i d.
|:;: follows that in order to prove that 2 K, for a given r 2 (0;1), it suces to verify that
Ligmi(gei) 2 Cr forallm = (mq;:::;mg) 2 f 1;0;1g9r fOg.
2.3. Hajos’s Theorem and its consequences. Recall that

n (o]
Ko= 2Xg: \( 1;1) =d%o0g

As we mentioned in the introduction, the explicit description of Ko was conjectured (and proved
in two and three dimensions) by Minkowski, and proved in full generality by Hajos in 1941 [11]:

Theorem 2.3 (Hajs). Let U be the subgroup of upper triangular unipotent matrices in G. Let W
be the subgroup of permutation matrices in GL (Z). Then
Ko= [ wuw 129
w2W

If we set

(2.5)
so that Ug is a fundamental domain for U=( \ U), then we have the following immediate corollary
of Haje's Theorem.

Uo = (ujj) 2 U : 2 < Uij 2folralll i<jd

Corollary 2.4. Given any 2 K ,jthere exist w 2 W and u 2 U , such that = wuz9 =
wuw 179,

Proof. Since 2 K , gy Theorem 2.3 wecannd u, 2 U and w 2 W such that = wulw 1Z9; but since w

17d = 79, we have = wu®Z9. Now using the fact that U is a fundamental domain for U=( \ U), we
can then nd u 2 Ug such that uzd = u%z4. Thus = wu%z9 = wuz? = wuw 179, nishing the proof.

There is a geometric interpretation of K in terms of lattice tilings by unit cubes [35, Ch. 1.4]: Let
us write 1Cq = L l);' for the unit cube obtained by dilating Co by a factor 1 Then for any
2 Xq4, the family of cubes v + 1Co, wi%h v running through the lattice , forms a tiling
of R4 (modulo a null set) if and only if 2 Ko. More generally, for any r 2 [0;1) we write
3C = 3(r 1);5(1 1) 9 Then for any 2 X4, the condition 2 K., i.e. \ C, = fOg, is
equivalent to the condition that the cubes v + 2C (v 2 ) are pairwise disjoint. When this holds,
we write

Cr:= + ,C4

for the union of these disjoint cubes. This set is used in the statement of the following simple
bound, which is of crucial importance in our proof of the upper bound in Theorem 2.1.

Lemma 2.5. Let 2 X4 andr 2 (O; l)4 be such that \ C, = fOg, and let U be a Borel subset of R¢

which is disjoint from C., and which is contained in some translate of the cube (0; 2). TheQ vol(U) <
dr.

Proof. The set C, is invariant under translation by any vector in , and if F RY is any
fundamental domain for R9=, then
vol(F\ Cr)= X vol F\ (v+ ,C)= X wvol (F v)+ ,C=vol(,£)= (1 1)
v2 v2
11



where the rst equality holds since the cubes v + lgr (v 2 ) are pairwise disjoint, and the third
equality holds since the sets F v (v 2 ) form a partition of RY. Hence

vol(Fr C,)=1 (1 r)¥9<dr

Next, since U is contained in a translate of (0; izd, the dierence between any two vectors in U liesin (
3,3)d b 4C1=4 C,, and since \ C, = fOg, this implies that the points in U are pairwise inequivalent
modulo . Hence the set F r (+ U) [ U is another fundamental domain for R%=, and it contains U.
After replacing F by this set, we have U F; thusU F r C,, and hencevol(U) vol(Fr C.)< dr.

3. Proof of the lower bound

We keep the notation introduced in Section 2. In this section we prove the lower bound in
Theorem 2.1. We will do this by constructing, for every suciently small r, an explicit subset K ,

X4 Which we will show satises

1
K, K, and d(ﬁr)dr{‘”llogd :
r
We start by giving a family of conditions which ensures that a given lattice is contained in

K:. Recall from Section 2.2 that cg 2 (0;1) is a small xed paramel;er with the property that
for any g 2 G, and 0 < r < 1, we have gz 2 K, if and only if 1jd M; (gej) 2 C; for allm

Lemma 3.1. Let cg 2 (0;1) be as above, let r 2 (0;co=d) and let = pp,;:::b ) 1uXZOI 2 X4 with
bj = (baj;:::;bg)t 2 Rd (j= 1;:::;d 1) and x 2 (0;co=d)d 1. Let p= (bij)1i;ja 1 be the top left (d

1) (d 1) block of pp,;::;;p , as before. Suppose b1;:::;bg 1;x further satises
(3.1) bij; bji2( co0;0); 81 j<id 1; bg«2 ( co;0);b«2(1 r;1); 81 “ d 1;
K 1
(3.2) bij < bik; 82 j<i d;k=1
§ 1
(3.3) 1 r<detp< (1 r)! and jbgjixj < (detp) @)y
j=1
and
% 1
(3.4) bii+ binj > 1 r; 81id 1
j=1
Then 2 K,.

Proof. Let us set g := pp,;::;p° ,Ux and by = (b1g;:::;bgd)t 1= geq; then bj = ge; forall 1 j d, and
by := szdl % b; + (detp) legq; in particular big = P

=4 Bijx; for 1 i d 1. We will start by
proving that g 2 G¢,, i.e. kb; ejk < coforalll j d. Infact,if 1 j d 1 then12



kb; ejk < cg is an immediate consequence of (3.1) and 0 < r < cp=d < cp; thus it remains to

show kby eqk< cg. Foreach1 i d 1 we have
d, 1 1 1
jbiaj = bij X; ibijiixj < Co < co;
j=1 i=1 j=1 d

where for the second inequality we used the assumption that x 2 (0;co=d) ! and the fact that jbj;j
< 1forall1 i;j d 1, which is immediate from (3.1). It remains to prove that
1 o< bgg < 1+ co. In fact, we have the following stronger bound:

(3.5) 1 r < bdd < 1+ co:
Indeed, using bg; < 0Oand x; > 0(1 j d 1) in combination with (3.3), we get

X! X!

baq = bgjxj + (detp) 1= (det p) 1 jbgiixj>1 r

j=1 j=1

as well as
1
bad = bajxj + (detp) *< (detp) ‘< (1 r) T< 14 2r 1+ co

i=1

(For the second to last inequality we used the fact that 0 < r < cg=d < 1=2.) This nishes the
proof of (3.5), and hence g 2 G .y

P
Because of g 2 G¢,, in order to show 2 K, it suces to prove that gm = 1jd mijb; 2 C, for all
m 2 f 1;0;1g9r fOg. Thus we now let the vector m = (mq;:::;mg)t2 f 1;0;1g%r fOg be given,
and show that gm 2 C,.

First assume that all the nonzero entries of m are of the same sign. After replacing m by m
if necessary, we may assume m; O for all 1 j d. Let k 2 f1;:::;dg be the smallest integer such
that my = 1. If k= d then m = eg4, and thus gm = bgq 2 C, by (3.5). In the remaining case when
k < d, the k-th coordinate of gm satises

Xd
(3.6) mybyk + mijbyj bkk + mgbka minfbyy; brk + brag;
j=k+1

where we used the fact that, by (3.1), bxj > 0 foreach k< j d 1. Furthermore,
(3.7) minfbkk; bkk + bkdg > 1 r,

P
since bk > 1 r by (3.1) and by + bkd = bk + ;3 tbijxj > 1 r by (3.4). It follows from (3.6)
and (3.7) that the k-th coordinate of gm is larger than 1 r, and so gm 2 C,. This completes the
proof in the case when all the nonzero entries of m are of the same sign.

It remains to treat the case when f 1;1g fmj :1 j dg. Thenlet1 iy < i; d be theindices which
record the latest instance when the signs of the entries of m change, i.e. the unique indices such that

mim; = 1, mj= Olforzil <j<izandm;2 fm;;0gfori, < j d(the Izasttwo conditions are void if
ip+ 1= i, ori; = d, respectively). Again after replacing m by m if necessary, we may assume
mi = 1, m; = 1, and thus m; 0 for all i? < j d. Now consider the i,-th coordinate of gm which is

X Mjbii o b+ bii, vy mybiy;;e
1j<i i2<jd
13



H h
ere we have X X

(3.8) mjbiy; by, bi;i by > 0;

1j<iy 1j<is
where the rst inequality holds since jm;j 1 andb; ;j <,0for all j < i3, and the second inequality holds
by (3.2) (except if iy = 1; in that case (3.8) simply says that b; ;i , < 0, which holds by (3.1)).
Furthermore,

X (=bdd>1 r if ip=d;
(3.9) bi,;i, + m ib;j o

22 ir<jd bi,;i, + mgbi,a > 1 1 if i< d;

where we used (3.5) in the case i, = d, and in the case i, < d we used the fact that m; 0 and b;
;i Oforalliz < j d 1 (if any), and then applied (3.7) with k = i,. Adding the inequalitiesin
(3.8) and (3.9), we conclude that the i,-th coordinate of gm is larger than 1 r; hence gm 2 C,.
This concludes the proof of the lemma.

We next give another family of conditions, which implies the conditions in Lemma 3.1, and which
is more suitable for the measure computations which we are going to carry out.

.....

with by = (byj; 105 bg)t 2 Rd (j = 1;:::;d 1) and x 2 (0;co=d)? 1. Assume that

Proposition 3.2. Let co 2 (0;1) be as above, let r 2 (0; co=d) and let = pp,....p . 1ude 2 X4

(3.10) bij; bji2 ( c0;0); 81 j<i d 1; bg 2 ( co;0);bv2 (1 54;1); 81 d 1;
(3.11) bij < dbi;j 1 (, jbij > djbi;j 1j); 82 j<id
¥ 1
. . r . . . . r
(3.12) jbijbjij < $; 81l j<id 1; and jbajixj < E,-
! o1
and
(3.13) bj > bij (, jbkji < jbijj); 81 j< k<id:
Then 2 K.

Proof. In view of Lemma 3.1, it suces to show that the conditions (3.1), (3.2), (3.3) and (3.4) are
fullled. Among these, (3.1) is an immediate consequence of (3.10). Furthermore, (3.2) follows from
(3.10) and (3.11) by the following computation, valid for any 2 j < i d:
X 1
bij < dbi;; 1< (j  1)by; 1 bik (< 0);
k=1
where the last relation is an equality when j = 2, while for j 3 it is a strict inequality which holds
since (3.11) forces bj;j 1< bi;j 2< < bi;1. Also (3.4) is easily proved: Let 1 i d 1.Then for every 1
j d 1wehavex; > 0and bjj > by (the latter holds by (3.13) if j < i and by (3.10) if j i). Hence
X 1 X 1 o
bii + bijx; > bji + bgjxj >1 — =>1 r;
. ) 2d 2
j=1 j=1
where for the second last inequality we used (3.10) and the second part of (3.12).
It remains to prove (3.3). We rst note that the ordering assumptions in (3.11) and (3.13) imply
(3.14) jbiosjoj jbijj whenever 1 j°< i d,1 j<i dandi® iandj° j.

14



Now let p'= (bjj)1i;ja 1 be as in Lemma 3.1. Dene
X Y
P iE biyis
25 4 ;1id 1

’

d
id
where Sq 1 is the symmetric group over the nite set f1;2;:::;d 1lg and id 2 Syq 1 is its identity
element. Then

y1 y1
(315) bii 'pv detp’ bii + ’pwl
i=1 i=1

Ifd= 2thenSy 1= fidg and’y = 0. Now assume d 3, and consider an arbitrary permutation
2 Sq 1r fidg. Let (i1:::i-) be a cycle of of length * 2, meaning that (ij) = ij+1 foralll j

‘

1and (i ).= i ., Without loss of generality, we may assume i = maxfi :1]j ‘g.Let
ij, := minfij : 1 j ‘g. Then (3.14) applies for the pairs (i%j%) = ((ij,); ij,) and (i;j) = (i;i1),
so that b(iio);iio biii, . We also have jbjjj < 1forall 1 i;j d 1, by (3.10). Hence
. . r
biiyi Bijy)is Dinsic bisiabig;id < ;lid 1

d!
where the last inequality holds by (3.12). The above holds for every 2 Sy 1r fidg; hence

r r
’ l— = —-
(3.16) < (d 1)'d! g
Note that (3.16) also holds when d = 2, trivially.
Using (3.15), (3.16), and the fact that 1 55 < bjj< 1forall 1 i d 1 (cf. (3.10)), we get
Y1 r r
(3.17) detp< bi+ —< 1+ —< (1 r) L
i=1 d d
and
d LA 1o 1 t
G r > r :
L R B LA ]

i=1
Hence we have proved the rst condition in (3.3). For the second condition in (3.3), in view of the

second condition in (3.12) it suces to show *,< (detp) 1 (1 r), or equivalently, that detp is

smaller than (1 Lz) 1. But this is true since by (3.17), detp < 1+ £d< (1 L)2 L. This nishes the
proof.

We can now give the

Proof of the lower bound in Theorem 2.1. Keep 0< r < c4=d, and dene
..... . dyd 1 (0. =d)d 1
(b ...,bc| 1,x)2(R) (O,c-ézl)

- d .
(3.18) K= Poyusby (UxZ72 Xd 0 e (3.10); (3.11); (3.12); (3.13)

.....

By Proposition 3.2 we have K, K,. It remains to bound 4(K,) from below. Set

(by;:ii;by %) 2 (R 1 (0;c =g)d 2

satises (3.10); (3.11); (3.12); (3.13) ;
15
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so that (K )r: K . Here :G I Xgq is the natural projection as before. By immediate inspection of
the proofs of Proposition 3.2 and Lemma 3.1, we have K, G¢,, and by our choice of ¢, jg, is

injective (see Section 2.2). Hence 4(K,) = (K,), and by (2.2) we have
!

Y Z1 Z \%
(K)d dbik (bij)1j<id dbij;
1kd 1 1 9 L R 1j<id
where n o
R := (bij)1j<ia 2 ( co; 0)4(d V=2 . (bij) satises (3.11) and (3.13) ;
and
7 min CO;W;.» 7
(bij)1j<id = Y P dby g a1 P o Y dx
1j<id 1 © X2 0fg 0 Balac<s afy 1
Y Y )
dico min 1. T min 1 b v
1j<id 1 IO g 1 g} =
min 1; r —
1j<id jbij ]
Hence 0 1
z Y
(3.19) a(Ke) = (K g rd? @ min 1, _dbyA:
R 1j<id JbIJJ
Now for each 1 j < i d, we make a change of variable, b;; = di 1Zij, to simplify the ordering

condition (3.11). Then all the zj;’s are positive, and the conditions (3.11) and (3.13) become
(3.20)  zpjo< zi; whenever1 j°< i®d, 1j<id, i®i, j°jand(i%j%= (i;j):

Moreover, for any j < i, the condition bj; 2 ( co; 0) corresponds to z;; 2 (0; co=d’ 1), and we note that
each of these intervals contains the xed interval (0; co=d? 1). In fact, let us restrict each z;; to the
even smaller interval (r; ¢ =d¢ 1)J, and assume r < ¢ =d¢ 10'50 that this interval is non-empty;

then r=jbjjj = rd! J=z;; < d' J 1, so that minf1;r=jbjjg = rd! J=z;; 4 r=z;;. Note also that
jdbijj = di 1 dzjj 4 dzjj; hence we get from (3.19):

z Y

d 1+46 1) z Y dZij (d 1)(d+2) dZij
‘K ) dico T 2 =r 2 ;
r ,Co 0 iz 0 .. z
R¥ 1j<ig ! R” 1j<id Y
where
n o
0 d 1yd(d 1)=2 :
R™ := (zij)1j<id 2 (r;co=d™ 7) (d 1)=2 . (zij) satises (3.20)

The last integrand is invariant under every permutation of the variables (zjj)ij<id, and the
integration regions (R )‘with running through all these permutations cover (modulo a null set) the
cube (r; cp=dd 1)d(d 1)=2; hence we obtain

!
Z =t * dzj (@ 1)(d+2)  d@ 1)1

dic T 2 108 2, 1lj<id
)
r Zjj r

. Y
(3:21)  G(K g r,

0

where the last estimate is valid e.g. for all 0 < r < cg=(2d¥ 1). Recalling that cg only depends on
d, we see that the lower bound in Theorem 2.1 is now proved.
16



4. Proof of the upper bound

We keep the notation introduced in Section 2. In this section we prove the upper bound in
Theorem 2.1. The main step in the proof is to show that for r small, K, is contained in a certain set
of more explicit nature; see Proposition 4.2 below. To prepare for the statement of this result, we
start by introducing the following set, for any r 2 (0;1) and C > 0:

8 9
< 1 rgijl+Cr;81id =
Keei= g=(8ij)26G = jgji< 1; jgijgj Cr; 81 i=j d _
: jdetg 1j< 1 ’

Here g denotes the top left (d 1) (d 1) block of g as before. In view of the Haar measure
description (2.3), it is not dicult to compute the measure of K.¢:

Lemma 4.1. For any r 2 (0; %) and C > 0 we have

Kr;c dic plat+l Iogdr: 1
Proof. Let us dene g 9
< 1 rgijl1+Cr; 81i d 1 =
il < 1; jgiigiij Cr; 81 i = djdet
Kr;C = g = (gij) 2G : Jg|JJ1j< ngjgljll r =] Jjde g;
5 1

by disregarding the restriction on gqq. Then clearly K;;c K,fc(. Moreover, in view of the Haar
measure description (2.3) we have (noting also that { 4+ 1= 4 d 1)

i vy  Ziscr y 41724
Ke;e o d dgii f(g}:el) sigigiii<crg d8ij dgjiid
1 1 rij<id 11
d
crdl rlogrl = rle*l Iogdr: 1

Thus
—C {+1 .
KI’;C Kr;C d;C r{d |0gdr, -

nishing the proof.

Recall that : G ! Xy is the natural projection from G to Xy4.
Proposition 4.2. There exist ro > 0 and C > 0 (depending only on d) such that for all r 2 (0; rg)

(4.1) K, wKocw 1
w2W

Let us rst give a quick

Proof of the upper bound in Theorem 2.1 assuming Proposition 4.2. The Haar measure on G is
preserved by conjugation by any element w 2 W (even though w may be outside G). Hence it
follows from (4.1) that, for any r 2 (0;ry),
a(Ke) X g (WKew 1) X (Wkeew ') = dl (Kie):
w2W w2W

Using this inequality, the upper bound in Theorem 2.1 now follows from Lemma 4.1. 17



Remark 10. Proposition 4.2, in combination with the lower bound in Theorem 2.1, also implies
that as r | 0%, the mass of K, with respect to 4 becomes concentrated near the lattice Z9. In
precise terms, if O is any xed neighborhood of Z dn X , then

1 K O
(4.2) a(Krr O)grletlyoge 17 and thus a (K \ )! 1 asr! 0%:

r ¥
Indeed, we can x " > 0 so that O contains the set (G+) with G+ G the norm ball dened as in (2.4);
then by arguing along the same lines as above, the rst relation in (4.2) will follow from the following
bound:

1
Kr.cr G g.c rlotl|oge 1 ;o
r
for C > 0 and r small. However, for r < "=C, g = (gij) 2 Kr;c forces jgii 1j< " foralli, andso the
set Ky;c r G- is contained in the union [jo=jo g = (8ij) 2 Kr;c : jgiojoj " . Therefore, it suces to

prove that for any given 1 i = j d we Wave (

— . s on 1
g = (8ij) 2 Kr;c : jgiojoj a;c rietlloge 1 : -

This is shown by following the proof of Lemma 4.1 and using
z 1
f(x;y) :jxyj<Crg dy dx mc I
"ixjl 1
Finally, the second relation in (4.2) follows from the rst relation combined with the lower bound
in Theorem 2.1.

The remainder of this section is devoted to the proof of Proposition 4.2.

4.1. Bounds on diagonal entries. Recall that Ug is the xed fundamental domain for U=( \ U)
given in (2.5). The next lemma shows that if a lattice 2 K, has a representative suciently close to
some element in Ug, then the diagonal entries of such a representative satisfy the desired bounds.

Lemma 4.3. Let g = (gij) 2 G and r 2 (0; %), and assume that gz4\ C, = fOg and kg uk < 18
for some u 2 Ug. Then

(4.3) 0 gji (1 r)gqgr 81 i d:

Proof. Note that it follows from kg uk < é and u 2 Up that jgjjj < g forall 1 i< j d,ijgi

1j< %for all1i d, and jgjj < 1 forgll 1j < i d.Foreachi wehavege;2C,,sincegzd\ C, =
fOg. Combining this with the fact that jgjij< 2< 1 g r for all j = i, we conclude that
jgij 1 r. Since also jgi; 1j < 81, we must in fact have g;; 1 r, i.e. we have proved the left
inequality in (4.3).

= (1 g 3 )

U=11 lg; with o
Iy = g;ri g;gji + g (j=1);

where g]’i := maxfg;i; 0g and gi; := minfg;;; 0g. Note that each interval I; (j = i) has length
ilji > %, since jgjij < %; furthermore jlij = gii (1 r) O(thusl; and U areempty if gjj = 1 r,
but otherwise non-empty).

We claim that U is disjoint from Cgza., := gzd + %Cr. Indeed, assume the opposite; then there

is some v 2 gZ9 such that U\ (v + 3Cr) = ?. We must have v = O and v = ge;, since U is, by
18



construction, disjoint both from %Cr and from ge; + %Cr. Pick a pointx 2 U\ (v + ler). It follows
fromx 2 v + lZCr and 141 r) > lIhat at least one of the points x Lei40r X + LeiPIso lies inv +
,Cr. But we have

1 1c.
X ZEI 2 zcr,

since xj 2 | %(1 r);%(l r) forallj = i and x; ‘ll< gii %(1 r) %< %(1 r). We
also have

X + e 2 gej+ 1Cy;
since xj 2 1 gji+ l(} r);%(l r) forallj = iandx;+ %> %(1 r)+ 4—11> gii %(1 r).

Hence we have arrived at a contradiction against the fact that v + lCE is disjoint from both LCrg\nd
gei + 1C,. 2This completes the proof of the fact that U is disjoint from Cgzq.,.

Note also that U is contained in a translate of the cube (0; :—)d, since each interval |; has length

at mostf. Hence Lemma 2.5 applies, and yields that vol(U) < dr. But we have noted that jl;j > Sl

foreachj = i, and jlij = gi (1 r); hence vol(U) 8% 9(gii (1 r)). Combining these facts,
we obtain the right bound in (4.3) with the implied constant 8¢ 1d.

4.2. A technical choice of lattice representatives. For any " > 0 let us write
Ur= (uj)2U: 2+4"<u; ,+"forallli<j d:
Lemma 4.4. There exist constants 0 < a < 1 and A > 1, which only depend on d, such that the

following holds: given any u2 U and " 2 (0;a), there exist 2\ U and B 2 [1;A] such thatu 2
Ug".

Proof. We will show that the statement of this lemma holds with A := 42° and a := 2 (3+2%"%),
Let us set

Ultl:= (uj)2U : 3+t<u; ,+tforallli<j d (t 2 R):
Note that Ug = U[0], and for each t, U[t] is a fundamental domain for U=( \ U).

For the given u2 U and " 2 (0;a), and for each k 2 Zg, we let u‘k) be the unique element in u
\ U[4k"], and set

Xd X!
k i k
plkl= p (:f); where PJ_( V= 2t ! (0;1)(U( )i)ji
j=2 i=1
We now claim:
(4.4) 8k2Zo: k< logy(d)andu® 2 U =) Pl < plied),

To prove (4.4), assume 0 k < Iog4(%‘) and u® 2 U, Then ulk*l) = ylk), since otherwise u(k)
would lie in the intersection U[4k"]\ U[4k1"] = U,". Let us denote by uj(k) the jth column vector

of u®). It follows that u'**?) =

ui,k) for at least one j 2 f2;:::;dg, and for each such index j we

can argue as follows: Since u®); u(k+1) 2.y \U = u( \U), we have u(jk”) = u(jk)+ P
(k+1) (k)

( = u'™® there exists i 2 fl:::::

(ke1) (k)

1‘<l'm;u(k)fior

let us x i to be the largest such index. Thus u + m ;. in particular u(k+__1) u(.k) 1.

ij ij ij i
On the other hand, note that u”<) 2 g+ AR 5+ gkn) u(k+1; 2 ,1r 4K 4 4,41 and 1o
ij



1y gkeimy 1y gkm = 14 3 4k" < 2 (since k < log (X)). Hence we must have m; = 1,
implying that 2 4 g

(k) (k) (k).

ugk”) 2 ugk) Ut Zul T Zu Ty
Thus u(k+1) = u(ikc; for all i° > i, and u(k:.l) = u(k)i_+ 1> 0 while u'® g2t A1t < 0 (again
since k < logy(g.)). It follows that plk+l) JP(k) 2i 1 P 0 2° 1 = 1. On the other
hand we cIearIy have P(k+1) = J(k) for each j 2 f2 """ :;dg such that u“j”) = u(kj). Hence

P:z Pj(k+1) > f‘ P(k), i.e. P(k*1) > p (k) This nishes the proof of (4.4).

Next note that by denition, for each k, P (¥) is a non-negative integer satisfying
X R 2

p (k) 27 <24
j=2 i=0
Thls implies that we cannot have P (k) < p(k+1) for all k 2 f0;1;:::;29 1g. But our assumption
on " implies that log,( ) > 29 (recall that0< "< a= 2 (3+2d+1)), hence it now follows from (4.4)
that ut®) 2 U, for at least one k 2 f0;1;:::;29 1g. Furthermore, for such k we have4k < 42 =

A and d®) 2 u( \ U) by construction. Hence the lemma is proved.

Using Lemma 4.4, Corollary 2.4 and a compactness argument we have the following technical
lemma, which gives us a good choice of lattice representatives for lattices in K, gor some small rg
> 0.

Lemma 4.5. There exist constants 0 < a < 1 and A > 1, which only depend on d, such that

the following holds: for any "o 2 (0;a) there exists ro > 0 such that for every 2 X gatisfying

\ C S fOg, there exist g 2 G, w 2 W, B 2 [1;A] and u 2 Ug- 0such that = gz9 and kg
wuw 1k < "g.

Proof. Let a and A be as in Lemma 4.4; we will prove that the statement of the lemma holds with
these a; A. The proof is by contradiction; thus we assume that the statement of the lemma is false,
i.e. we assume that there exist some "9 2 (0; a) and a sequence r; > r > in (0;1)withr; ! 0, and

a corresponding sequence 1;;:::in Xg, such that; \ C, = fOg for each j, and furthermore, for each
j we have that there do not exist any g2 G, w 2 W B 2 [1;A]andu2 Ug~ saﬂsfymg, = gz9 and
kg wuw 1k < "g. Now for every j we have C, Cr , and thus; \

C = ng Hence by Mahler’s Compactness Theorem, after passing to a subsequence we may assume
that ; tends to a limit point in Xq4. Let us call this limit point g; thusj ! oinXgasj ! 1. Letus
also x a representative go 2 G such that o = goz9.

Recall that the standard topology on X4 = G= is given by the metric

dist(g ;g° ) := inffd(g;g%) : 2 &g (g:8° 2 G);
where d(;) is any xed right G-invariant Riemannian metric on G. Hence the fact that |
converges to o = goZ9 implies that there exist gi;g2;::: 2 G such that i = ngd for each j and

d(gj;g0)! Oasj ! 1.
Using ; \ C;, = fOg for each j, and rj | 0, we claim that
(4.5) o\ ( 1;1)¢ = fog:

Indeed, assume the opposite; this means that there exists some m 2 Z% r fOg such that gom
belongs to ( 1;1)9, i.e. kgomk < 1. Setr := (1 kgomk); then gom 2 C;. We have gjm ! gom
20



asj ! 1, sinced(gj;g0)! O; hence for all suciently large j we have gjm 2 C, (since C, is open). Also
for all suciently large j we have rj < r. Hence there exists some j for which rj < r andgjm 2 C;
Cr;. This contradicts the fact that ; \ C;, = fOg for all j. Hence (4.5) is proved.

It follows from (4.5) and Corollary 2.4 that o = wu’w 1Z9 for some w 2 W and u, 2 Up. Next,
by Lemma 4.4 (and since "g < a), there exist 2\ U and B 2 [1;A] such thatu:=u 5 Ug" .
Usingw 129 = 749 and 179 = 79, we then have o = wuw 1Z9. Hence wuw 1= ggo for some
02 . Now d(gjo; wuw 1) = d(gjo;800) = d(gj;80) ! Oasj ! 1. This implies that every

0

matrix entry of gjo tends to the corresponding entry of wuw 1, i.e. we have kgjo wuw k! 0
asj ! 1. In particular there exists some j such that kgjo wuw 'k < "g. Now we have a
contradiction against our previous assumption; namely for our chosen j, if we set g := gjo thenj
= gZ% and kg wuw k< "o. This completes the proof of Lemma 4.5.

Remark 11. By a similar compactness argument as in the proof of Lemma 4.5, one can also
prove a more basic statement: for any "o > 0 there exists ro > 0 such that every 2 K, has a
representative g 2 G (i.e. = gZ9) satisfying kg wuw 1k < "o for some w 2 W and u 2 Uo.
The purpose of the choice of the more technical lattice representatives in Lemma 4.5 (with Ug" |
in place of Ug) is to ensure the following property, which is a key ingredient in the proof of the
important Lemma 4.6 below: for any g = (gij;) 2 G satisfying kg uk < "o for some u 2 Ug" and
any 1 i < j d, we have (cf. (4.8))

i8ki 8kjij< 1 B"o forallk2fi;jg:

A crucial consequence of this is that if ge; gej 2 C, for somer < B"g, then either jgii gijj> 1 r
orjgji gjjj> 1 r must hold.

4.3. Bounds on o-diagonal symmetric pairs. The next lemma shows that if a lattice in K,
has a representative as in Lemma 4.5, then its entries satisfy the desired bounds for proving
Proposition 4.2.

Lemma 4.6. Let A > 1,0< "g< (16A) Yand0< rp < L"%_ Let g = (gi;) 2 G and r 2 (0;rg), and
assume that gZ9\ C, = fOg and that there exist B 2 [1;A] and u 2 Ug-~ sucp that kg uk < "o.Then

(4.6) 0gi (1 r)gr forall 1i d;and
(4.7) igiigjil d;mo T forall 1 i< j d:

Proof. Let us write " = B"g. Note that kg uk< "¢ " and u 2 U~ together imply that

(4.8) 1+3"<gj<1+2" and jgij< ", 8li<j d

It also follows that jgi; 1j < " for all i; however these inequalities may be sharpened using
Lemma 4.3. Indeed, we have " < 1—16 since A'"g < 1—16; hence the above inequalities imply that
kg ulk< % for some u, 2 Ug. Hence Lemma 4.3 applies, yielding that (4.6) holds.

Now let 1 i < j d be given. We separate the proof of (4.7) into three cases. (Note that (4.7)

holds trivially if gij = 0 or gj; = 0; hence we may without loss of generality assume g;;gji = 0.)

Case |: gj; > 0 and gj; > 0. In this case we will build the proof on the fact that ge; gej 2 C,,
which holds since gz9 \ C, = fOg. Using (4.8) and r < rg < 2rg " < Lisit follows that
jgi 8kij< 1 "< 1 rforall k2 fi;jg. Hence we must have either jgi; gjj 1 r or
igi gji 1 r.oIfjgi gij 1 r, then because of g;; 1 rand 0< gjj < %+ 2" it follows
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thatgi g 1 r, and so by (4.6), 0< gj; r. Similarly if jgj; gjjj 1 r then0< gji r.In
both cases, it follows that (4.7) holds for our i;j.

Case |l: gjj < 0and g;j; < 0. In this case we will prove the desired bound by proving the stronger

assertion that either jg;;j Cr or jgjij Cr, with C := 12d("9=8)? 9. Assume the opposite, i.e. assume
that

(4.9) gij< Cr and gi< Cr (C := 12d("0=8)> 9):

We will prove that this leads to a contradiction.

SetJ, := 21 r); %1 r),sothat 3C, = J"r. For each k 2 fi; jg we introduce the following
open interval:
(4.10) r:‘k:=Jr\(gki"'-]r)\(gkj"'-]r):

Using jgkij; jgkjj; igki 8kjj < 1 " (see (4.8)) it follows that € has length Byj > (1 r) (1 ") > zl"o.
Dene | | ® be the open interval of length 1" Xvith the same center as I¢. &t us also setl; =

,(1 1 r)+ gij; (1 r) andlj = g;; 3(1 r); 3 . Then by construction,

(4.11) Li Jr; i\ (gii+Jr) = ?; i\ (gij+Jr)=7;

and

(4.12) lj gjj+ Jr; i\ ), = 2

Furthermore, jlij = jgij and %3< jljj < 13 Now let U be the open box U = I; Ilg4. Then

vol(U) > %jgijj (41’0)OI 2> dr, where we used the rst part of our assumption (4.9). Note also that
jlkj < % for all k. Hence by Lemma 2.5, U\ Cgzd,r = ?, i.e. there exists some v 2 gZ dsuch that

U\ (v+ 3C) = ?:

It follows from the disjointness relations in (4.11) and (4.12) that U is disjoint from the three
cubes gej + lzcr, gej+ lZCr and lgr; hence v 2 fO; gej; geig. Let usx apointy 2 U\ (v + 1c). '{hen
the line y + Re; goes through both the cubes v + 1C, and gej + ic, (the latter holds since
lx gkj+Jr forall k= i; see (4.10) and (4.12)); hence since these two cubes are disjoint, we must

have v; gij; + 1 r. It also follows fromy; 2 vi+ J, and y; 2 |; that v; < y; + 15(1 ry<1 r.
In summary:
(413) gij t+ 1 rvi<l1 r:

Similarly, using the fact that the line y + Re; goes through the two disjoint cubes v + lZCr and lZCr,
and also using y; 2 vj + J, and y; 2 |, it follows that

(4.14) 1 rvi<yj+,@4 r)< 2:

Next, for each k 2 fi; jg, since yx 2 I and yx 2 vk + J,, we have that both of the intervals (yg
%“o; vk] and [yk; yk + %”o) are contained in B, and at least one of them is contained in v + J;
hence there exists an open subinterval 19 of | &\ (vi + J, ) of length 1. Let usalsoset 1° = (2;2)and
19= g+ (1 , r); v %(1 r) , and then let U, be the open box U, = IO1 10, Usligg (ff.lil)
we have jI%]  gji; hence vol(U®) (g"0)d 21, jgjij L dr, where we used the second part of our
assumption (4.9). Note also that jI j< ¢ % for all k; for k = j this uses v; < 5 (see (4.14))
and gj; > " (see (4.8)). Hence, by Lemma 2.5, U, \ ngd;r = ?, i.e. there exists some v0 2 gzd
such that

uo\ (v0+ %Cr) = ?:
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Choose a pointz 2 Uy \ (vO+ ler). Note that for every k 2 fi; jg we have IOk (gki+Jr )\ (v +J,) by
construction. Furthermore, using 1 r gii< 1+ " we havel g(ii + J;, and using (4.13) we have
10 v + Jr. Hence the line z + Re; goes through of the cubes ge; + C, and v-;+ C,. Of co%rse this
line also goes through the cube v° + 1C,. Note also that zj 2 19, and by cor}struction, 10 is disjoint
fr].om and lies between the two intervals gji + J, and v; + J,. Hence we must have V0 2 fge;; vg; thus
the three cubes ge; + 1C;, v + 1C, and v+ 1C, are pairwise disjoint, and the two intervals gji + J
and vj + J; must lie at a distance 1 r from each other. However, this is impossible, since v;
gji< §+ "< 2(1 r). This completes the proof in Case II.

Case |ll: gjjgji < 0. If gji < 0 then let us swap the values of i and j; thus from now on we have gj;
> 0and gijj < 0, buteitheri< jori>j. Ifg; g;; (1 r),thengj r by (4.6), and so(4.7) holds for
our i; j. Hence from now on we may assume gj; > gjj (L r). Now set:

li= g+ 5(1 r)gi 31 r);

= g (1 r)hgi+ 31 1)

and B = (gki+ Jr) \ (g +Jr) fork2fi;jg:

These are non-empty intervals. Indeed, |; is non-empty since g;j 1 r and g;j; < 0; | is non-
empty because of our assumption gj; > gj; (1 r), and for each k 2 fi;jg, it follows from jgi
gkji< 1 "(see (4.8)) that I is noreempty with jlj > (1 er) (1 ") ,"o. Now foreach k 2 fi; jg
we choose an open subinterval I of I of length mire 3; jé&j , and then dene U to
be the open box U = I; Igq. We claim that 4

(4.15) U\ Cgzo, =

Indeed, assume the opposite; then there is some v 2 gZ9 with U\ v + lZCr = ?. By construction,
Ii is disjoint from both the intervals gj; + J, and gi + J,; hence Uis disjoint from the two

cubes ge;j + lzc,, gej + l{:r, and thus v 2 fgej; gejg. Let x beapointinU\ v+ ic, 5 Then x; 2
i \ (vi+ Jr). Note also that the three intervals gi; + J,, |;, gii + J+ are adjacent to each other
in this order along the real line, with the length of |; being

jlij=gi 8; (1 r)<1+"+(3 3" (1 r)=31 2"+r<i<1 n

But vi+ J, has length 1 r; hence there exists a number xoi 2 vi+ J, lying either in gjj + J, or
gij + Jr. Noticing also that xx 2 Iy (gki+ Jr) \ (gkj + Jr) for all k = i, it now follows that
the point x + (x°, xj)e; lies in the cube v + lCrzand also in one of the two cubes ge; + 1C, orge; +
ic,. Tpis is a contradiction against the fact that v + 1C; is gisjoint from both ge; + 1C, ar&d gej +
,Cr; hénce we have completed the proof of (4.15).

We have jlij < %for all 1 k d; hence Lemma 2.5 applies, giving vol(U) < dr. But jlyj l"oforzall
k2 fi;jg, and jlij jgijj; thus
igijj gji 8+ 1 r = jgiiiljj vol(U) r:
Furthermore, jgijj g;; (1 r) r by (4.6). Adding the last two bounds, we conclude that (4.7)
holds for our i; j.

4.4. Proof of Proposition 4.2. Finally, we can give the

Proof of Proposition 4.2. Choose 0< a< land A > 1 asin Lemma 4.5. Fix a number 0 < < —116
so small that for every matrix g 2 G which has distance (w.r.t. k k) less than to a matrix in
Up, we have jdetg 1j < 3, where g is the top left (d 1) (d 1) block of g. Fix a number 23



0 < "9 < mina; =(2A), and for this "y, take ro > 0 as in Lemma 4.5. Note that the dening property
of rg trivially remains valid if we decrease ro; hence we may assume that 0 < rg < 1"o.Let C > 0 be

the maximum of the implied constants in the two \" bounds in Lemma 4.6, for our xed d and "

Now let r 2 (0;rg) and 2 K, be given. This means that \ C, = fOg, and a fortiori,
\ C, & fOg. Hence by our choice of A; a;"o;ro (see the statement of Lemma 4.5), there exist
8 2 G, w2 W, B 2 [1;A] and u 2 Ug, such that = g%z% and kg wuw 'k < "o. Note
that the norm k k is preserved by left and right multiplication by elements from W ; hence letting g
= (gij) := w g% we have kg uk < "o, and also gz¢\ C, = w (g°z¢\ C;) = fOg (this is
true since wZ9 = 79 and C, = w 1C;). Hence by Lemma 4.6, and by our choice of C, we have
0 gii (1 r) Cr foralliandjgigjij Cr foralli=j. Furthermore, it follows from u 2 Ug- and,
kg uk< " that kg uk < (B +1)"g for some u%2 Ug; hence a fortiori kg u%k < 2A"p <,
which implies that jdetg 1j < 1 by our choice of . It also follows that jgjj < + gA"o < 1for
all i = j. Hence g 2 K;,¢, and thus g = wgw 12 wK,.cw !and = g%2%2 (wK,,c w?),
nishing the proof.

N

5. Measure estimates of the thickenings

Fix m;n2 Nandletd= m+ n. Let 2 R™ and 2 R" be two xed weight vectors as in Theorem
1.2. As mentioned in Remark 9, in order to incorporate the case of general weights, we need to
consider a more general one-parameter subgroup of G associated to and . Explicitly, for any s 2 R
let us dene
(5.1) gs = g.:= diag(e’®;:::;em;e %iie %) 2 G:

Let : Xq ! [0;1) be the function dened in (1.4). The main result of this section is an
asymptotic estimate for the measure of the thickened set
e [ 1
€= g s [0r];
Os<1

when r > 0 is small.

Theorem 5.1. Let {4 = dﬁz%“ and 4 = 4 21) be as in Theorem 1.2. Then
{d d - +,
rid log? ; asr! 07;
dr de g, 1

where the implicit constant is independent of r and the two weight vectors and .

Just as for Theorem 2.1, we prove Theorem 5.1 by proving the upper and lower bounds separately.

5.1. Proof of the upper bound. Note that for any (x;y) 2 R™ R",

This implies that

ilg s) ()j maxg; i mpaiii;n jsi< jsj; 8s2R; 2Xg:
Hence
(5.2) g s 0;r] o;r+ jsj; 852 R:
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Given any r 2 (0;1), let g = dl=re. Using (5.2) and the fact that 1=q r, we have
1 [ 1
©= g s 1[0; rl = g k=q8 s 1[0; r] g k=q 1[0;2[‘],‘
0s<1 k=0 0s<l=q k=0
implying that (using the G-invariance of yand q r 1)
91l ¥
dr€ 48 kq 02r] 1 g 0;2r]:k=0
Finally, by Theorem 1.3 we get
1 1 _ . .
drgr rla* log? = rls Io§dr, 1 asr! 0":

This nishes the proof of the upper bound in Theorem 5.1.

5.2. Proof of the lower bound. In this subsection we prove the lower bound in Theorem 5.1. By
the discussion in the beginning of Section 2, we may replace the set 1[0;r] by K,, that is, it suces
to prove the following lower bound

[ ‘ 1
(5.3) d g sKr qr'dlog, ;
Os<1

asr! 0%:

r

The following lemma is the crucial ingredient in our proof of (5.3). Let cg be the small parameter
which we xed in Section 2.2; after possibly shrinking c , we may without loss of generality assume that
0< co< (3e) L. Forr 2 (0;co=d), let K, K, beasin (3.18).

Lemma 5.2. For any r 2 (0;co=d) and s 2 [r; 1), the two sets K, and g K, are disjoint.

Proof. Assume the opposite; then there exist r 2 (0;cg=d), s 2 [r; 1) such that K_r\ g K =, or

r

equivalently gcK, \ K, = ;. Pick a lattice 2 gsK, \ K,; thus 2 K, andg 2 K,. By the
denition of K, in (3.18), we now have = pp,;:::h . 1uxZO‘ for some vectors bj = (bqj;:::;bg)t 2 R
(j = 1;:::;d 1) and x 2 (0;co=d)? 1 satisfying (3.10), (3.11), (3.12) and (3.13); moreover, we
also have g s = Ppo;...p0 uxoZ? for some vectors by = (b};;:::;b3;)* 2 RY (j = L;:::;d 1) and
x9 2 (0; co=d)? 1 which again satisfy (3.10), (3.11), (3.12) and (3.13).

P m 1

Because of 2 (Rso)™ and =1 there exists an index 1 i m such that; —.

Fixing such an i, we consider the vector "
y = (yiiiva)i= g shi= e Sbijiii;e ™bmi;etbmari; i enha:
By (3.10) we have jbjij < co for all j = i, and 1 ZLd < bji < 1. Hence jyjj < eco for all j = i (since

O<s<land- 1foralll * n),and0< yj< e iS<e SM< 1 2i< 1 Zr— We have

m

bi2 r fOgandthusy = g bj2 g or fOg; alsog s 2 K, K, and hencey 2 C,. But for

all j = i we have jyjj < ecp < % < 1 r (indeed, recall that 0 < cg < (3e) 1); also y; > 0; hence
y 2 C, impliesy; 1 r. In summary:

jyji< eco (8j =1i) and 1 ry<1 L&
Furthermore, b{ 2 g 5, since g s = Ppo..p0 uxoZ9; and by (3.10) we have jbi,j < ¢o for all j = i and
. d 1
1,4 <tb; <l It follows that jb);  §;j < (e+ 1)co < (e+ 1)(3e) 1< ,<1 rforallj =i, and
jbCyij<r< 1 r;henceb; Cy 2 C,. Notealsothatb; 0y 2 g 5, andb; = 0, since2s



yi< 1 %j < bm" hence we have obtained a contradiction against g s 2 K K,. This completes the

proof of the lemma.

r

It follows from Lemma 5.2 that for any r 2 (0; cg=d), the sets g K., for k running through the

integers in the interval 0 k < 1=r, are pairwise disjoint. (Indeed, ifg v K \ g FOrK— =7 forsome 0
k< k < 1=r then K\ g kO)rrK_ =7, coqtradicting Lemma 5.2.) Hence, using also
K., K , we have
I I
[ [ X
d g sKr 4 g kK, = d 8 krKr=# Z\[0;1=r) 4 K,; 0s<1
Ok<1=r Ok<1=r

Here # Z \ [0;1=r) r 1, and for r suciently small we have 4 K  rfa*1 log, L by (3.21).
Hence we obtain the lower bound (5.3), and the proof of Theorem 5.1 is complete.

6. Some preliminaries for Theorem 1.2

In this section we collect some preliminary results for our proof of Theorem 1.2.

6.1. Dynamical interpretation of weighted -Dirichlet matrices. Let m;n 2 N and let

2 RM and 2 R" be two xed weight vectors as before. Let tg > 0 and let t[to;1) ! (0;1)
be a continuous decreasing function which tends to zero at innity. In this subsection we give a
dynamical interpretation of .-Dirichlet matrices which generalizes [25, Proposition 4.5]; see

Proposition 6.2. Let us rst introduce the following modied Dani Correspondence which is a
special case of [19, Lemma 8.3].

Lemma 6.1. Fix m;n 2 N and letd = m+ n. Let tg > 0, and let : [to;1) ! (0;1) be a
continuous, decreasing function satisfying (1.8) and (1.9). Then there exists a unique continuous,
decreasing function

m n

r=r :[sg;1)! (0;1); where sg= g log to g log (to);

such that
(6.1) the function s! s+ mr(s) is increasing,
and

es Nrls) = g s mrls) for all s sq:
(6.2)
Conversely, given sg 2 R and a continuous, decreasing function r : [sg; 1) ! (0; 1) satisfying
(6.1), there exists a unique continuous, decreasing function = | :[tg;1) ! (0;1) with tg =
eso nr(so) satisfying (1.8), (1.9) and (6.2). Furthermore, for any xed ; > 0 the series

X 1 k (k log(1 k (k
(6.3) (k) g (k))

kto k
diverges if and only if the series

X r(k)logl + 1

(6.4) cso r(k) =

diverges. 26



Proof. The and r-functions determine each other uniquely via the relation
(6.5) (t)1=mes=m — t1=ne S=n = @ r(s);

which captures the moment when the as-ow transforms the long and thin ‘rectangle’
(x;y) 2 R™ R™ : kxk™ < (t); kyk" < t

determined by (1.2) into a cube (with side length 2e "(5)). Here as = diag(e"™Im; e 5="l,), as
dened in the introduction. This correspondence between () and r() is a special case of [19,
Lemma 8.3], as here we assume that () additionally satises (1.8) and (1.9), which on the r-
function side corresponds respectively to the assumptions that r() is decreasing and r(s) > 0 for all
s sg. The equivalence of these additional assumptions is easily checked using the following three
relations, which follow from (6.5):

_m

(6.6) e =t (1) 5= T n

d

s nr(s).

logt log (t); and t=¢e

Finally we prove the equivalence of the divergence of the two series. If [im¢i1 t (t) < 1 then both
the functions 1 t (t) and r(s) are bounded away from zero (and positive), which implies that the
two series in (6.3) and (6.4) are divergent. Hence from now on we may assume thatlimyg¢ g t
(t)= 1. Thenlimgiy r(s)= 0(by (6.6)),andF (t) :=1 t (t)is adecreasing function taking values
in the interval (0; 1) and satisfying limy¢11 F (t) = 0. After enlarging sp (thus also enlarging tg) we
may assume that 0 < r(s) < 1=d for all s sg. Then by (6.6) we have, witht = t(s) = es "r(s):

(6.7) gr(s)< F (t)< dr(s) and e° 1< t< e 8s sg:

It follows that r(s)log 1 + r(s) a; F (t)log F- iy for all s, So. Hence, using also ek 1< t(k) < ek
(see (6.7)), the fact that F (t) is decreasing, and o P ekjcek+t 1 1 (8k 1), we have
for all suciently large integers k: j

r(k) logl + . F (e Y)lo . CF (j)lo s
and similarly
r(k) logl + . F (eX) 1o . CF (j) lo , :

P
It follows that the series in (6.4) diverges if and only if ; j 1IF (j) log = 1” diverges, that is, if

and only if the series in (6.3) diverges.

Remark 12. Let andr beasin Lemma 6.1 withlim¢;1t (t)= 1. Let F (t)=1 1t (t) beas
above. Assume that the series (6.3) (and thus also the series (6.4)) diverges for some ; > 0. It is then
not dicult to see from the proof of Lemma 6.1 that for any ; and for all large s; > so,

(k) log 1+ % K F (k) Idg ¢ _1
r 0g r(k)‘d;;o E (k) .

soksi tokes1
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In particular it follows that for any , > we have the following equivalence:

lim inf ke, 1K) log” 1 0= o
s 11 P 1 2
! so<ks, (k) log 1+ ™)
P k IF (k)log ¢ —2
() lim inf 5 fokt 1 Fk) = 0:
t1! 1 fokts k 1F (k)|0g 5__1(k)

Similarly, the above two limits inferior remain bounded simultaneously.

We now state the dynamical interpretation of -Dirichlet matrices.

Proposition 6.2. Let be asin Theorem 1.2, and letr = r be as in Lemma 6.1. Let fgsgsor be
the one-parameter subgroup associated to the two xed weight vectors and as in (5.1). Set

Iy ;= maxfmi;n; : 10 m;1j ng and ! := minfmj;n; : 1 i m;1 j ng:Then for
any A 2 Mm.n(R) we have, with 4 as in (1.5):

(1) if (gsa) > 'ar(s) for all suciently large s, then A is .-Dirichlet;
(2) if (gsa) '2r(s) for an unbounded set of s, then A is not .-Dirichlet.

Remark 13. When = (L@T%::;L)nz RM and = (1;:%:;1) 2 R", then !; = 1, = 1 and

Proposition 6.2 recovers [25, Proposition 4.5].

Proof of Proposition 6.2. For any t > maxftg; 1g, dene

Rt = Ry:= (x;y) 2 R™ R™ @ kxk < (t); kyk < t;

so that (p;q) 2 ZM (Z" r fOg) is a solution to (1.7) if and only if (Aq p; q) 2 R¢. On the other
hand, the lattice o consists exactly of the points

Im A P _ A9 p f . m -n,
= or(p;q)22Z2" Z":
0 I, q q (p;q)

Moreover, if (Ag p;q) 2 a \ Rt is nonzero for some (p;q) 2 Z™ Z", then we must haveq = O.
Indeed, otherwise we would have kAq pk = kpk 1, but (Aq p;q) 2 Ry implies that kAq

pk < (t) < 1=t < 1 (since t > maxftg; 1g), contradicting kAq pk 1. Thus there
exists a solution (p;qgq) 2 Zm (Z n fOg) to (1.7) if and only if o \ Rt = fOg, implying that A 2
Mm:n(R) is .-Dirichlet if and only if o \ Rt = fOg for all suciently large t. Now lets = s(t) =
glogt log (t); thens! 1 ifandonlyift! 1, and by (6.5) we have

n o
gsRe = (x%Gy%) 2 R™ R™ @ kPk < e ™), kyOk < e MrIS) =: Eg:
It follows that A is ,-Dirichlet if and only if gsa \ Es = fOg for all suciently large s. Next, note
that we have the following simple relation:
(6.8) e !1|’($),.e lir(s) d Es e !2f(5);e ar(s) d}
with !1; !, dened as in the statement of the proposition. Note also that (gs ) > Alir(s) is
equivalent with gsa \ e '17(8); e far(s) d - fOg. Hence, using the rst inclusion relation in
(6.8) we have
(gsa) > lir(s) for all suciently large s ) gsa \ Es = fOg for all suciently large s;

and the latter condition implies that A is .-Dirichlet. We have thus proved part (1) of the
proposition. Similarly, part (2) follows using the second inclusion relation in (6.8).
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Let andr = r be as above. For any integer k > sq, let us dene

[ _ [
By := g s '[0;lar(k+s)]  and By := g s 1[0;lir(k + s):
Os<1 Os<1

It follows that for any 2 X4, we have g 2 B (respectively g 2 By if and only if thereis

some k s < k+ 1 such that g5 2 1[0; !5r(s)] (respectively gs 2 1[0; 11r(s)]). In

particular, in view of Proposition 6.2, a given matrix A 2 Mpn.n(R) is .-Dirichlet if gka 2 By Tor

all suciently large k, or equivalently, if gxka 2 Bk holds only nitely often. Similarly, A is not
.-Dirichlet if gka 2 B, _holds innitely often.

6.2. Eective equidistribution and doubly mixing for certain gs-translates. Let m;n2 N
and d = m+ n be as before. Let

be dened as in (1.5), and recall that Y is equipped with the probability Lebesgue measure, Leb.

As mentioned in Remark 9, we will need an eective equidistribution and doubly mixing result for
the g.-translates fgsY gs>o which is analogous to (1.13) and (1.14) respectively. In fact, we will state
a corollary of a more general eective mixing result of arbitrary order proved by Bj.orklund and

Gorodnik [1, Theorem 2.2]. To state their result, let us rst x some notation.

Let g = sly(R) be the Lie algebra of G. For each Y 2 g, let us denote by D, the corresponding
Lie derivative (a rst order dierential operator) on C1(G) dened by

Dy (F)(g) = Seflexp(tY)g) i f 2 C(G):

Here exp : g ! G denotes the usual exponential map from g to G. Note that this denition
naturally extends to the function space CC1 (Xg4) since we can view elements in CC1 (Xq) as right

Z = Yl'1 Y,° denes a dierential operator of degree deg(Z) := ‘1 + + ‘4, via

Dz := Dyl Dy: °
Now for each * 2 N we dene the \L?, degree ‘" Sobolev norm on C1(Xg4) by
X z 1=2
. .2
kfkl_z .= jDz(f)J dd ;
deg(z): Xd

’

Fix a metric dist(;) on X ;= G= which is induced from a right G-invariant Riemannian metric
on G. We also dene the following Lipschitz (semi-)norm on C i(Xd) with respect to this metric:

kfkiip := supjf(xl) f(xa)j DX1;X2 2 X4; X1 = Xo; f 2 Cl(Xd):

dist(x1; x3) ¢

Let us also write k kco for the uniform norm on C(Xq). Finally, for any f 2 C.%(X4) we dene
n o)
N-(f) := max kfkco; kfkyip; kfk2

We can now state the result which we need from [1].
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Theorem 6.3 ([1, Corollary 2.4]). There exist * 2 N and > 0 such that for every b 2 N and any

VA b : b b
y % ois sy Y
fo(a) fi(gs,a)  dA = Leb(fo)  a(fi) + Op;r , e “077 N-(fi) ;

Y i=1 i=1 i=1

where D(s1;:::;sp) := minfsi;jsi  sjj : 1 i=j bg.

(In fact, in [1, Corollary 2.4], the error term is also explicit in terms of fg.)

Taking fo 1onY and b = 1;2, we get the following eective equidistribution and doubly
mixing of the family of gs-translates fg Y gs-o in Xq.

Corollary 6.4. Let “ 2 N and > 0 be as in Theorem 6.3. Then for any f; f;f, 2 CléXd) and
S;S4;8,> 0,

(6.9) Z f(gsp) dA = 4(f)+ Oe SN«(f); v
and
Z
(6.10) f1(gs,a)f2(8s,a) dA = 4(f1)a(fz) + Oe Mnfsusis S2EN.(f1)N«(f,):
Y

6.3. Smooth approximations and estimates on norms. In this subsection we prove the ex-
istence of smooth functions 2 C? (Xd) bounding our shrinking targets from above and below in an
appropriate sense, with control on the norm N«(). We follow the strategy of [21, Theorem 1.1] while
allowing the small identity neighborhoods of G (against which we convolve) to shrink.

Recall that

[
©:= g s 10;r] (0< r< 1)
0s<1

Lemma 6.5. Let "> 0. For any 0< r < 1, there exists y 2 C. {Xq) satisfying e  eand, for
any ‘ 2 N: ' o
n o

(6.11) Ne(r) ogmr L; with L := 1+ max 0;'+" & 4

(Note that the implied constant in the bound in (6.11) is independent of r.)

To prepare for the proof, let us dene, for any r > 0,

n r (0}

. . . 1 r
O, : g2 G : maxfkg Iqk; kg lgkg < 104

Here the norm is the supremum norm on the matrix space Mgy.4(R). Clearly, O, is an open neigh-
borhood of the identity element in G and it is invariant under inversion. Let be the normalized Haar
measure of G as in Section 2.1; recall that locally agrees with 4.

We will need the following auxiliary lemma.

Lemma 6.6. For every 0 < r < 1, there exists a function , 2 C i(G) satisfying , 0, supp(;) O3,
or(g)d(g) = 1and kDz(r)ki1(g) a d* “ for every monomial Z = Y1 Y =, where ! =

‘{

deg(Z) = "1+ + ‘a.

(The implied constant in the bound on kDz()k1(g) depends only on * and d, and not on r.)
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Proof (sketch). Let !

I R (a = d? 1) be arbitrary C1 coordmate chart of an open ne|ghbourhood
of I in G, with’(l4) = 0. Let Cl(Ra) be a xed bump function in R?, i.e. a function satisfying 0
and dx = 1. We may assume that the support of is contained in
the unit ball centered at the origin, B®@. &or eacht> Odene¢2 C 1(R""S through

(x) = t 2t *x) (x 2 R?);

and note that supp(:) B? apd R . thx = 1. Let us choose the constant ¢ > 0 so small that
B2 ' ( a

) and’ 1(B,) O, for all 0 < r < 1. This is possible since the matrix entries of g

and g are C! functions of g2 G. Now we may simply set, for each 0< r < 1,

r =V (er ')

R
where vy > 0 is chosen so as to make . d = 1. One veries that the limit lim o+ v, exists
and is a positive real number. Using this fact, and recalling a= d? 1, all the properties stated in
the lemma are straightforward to verify.

Proof of Lemma 6.5. We claim that for any ry;r, > 0,

(6.12) Or1fez I’1+er'

First we note that for any h 2 Mg.q(R) and v 2 RY, khvk dkhkkvk. This implies that for any r
> 0 and any g 2 O4gr and v 2 RY,

kgvk kvk + k(g lg)vk (1+ r)kvk:

Hence for all r > 0,

() (g) log(1+ r)<r; 882 Oior; 2 Xg:
Similarly, since O1q, is invariant under inversion, we also have
(g) ()= (g) (g 'g)<r; 82 Oor; 2 Xg:
Thus
O1or, '[0;r2] [0;r1+ ra]; 8ry;ry > 0

Now to prove the relation (6.12), in view of the denition of , @t suces to show that for any g 2
Or,, 0 s< 1and 2 1[0;r,] there exists some 0 s®< 1 such that

88 528 » '[0;ri+ ra);
or equivalently, gogg s 2 1[0;r1 + r]. We take Sy = S. By direct computation and using; ;
2 (0;1) foralll1 i m;1 j n, we have

max kggg s lak; k(gsgg s) ' lak = max kgs(g la)g skikes(g ' la)g sk
2 . 1 2 I,
< e“max kg Ilgk; kg gk < e 10d < g

Thus gsgg s 2 O1or,, implying that
888 s 2 O1or, '0;r2]l [0;r1+ ral:
This nishes the proof of (6.12).

Given any 0 < r < 1, we now choose ; as in Lemma 6.6, and then dene our approximating

function ; 2 C. {Xq4) as the convolution .

K=, . = (8 . (g ' di):

3r=2 3r=2
G
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R
It follows from , 0 and Grd = 1 that , takes values in [0;1]. Moreover, for anyg 2
supp(y) O,=, (so that g 1 is also contained in O,-, since O,-, is invariant under inver-

sion) and for any x 2 & we have by (6.12)
g 'x2 0,28 3¢
implying that for any xZZ €
(x) = (e)

supp(r)

z

(g 'x) d(g) = (g) d(g) = L:
? supp(r)

e,
Thus ¢ . Next, we claim that supp(;) 2r. To préve this, note that since supp(;) is compact and
contained in O,.,, there exists some 2 (0;r=2) such that supp(;) O,., . Now if x 2 supp(;) then
there exists some x 2 O x with ,(x ) > 0;0and by the denitién of , there then exists some g 2 supp(;)
O,-, suchthatg 1x°2 3,_,. Hencex%2 O,_, 3;-2 2r ,and (gnce O is invariant undereinversioa) x 2
Ox% O, 2. We have thus proved that supp(;) 2r. Usingethis inclysion together with the fact
that , takes valuegin [0; 1], we conclude that , e, - (Note that e, follows already from the easier

fact that for any x® 2 Xgq4, (x°) > 0 implies x° 2 ,,. However we need some control on supp(,) below
when we discuss derivatives of .) o

For the norm bounds, we rst note that using the invariance of the Haar measure, foranyY 2 g

we have Dv( )r: D \( ) ] o - More generally, for any monomial Z in fY s Y8
3r=2

(6.13) D,()= D {),

3r=2

Recall from Lemma 6.6 that supp(;) O,=; and kDz (r )k 1(g) 5;d It @ ‘z where ‘; is the degree of
Z. Furthermore, it is easily veried that (O,-;) ¢ rd® 1, Using these facts, we have, for every x 2 Xy

‘

and every monomial Z of degree ‘7 /,

(6.14) jDz(;)(x)j= * Dz(r)(g)e (g *x) d(g) a;r* 92 2(O,p)ar %

supp(r) 312

Hence, using also supp(;) 2r afid Theorem 5.1, we get

1=20 * £ q b d
Keky 2 dlar) @ grra e :

Finally, using the fact that for any 0 < r < 1, the support of is contained in the xed
precompact set £ we have krKiip ¢ SUPy2x, SUPjaf1;:::5ag Dy, (r)(X), and hence by (6.14), krkiip o

reeer

r1:

Now the bound in (6.11) follows, via the denition of the norm N-.

7. Proof of Theorem 1.2

In this section, building on the analysis developed in the previous section, we give the proof
of Theorem 1.2. We keep the notation as in the previous section. In particular, throughout this
section, we x constants > 0 and “ 2 N as in Corollary 6.4, and for each 0 < r < 1 we x a
function , 2 C. IXq4) asin Lemmga 6.5. Taking " = J in Lemma 6.5 we have that the norm bound in
(6.11) holds for L := 1+ max 0;+ 1 , £4 d
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7.1. Application of eective equidistribution. For any 0 < r < 1, taking f = | in the eective

equidistribution result (6.9) and applying the norm estimate (6.11), we get for any s > 0, (7.1)
ZY r(gsa) dA = 4(;) + Oge °r L

When r is small, the above integral should be expected to be small as well; however, the error termin

(7.1) blowsupasr ! 0*. To remedy this issue, for r very small we will instead prove an upper bound

on the integral, obtained by applying (7.1) for a suitable enlargened r-value. The result is as follows:

Lemma 7.1. Let There exists rg 2 (0; 2} such that forany 0< r < rg and s> 0,

= {g4+L" A
Z < plejoge 2 ifr>e s
r
(7.2) (8 ) dA _
Y Cge les=2 ifr e s.
In particular, for any sequence fygkan (0; ) with limgi11 « = 0, we have (7.3)
7 .
X X ( 1
Yk(gkA)dA=1 () “klog?  ~ - = 1:
k k
Proof. First we note that by Theorem 5.1 and the relation ¢ | e (see Lemma 6.5), we

2r
have 4(;) ¢ rf¢ log? L . Furthermore, if r > e S, then the ratio of the main term and the error term
in (7.1) satises: '
r {a] d 1
e%#r) e re>-log, 5

which we can force to be as large as we like by taking the constant r ; suciently small (in a way
which only depends on d). Hence it follows from (7.1) that (7.2) holds in the case r > e 5.

Next assume r e 5. Set := 2e 5. If < rg, then by what we proved in the previous
paragraph,

z (gsa) dA 4 14 log, Lge (552 y

and hence the bound in (7.2) follows, since , . -(again see Lemma 6.5). In the remaining case
when rg, we have s 4 1 and e {45=2 4 1, and hence the bound in (7.2) holds simply because of ; 1.
This completes the proof of (7.2).

For the last part of the lemma, since limy,1 x = 0, after possibly deleting nitely many
terms from the two sums in (7.3), we may assume g < ro for all appearing terms. Next, using the
second bound in (7.2) and the fact that both of the series P K € {ak=2 3nd ta Iogd lk

converge, it follows that the two divergence statements in (7.3) remain unaected if all the terms
for which e ¥ are removed from the respective series. After this operation, the equivalence in
(7.3) is an immediate consequence of the rst relation in (7.2).

e K

7.2. The convergence case. This case is now easily handled using Lemma 7.1.

Proof of the convergence case of Theorem 1.2. Let r = r : [sg;1) ! (0; 1) be the continuous,
decreasing function corresponding to  as in Lemma 6.1. First note that since the series (1.10)

converges, we have lim¢i1 t (t) = 1 (or equivalently, limg1 r(s) = 0 as seen from the proof of
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Lemma 6.1). Moreover, by the last part of Lemma 6.1, the fact that the series (1.10) converges
implies that the series |, r(k){ log® 1+ "L also converges.

Now for each k > So let us dene

By := g s 1[0;!lir(k + s)] and Ex:=a2Y :gka2 By ;os<1

where 1 := maxfmi;nj : 1 i m;1 j ngisasinProposition 6.2. In view of Proposition 6.2 (and the
paragraph after it), it suces to show that for Leb-a.e. o 2 Y, gxa 2 Bk for only nitely many k > sg, or
equivalently, that the limsup set limsup,,; Ex is of zero measure. " Thus in view of the Borel-
Cantelli lemma, it suces to show that P «Leb(Ei) < 1.

To prove this, we will approximate the shrinking targets fB gk>s from above. Sincer(s) ! Oass
I 1, byenlarging sq if necessary (equivalently, enlarging tg as in Lemma 6.1), we may assume !1r(s)
2 (0; ) for a%ll s > sg. Moreover, by Lemma 6.1, r() is decreasing; thus with  := I;r(k), we have

(7.4) By € 8k > sq:
Recall that for each 0 < r < 1 we have xed a function ; 2 Cl()c(d) as in Lemma 6.5. Now for
each k > sg, we have ; — k(by (7.4) and Lemma 6.5), implying that
k k
VA Z

(7.5) Leb(E) = , —5(gka) dA , (gka) dA:

e

P

Next, it follows from | = !1r(k) and the convergence of r(k){aloge 1+ kL that the series K
kRi logt ) alsoiconverges; in addition, limyi11 x = 0 since limygi1 r(k) = 0. Hence by the last part
of Lemma 7.1 combined with (7.5), wg have 7 Leb Eyx < 1, nishing the proof.

Remark 14. Let (m;n) = (2;1); thus d = 3. In [5, Theorem 1.1], Chow and Yang proved an
eective equidistribution result for certain Diophantine lines in Y translated under the full (two
dimensional) diagonal subgroup of G along certain restricted directions. In particular, their result
implies the following: Let (a; b) 2 R? be a Diophantine vector (see [5, p. 2] for the denition), and let J
R be a compact subinterval. Then these exist constants ©2 N, c2 (0; 1) and o > 0such that for any

pair of weights = (;,.0; 1,¢7) with—cé<-%cc, foranyf 2 C!(X3) and for any s > 0(7.6) il f
Z J

gsv(x)dx= 3(f)+ Oe Oikali

«C
where g5 = ggl = diag(e%;e25;e °) with as above, v(x) := (ax+ b;x)t 2 RZ and k k: 1:helc
\L1, degree ‘°" Sobolev norm dened by

X
kfk|_J0 = sz(f)kCOZ
deg(z)0
Here k k o is the uniform norm on C 1 (X § as before. On the other hand, it is easy to see from
Lemma 6.6 and the relation (6.13) that there exists L% > 1 such that
(7.7) krki,10r '0; 80<r< 1

Using a similar analysis with (7.6) and (7.7) in place of (6.9) and (6.11) respectively, we can
conclude that if the series (1.10) (with d = 3) converges, then for Leb-a.e. x 2 J the column vector
v(x) = (ax+ b;x)tis .;-Dirichlet.
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7.3. The divergence case. In this subsection we prove the divergence case of Theorem 1.2. We
rst record from [29] the following divergence Borel-Cantelli lemma which we will use.

Lemma 7.2. Let (X;) be a probability space. Let fhygyon be a sequence of measurable functions
on X taking values in [0; 1]. Let by := (hk). Suppose «bk=1 and
Py Py 2
2 hix) 2 b d(x)

(7.8) liminf o P =0 for some ky 2 N:i=k;
ko! 1 k 2 b

I
Then for -a.e. x 2 X, hg(x) > 0 innitely often.

P
Proof. Let Yq1;Y;;::: be the sequence of random variables dened by Y (x) = k+ik=1k11 hi(x) (k 2
N). Note that
Z 2
X X2 2 ) , )
hi(x) b d(x) = Ykz ki+1 Yio ki+1 ,
X =k, i=kq
hence (7.8) implies that lim sup, |, (Yi)2=(Y 2)k= 1. Therefore by partP(iii) of the main theorem in
[29], for -a.e. x we have lim sup 1 Yk(x)=(Yk) > 0. Also (Y) = :‘:Ifll Yhil 1 ask! 1.
Hence it follows that for -a.e. x we have limy 1 Yi(x) = +1, and in particular hj(x) > 0 for
innitely many i.

Remark 15. If one replaces the assumption (7.8) by the weaker assumption that

Py Py 2
2._ hi(x) 'ik bi d(x)

liminf 't P2 =t <1 for some ky 2 N;i=k;

ka! 1 k%
I

then by the application of part (iii) of the main theorem in [29] we get instead
. Yi(x) 1
x2 X :limsu > 0 —_—

In particular, there is a positive measure set of x 2 X such that hj(x) > 0 innitely often.

Proof of the divergence case of Theorem 1.2. First we note that in view of Remark 2 we may as-
sume limyi1t (t) = 1. Let r = r be the continuous, decreasing function corresponding to  as
in Lemma 6.1; then from the proof of that Jemma we have limg; r(s) = 0. Also by Lemma 6.1,
since the series (1.10) diverges, the series |, r(k){¢log? 1+ &I  also diverges. Moreover, by
Remark 12, condition (1.11) is equivalent to
P 1
(7.9) iming so<ksy r(k){d loge*! 1+ r(k)_l_ N
st P r(k)lea loge 1+ rki_1

so<ksi

Now for any k > sg let

B, = [ g s '0;lar(k+ s)]

Os<1
be as before with !, := minfmj;n; : 1 i m;1 j ng as in Proposition 6.2. In view of
Proposition 6.2 (and the paragraph after it) it suces to show that for Leb-a.e. o 2 Y, gka 2 B
innitely often.
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In this case we will approximate the shrinking targets f_Bkgk>S from below. Recall that for
each 0 < r < 1 we have xed a function , 2 C 1(X(é) as in Lemma 6.§.Again we may assume !,r(s)

2 (0; %) for all s> sg, and since r() is decreasing, we have r(k+1) Byeimplying that, with  := lr(k
2
+ 1)=2:
(7.10) fk T €iyrike1) B,/ 8k > so:
Let us set, for each k > sq,
Z VA
b= fi(gka) dA =y (gkkA) dA:y

Then, similarly to the proof of the convergence case, by applying the last part of Lemma 7.1 and
using the relation ¢ = !,r(k +1)=2 and the facts that the series (k) loge 1+ ™  diverges

and limg1 r(s) = 0, it follows that the series P « bk also diverges.

Now for each k > sg, let hi be the function on Y dened by hig(a) := fk(gka). Then in view of
the denition of fy :=, and the relation * L tehe function hketakes values in [0; 1], and
Z Z k k
hi(a) dA =y  fi(gka) dA = by:y

We will apply Lenlgma 7.2 to the probability space (Y; Leb) and the sequence fhigiss,. We have
already seen that by = 1; thus in view of Lemma 7.2 it suces to show that fhkgk>so satises
condition (7.8).

Let us take C > 0 suciently large so that for all k > C, ¢ 2 (0;rg), where rg is the constant as
in Lemma 7.1. For any k, > k; > C, let us denote
0 1
Z X ka 2 X z
Qik, 1= @ hi(a) biA dA = (hi(a)hj(a) bibj) dA:
Y i=k1 i=k1 kii;jkz Y

Using the fact that for each k; i k, ,

Z Z
h*(a)  b> dA hi(a) dA = b;; v
Y
we have
2 x £
Qx; ;k; bi + 2 (hi(a)hj(a) bibj) dA:
i=k1 kii<jka Y

R
Fix k1 i < j kz; we will use two dierent estimates for the tegm hi(a)hj(a) bibj dA
depending on whether minfi;j ig is large or small. First, applying the eective doubly mixing
(6.10) to the pair (f;; fj), we get

Z
(7.11) fi(gia)fj(gja) dA = 4(fi)a(f;) + Oe ™NT TENL(f)N/(fj): v
On the other hand, by (6.9) we have

(7.12) b = 4(fk) + Oe “N«(fy); 8k> C:
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ombining (7.12), (7.11), the norm estimate N«(fx) = N<( ) L (by (6.11)) and noting that
d % Y
hi(a)hj(a) dA = fi(gia)fj(gja) dA, we have

(hi(A)hj(A) bibj) dAde minfi;j ig L L < e minfi;j ig ZL:Y
On the other hand, using the trivial estimate jhih;  bjb;j Ijuhjj+ bib; hj + b; we Have
zZ z
(7.13) (hi(A)hj(A) bibj)dA (hj(/_\)+ bj)dA= ijZY
Y

Combining these two bounds, we conclude:

X k2 X k2 k1 n o (o]
(7.14) Quk, d b+ min e Mg by,
i=k1 j=k1+1 i=k1

In order to bound the above inner sum we replace k; by 1 and use the symmetry i ! j i to get

K 1 n o o I 1y n o]
(7.15) min e minfii ig ZjL,' b; 2 min e ' 2L bjj

i=kq i=1
In the last sum, all terms are b;, and there are at most O4 log 2+ b 12t terms which are

i

equal to bj (indeed, remember that depends only on d). Furthermore, ff there are any terms
which are less than bj, then these are bounded above by tH; bje ;bje % ::: and so their sum is

Ogq(bj). It follows that the last sum in (7.15) is Og b; min j;log 2+ bj ! J,ZL , and hence from
(7.14) we get

X k2 a2 n o ka ¥ n o
Qi;y:k, d bi + by min j;log 2+ b, L jZL b; min j;log 2+ b * sz iska
j=k1+1 j=k1

Let = g+l be as in Lemma 7.1 and set := {2 ~Then by (7.2) we have for each k; | kj:
z § {d" loge L if > e I
i _
(7.16) b= (g )dA _ ’ .
Y “ge if; e 1.
Thus for any k; > ki > C we have (recalling that j = l,r(j + 1)=2)
X ) X 1 1
Q;y:k, d e Jj+ ;{logd " log- 2+ ta 2Ljlog 47 kijks
kijkz j j
(je i) (j>e i)
)d(z 1 Ix+1 1
al+ j&logd+1 — 1+ r(j)ie logett 1+ i
j=k1 J j=ki+1 r J
Similarly, by (7.16), for any xed k; > C we haveas ky ! 1:
X2 X 1 X2 1 KK+ 1 b
“jlog § Flog , — Sr() ylog, 1w, ;o =i
i=ka k1jka i j=k1 i j=ki+1 )
(pe 1)
P .
where the second relation holds since the series 1, . loge -1 diverges (th'® follows from the

]
relationj = !,r(j +1)=2 and the fact that the series i r(j){e loge 1+ rﬁl) diverges), while the

same sum restricted to those j for which j e J is convergent.
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Combining the last two bounds, we conclude that for any k; > C, and for k, suciently large,

P kk+ _1
Qe gy, Bt ) loget 1 1
(7.17) Pl 2 O P e a
i, b () log? 1+ 7))

P
Since the series | r(j)id logd 1+ r(j—)l diverges, condition (7.9) implies that the limit inferior
of the expression in the ri%ht hand side of (7.17) tends to zero as ko, ! 1. Hence (7.8) holds. We

have also noted that b« = 1. Hence by Lemma 7.2, for Leb-a.e. A 2 Mpm;n(R=Z) we
have hi(a) = fk(gka) > 0 innitely often. Together with (7.10), this implies that for Leb-a.e. A 2
Mm:n(R=Z), the lattice gka belongs to supp(fx) B ) for innitely many k 2 N. This

nishes the proof.
Remark 16. For the divergence case in Theorem 1.2, we note that if one replaces the assumption

(1.11) by the weaker assumption that

1 { 4+1 _ 1
- tokt 1 k *F (k)% log F (k)
liminf
t1! 1

(2 1’

then, in view of Remark 12, Remark 15 and the estimate (7.17), we can conclude that, under this
weaker assumption, DI.( )¢ is of positive Lebesgue measure. It is an interesting question, to which
we do not know the answer, whether DI.( ) must always be of zero or full Lebesgue measure.
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