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A b s t r a c t .  Let be a continuous decreasing function dened on all large positive real numbers. We
say that a real m  n matrix A  is     -Dirichlet if for every suciently large real number t one can nd p 2
Z m ,  q 2  Z n  r  f0g satisfying kAq   pkm <      (t) and kqkn <  t. This property was introduced by
Kleinbock and Wadleigh in 2018, generalizing the property of A  being Dirichlet improvable which
dates back to Davenport and Schmidt (1969). In the present paper, we give sucient conditions
on to ensure that the set of     -Dirichlet matrices has zero or full Lebesgue measure.
Our proof is dynamical and relies on the eective equidistribution and doubly mixing of certain
expanding horospheres in the space of lattices. Another main ingredient of our proof is an
asymptotic measure estimate for certain compact neighborhoods of the critical locus (with respect to
the supremum norm) in the space of lattices. Our method also works for the analogous weighted
problem where the relevant supremum norms are replaced by certain weighted quasi-norms.
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1. Introduction

1.1. Background.  Let m; n be two positive integers and let Mm;n (R) be the space of m by n real
matrices. The starting point of our work is the following higher dimensional generalization of the
classical Dirichlet’s Diophantine approximation theorem, see e.g. [2, §1.5].

Theorem 1.1. For any A  2  Mm;n (R) and t >  1, there exists (p; q) 2  Zm   ( Z n  r  f0g) satisfying
the following system of inequalities:

(1.1) kAq pkm  
t

and kqkn <  t:

Here k  k denotes the supremum norm on Rm and R n  respectively.

A  natural question to ask is whether one can improve (1.1) by replacing 1=t by a smaller function,
that is, consider the following system of inequalities:

(1.2) kAq pkm < (t) and kqkn <  t

where is a positive, continuous, decreasing function which decays to zero at innity. Historically
there have been two directions to pursue in this regard: looking for solvability of (1.2) for an
unbounded set of t >  0 vs. for all large enough t. The former is sometimes referred to as asymptotic
approximation, and has culminated in denitive results such as the Khintchine-Groshev theorem. In
this paper we are interested in the latter, less studied set-up of uniform approximation. Following the
denition in Kleinbock and Wadleigh [25], we say that an m by n real matrix A  is -Dirichlet if
the system of inequalities (1.2) has solutions in (p; q) 2  Zm   ( Z n  r  f0g) for all suciently large t. It is
clear that A  2  Mm;n (R) is -Dirichlet if and only if A + A 0  is -Dirichlet for any A0 2  Mm;n (Z).
Thus with slight abuse of notation, we denote by DIm ; n (  )   Mm;n (R=Z) the set of     -Dirichlet
matrices.

Let 1(t) =  1=t. The problem of improving Dirichlet’s theorem was initiated by Davenport and
Schmidt [10, 9] where they showed that the set

(1.3) DI m ; n  : = DIm; n (c 1)
0 < c < 1

of Dirichlet improvable matrices is of Lebesgue measure zero, while having full Hausdor dimension
mn. More recently, Kleinbock and Mirzadeh [22, Theorem 1.5] showed that for any xed 0 <  c <  1, the
Hausdor dimension of DIm; n (c 1) is strictly smaller than mn. There have also been extensive studies
on the Hausdor dimensions of the (even smaller) set of the singular matrices,

Singm;n : = DIm; n (c 1):
0 < c < 1

After a series of breakthrough work, it is now known that the Hausdor dimension of Singm;n is
mn   m + n  whenever maxfm; ng >  1; see [3, 4, 13, 7, 8].

On the other hand, for a general decreasing function with t !  t (t) increasing, Kleinbock and
Wadleigh proved a zero-one law for the Lebesgue measure of DI1;1 (  )  depending on the divergence or
convergence of a certain series involving [25, Theorem 1.8]. See also [12] for the relevant
dimension theory of DI1;1 (  ), [23] for a similar zero-one law with the supremum norm replaced by the
Euclidean norm and [26, 15] for analogous results in the inhomogeneous setting.

The arguments in [25] rely on the theory of continued fractions and are not applicable for higher
dimensions. Nevertheless, for general dimensions, building on ideas from [6, 19], a dynamical
approach was proposed in [25, §4], reformulating the problem as a shrinking target problem, which
asks whether a generic orbit in a dynamical system hits a given sequence of shrinking targets

2



d d

d d

0 =

d

kvk

I m A

R R

0

d

P P

n o n o

innitely often. To  describe this dynamical interpretation, let us rst x  some notation. Let d =
m + n and let X d  : =  SLd (R)=SLd (Z)  be the homogeneous space which parameterizes the space of
unimodular lattices in R  via g SLd (Z)  $  g Z . We note that SL d (R)  acts on X d  naturally via the
regular action: g =  ghZ for any g 2  SL d (R)  and  =  hZ 2  Xd .  For any s 2  R, let as be the diagonal
matrix

as : = es=mIm
e s

0
n In

2  SLd (R):

Let  : X  !  [ 0 ; 1 )  be the function dened by

(1.4) () : =  sup log
 1 

:
v 2 r f 0 g

Finally, let us denote

(1.5)
 Y

: =      A  : =       0

 I n

Zd  2  X d  : A  2  Mm;n (R)     :

The submanifold Y   X d  can be naturally identied with the mn-dimensional torus Mm;n (R=Z) via
A  $  A  2  Mm;n (R=Z). Throughout the paper, we denote by Leb the probability Lebesgue measure
on Y  =  Mm;n (R=Z); for simplicity of notation, for any function f  on Y  we will abbreviate the space
average Y  f (A ) d Leb(A) by either Leb(f )  or Y  f ( A )  dA.

It was shown in [25, Proposition 4.5] that for any given as above, there exists a unique
continuous function r  =  r  : [s0 ; 1)  !  ( 0 ; 1 )  such that

(1.6) A  2  Mm;n (R) is not -Dirichlet ,  as A 2   1[0; r(s)] for an unbounded set of s >  s0.

This equivalence is usually called the Dani Correspondence. In view of this interpretation, our task
is to nd conditions which ensure that for almost every (or almost no) A  2  Mm;n (R), the orbit
fas A gs > s      hits the shrinking target  1[0; r(s)] for an unbounded set of s-values. We note that this
was also the strategy used in [19] giving a dynamical proof of the classical Khintchine-Groshev
Theorem, where the relevant shrinking targets are certain cusp neighborhoods in X  . For our case, by
Mahler’s compactness criterion, the shrinking targets  1[0; r(s)] are compact neighborhoods of the
critical locus  1f0g, whose explicit description is given by Hajos’s Theorem [11] (cf. Theorem 2.3
below). The fact that these shrinking targets are compact sets causes new diculties compared to the
situation in [19], see the discussion in Section 1.3.

1.2. Main  results. In the present paper, based on the dynamical interpretation described above, we
give sucient conditions on implying that DIm ; n (  )  is of zero or full Lebesgue measure. In
fact, with some modications, our arguments also work for the analogous weighted problem where the
supremum norms in (1.2) are replaced by certain weighted quasi-norms, as introduced in [16]. We
thus prove our main result in that generality. We rst introduce the relevant notation.

Let  2  Rm  and  2  R n  be two weight vectors, that is

 =  (1; : : : ; m) 2  (R> 0 )m and  =  (1; : : : ; n) 2  (R > 0 ) n

with i  i  = j  j  =  1. We say that A  2  Mm;n (R) is ;-Dirichlet if the system of inequalities

(1.7)                                                    kAq pk < (t) and     kqk <  t

has solutions in (p; q) 2  Zm   ( Z n  r  f0g) for all suciently large t. Here

kxk : =  max jxi j1=i     : 1  i   m and kyk : =  max jyj j1=j      : 1  j   n

3
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are the two quasi-norms associated with  and  respectively. Again it is easy to see that A  2
Mm;n (R) is ;-Dirichlet if and only if A  +  A0 is ;-Dirichlet for any A0 2  Mm;n (Z), and we
denote by D I ; (  )   Mm;n (R=Z) the set of     ;-Dirichlet matrices. We note that when  =  ( m ; : : : ;

m ) and  =  ( n ; : : : ; n ), then D I ; (  )  =  DIm ; n (  ).

We now state our main result which gives sucient conditions on determining when D I ; (  )  is
of full or zero Lebesgue measure.

Theorem 1.2. Fix m; n 2  N and two weight vectors  2  Rm  and  2  R n .  Let d =  m +  n, and let { d

=  
d2 +  d 4

and d =  
d(d 1)

:

Let t0 >  0 and let : [t0 ; 1)  !  ( 0 ; 1 )  be a continuous, decreasing function such that

(1.8)                                                    the function t !  t (t) is increasing

and

(1.9) (t) < 1(t) =  1=t for all t  t0:

Let F  (t) : =  1 t

(1.10)

(t). If the series

kt0 

k 1 F (k ) { d  logd         

F  (k)

converges, then D I ; (  )  is of full Lebesgue measure. Conversely, if the series (1.10) diverges, and
P

k 1 F (k ) { d  logd +1      1

(1.11) lim inf  =  0;
1

t0 kt1 
k 1 F (k ) { d  logd

F
  

(k )

then D I ; (  )  is of zero Lebesgue measure.

Remark 1. When m =  n =  1, Theorem 1.2 is not new; in fact [25, Theorem 1.8] is stronger in the
sense that it gives a tight zero-one law without the extra assumption (1.11). We believe that an
analogous tight zero-one law should also hold for general dimensions m; n, i.e. that Theorem 1.2
should hold with the assumption (1.11) removed. See Remark 8 for a discussion of why assumption
(1.11) is needed in our proof.

Remark 2. The function F  (t) =  1 t (t) encodes via (t) =  1 F  (t) . In view of the assump-
tions (1.8) and (1.9), F  is a decreasing function and takes values in (0; 1). In particular, the limit
l i m t ! 1  F  (t) exists and lies in [0; 1).

If l i m t ! 1  F  (t) >  0, then the conclusion of Theorem 1.2 follows from the work of Kleinbock
and Weiss [27].     Indeed, in this case the series (1.10) diverges, and for any xed  we have

t0 kt1 
k 1 F (k ) { d  log 

F
  

(k )       
  log t1 as t1 !  1 ,  so that also the assumption (1.11) holds;

moreover, l i m t ! 1  F  (t) >  0 implies that there exists some c 2  (0; 1) such that     (t) <  c=t, implying
that D I ; (  )   D I ; (c  1); and by [27, Theorem 1.4], D I ; (c  1) is a null set.

Remark 3. Let us give some explicit examples to illustrate our results. We note that each function
appearing below is strictly decreasing on [t0 ; 1)  for t0 suciently large.

(1) Let (t) =  1 c(log t)          
( ,  F  (t) =  c(log t)  )  for some c >  0 and   0. In this case the series

(1.10) diverges if and only if    1 . It is also easy to check that condition (1.11) is satised
whenever    1 . Hence Theorem 1.2 implies that for such , D I ; (  )  is of full
measure if  >  { d  

, and of zero measure if   { d  
. 4
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(2) Let (t) =  1 c(log t)     1 = { d ( log log t)          
( ,  F  (t) =  c(log t) 1={d (log log t)  )  for some c >  0 and  2  R.

In this case the series (1.10) diverges if and only if   d +1 , while the condition (1.11) is satised
if and only if  <  d  . Hence Theorem 1.2 implies that for such , D I ; (  )
is of full measure if  >  d +1 , and of zero measure if  <  {

d  . However, for  in the range

{
d         d +1 , Theorem 1.2 gives no information (although we believe that D I ; (  )

is of zero measure also for these ; cf. Remark 1). We point out that in the special case
 =  {

d  , the quotient in (1.11) remains bounded as t1 !  1 ;  in this case our method of proof
allows us to conclude that at least the set D I ; (  )  is not of full Lebesgue measure; see

Remark 16.
Remark 4. Let us also point out that the assumption (1.9) is imposed only to avoid making the
statement of Theorem 1.2 unnecessarily complicated (since otherwise F  (t) could be negative and
then the series (1.10) is not well-dened). Indeed, if (1.9) fails but satises the other assumptions
in Theorem 1.2, then D I ; (  )  is certainly of full Lebesgue measure. This is true since in this case after
possibly enlarging t0, we have (t)  1=t  1 (log t)          

for all t  t0 and   0, and therefore
D I ; (  )   D I ;       t ! 1  (log t)            

, where the last set is of full Lebesgue measure whenever  >  {
by Remark 3(1).

One of the main ingredients in our proof of Theorem 1.2 is a measure estimate in geometry of
numbers, which we believe is of independent interest. Let d be the unique left SLd(R)-invariant
probability measure on X d  =  SLd (R)=SLd (Z).  We are interested in the sets [0; r] in Xd ,  as r  !
0 . As we have discussed, these sets shrink toward the critical locus f0g as r  !  0 , and
by Hajos’s Theorem [11] (cf. Theorem 2.3 below), the set  1f0g has a simple explicit description as a
nite union of compact submanifolds of positive codimension d2 +d   1 =  { d  +  1 in X d .  In particular
this implies that d 

 1 f0g =  0 and d     
 1[0; r] !  0 as r  !  0+ . The following theorem gives an

asymptotic estimate on the exact rate of convergence in the limit just mentioned.

Theorem 1.3. We have
(1.12) d 

  1[0; r]
 
d r

( d      1 ) ( d + 2 )  
log

d(d     1 )         

r
=  r { d + 1  logd       

r  
; as r  !  0+ :

Our proof of Theorem 1.3 proceeds by bounding the sets  1[0; r] from above and below by more
explicit sets whose Haar measure we can estimate directly. In the proof of the upper bound we make
crucial use of Hajos’s Theorem. We remark that Hajos’s proof (from 1941) of the theorem, which
settled a conjecture of Minkowski from 1896, is surprisingly complicated, with the rst step being a
translation of the question into an algebraic statement about factorizations of nite abelian groups (see
also [35] for a nice presentation). It seems dicult to extend this proof in any direct way from the
case of  1f0g to deduce restrictions on the sets  1[0; r] which are suciently strong to imply the
desired upper bound on d     

 1[0; r] . Instead we apply Hajos’s Theorem, in combination with a
compactness argument, to obtain a convenient containment relation for  1[0; r] valid for all
suciently small r  (see Lemma 4.5 and Remark 11). This initial restriction serves as the starting
point for our analysis where we use direct, geometric arguments to derive further, r-dependent
restrictions on  1[0; r] for r  small, strong enough to nally imply the desired upper bound on d     

 1[0; r] .

Remark 5. In the case d =  2, the following explicit formula holds [36, p. 74]:

2 
  1[0; r]

 
=

1  

e  

e 

+  2r  1 + (e 2r ) if 0  r  

g 2; 

g 2; 5
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where the function : (0; 1] !  R  is dened by (1) =  0 and 0(x) =  (x  1   1) log(x 1   1). It
follows that in this case we have an explicit asymptotic expansion sharpening (1.12):

2 
  1[0; r]

 
 
24

r2 
log

r

 
+  

12(3 2 log 2)
r2   

6
r3 

log
r

 
+  as r  !  0

+
:

The explicit formula for 2     
 1[0; r] , stated in a dierent notation, was independently obtained in

[28] using a dierent method.

Remark 6. Theorem 1.3 is also relevant for the study of the Hausdor dimension of the set
DIm; n (c 1). As we have mentioned, Kleinbock and Mirzadeh recently proved that the Hausdor
dimension of DIm; n (c 1) is less than mn for every 0 <  c <  1 [22, Theorem 1.5]. They derived this as
an application of their main result, [22, Theorem 1.2], which gives an explicit upper bound on the
Hausdor dimension of a certain kind of dynamically dened subsets in the space X d .  It seems that by
using Theorem 1.3 (cf. also Theorem 5.1 below), together with a further analysis of the quantities
appearing in [22, Theorem 1.2], it should be possible to sharpen the conclusion of [22, Theorem 1.5]
into a bound of the form

dimH DIm; n (c 1) <  mn (1 c) { d  logd  1 (1 c) 1

for all c <  1 suciently near 1, where d =  m +  n and  >  0 is a constant which only depends on
m; n.

1.3. Discussion of the proof of Theorem 1.2. We next give a more detailed outline of our
proof of Theorem 1.2. For simplicity of presentation, we will only focus on the special case when
=  (  1 ; : : : ;  1 )  and  =  ( 1 ; : : : ; 1 ); we comment in Remark 9 below on the modications needed to treat
general weights.

We start from the Dani Correspondence, (1.6), and discretize the shrinking target problem which
appears there by introducing the following thickened targets:

B k  : = a s
 1[0; r(k +  s)]; for any integer k >  s0:

0s<1

It follows from this denition that for any  2  Xd ,  ak  2  B k  if and only if as  2   1[0; r(s)] for some k  s
<  k +  1. In particular, by (1.6), A  2  Mm;n (R) is not -Dirichlet if and only if
ak A 2  B k  for innitely many integers k. For any k >  s0 let us dene

E k  : =  f A  2  Y  : ak A 2  Bk g :

Then, in view of the previous discussion and the identication Y  =  Mm;n (R=Z), we have

DIm ; n

(
) =  lim sup Ek :

k ! 1

Hence, by the Borel-Cantelli lemma,
Leb(E k )  <  1 = )  Leb DIm ; n (  )  =  0;

k Leb(Ek )  =  1  & \quasi-independence conditions"     = )  Leb DIm ; n (  )  =  1:

We thus need to understand when the sum 
P  

Leb(E k )  diverges or converges, respectively. It
follows from our denitions that Z

Leb(E k )  =  B  (ak A ) dA: Y

6
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It is well known that the as-translates as Y equidistribute in X d  as s !  1 ;  since our shrinking
target B k  varies in the parameter k, we require an eective version of this fact. Such a result was
rst proved by Kleinbock and Margulis [18, Proposition 2.4.8] building on Margulis’s original
thickening arguments [30] and the exponential mixing of the diagonal ow fas gs2R . Here we use the
following explicit version (see Corollary 6.4 below): there exists  >  0 such that for any f  2  C  (X d )  and
any s >  0,

Z
(1.13)  f (as A )  dA =  d (f )  +  O e s N ( f )  ; Y

where the norm N ( )  is the maximum of a Lipschitz norm and a Sobolev L2-norm (see Section 6.2).
By approximating f B  gk > s      from above and below by smooth functions and applying (1.13) together
with an explicit bound on the norm N ( )  (see Lemma 6.5), it follows that (see Lemma 7.1)

Leb(E k )  =  1 ( ) d (B k )  =  1 :  k
k

Furthermore, it is not dicult to see from Theorem 1.3 that the series d (B k )  diverges if and
only if the series in (1.10) diverges (see Theorem 5.1 and Lemma 6.1). This in particular settles the
convergence case of Theorem 1.2.

For the divergence case, in addition to the assumption that the series in (1.10) diverges (which
implies that Leb(E k )  =  1 ) ,  one also needs to establish a certain quasi-independence condition,
see (7.8). Roughly speaking, we need to show that the quantities

jLeb (E i  \  E j )  Leb(E i )Leb(E j ) j ; i  =  j  >  s0

are small on average. Here note that
Z

Leb (E i  \  E j )  =  
Y  

B i ( a i A ) B j  (a j A )  dA:

We now apply the eective doubly mixing for the as-translates fas Y gs>0 . This result is due to
Kleinbock-Shi-Weiss [24, Theorem 1.2]; we use a more explicit version due to Bj

•
orklund-Gorodnik

[1, Corollary 2.4] which states that for any f1 ; f2 2  C 1 ( X d )  and any s1; s2 >  0,

(1.14)
Y  

f1 (as 1 A )f2 (as 2 A ) dA =  d (f1 )d (f2 ) +  O e D ( s 1 ; s 2 ) N (f1 )N (f2 )  ;

where D(s1; s2) : =  minfs1; s2; js1 s2jg. Combining this result with (1.13) we get
Z                                                                                    2

f1 (as 1 A )f2 (as 2 A ) dA Leb(f1 )Leb(f2 )  e D (s 1 ;s 2 ) max fN (f i ); d (f i )g :
i = 1

Finally, by approximating f B  gk > s      from below by smooth functions, applying the above estimate
(together with a trivial estimate when D(s1; s2) is small, see (7.13)) and the bounds on the norm
N ()  (see Lemma 6.5), we show that the divergence of the series in (1.10) together with the addi-
tional technical assumption (1.11), implies that the required quasi-independence condition (7.8) is
satised, thus concluding the proof of the divergence case of Theorem 1.2.

We end our discussion with a few remarks.

Remark 7. Our argument should be compared to that of Kleinbock and Margulis [19], where the
shrinking targets are certain cusp neighborhoods: In [19] the relevant shrinking target problem is

rst solved for the case of as-orbits starting at d-generic points in the ambient space X d ;  for this
task it suces to use, in place of (1.13) and (1.14) respectively, the invariance of the measure d and the

exponential mixing of the as-ow. Then by an approximation argument [19, §8.7], the shrinking
target property for d-generic points in X d  is shown to imply the same property for generic points 7
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in the submanifold Y .  A  key observation in this approximation step is that all shrinking targets, by
virtue of being cusp neighborhoods, remain essentially unaected by perturbations from a xed
neighborhood of the identity in the neutral leaf of the as-ow, i.e. the centralizer of the as-ow in
SLd (R).  This, however, is no longer the case in our setting, with the shrinking targets being
compact sets. This is why we take the more direct approach using eective equidistribution and
doubly mixing of the as-translates of Y ,  that is, (1.13) and (1.14).

One potential advantage of this more direct approach is that if (1.13) could be rened by replacing the
measure Leb by a natural measure on some submanifold of Y ,  then by mimicking our analysis, one
could establish the -Dirichlet property for generic points in that submanifold, for any such
that (1.10) converges. See Remark 14 below for a discussion of the application along these lines of a
recent eective equidistribution result obtained by Chow and Yang [5].

We note that the use of equidistribution of as-translates of Y  in the study of the Dirichlet im-
provability problem is not new; it has been applied several times in the more well-studied setting of
Dirichlet improvable vectors and matrices. For minfm; ng =  1 and I   Y  being an analytic curve in
Y  satisfying certain explicit conditions, Shah [32, Theorem 1.2] proved that the as-translates of I
equidistribute in X d  with respect to d as s !  1 .  Shah’s proof relies on Ratner’s classication of
measures invariant under unipotent ows [31], and his equidistribution theorem is not eective; still it
suces for the deduction of the fact that generic points on the curve I  are Dirichlet non-improvable,
that is, lie outside of the set (1.3). (This is so since in this case, the relevant \shrinking" target is in fact
a xed set of positive measure.) Shah’s results have been generalized and strength-ened in various
directions [33, 34, 37, 17]. In a recent breakthrough of Khalil and Luethi [14], the authors rened
(1.13) (for the case when n =  1) by replacing Leb with a certain fractal measure, from which they
deduced a complete analogue of Khintchine’s theorem with respect to this fractal measure.

Remark 8. Another diculty, which also stems from the fact that our targets are shrinking
compact sets, is the fact that the norm N ( )  unavoidably grows (polynomially) for the smooth
functions approximating the shrinking targets from above and below (see Lemma 6.5). While the
impact of this polynomial growth of the norm can be eliminated in the convergence case due to the
exponential decay in the parameter s (i.e. the factor e s  in the error term in (1.13)), it causes
serious problems in the divergence case, and this is exactly why we need to impose the extra
assumption (1.11). Let us here also note that this assumption (1.11) can be rephrased in terms of the
measure of the shrinking targets as follows:

P
 ( B  ) log 1

lim inf =  0:
1

s 0 < k s 1  d (Bk )

Remark 9. In order to extend the argument outlined above to the case of general weight vectors
and , we have to consider a more general one-parameter ow fgs gs>0   SL d (R)  associated to  and  (see
(5.1)), and use a dynamical interpretation of ;-Dirichlet matrices which involves
this gs-ow and generalizes (1.6); see Proposition 6.2 and Remark 13. We therefore need analogous
eective equidistribution and doubly mixing results for the gs-translates of Y .  Fortunately, such
more general (and considerably more dicult) eective results are known to hold, thanks to the work
of Kleinbock-Margulis [20, Theorem 1.3] and, again, Kleinbock-Shi-Weiss [24, Theorem 1.2] and
Bjo•rklund-Gorodnik [1, Corollary 2.4] (see Theorem 6.3 below). In fact in [1] a uniform
treatment was given proving eective mixing of arbitrary order for the gs-translates of Y ;  however we
will not make use of this.

8
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Notation and conventions. Throughout the paper, the notation k  k denotes the supremum
norm on various Euclidean spaces or matrix spaces (which can be viewed as Euclidean spaces on the
matrix entries). Let I   R  be an interval (not necessarily bounded). A  function f  : I  !  R  is called
increasing (resp. decreasing) if f (t1 )  f (t2 ) (resp. f (t1 )  f (t2 )) whenever t1 <  t2. Al l  the vectors in
this paper are column vectors. For two positive quantities A  and B ,  we will use the notation A   B
or A  =  O(B )  to mean that there is a constant c >  0 such that A   cB , and we will use subscripts to
indicate the dependence of the constant on parameters. We will write A   B  for A   B   A.

2. Some preliminaries f o r  Theorem 1.3

F ix  an integer d  2. In what follows we always denote G  =  SLd (R),    =  SL d (Z )  and X d  =  G=
the space of unimodular lattices in R  . Let d be the unique G-invariant probability measure on Xd .
Let  : X d  !  [ 0 ; 1 )  be the function on X d  dened as in (1.4). In this section, we collect some preliminary
results for our proof of Theorem 1.3. In fact, for simplicity of presentation we will prove an equivalent
measure estimate result. For any r  2  [0; 1) let Cr  Rd  be the open \(1 r)-cube",
i.e.

Cr : =  (r  1; 1 r)d:
Let K r   X d  be the set of unimodular lattices having no nonzero points in Cr , i.e.

K r  : =   2  X d  :  \  Cr =  f0g :

We note that by denition of , K r  =   1[0; log (1 r)], or equivalently,  1[0; r] =  K      r  .
Since 1  e r  =  r + O(r 2 )   r  for all r  2  (0; 1), Theorem 1.3 can be equivalently restated as follows.

Theorem 2.1. Let { d  =  d2 +d 4 and d =  d(d 1) be as in Theorem 1.2. Then
d ( K r )  d r { d + 1  logd

r
; as r  !  0+ :

We will prove Theorem 2.1 by proving a lower bound and an upper bound separately.

2.1. Haar measure and coordinates. Let P  <  G  be the maximal parabolic subgroup xing the line
spanned by e 2  Rd , and let N  <  G  be the transpose of the unipotent radical of P . Here and
hereafter, fe i  : 1  i   dg denotes the standard orthonormal basis of Rd . Explicitly,

P  =  fp  2  G  : ped =  ted for some t =  0g;

and n o
N  =      ux  : =        

0t
1  

1        
: x  2  R           :

For any p 2  P , let b1 : =  pe1; : : : ; bd 1 : =  ped 1 be the rst d      1 column vectors of p. We note that p
is uniquely determined by b1; : : : ; bd 1; we will sometimes denote p 2  P  by pb ;:::;b to indicate
this dependence. For any g 2  G, let us denote by g~ 2  Md 1;d 1 (R) the top left (d   1)  (d   1) block of
g. If det g~ =  0, then g can be written uniquely as a product

(2.1) g =  pb1;:::;bd
     1 ux for some pb1;:::;bd

     1  2  P  and ux  2  N :

Let  be the (left and right) Haar measure on G, normalized so that it agrees locally with d. In
terms of the coordinates in (2.1),  is given by

(
2.2

)
d(

g
) =  

(2) (d) 
dx

1id 1 

dbi; 
9
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where ()  is the Riemann zeta function, and where dx  and dbi denote Lebesgue measure on Rd  1

and Rd , respectively. For later purpose, we also note that the lattice  represented by pb1;:::;bd
     1 ux ,

i.e.  =  pb1;:::;bd
     1 u x Z  , has a basis

 =  Zb1    Zbd 1  Zbd;

where bd : = j = 1  x j b j  +  (det p~) 1ed is the d-th column vector of the matrix pb1;:::;bd
     1 ux . Here p~

is the top left (d 1)  (d 1) block of pb1;:::;bd
     

1.

For our computation of the upper bounds, it will be more convenient to use another set of
coordinates: For any g =  (gij )1i; j d 2  G  with det g~ =  0, as mentioned above, we can write g
uniquely as in (2.1). It is clear from this relation that g and pb ;:::;b share the same rst d   1
column vectors, i.e. gej =  bj  for all 1  j   d 1. Moreover, as noted above, for the d-th column
vector we have

d 1 d 1

ged = x j b j  +  (det p~) 1ed = x j  (gej ) +  (det g~) 1ed:
j = 1 j = 1

In particular, we have (g1d; : : : ; gd 1;d)t =  g~x, which further implies

dx  =  (det g~) 1 dgid: 1id 1

This relation, together with the relations gej =  bj ; 1  j   d 1 and the Haar measure description
(2.2), immediately implies the following:
Lemma 2.2. For any (Borel) subset K  of g 2  G  : j det g~ 1j <  1     , we have

(2.3) ( K )  d
Y

dgij :
K  1i;j d

( i ; j )=(d;d)

2.2. A  small parameter for the lower bound. To  prove the lower bound, we will construct a
subset of K r  whose measure is of the same magnitude as K r .  For a lattice  =  gZd 2  X d ,  to show  2
K r ,  by denition one needs to show g m 2= Cr for all nonzero m  2  Z  . If g 2  G  is suciently close to
the identity element I  2  G, so that  has a basis close to the standard basis
fe i  : 1  i   dg, then one only needs to consider vectors m  2  Zd  with small supremum norms.
For this reason, we will only focus on lattices that are close to Zd . Recall that the set K  certainly
does not get concentrated near the lattice Zd  as r  !  0+ ; indeed, we have \ r > 0 K r  =  K 0  =   1f0g,
which as we have mentioned is a nite union of compact submanifolds of positive codimension
{ d  +  1 in X d  (see also Section 2.3). The fact that it still suces to consider a small neighborhood of
Z  when proving the lower bound in Theorem 2.1 is related to the fact that the mass of K
(with respect to d) becomes concentrated near the lattice Zd  as r  !  0+ ; see Remark 10.

Explicitly, we x a small norm ball in X d  around Zd  as follows: For any c >  0, let

(2.4) Gc : =  fg  2  G  : kg Id k <  cg

be the open ball in G  of radius c, centered at Id  with respect to the supremum norm on Md;d(R). Let
: G  !  X d  be the natural projection from G  to X d .  We x a parameter c0 2  (0; 1) (which only depends
on d) so small that jG c        is injective and, for any vectors b1; : : : ; bd 2  R  satisfying kbi eik <  c0
for all 1  i   d, every hyperplane of the form

mbj + Rb ‘
1‘d
‘ = j

10
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with m 2  R, jmj  2 and 1  j   d, is disjoint from the cube [ 1; 1]d. In particular, if  =  gZd for
some g 2  Gc , then  has a basis fgei  : 1  i   dg satisfying kgei   eik  c0 for all 1  i   d.

It follows that in order to prove that  2  K r  for a given r  2  (0; 1), it suces to verify that
1id mi (gei ) 2= Cr for all m  =  (m1; : : : ; md) 2  f  1; 0; 1gd r  f0g.

2.3. Ha jos’s Theorem and its consequences. Recall that
o

K 0  =  2  X d  :  \  (  1; 1) =  f0g :

As we mentioned in the introduction, the explicit description of K 0  was conjectured (and proved
in two and three dimensions) by Minkowski, and proved in full generality by Hajos in 1941 [11]:

Theorem 2.3 (Hajos). Let U be the subgroup of upper triangular unipotent matrices in G.  Let W
be the subgroup of permutation matrices in G L  (Z) .  Then

K 0  =
 

wUw 1Zd:

If we set

(2.5)

w2W

U0 =  (ui j )  2  U :  2 <  ui j   2 for all 1  i  <  j   d

so that U0 is a fundamental domain for U=( \ U ),  then we have the following immediate corollary
of Hajos’s Theorem.

Corol lary 2.4. Given any  2  K  , there exist w 2  W and u 2  U such that  =  wuZd =
wuw 1 Zd .

Proof. Since  2  K  , by Theorem 2.3 we can nd u0
 2  U and w 2  W such that  =  wu0w 1Zd; but since w

1 Zd =  Zd , we have  =  wu0Zd. Now using the fact that U is a fundamental domain for U=( \  U ), we
can then nd u 2  U0 such that uZd =  u0Zd. Thus  =  wu0Zd =  wuZd =  wuw 1Zd, nishing the proof.

There is a geometric interpretation of K  in terms of lattice tilings by unit cubes [35, Ch. 1.4]: Let
us write 1 C0 =  (  1 ; 1 )d for the unit cube obtained by dilating C0 by a factor 1 . Then for any
2  Xd ,  the family of cubes v  +  1 C0, with v  running through the lattice , forms a tiling
of Rd  (modulo a null set) if and only if  2  K 0 .  More generally, for any r  2  [0; 1) we write

2 Cr = 2 (r   1); 2 (1   r )  d. Then for any  2  Xd ,  the condition  2  K r ,  i.e.  \  Cr =  f0g, is
equivalent to the condition that the cubes v  +  Cr (v  2  )  are pairwise disjoint. When this holds,
we write

C;r : =   +  2 Cr

for the union of these disjoint cubes. This set is used in the statement of the following simple
bound, which is of crucial importance in our proof of the upper bound in Theorem 2.1.

Lemma 2.5. Let  2  X d  and r  2  (0; 1 ) be such that  \  Cr =  f0g, and let U be a Borel subset of Rd

which is disjoint from C;r and which is contained in some translate of the cube (0; 3 )d. Then vol(U ) <
dr.

Proof. The set C;r is invariant under translation by any vector in , and if F   Rd  is any
fundamental domain for Rd=, then

vol(F \  C;r ) = vol
 

F  \  (v  +  2 Cr )
 
= vol

 
( F  v )  +  2 Cr

 
=  vol( 2 Cr ) =  (1 r)d;

v 2                                                              v 2

11
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where the rst equality holds since the cubes v  +  1 Cr (v  2  )  are pairwise disjoint, and the third
equality holds since the sets F  v  (v  2  )  form a partition of Rd . Hence

vol(F r  C;r ) =  1 (1 r)d <  dr:

Next, since U is contained in a translate of (0; 3 )d, the dierence between any two vectors in U lies in (
3 ; 3 )d =  C1=4  Cr , and since  \  Cr =  f0g, this implies that the points in U are pairwise inequivalent
modulo . Hence the set F  r ( + U )  [ U  is another fundamental domain for Rd=, and it contains U.
After replacing F  by this set, we have U  F ;  thus U  F  r  C;r , and hence vol(U )  vol(F r  C;r ) <  dr.

3. P ro o f  of  the lower  bound

We keep the notation introduced in Section 2. In this section we prove the lower bound in
Theorem 2.1. We will do this by constructing, for every suciently small r, an explicit subset K r
X d  which we will show satises

K r   K r and d ( K r)  d r { d + 1  logd

1
:

We start by giving a family of conditions which ensures that a given lattice is contained in
K r .  Recall from Section 2.2 that c0 2  (0; 1) is a small xed parameter with the property that
for any g 2  Gc0      and 0 <  r  <  1, we have gZd 2  K r  if and only if 1jd mj (gej ) 2= Cr for all m
=  (m1; : : : ; md)t 2  f  1; 0; 1gd r  f0g.

Lemma 3.1. Let c0 2  (0; 1) be as above, let r  2  (0; c0=d) and let  =  pb1;:::;b ux Zd  2  X d  with
bj =  (b1j ; : : : ; bdj )t 2  Rd  ( j  =  1; : : : ; d   1) and x  2  (0; c0=d)d 1. Let p~ =  (bij )1i; j d 1 be the top left (d

1)  (d 1) block of pb1;:::;bd
     1  as before. Suppose b1; : : : ; bd 1 ; x further satises

(3.1) bij ;  b j i  2  (  c0; 0); 8 1  j  <  i   d 1; bd‘ 2  (  c0; 0); b‘‘ 2  (1 r; 1); 8 1  ‘   d 1;

j  1

(3.2) bi j  < bik ; 8 2  j  <  i   d; k = 1

(3.3) 1 r  <  det p~ <  (1 r )  1 and

and

d 1

jbdj jxj <  (det p~) 1 (1 r);
j = 1

(3.4)

Then  2  K r .

d 1

bii  + b i j x j  >  1 r; 8 1  i   d 1:
j = 1

Proof. Let us set g : =  pb1;:::;bd
     1 ux  and bd =  (b1d; : : : ; bdd)t : =  ged; then bj  =  gej for all 1  j   d, and

bd : =       j = 1  x j b j  +  (det p~) 1ed; in particular bid =       j = 1  b i j x j  for 1  i   d      1. We will start by
proving that g 2  Gc0 , i.e. kbj   ej k <  c0 for all 1  j   d. In fact, if 1  j   d   1 then 12
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kbj   ej k <  c0 is an immediate consequence of (3.1) and 0 <  r  <  c0=d <  c0; thus it remains to
show kbd edk <  c0. For each 1  i   d 1 we have

d 1 d 1 d 1
jbidj =  b i j x j  jbij j jxj j < <  c0;

j = 1 j = 1 j = 1

where for the second inequality we used the assumption that x  2  (0; c0=d)d 1 and the fact that jbij j
<  1 for all 1  i ; j

 
 d   1, which is immediate from (3.1). It remains to prove that

1 c0 <  bdd <  1 +  c0. In fact, we have the following stronger bound:

(3.5) 1 r  <  bdd <  1 +  c0:

Indeed, using bdj <  0 and x j  >  0 (1  j   d 1) in combination with (3.3), we get
d 1 d 1

bdd = bdj x j  +  (det p~) 1 =  (det p~) 1  jbdj j xj >  1 r
j = 1 j = 1

as well as
d 1

bdd = bdj x j  +  (det p~) 1 <  (det p~) 1 <  (1 r )  1 <  1 +  2r  1 +  c0:
j = 1

(For the second to last inequality we used the fact that 0 <  r  <  c0=d <  1=2.) This nishes the
proof of (3.5), and hence g 2  G  .

Because of g 2  Gc0 , in order to show  2  K r ,  it suces to prove that g m =  
P

1 j d  mj bj 2= Cr for all
m  2  f  1; 0; 1gd r  f0g. Thus we now let the vector m  =  (m1; : : : ; md)t 2  f  1; 0; 1gd r  f0g be given,
and show that g m 2= Cr .

First assume that all the nonzero entries of m  are of the same sign. After replacing m  by  m
if necessary, we may assume mj  0 for all 1  j   d. Let k 2  f1; : : : ; dg be the smallest integer such
that mk =  1. If k =  d then m  =  ed, and thus g m =  bd 2= Cr by (3.5). In the remaining case when
k <  d, the k-th coordinate of g m satises

(3.6) mk bkk +  
X  

mj bk j   bkk +  mdbkd  minfbkk ; bkk +  bkdg;
j = k + 1

where we used the fact that, by (3.1), bk j  >  0 for each k <  j   d 1. Furthermore,

(3.7) minfbkk ; bkk +  bkdg >  1 r;

since bkk >  1 r  by (3.1) and bkk +  bkd =  bkk +  
P

j = 1  b k j x j  >  1 r  by (3.4). It follows from (3.6)
and (3.7) that the k-th coordinate of g m is larger than 1 r, and so g m 2= Cr . This completes the
proof in the case when all the nonzero entries of m  are of the same sign.

It remains to treat the case when f  1; 1g  fm j  : 1  j   dg. Then let 1  i1 <  i2  d be the indices which
record the latest instance when the signs of the entries of m  change, i.e. the unique indices such that
mi mi     =   1, mj =  0 for i1 <  j  <  i2 and mj 2  fmi  ; 0g for i2 <  j   d (the last two conditions are void if
i1 +  1 =  i2 or i2 =  d, respectively). Again after replacing m  by  m  if necessary, we may assume
mi     =   1, mi     =  1, and thus mj  0 for all i2 <  j   d. Now consider the i2-th coordinate of g m which is

mj bi2 ;j  bi2 ;i1 +  bi2 ;i2 + mj bi2 ;j :
1 j < i 1                                                                                        i 2 < j d

13
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Here we have

(3.8)
X  

mj bi2 ; j  bi2 ;i1  
X  

bi2 ;j bi2 ;i1 >  0;
1 j < i 1 1 j < i 1

where the rst inequality holds since jmj j  1 and bi ; j  <  0 for all j  <  i1, and the second inequality holds
by (3.2) (except if i1 =  1; in that case (3.8) simply says that bi ;i     <  0, which holds by (3.1)).
Furthermore,

X =  bdd >  1 r if i2 =  d;
i2 ; i2

i 2 < j d        
j  i 2 ; j

 bi2 ;i2 +  mdbi2;d >  1      r if i2 <  d;

where we used (3.5) in the case i2 =  d, and in the case i2 <  d we used the fact that mj  0 and bi

; j  >  0 for all i2 <  j   d 1 (if any), and then applied (3.7) with k =  i2. Adding the inequalities in
(3.8) and (3.9), we conclude that the i2-th coordinate of g m is larger than 1 r; hence g m 2= Cr .
This concludes the proof of the lemma.

We next give another family of conditions, which implies the conditions in Lemma 3.1, and which
is more suitable for the measure computations which we are going to carry out.

Proposition 3.2. Let c0 2  (0; 1) be as above, let r  2  (0; c0=d) and let  =  pb1;:::;b ux Zd  2  X d

with bj  =  (b1j ; : : : ; bdj )t 2  Rd  ( j  =  1; : : : ; d 1) and x  2  (0; c0=d)d 1. Assume that

(3.10) bij ;  b j i  2  (  c0; 0); 8 1  j  <  i   d 1; bd‘ 2  (  c0; 0); b‘‘ 2  (1   2d ; 1); 8 1  ‘   d 1;

(3.11) bi j  <  dbi;j  1 ( ,  jbij j >  djbi;j  1j); 8 2  j  <  i   d;

(3.12) jbij bj i j <  
d!

; 81  j  <  i   d 1; and

and

d 1

jbdj jxj < ;
j = 1

(3.13) bk j  >  bi j  ( ,  jbkj j <  jbij j); 81  j  <  k <  i   d:

Then  2  K r .

Proof. In view of Lemma 3.1, it suces to show that the conditions (3.1), (3.2), (3.3) and (3.4) are
fullled. Among these, (3.1) is an immediate consequence of (3.10). Furthermore, (3.2) follows from
(3.10) and (3.11) by the following computation, valid for any 2  j  <  i   d:

j  1

bi j  <  dbi;j  1 <  ( j  1)bi;j  1 bik ( <  0);
k = 1

where the last relation is an equality when j  =  2, while for j   3 it is a strict inequality which holds
since (3.11) forces bi;j  1 <  bi;j  2 <   <  bi;1. Also (3.4) is easily proved: Let 1  i   d   1. Then for every 1
j   d   1 we have x j  >  0 and bi j  >  bdj (the latter holds by (3.13) if j  <  i  and by (3.10) if j   i). Hence

d 1 d 1

bii  + b i j x j  >  bii  + bdj x j  >  1   >  1 r;
j = 1                                     j = 1

where for the second last inequality we used (3.10) and the second part of (3.12).

It remains to prove (3.3). We rst note that the ordering assumptions in (3.11) and (3.13) imply

(3.14) jbi0;j0 j  jbij j whenever 1  j0 <  i0  d, 1  j  <  i   d and i0  i  and j0  j .
14
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K  : = p d d 11 0(3.18) u Z  2  X : :

K  : = d 11 0p u 2  G  : ;

Now let p~ =  (bij )1i; j d 1 be as in Lemma 3.1. Dene

’ p~  : =      
X Y

b(i)i ;
2 S 1id 1

= i d

where Sd 1 is the symmetric group over the nite set f1; 2; : : : ; d 1g and id 2  Sd 1 is its identity
element. Then

d 1 d 1

(3.15) bii  ’ p~   det p~ bii  +  ’p~:
i = 1                                                    i = 1

If d =  2 then Sd 1 =  fidg and ’ p~  =  0. Now assume d  3, and consider an arbitrary permutation
2  Sd 1 r  fidg. Let (i1 : : : i ‘ ) be a cycle of  of length ‘   2, meaning that ( i j )  =  i j + 1  for all 1  j   ‘

1 and ( i  )  =  i  . Without loss of generality, we may assume i  =  maxfi : 1  j   ‘g. Let
i j 0  : =  min fi j  : 1  j   ‘g. Then (3.14) applies for the pairs (i0; j0) =  (( i j 0 ); i j 0 )  and ( i ; j )  =  (i ‘ ; i1 ),
so that b( i j 0 ) ; i j 0        

 bi ‘; i1  . We also have jbij j <  1 for all 1  i ; j   d 1, by (3.10). Hence

b(i) i
 
 b( i j 0 ) ; i j 0  

bi1 ; i ‘
  jbi ‘ ; i1 bi1 ;i ‘ j <  

r
 ; 1id 1

where the last inequality holds by (3.12). The above holds for every  2  Sd 1 r  fidg; hence

(3.16) ’ p~  <  (d 1)!
d! 

=  
d

:

Note that (3.16) also holds when d =  2, trivially.

Using (3.15), (3.16), and the fact that 1   2d <  bii  <  1 for all 1  i   d 1 (cf. (3.10)), we get

(3.17) det p~ <  
d 1 

bi i  +  
r  

<  1 +  
r  

<  (1 r )  1;
i = 1

and

det p~ >  
i = 1  

bi i    
d 

>  1   
2d

d 1 
  

d 
>  1   

2 
  

d 
 1 r:

Hence we have proved the rst condition in (3.3). For the second condition in (3.3), in view of the
second condition in (3.12) it suces to show r  <  (det p~) 1   (1   r), or equivalently, that det p~ is
smaller than (1   r  )  1. But this is true since by (3.17), det p~ <  1 +  r  <  (1   r  )  1. This nishes the
proof.

We can now give the

Proof of the lower bound in Theorem 2.1. Keep 0 <  r  <  c =d, and dene

(b ; : : : ; b ; x)  2  (Rd )d 1  (0; c =d)d 1

r b1;:::;bd     1      
 
x d satises (3.10); (3.11); (3.12); (3.13)

By Proposition 3.2 we have K r   K r .  It remains to bound d ( K r )  from below. Set

(b ; : : : ; b ; x)  2  (Rd )d 1  (0; c =d)d 1

r b1;:::;bd     1      
 
x satises (3.10); (3.11); (3.12); (3.13)

15
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so that ( K  )  =  K  . Here  : G  !  X d  is the natural projection as before. By immediate inspection of
the proofs of Proposition 3.2 and Lemma 3.1, we have K r   Gc0 , and by our choice of c0, jG c  is
injective (see Section 2.2). Hence d ( K r )  =   (K r ) ,  and by (2.2) we have

 ( K  )  d
Y 1

dbkk
 

(b i j )1 j < i d  
Y

dbij ;
1kd 1          1     2d                              R                                             1 j < i d

where
R  : =  

n
(b i j )1 j < i d  2  (  c0; 0)d(d 1)=2 : (b i j )  satises (3.11) and (3.13)

o
;

and
min c0;        r

 (b i j )1 j < i d : = dbj i  n o dxj
1 j < i d  1     0              

              
x 2  0; d     

 
:      j

= 1
 j b dj j x j < 2        1jd 1

d;c0 

1 j < i d  1 

min     1; 
jbij j

 
1jd 1 

min     1; 
jbdj j =

Y

min     1; 
r

:
1 j < i d i j

Hence
Z 

0 1

(3.19)                        d ( K r )  =   ( K r )  d;c0 rd 1          @               min     1;             dbi j A :
1 j < i d

Now for each 1  j  <  i   d, we make a change of variable, bi j  =   dj  1zij , to simplify the ordering
condition (3.11). Then all the zij ’s are positive, and the conditions (3.11) and (3.13) become

(3.20) zi0j0 <  zi j whenever 1  j0 <  i0  d, 1  j  <  i   d, i0  i, j0  j  and (i0; j0) =  (i; j ):

Moreover, for any j  <  i, the condition bi j  2  (  c0; 0) corresponds to zi j  2  (0; c0=dj 1), and we note that
each of these intervals contains the xed interval (0; c0=dd 1). In fact, let us restrict each zi j  to the
even smaller interval (r; c =dd 1), and assume r  <  c =dd 1 so that this interval is non-empty;
then r=jbij j =  rd1 j =zi j  <  d1 j   1, so that min f1; r=jbij jg =  rd1 j =zi j  d r=zij . Note also that
j dbij j =  dj  1 dzij d dzij ; hence we get from (3.19):

 ( K  )  rd 1 + d ( d      1 ) Y dzij =  r
( d      1 ) ( d + 2 ) Y dzij ;

R 0  
1 j < i d        i j                                          R 0  

1 j < i d        i j

where

R0 : =  
n

(z i j )1 j < i d  2  (r; c0=dd 1)d(d 1)=2 : (zi j )  satises (3.20)
o

:

The last integrand is invariant under every permutation of the variables (zi j )1 j < id , and the
integration regions ( R  )  with  running through all these permutations cover (modulo a null set) the
cube (r; c0=dd 1)d(d 1

)
=2; hence we obtain

(3.21) d ( K  )  d;c     r
( d      1 ) ( d + 2 ) Y Z c0=dd     1  

dzij
d;c     r

( d      1 ) ( d + 2 )  
log

d(d     1 )  1
; 1 j < i d

r

where the last estimate is valid e.g. for all 0 <  r  <  c0=(2dd 1). Recalling that c0 only depends on
d, we see that the lower bound in Theorem 2.1 is now proved.
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4. P ro o f  of  the upper bound

We keep the notation introduced in Section 2. In this section we prove the upper bound in
Theorem 2.1. The main step in the proof is to show that for r  small, K r  is contained in a certain set
of more explicit nature; see Proposition 4.2 below. To  prepare for the statement of this result, we
start by introducing the following set, for any r  2  (0; 1) and C  >  0:

< 1 r   gii   1 +  C r;  8 1  i   d =
K r ; C  : =       g =  (gi j )  2  G  : jgij j <  1; jgij gj i j  C r;  8 1  i  =  j   d       :

j det g~ 1j <  2

Here g~ denotes the top left (d   1)  (d   1) block of g as before. In view of the Haar measure
description (2.3), it is not dicult to compute the measure of K r ; C :

Lemma 4.1. For any r  2  (0; 1 ) and C  >  0 we have 
K r ; C

 
d;C r { d + 1  logd

r
:

Proof. Let us dene

<

K r ; C  : =  
:

g  =  (gi j )  2  G  :

1 r   gii   1 +  C r;  8 1  i   d 1 =
jgij j <  1; jgij gj i j  C r;  8 1  i  =  j   d j det g~

1j <  2

by disregarding the restriction on gdd. Then clearly K r ; C   K r ; C .  Moreover, in view of the Haar
measure description (2.3) we have (noting also that {  +  1 =   +  d 1)

Z 1 + C r Z 1 Z 1

 K r ; C d dgii f (g
i
j ; g

j
i )  : j g i j g j i j < C r g  dgij dgj i 1id

1                               1 j < i d

C  rd 1 r  log
r

 d  

=  r { d + 1  logd

r
:

Thus

 
 

K r ; C
 
  K r ; C

 
d;C r { d + 1  logd

r
;

nishing the proof.

Recall that  : G  !  X d  is the natural projection from G  to Xd .

Proposition 4.2. There exist r0 >  0 and C  >  0 (depending only on d) such that for all r  2  (0; r0)

(4.1) K r   w K r ; C  w 1 :
w2W

Let us rst give a quick

Proof of the upper bound in Theorem 2.1 assuming Proposition 4.2. The Haar measure  on G  is
preserved by conjugation by any element w 2  W (even though w may be outside G). Hence it
follows from (4.1) that, for any r  2  (0; r ),

d ( K r )  d
 

(w K r ; C  w 1)
 

(w K r ; C  w 1) =  d! (Kr;C ):
w2W w2W

Using this inequality, the upper bound in Theorem 2.1 now follows from Lemma 4.1.  17
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Remark 10. Proposition 4.2, in combination with the lower bound in Theorem 2.1, also implies
that as r  !  0+ , the mass of K r  with respect to d becomes concentrated near the lattice Zd . In

precise terms, if O is any xed neighborhood of Z  in X  , then

(4.2) d ( K r  r  O) d r { d + 1  logd 11
; and thus d ( K r  \  O) 

!  1 as r  !  0+ :

Indeed, we can x " >  0 so that O contains the set (G" )  with G "   G  the norm ball dened as in (2.4);
then by arguing along the same lines as above, the rst relation in (4.2) will follow from the following
bound:

 
 

K r ; C  r  G "
 
d;C r { d + 1  logd  1     1 

;

for C  >  0 and r  small. However, for r  <  "=C, g =  (gi j )  2  K r ; C  forces jgii   1j <  " for all i, and so the
set K r ; C  r  G "  is contained in the union [ i 0 = j 0       g =  (gi j )  2  K r ; C  : jgi0j0 j  " . Therefore, it suces to
prove that for any given 1  i  =  j   d we have

 
g =  (gi j )  2  K r ; C  : jgi0j0 j  " 

 
d;C r { d + 1  logd  1     1 

:

This is shown by following the proof of Lemma 4.1 and using
1

f(x;y )  : j xy j < C r g  dy dx ";C  r:
"jxj1      1

Finally, the second relation in (4.2) follows from the rst relation combined with the lower bound
in Theorem 2.1.

The remainder of this section is devoted to the proof of Proposition 4.2.

4.1. Bounds on diagonal entries. Recall that U0 is the xed fundamental domain for U=( \  U )
given in (2.5). The next lemma shows that if a lattice  2  K r  has a representative suciently close to
some element in U0, then the diagonal entries of such a representative satisfy the desired bounds.

Lemma 4.3. Let g =  (gi j )  2  G  and r  2  (0; 1 ), and assume that gZd \  Cr =  f0g and kg   uk <  1

for some u 2  U0. Then

(4.3) 0  gii  (1 r )  d r; 8 1  i   d:

Proof. Note that it follows from kg   uk <  1 and u 2  U0 that jgij j <  5 for all 1  i  <  j   d, jgii

1j <  1 for all 1  i   d, and jgij j <  1 for all 1  j  <  i   d. For each i  we have gei 2= Cr , since gZd \  Cr =
f0g. Combining this with the fact that jgj i j <  5 <  1 r  for all j  =  i, we conclude that
jgii j  1 r. Since also jgii 1j <  1 , we must in fact have gii   1      r, i.e. we have proved the left
inequality in (4.3).

Next, let i  2  f1; : : : ; dg be given, and let U be the open box

U =  I 1     I d ; with
I i  =  

 
g

(1 r); gii   
3

2 (1 r)

)

;

where gj
i  : =  maxfgj i ; 0g and gj

i  : =  minfgj i ; 0g. Note that each interval I j  ( j  =  i )  has length
j I j j  >  1 , since jgj i j <  5 ; furthermore j I i j  =  gii  (1 r )   0 (thus I i  and U are empty if gii  =  1 r,
but otherwise non-empty).

We claim that U is disjoint from CgZd ;r : =  gZd +  1 Cr. Indeed, assume the opposite; then there
is some v  2  gZd such that U \  (v  +  2 Cr ) =  ? .  We must have v  =  0 and v  =  gei, since U is, by

18
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construction, disjoint both from 1 Cr and from gei +  1 Cr. Pick a point x  2  U \ ( v  +  1 Cr ). It follows
from x  2  v  +  1 Cr and 1 (1   r )  >  1 that at least one of the points x    1 ei or x  +  1 ei also lies in v  +
2 Cr. But we have

x    4 ei 2  2 Cr;

since x j  2  I j    1 (1 r); 1 (1 r )  for all j  =  i  and x i    1 <  gii    1 (1 r )    1 <  1 (1 r). We
also have

x  +  4 ei 2  gei +  2 Cr;

since x j  2  I j   g j i  +    1 (1 r); 1 (1 r )  for all j  =  i  and x i  +  1 >  1 (1 r )  +  1 >  gii    1 (1 r).
Hence we have arrived at a contradiction against the fact that v  +  1 Cr is disjoint from both 1 Cr and
gei +  1 Cr. This completes the proof of the fact that U is disjoint from CgZd ;r .

Note also that U is contained in a translate of the cube (0; 3 )d, since each interval I j  has length
at most 3 . Hence Lemma 2.5 applies, and yields that vol(U ) <  dr. But we have noted that j I j j  >  1

for each j  =  i, and j I i j  =  gii    (1   r); hence vol(U )  81 d (gii   (1   r )). Combining these facts,
we obtain the right bound in (4.3) with the implied constant 8d 1d.

4.2. A  technical choice of lattice representatives. For any " >  0 let us write

U" =  (ui j )  2  U :  2 +  4" <  ui j   2 +  " for all 1  i  <  j   d :

Lemma 4.4. There exist constants 0 <  a <  1 and A  >  1, which only depend on d, such that the
following holds: given any u 2  U and " 2  (0; a), there exist  2    \  U and B  2  [1; A] such that u 2
UB " .

Proof. We will show that the statement of this lemma holds with A  : =  42d and a : =  2 (3+2 d + 1 ) .
Let us set

U[t] : =  (ui j )  2  U :  2 +  t <  ui j   2 +  t for all 1  i  <  j   d (t 2  R):

Note that U0 =  U[0], and for each t, U[t] is a fundamental domain for U=( \  U ).

For the given u 2  U and " 2  (0; a), and for each k 2  Z0 , we let u(k) be the unique element in u
\  U [4k"], and set

P ( k )  =  
X

P ( k ) ;
j = 2

We now claim:

j  1

where P ( k )  : = 2i 1  (0;1) (u(k ) ):
i = 1

(4.4) 8 k 2  Z0  : k <  log4( 8" ) and u(k) 2= U4k " = ) P ( k )  <  P (k +1 ) :

To  prove (4.4), assume 0  k <  log4(  1 )  and u(k) 2= U4k " . Then u(k +1)  =  u(k) , since otherwise u(k)

would lie in the intersection U [4k "] \ U [4k+1"] =  U4k " . Let us denote by u( k )  the j th column vector
of u(k) . It follows that u ( k + 1 )  =  u( k )  for at least one j  2  f2; : : : ; dg, and for each such index j  we

can argue as follows: Since u(k) ; u(k+1) 2  u \ U  =  u( \ U ),  we have u ( k + 1 )  =  u( k )  +       1 i<j
 mi u

(k )  for

some m1; : : : ; mj 1 2  Z.  Because of u ( k + 1 )  =  u(k ) , there exists i  2  f1; : : : ; jg such that mi =  0;

let us x i  to be the largest such index. Thus u(k +1)  =  u(k) +  m ; in particular u(k +1)  u(k)   1.
On the other hand, note that ui j  

)  2  
 

 2 +  4k"; 2 +  4k", u(k +1)  2  
 

 2 +  4k+1"; 2 +  4k
+1 "

 
and 19
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 1 +  4k+1 ") (  1 +  4k"
 
=  1 +  3  4k" <  2 (since k <  log (  1 )). Hence we must have mi =  1,

implying that
u ( k + 1 )  2  u( k )  +  u( k )  +  Zu ( k )  +   +  Zu( k ) :

Thus u(k +1)  =  u(k) for all i0 >  i, and u(k +1)  =  u(k) +  1 >  0 while u(k)   2 +  4k+1 " <  0 (again

since k <  log4( 8" )).
 
It follows that P ( k + 1 )    P ( k )   2i 1  i 0 < i  2i0 1 =  1. On the other

hand we clearly have P ( k + 1 )  =  P ( k )  for each j
 
2  f2; : : : ; dg such that u ( k + 1 )  =  u(k ) . Hence

j
= 2  P

( k + 1 )  > j
= 2  P

(k ) , i.e. P ( k + 1 )  >  P (k ) . This nishes the proof of (4.4).

Next note that by denition, for each k, P ( k )  is a non-negative integer satisfying

P ( k )   
X X

2 i  <  2d:
j = 2  i = 0

This implies that we cannot have P ( k )  <  P ( k + 1 )  for all k 2  f0; 1; : : : ; 2d 1g. But our assumption
on " implies that log4(  1 )  >  2d (recall that 0 <  " <  a =  2 (3+2 d + 1 ) );  hence it now follows from (4.4)
that u(k) 2  U4k " for at least one k 2  f0; 1; : : : ; 2d   1g. Furthermore, for such k we have 4k <  42    

 =
A  and u(k) 2  u( \  U ) by construction. Hence the lemma is proved.

Using Lemma 4.4, Corollary 2.4 and a compactness argument we have the following technical
lemma, which gives us a good choice of lattice representatives for lattices in K r      for some small r0
>  0.

Lemma 4.5. There exist constants 0 <  a <  1 and A  >  1, which only depend on d, such that
the following holds: for any "0 2  (0; a) there exists r0 >  0 such that for every  2  X  satisfying
 \  Cr      =  f0g, there exist g 2  G,  w 2  W , B  2  [1; A] and u 2  UB "       such that  =  gZd and kg

wuw k <  "0.

Proof. Let a and A  be as in Lemma 4.4; we will prove that the statement of the lemma holds with
these a; A. The proof is by contradiction; thus we assume that the statement of the lemma is false,
i.e. we assume that there exist some "0 2  (0; a) and a sequence r1 >  r2 >  

 
in (0; 1) with r j  !  0, and

a corresponding sequence 1; 2; : : : in Xd ,  such that j  \  Cr     =  f0g for each j ,  and furthermore, for each
j  we have that there do not exist any g 2  G, w 2  W , B  2  [1; A] and u 2  UB "      satisfying j  =  gZd and
kg wuw 1k <  "0. Now for every j  we have Cr      Cr , and thus j  \
Cr     =  f0g. Hence by Mahler’s Compactness Theorem, after passing to a subsequence we may assume
that j  tends to a limit point in X d .  Let us call this limit point 0; thus j  !  0 in X d  as j  !  1 .  Let us
also x a representative g0 2  G  such that 0 =  g0Zd.

Recall that the standard topology on X d  =  G=  is given by the metric

dist(g ;g0 )  : =  inf fd(g; g0) :  2   g (g; g0 2  G);

where d(; ) is any xed right G-invariant Riemannian metric on G. Hence the fact that j
converges to 0 =  g0Zd implies that there exist g1; g2; : : : 2  G  such that j  =  gj Zd for each j  and
d(gj ; g0) !  0 as j  !  1 .

Using j  \  Cr j  =  f0g for each j ,  and r j  !  0, we claim that

(4.5) 0 \  ( 1; 1)d =  f0g:

Indeed, assume the opposite; this means that there exists some m  2  Zd  r  f0g such that g0 m
belongs to ( 1; 1)d, i.e. kg0mk <  1. Set r  : =  2 (1 kg0mk); then g0 m 2  Cr . We have g j m  !  g0 m
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as j  !  1 ,  since d(gj ; g0) !  0; hence for all suciently large j  we have g j m  2  Cr (since Cr is open). Also
for all suciently large j  we have r j  <  r. Hence there exists some j  for which r j  <  r  and g j m  2  Cr
Cr j  . This contradicts the fact that j  \  Cr j  =  f0g for all j .  Hence (4.5) is proved.

It follows from (4.5) and Corollary 2.4 that 0 =  wu0w 1 Zd for some w 2  W and u0
 2  U0. Next,

by Lemma 4.4 (and since "0 <  a), there exist  2   \  U and B  2  [1; A] such that u : =  u  2  UB "  .
Using w 1 Zd =  Zd  and  1 Zd =  Zd , we then have 0 =  wuw 1Zd. Hence wuw 1 =  g00 for some
0 2   . Now d(gj 0; wuw ) =  d(gj 0; g00) =  d(gj ; g0) !  0 as j  !  1 .  This implies that every
matrix entry of gj 0 tends to the corresponding entry of wuw 1, i.e. we have kgj 0 wuw 1k !  0
as j  !  1 .  In particular there exists some j  such that kgj 0   wuw 1k <  "0. Now we have a
contradiction against our previous assumption; namely for our chosen j ,  if we set g : =  gj 0 then j
=  gZd and kg wuw 1k <  "0. This completes the proof of Lemma 4.5.

Remark 11. By a similar compactness argument as in the proof of Lemma 4.5, one can also
prove a more basic statement: for any "0 >  0 there exists r0 >  0 such that every  2  K r      has a
representative g 2  G  (i.e.  =  gZd ) satisfying kg   wuw 1k <  "0 for some w 2  W and u 2  U0.
The purpose of the choice of the more technical lattice representatives in Lemma 4.5 (with UB "
in place of U0) is to ensure the following property, which is a key ingredient in the proof of the
important Lemma 4.6 below: for any g =  (gi j )  2  G  satisfying kg uk <  "0 for some u 2  UB "  , and
any 1  i  <  j   d, we have (cf. (4.8))

jgki gkj j <  1 B"0 for all k 2= fi; j g:

A  crucial consequence of this is that if gei  gej 2= Cr for some r  <  B"0, then either jgii  gij j >  1  r
or jgj i  gj j j  >  1 r  must hold.

4.3. Bounds on o-diagonal symmetric pairs. The next lemma shows that if a lattice  in K r
has a representative as in Lemma 4.5, then its entries satisfy the desired bounds for proving
Proposition 4.2.

Lemma 4.6. Let A  >  1, 0 <  "0 <  (16A) 1 and 0 <  r0 <  1 "0. Let g =  (gi j )  2  G  and r  2  (0; r0), and
assume that gZd \ C r  =  f0g and that there exist B  2  [1; A] and u 2  UB "      such that kg  uk <  "0. Then

(4.6) 0  gii  (1 r )  d r for all 1  i   d; and

(4.7) jgij gj i j d;"0 r for all 1  i  <  j   d:

Proof. Let us write " =  B"0. Note that kg uk <  "0  " and u 2  U" together imply that

(4.8)  2 +  3" <  gi j  <  2 +  2"      and jgj i j <  "; 81  i  <  j   d:

It also follows that jgii   1j <  " for all i; however these inequalities may be sharpened using
Lemma 4.3. Indeed, we have " < since A"0 < ; hence the above inequalities imply that
kg u0k <  8 for some u0

 2  U0. Hence Lemma 4.3 applies, yielding that (4.6) holds.

Now let 1  i  <  j   d be given. We separate the proof of (4.7) into three cases. (Note that (4.7)
holds trivially if gi j  =  0 or gj i  =  0; hence we may without loss of generality assume gi j gj i  =  0.)

Case I:  gi j  >  0 and gj i  >  0. In this case we will build the proof on the fact that gei gej 2= Cr ,
which holds since gZd \  Cr =  f0g. Using (4.8) and r  <  r0 <  2r0  " <   1 , it follows that
jgki   gkj j <  1   " <  1   r  for all k 2= fi; j g. Hence we must have either jgii   gij j  1   r  or
jgj i gj j j   1 r. If jgii gij j  1 r, then because of gii   1 r  and 0 <  gi j  <  1 +  2" it follows
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that gii  gi j   1 r, and so by (4.6), 0 <  gi j   r. Similarly if jgj i gj j j   1 r  then 0 <  gj i   r. In
both cases, it follows that (4.7) holds for our i; j .

Case I I :  gi j  <  0 and gj i  <  0. In this case we will prove the desired bound by proving the stronger
assertion that either jgij j  C r  or jgj i j  C r ,  with C  : =  12d("0=8)2 d. Assume the opposite, i.e. assume
that

(4.9) gi j  <   C r and gj i  <   C r ( C  : =  12d("0=8)2 d):

We will prove that this leads to a contradiction.

Set J r  : =   1 (1      r); 1 (1      r )  , so that 1 Cr =  
J
 d. For each k 2= f i ; j g  we introduce the following

open interval:

(4.10) I k  : =  J r  \  (gki +  J r )  \  (gk j  +  J r ) :

Using jgkij; jgkj j; jgki  gkj j <  1 " (see (4.8)) it follows that I k  has length j Ik j  >  (1 r )  (1 ") >  1"0.
Dene I k   I k  to be the open interval of length 1 "0 with the same center as I k .  Let us also set I i  =

2 (1 r )  +  gij ; 2 (1 r )  and I j  =  g j j    2 (1 r); 4 . Then by construction,

(4.11) I i   J r ; I i  \  (gi i  +  J r )  =  ? ; I i  \  (gi j  +  J r )  =  ? ;

and

(4.12) I j   g j j  +  J r ; I j  \  J r  =  ? :

Furthermore, j I i j  =  jgij j and 1 <  j I j j  <  1 . Now let U be the open box U =  I 1     I d .  Then
vol(U ) >  8 jgij j ( 4 "0)d 2 >  dr, where we used the rst part of our assumption (4.9). Note also that
jIk j  <  4 for all k. Hence by Lemma 2.5, U \  CgZd ;r =  ? ,  i.e. there exists some v  2  g Z such that

U \  (v  +  2 Cr ) =  ? :

It follows from the disjointness relations in (4.11) and (4.12) that U is disjoint from the three
cubes gei +  1 Cr, gej +  1 Cr and 1 Cr; hence v  2= f0; gej ; geig. Let us x a point y  2  U \  (v  +  1 Cr ). Then
the line y  +  Rei  goes through both the cubes v  +  1 Cr and gej +  1 Cr (the latter holds since
I k   gk j  + J r  for all k =  i; see (4.10) and (4.12)); hence since these two cubes are disjoint, we must
have vi  g i j  +  1 r. It also follows from yi 2  vi +  J r  and yi 2  I i  that vi <  yi +  1 (1 r )  <  1 r.
In summary:

(4.13) gi j  +  1 r   vi <  1 r:

Similarly, using the fact that the line y  + R e j  goes through the two disjoint cubes v  +  1 Cr and 1 Cr,
and also using yj 2  vj  +  J r  and yj 2  I j ,  it follows that

(4.14) 1 r   vj  <  yj  +  2 (1 r )  <  4 :

Next, for each k 2= fi; j g, since yk 2  I k  and yk 2  vk +  J r ,  we have that both of the intervals (yk
1 "0; yk] and [yk; yk +  1 "0) are contained in I k ,  and at least one of them is contained in vk + J r ;

hence there exists an open subinterval I 0 of I k  \ (v k  + J r )  of length 1 "0. Let us also set I 0 =  ( 2 ; 3 ) and
I 0 =  gj i  +  1 (1 r); vj   1 (1 r )  , and then let U0

 be the open box U0
 =  I 0    I 0 . Using (4.14)

we have jI 0 j   gj i ; hence vol(U 0)  ( 8 "0)d 2  12 jgj i j >  dr, where we used the second part of our
assumption (4.9). Note also that j I  j < for all k; for k =  j  this uses vj  < (see (4.14))
and gj i  >   " (see (4.8)). Hence, by Lemma 2.5, U0

 \  C d =  ? ,  i.e. there exists some v0 2  gZd

such that

U0 \  (v0 +  2 Cr ) =  ? :
22
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1

Choose a point z  2  U0
 \ (v 0  +  1 Cr ). Note that for every k 2= f i ; j g  we have I 0  (gk i + J r ) \ ( v k  + J r )  by

construction. Furthermore, using 1 r   gii  <  1 +  " we have I   gii  +  J r ,  and using (4.13) we have
I 0  vi +  J r .  Hence the line z  +  Re j  goes through of the cubes gei +  Cr and v  +  Cr . Of course this
line also goes through the cube v0 +  1 Cr. Note also that zj  2  I 0 , and by construction, I 0 is disjoint
from and lies between the two intervals gj i  +  J r  and vj +  J r .

 
Hence we must have v0 2= fgei ; vg; thus

the three cubes gei +  1 Cr, v  +  1 Cr and v0 +  1 Cr are pairwise disjoint, and the two intervals gj i  +  J r
and vj +  J r  must lie at a distance  1 r  from each other. However, this is impossible, since vj

gj i  <  4 +  " <  2(1      r). This completes the proof in Case I I.

Case I I I :  gi j gj i  <  0. If gj i  <  0 then let us swap the values of i  and j ;  thus from now on we have gj i
>  0 and gi j  <  0, but either i  <  j  or i  >  j .  If gj i   g j j    (1   r), then gj i   r  by (4.6), and so (4.7) holds for
our i; j . Hence from now on we may assume gj i  >  g j j  (1 r). Now set:

I i  =  gi j  +  2 (1 r); gii    2 (1 r )  ;

I j  =  g j j    1 (1      r ); gj i  +  1 (1      r )  ;

and I k  =  (gk i +  J r )  \  (gk j  +  J r ) for k 2= fi; j g:

These are non-empty intervals. Indeed, I i  is non-empty since gii   1   r  and gi j  <  0; I j  is non-
empty because of our assumption gj i  >  g j j    (1   r), and for each k 2= fi; j g, it follows from jgki
gkj j <  1   " (see (4.8)) that I k  is non-empty with j Ik j  >  (1   r )    (1   ")  2 "0. Now for each k 2= f i ; j g
we choose an open subinterval I k  of I k  of length min ; jIk j , and then dene U to
be the open box U =  I 1     Id .  We claim that

(4.15) U \  CgZd ;r =  ? :

Indeed, assume the opposite; then there is some v  2  gZd with U \  v  +  1 Cr     =  ? .  By construction,
I i  is disjoint from both the intervals gi j  +  J r  and gii  +  J r ;  hence U

 
is disjoint from the two

cubes gej +  1 Cr, gei +  1 Cr, and thus v  2= fgej ; geig. Let x  be a point in U \  v  +  1 Cr . Then x i  2
I i  \  (vi +  J r ) .  Note also that the three intervals gi j  +  J r ,  I i ,  gii  +  J r  are adjacent to each other
in this order along the real line, with the length of I i  being

j I i j  =  gii  gi j  (1 r )  <  1 +  " +  ( 2 3") (1 r )  =  2 2" +  r  <  2 <  1 r:

But vi +  J r  has length 1   r; hence there exists a number x0 2  vi +  J r  lying either in gii  +  J r  or
gi j  +  J r .  Noticing also that x k  2  I k   (gk i +  J r )  \  (gk j  +  J r )  for all k =  i, it now follows that
the point x  +  (x0   x i )ei  lies in the cube v  +  1 Cr and also in one of the two cubes gei +  1 Cr or gej +
1 Cr. This is a contradiction against the fact that v  +  1 Cr is disjoint from both gei +  1 Cr and gej +
2 Cr; hence we have completed the proof of (4.15).

We have j Ik j  <  3 for all 1  k  d; hence Lemma 2.5 applies, giving vol(U ) <  dr. But j Ik j   1 "0 for all
k 2= fi; j g, and j I i j   jgij j; thus

jgij j gj i  g j j  +  1 r  =  jgi j jjI j j   vol(U )  r:

Furthermore, jgij j g j j       (1      r )   r  by (4.6). Adding the last two bounds, we conclude that (4.7)
holds for our i; j .

4.4. Proof of Proposition 4.2. Finally, we can give the

Proof of Proposition 4.2. Choose 0 <  a <  1 and A  >  1 as in Lemma 4.5. F ix  a number 0 <   <   1

so small that for every matrix g 2  G  which has distance (w.r.t. k  k) less than  to a matrix in
U0, we have j det g~   1j <  2 , where g~ is the top left (d   1)  (d   1) block of g. F ix  a number 23
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, and for this "0, take r0 >  0 as in Lemma 4.5. Note that the dening property

of r0 trivially remains valid if we decrease r0; hence we may assume that 0 <  r0 <  1 "0. Let C  >  0 be
the maximum of the implied constants in the two \"  bounds in Lemma 4.6, for our xed d and "0.

Now let r  2  (0; r0) and  2  K r  be given. This means that  \  Cr =  f0g, and a fortiori,
 \  Cr     =  f0g. Hence by our choice of A; a; "0; r0 (see the statement of Lemma 4.5), there exist
g0

 2  G, w 2  W , B  2  [1; A] and u 2  UB "       such that  =  g0Zd and kg0   wuw 1k <  "0. Note
that the norm k  k is preserved by left and right multiplication by elements from W ; hence letting g
=  (gi j )  : =  w 1g0w we have kg   uk <  "0, and also gZd \  Cr =  w 1(g0Zd \  Cr ) =  f0g (this is
true since wZd =  Zd  and Cr =  w 1Cr ). Hence by Lemma 4.6, and by our choice of C ,  we have
0  gii  (1 r )   C r  for all i  and jgij gj i j  C r  for all i  =  j .  Furthermore, it follows from u 2  UB "  and
kg      uk <  "0 that kg u k <  ( B  + 1)"0 for some u 2  U0; hence a fortiori kg u k <  2A"0 <  ,
which implies that j det g~   1j < by our choice of . It also follows that jgij j < +  2A"0 <  1 for
all i  =  j .  Hence g 2  K r; C ,  and thus g0 =  wgw 1 2  w K r ; C  w 1 and  =  g0Zd 2  (w K r ; C  w 1),
nishing the proof.

5. Measure estimates of  the thickenings

F ix  m; n 2  N and let d =  m +  n. Let  2  Rm  and  2  R n  be two xed weight vectors as in Theorem
1.2. As mentioned in Remark 9, in order to incorporate the case of general weights, we need to
consider a more general one-parameter subgroup of G  associated to  and . Explicitly, for any s 2  R
let us dene

(5.1) gs =  g; : =  diag(e1 s; : : : ; em s; e 1s; : : : ; e n s )  2  G:

Let  : X d  !  [ 0 ; 1 )  be the function dened in (1.4). The main result of this section is an
asymptotic estimate for the measure of the thickened set

r  : =  
[  

g s  
 1[0; r];

0s<1

when r  >  0 is small.

Theorem 5.1. Let { d  =  d2 +d 4 and d =  d(d 1) be as in Theorem 1.2. Then

d
 

r
 
d r { d  logd

r
; as r  !  0+ ;

where the implicit constant is independent of r  and the two weight vectors  and .

Just as for Theorem 2.1, we prove Theorem 5.1 by proving the upper and lower bounds separately.

5.1. Proof of the upp er bound. Note that for any (x ; y )  2  Rm  Rn ,

g s  ( y  )  =  (e 1sx1; : : : ; e m sxm; e1 sy1; : : : ; en syn)t:

This implies that
j(g s ) ()j  max1; : : : ; m; 1; : : : ; n jsj <  jsj; 8 s 2  R;   2  Xd :

Hence
(5.2) g s

 10; r]   1[0; r +  jsj; 8 s 2  R:
24
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Given any r  2  (0; 1), let q =  d1=re. Using (5.2) and the fact that 1=q  r, we have

r  =  
[ q 1

g s
 1[0; r] =

[ q 1

g k=q g s  
 1[0; r] g k=q 

 1[0; 2r];
0s<1 k = 0  0s<1=q k = 0

implying that (using the G-invariance of d and q  r  1)

d
 

r
 
 

q 1 

d
 

g k=q 
 1[0; 2r]

 
 r  1

d
  1[0; 2r]: k = 0

Finally, by Theorem 1.3 we get
d
 

r
 
d r  1 r { d + 1  logd

r

 
=  r { d  logd

r
; as r  !  0+ :

This nishes the proof of the upper bound in Theorem 5.1.

5.2. Proof of the lower bound. In this subsection we prove the lower bound in Theorem 5.1. By
the discussion in the beginning of Section 2, we may replace the set  1[0; r] by K r ,  that is, it suces
to prove the following lower bound

(5.3) d  
[  

g s  K r d r { d  logd

1
; as r  !  0+ :

0s<1

The following lemma is the crucial ingredient in our proof of (5.3). Let c0 be the small parameter
which we xed in Section 2.2; after possibly shrinking c , we may without loss of generality assume that
0 <  c0 <  (3e) 1. For r  2  (0; c0=d), let K r   K r  be as in (3.18).

Lemma 5.2. For any r  2  (0; c0=d) and s 2  [r; 1), the two sets K r  and g s  K r  are disjoint.

Proof. Assume the opposite; then there exist r  2  (0; c0=d), s 2  [r; 1) such that K  \  g s K  =  ; ,  or
equivalently g s K r  \  K r  =  ; .  Pick a lattice  2  g s K r  \  K r ;  thus  2  K r  and g s  2  K r . By the
denition of K r  in (3.18), we now have  =  pb1;:::;b u x Z  for some vectors bj  =  (b1j ; : : : ; bdj ) 2  R
( j  =  1; : : : ; d   1) and x  2  (0; c0=d)d 1 satisfying (3.10), (3.11), (3.12) and (3.13); moreover, we
also have g s  =  pb0 ;:::;b0 ux0 Zd for some vectors b0

 =  (b0 
j ; : : : ; b0

j )t 2  Rd  ( j  =  1; : : : ; d   1) and
x0 2  (0; c0=d)d 1 which again satisfy (3.10), (3.11), (3.12) and (3.13).

Because of  2  (R> 0 )m  and m     
i  =  1, there exists an index 1  i   m such that i    1 .

Fixing such an i, we consider the vector
y  =  (y1; : : : ; yd)t : =  g s bi =  

 
e 

1
sb1i; : : : ; e m sbmi; e1 sbm+1;i ; : : : ; en sbd;i

t :

By (3.10) we have jbj i j <  c0 for all j  =  i, and 1    r   <  bii  <  1. Hence jyj j <  ec0 for all j  =  i  (since
0 <  s <  1 and ‘   1 for all 1  ‘   n), and 0 <  yi <  e i s  <  e s=m <  1    s   <  1    r  . We have

bi 2   r  f0g and thus y  =  g s bi 2  g s  r  f0g; also g s  2  K r   K r ,  and hence y  2= Cr . But for
all j  =  i  we have jyj j <  ec0 < <  1   r  (indeed, recall that 0 <  c0 <  (3e) ); also yi >  0; hence
y  2= Cr implies yi  1 r. In summary:

jyj j <  ec0 (8 j  =  i ) and 1 r   yi <  1   2d :

Furthermore, bi 2  g s, since g s  =  pb0 ;:::;b0         ux0 Zd; and by (3.10) we have jbj
i j <  c0 for all j  =  i  and

1   2d <  bii  <  1. It follows that jbj
i       yj j <  (e +  1)c0 <  (e +  1)(3e) 1 <  2 <  1      r  for all j  =  i, and

jbii
   yij <  r  <  1   r; hence bi   y  2  Cr . Note also that bi   y  2  g s, and bi   y  =  0, since 25
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yi <  1    r   <  b0
 ; hence we have obtained a contradiction against g s  2  K   K r .  This completes the

proof of the lemma.

It follows from Lemma 5.2 that for any r  2  (0; c0=d), the sets g k r  K  , for k running through the
integers in the interval 0  k <  1=r, are pairwise disjoint. (Indeed, if g k r  K  \  g k0 r K  =  ?  for some 0
k <  k <  1=r then K  \  g(k k0 )r K  =  ? ,  contradicting Lemma 5.2.) Hence, using also
K   K  , we have

d  
[  

g s  K r

!  

 d
[

g k r  K r

!  

=
X

d
 

g k r  K r
 
=  #

 
Z  \  [0; 1=r)

 
 d

 
K r ;  0s<1

0k<1=r                                   0k<1=r

Here #
 

Z  \  [0; 1=r)
 

 r  1, and for r  suciently small we have d
 

K  
 

 r { d + 1  logd

 1  
by (3.21).

Hence we obtain the lower bound (5.3), and the proof of Theorem 5.1 is complete.

6. Some preliminaries f o r  Theorem 1.2

In this section we collect some preliminary results for our proof of Theorem 1.2.

6.1. Dynamical interpretation of weighted -Dir ichlet  matrices. Let m; n 2  N and let
2  Rm  and  2  R n  be two xed weight vectors as before. Let t0 >  0 and let : [t0 ; 1)  !  ( 0 ; 1 )
be a continuous decreasing function which tends to zero at innity. In this subsection we give a
dynamical interpretation of ;-Dirichlet matrices which generalizes [25, Proposition 4.5]; see
Proposition 6.2. Let us rst introduce the following modied Dani Correspondence which is a
special case of [19, Lemma 8.3].

Lemma 6.1. Fix m; n 2  N and let d =  m +  n. Let t0 >  0, and let : [t0 ; 1)  !  ( 0 ; 1 )  be a
continuous, decreasing function satisfying (1.8) and (1.9). Then there exists a unique continuous,
decreasing function

r =  r  : [s0 ; 1)  !  (0 ; 1 ) ; where s0 =  
d 

log t0   
d 

log (t0);

such that

(6.1) the function s !  s +  mr(s) is increasing,

and

(6.2)
es nr ( s )

 
=  e s  mr (s) for all s  s0:

Conversely, given s0 2  R  and a continuous, decreasing function r  : [s0 ; 1)  !  ( 0 ; 1 )  satisfying
(6.1), there exists a unique continuous, decreasing function = r  : [t0 ; 1)  !  ( 0 ; 1 )  with t0 =
es0  nr (s 0 )  satisfying (1.8), (1.9) and (6.2). Furthermore, for any xed ;  >  0 the series

( 6.3)
X   

1 k (k)
 

log (1 k (k))

kt0

diverges if and only if the series

(6.4)

diverges.

ks0  

r (k) log1 +  
r(k)

26
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Proof. The

(6.5)

and r-functions determine each other uniquely via the relation

(t)1=mes=m =  t1=ne s=n =  e r (s) ;

which captures the moment when the as-ow transforms the long and thin ‘rectangle’
(x ; y )  2  Rm   R n  : kxkm < (t); kykn <  t

determined by (1.2) into a cube (with side length 2e r (s) ). Here as =  diag(es=mIm; e s=n In ), as
dened in the introduction. This correspondence between () and r ()  is a special case of [19,
Lemma 8.3], as here we assume that () additionally satises (1.8) and (1.9), which on the r-
function side corresponds respectively to the assumptions that r ()  is decreasing and r(s) >  0 for all
s  s0. The equivalence of these additional assumptions is easily checked using the following three
relations, which follow from (6.5):

(6.6) e dr (s)  =  t (t); s =  
d 

log t   
d 

log (t); and t =  es nr (s) :

Finally we prove the equivalence of the divergence of the two series.
 
If l i m t ! 1  t (t) <  1 then both

the functions 1   t (t) and r(s) are bounded away from zero (and positive), which implies that the
two series in (6.3) and (6.4) are divergent. Hence from now on we may assume that l i m t ! 1  t
(t) =  1. Then l i m s ! 1  r(s) =  0 (by (6.6)), and F  (t) : =  1      t (t) is a decreasing function taking values
in the interval (0; 1) and satisfying l i m t ! 1  F  (t) =  0. After enlarging s0 (thus also enlarging t0) we
may assume that 0 <  r(s) <  1=d for all s  s0. Then by (6.6) we have, with t =  t(s) =  es nr (s) :

(6.7)
2

r(s) <  F  (t) <  d r(s) and es 1 <  t <  es; 8 s  s0:

It follows that r(s) log
 
1 +  r(s

)
 

d;; F  (t) log
 

F   
(t)

 
for all s  s0. Hence, using also ek 1 <  t(k) <  ek

(see (6.7)), the fact that F  (t) is decreasing, and e k j < e k + 1  
1  1 (8k  1), we have

for all suciently large integers k:

r(k) log1 +  
r(k)

 
d;; F  (ek 1) log

F (ek 1)

 
; 

ek      2 j < e k      1  
j
 
F  ( j )  log

F (j )
;

and similarly

r(k) log1 +  
r(k)

 
d;; F  (ek ) log

F (ek )

 
; 

e k j < e k + 1  
j
 
F  ( j )  log

F (j )
:

It follows that the series in (6.4) diverges if and only if 
P

j  j  1 F ( j )  log
 

F   
( j )

 
diverges, that is, if

and only if the series in (6.3) diverges.

Remark 12. Let and r  be as in Lemma 6.1 with l i m t ! 1  t (t) =  1. Let F  (t) =  1 t (t) be as
above. Assume that the series (6.3) (and thus also the series (6.4)) diverges for some ;  >  0. It is then
not dicult to see from the proof of Lemma 6.1 that for any 0

   and for all large s1 >  s0,

s0 ks1  

r (k) log       1 +  
r (k)     d;;0 

t0 kes1 

k     F  (k) log       
F  (k) 

:
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In particular it follows that for any 0
 >   we have the following equivalence:

lim inf s 0 < k s 1  
r (k) log

0     
1 +  r (k )  

 =  0

1
s 0 < k s 1  

r (k) log 1 +  r(k)

k 1 F (k) log      1

( ) lim inf  =  0:
1

t0 kt1 
k 1 F (k) log F   

(
k)

Similarly, the above two limits inferior remain bounded simultaneously.

We now state the dynamical interpretation of ;-Dirichlet matrices.

Proposition 6.2. Let be as in Theorem 1.2, and let r  =  r      be as in Lemma 6.1. Let fgs gs 2 R  be
the one-parameter subgroup associated to the two xed weight vectors  and  as in (5.1). Set

! 1  : =  maxfmi ; nj : 1  i   m; 1  j   ng and ! 2  : =  minfmi ; nj : 1  i   m; 1  j   ng: Then for

any A  2  Mm;n (R) we have, with A  as in (1.5):

(1) if (gs A ) >  !1 r (s)  for all suciently large s, then A  is ;-Dirichlet;
(2) if (gs A )  !2 r (s)  for an unbounded set of s, then A  is not ;-Dirichlet.

Remark 13. When  =  (  1 ; : : : ;  1 )  2  Rm and  =  ( 1 ; : : : ; 1 )  2  Rn ,  then ! 1  =  ! 2  =  1 and
Proposition 6.2 recovers [25, Proposition 4.5].

Proof of Proposition 6.2. For any t >  maxft0; 1g, dene

R t  =  R ;  : =  (x ; y )  2  Rm   R n  : kxk < (t); kyk <  t
 
;

so that (p; q) 2  Zm  ( Z n  r f 0 g )  is a solution to (1.7) if and only if (Aq p; q) 2  Rt .  On the other
hand, the lattice A  consists exactly of the points

0 I n

 p = Aq
 

p for (p; q) 2  Zm   Zn :

Moreover, if (Aq   p; q) 2  A  \  R t  is nonzero for some (p; q) 2  Zm   Zn ,  then we must have q =  0.
Indeed, otherwise we would have kAq   pk =  kpk  1, but (Aq   p; q) 2  R t  implies that kAq

pk < (t) <  1=t <  1 (since t >  maxft0; 1g), contradicting kAq pk  1. Thus there
exists a solution (p; q) 2  Z  ( Z  r  f0g) to (1.7) if and only if A  \  R t  =  f0g, implying that A  2
Mm;n (R) is     ;-Dirichlet if and only if A  \  R t  =  f0g for all suciently large t. Now let s =  s(t) =
d log t   d log (t); then s !  1  if and only if t !  1 ,  and by (6.5) we have

gs Rt  = (x0; y0) 2  Rm   R n  : kx0k <  e mr(s) ; ky0k <  e nr ( s ) = :  Es:

It follows that A  is ;-Dirichlet if and only if gs A \  Es =  f0g for all suciently large s. Next, note
that we have the following simple relation:

(6.8)  e ! 1 r (s ) ; e ! 1 r ( s )  d  Es   e ! 2 r (s ) ; e ! 2 r ( s )  d;

with ! 1 ; ! 2  dened as in the statement of the proposition. Note also that (gs  )  >  !1 r (s)  is
equivalent with gs A \   e ! 1 r (s ) ; e ! 1 r ( s )  d =  f0g. Hence, using the rst inclusion relation in
(6.8) we have

(gs A ) >  !1 r (s)  for all suciently large s )  gs A \  Es =  f0g for all suciently large s;
and the latter condition implies that A  is     ;-Dirichlet. We have thus proved part (1) of the

proposition. Similarly, part (2) follows using the second inclusion relation in (6.8).
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Let and r  =  r      be as above. For any integer k >  s0, let us dene

B k  : =  
[  

g s
 1 [0; !2 r(k +  s)] and B k  : =  

[  
g s

 1 [0; !1 r(k +  s)]:
0s<1                                                                                                  0s<1

It follows that for any  2  Xd ,  we have gk  2  B (respectively gk  2  B k )  if and only if there is
some k  s <  k +  1 such that gs 2  [0; !2 r(s)] (respectively gs 2  [0; !1r(s)]). In
particular, in view of Proposition 6.2, a given matrix A  2  Mm;n (R) is ;-Dirichlet if gk A 2= B k  for
all suciently large k, or equivalently, if gk A 2  B k  holds only nitely often. Similarly, A  is not

;-Dirichlet if gk A 2  B k  holds innitely often.

6.2. Eect ive equidistribution and doubly mixing for certain gs -translates. Let m; n 2  N
and d =  m +  n be as before. Let

Y  =  f A  : A  2  Mm;n (R)g =  Mm;n (R=Z)

be dened as in (1.5), and recall that Y  is equipped with the probability Lebesgue measure, Leb.

As mentioned in Remark 9, we will need an eective equidistribution and doubly mixing result for
the gs-translates fgs Y gs > 0  which is analogous to (1.13) and (1.14) respectively. In fact, we will state
a corollary of a more general eective mixing result of arbitrary order proved by Bj

•
orklund and

Gorodnik [1, Theorem 2.2]. To  state their result, let us rst x  some notation.

Let g =  sl (R )  be the Lie algebra of G. For each Y 2  g, let us denote by D the corresponding
Lie derivative (a rst order dierential operator) on C 1 ( G )  dened by

D Y  (f )(g )  : =  
dt

f (exp(tY )g)t=0 ; f  2  C 1 ( G ) :

Here exp : g !  G  denotes the usual exponential map from g to G. Note that this denition
naturally extends to the function space C 1 ( X d )  since we can view elements in C 1 ( X d )  as right
 -invariant smooth functions on G. F ix  an ordered basis fY1; : : : ; Yag of g. Then every monomial
Z  =  Y1

 1 Ya
a denes a dierential operator of degree deg(Z ) : =  ‘1 +   +  ‘a, via

D Z  : =  DY 1  
   DY a

:

Now for each ‘  2  N we dene the \L2 ,  degree ‘ "  Sobolev norm on C 1 ( X d )  by
Z 1=2

kf kL 2  : =                             jDZ (f )j2  dd             ;
deg(Z ) ‘ d

where the summation is over all the monomials Z  in fY1; : : : ; Yag with degree no greater than ‘.
F ix  a metric dist(; ) on X  =  G=  which is induced from a right G-invariant Riemannian metric
on G. We also dene the following Lipschitz (semi-)norm on C 1 ( X d )  with respect to this metric:

kf kLip : =  sup
jf (x1 )      f (x2 )j  

: x1 ; x2 2  Xd ;  x1 =  x2;          f  2  C 1 ( X d ) :

Let us also write k  kC 0  for the uniform norm on Cc (Xd ).  Finally, for any f  2  Cc  (X d )  we dene

N ‘ ( f )  : =  max kf kC 0 ; kf kLip ; kf kL ‘
:

We can now state the result which we need from [1].
29



c

i 0

!
YY Y

!

c
1 2

Z

c

e

1
r 2 r

 L d2 d

n r o

cR
G 1 a

Theorem 6.3 ([1, Corollary 2.4]). There exist ‘  2  N and  >  0 such that for every b 2  N and any
f0  2  C 1 ( Y ) ,  f1; : : : ; fb 2  C 1 ( X d )  and s1; : : : ; sb >  0, we have

Z b b b

f 0 ( A ) f i (gs  A ) dA =  Leb(f0 ) d (f i )  +  Ob;f e D(s
1
;:::;sb ) N ‘ ( f i ) ;

Y                           i = 1                                                                      i = 1                                                                             i = 1

where D(s1; : : : ; sb) : =  min fsi ; jsi sj j : 1  i  =  j   bg.

(In fact, in [1, Corollary 2.4], the error term is also explicit in terms of f0 .)

Taking f0   1 on Y  and b =  1; 2, we get the following eective equidistribution and doubly
mixing of the family of gs-translates fgs Y gs > 0  in Xd .

Corol lary 6.4. Let ‘  2  N and  >  0 be as in Theorem 6.3. Then for any f ; f1 ; f2  2  C 1 ( X d )  and
s; s ; s >  0,
(6.9)  f (gs A )  dA =  d (f )  +  O e s N ‘ ( f ) ;  Y

and

(6.10)
Z

Y 
f1 (gs 1 A )f2 (gs 2 A ) dA =  d (f1 )d (f2 ) +  O e  minfs1 ;s

2
;js

1
 s 2 jg N ‘ (f1 )N ‘ (f2 ):

6.3. Smooth approximations and estimates on norms. In this subsection we prove the ex-
istence of smooth functions  2  C 1 ( X d )  bounding our shrinking targets from above and below in an
appropriate sense, with control on the norm N ‘ () .  We follow the strategy of [21, Theorem 1.1] while
allowing the small identity neighborhoods of G  (against which we convolve) to shrink.

Recall that

r  : =
[  

g s
 1[0; r] (0 <  r  <  1):

0s<1

Lemma 6.5. Let " >  0. For any 0 <  r  <  1, there exists r  2  Cc  (X d )  satisfying e      r   e and, for
any ‘  2  N:

n o
(6.11) N ‘ ( r )  ‘;d;" r ; with L  : =  1 +  max 0; ‘ +  "   4   4 :

(Note that the implied constant in the bound in (6.11) is independent of r.)

To  prepare for the proof, let us dene, for any r  >  0,

Or : = g 2  G  : maxfkg Idk; kg 1 Idkg <  
10d

:

Here the norm is the supremum norm on the matrix space Md;d(R). Clearly, Or is an open neigh-
borhood of the identity element in G  and it is invariant under inversion. Let  be the normalized Haar
measure of G  as in Section 2.1; recall that  locally agrees with d.

We will need the following auxiliary lemma.

Lemma 6.6. For every 0 <  r  <  1, there exists a function r  2  C 1 ( G )  satisfying r   0, supp(r )  Or=2,
r (g) d(g) =  1 and k D Z ( r ) k L 1 ( G )  ‘;d r1 d2  ‘  for every monomial Z  =  Y ‘ 1  Y ‘ a ,  where ‘  =

deg(Z ) =  ‘1 +   +  ‘a .

(The implied constant in the bound on k D Z ( r ) k L 1 ( G )  depends only on ‘  and d, and not on r.)
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Proof (sketch). Let ’  :
 !  Ra  (a =  d2   1) be an arbitrary C 1  coordinate chart of an open neighbourhood
 of Id  in G, with ’ ( I d )  =  0. Let  2  C 1 ( R a )  be a xed bump function in Ra , i.e. a function satisfying   0
and  dx  =  1. We may assume that the support of  is contained in
the unit ball centered at the origin, Ba. For each t >  0 dene t 2  C 1 ( R a )  through

 ( x )  =  t a(t 1 x) ( x  2  Ra );

and note that supp(t)  Ba and 
R 

a  t dx  =  1. Let us choose the constant c >  0 so small that
Bc  ’ (
)  and ’  1(Bcr )  Or=2 for all 0 <  r  <  1. This is possible since the matrix entries of g
and g 1 are C 1  functions of g 2  G. Now we may simply set, for each 0 <  r  <  1,

r  : =  vr  (cr  ’ ) ;

where vr >  0 is chosen so as to make r  d =  1. One veries that the limit l i m r ! 0 +  vr exists
and is a positive real number. Using this fact, and recalling a =  d2      1, all the properties stated in

the lemma are straightforward to verify.

Proof of Lemma 6.5. We claim that for any r1; r2 >  0,

(6.12) Or1 r2   r 1 + r 2 :

First we note that for any h 2  Md;d(R) and v  2  Rd , khvk  dkhkkvk. This implies that for any r
>  0 and any g 2  O10r and v  2  Rd ,

kgvk  kvk +  k(g Id )vk  (1 +  r)kvk:

Hence for all r  >  0,

()  (g)  log(1 +  r )  <  r; 8 g 2  O10r;  2  X d :

Similarly, since O10r is invariant under inversion, we also have

(g) ()  =  (g) (g 1g) <  r;

Thus

O10r1
 1[0; r2]   1[0; r1 +  r2];

8 g 2  O10r;  2  X d :

8 r1; r2 >  0:

Now to prove the relation (6.12), in view of the denition of  , it suces to show that for any g 2
Or1 , 0  s <  1 and  2   1[0; r2] there exists some 0  s0 <  1 such that

gg s  2  g s0
 1[0; r1 +  r2];

or equivalently, gs0 gg s  2   1[0; r1 +  r2]. We take s0
 =  s. By direct computation and using i ; j

2  (0; 1) for all 1  i   m; 1  j   n, we have

max kgsgg s  Idk; k(gsgg s )  1 Id k =  max kgs(g Id )g sk; kgs(g 1 Id )g sk

<  e2 max kg Idk; kg 1 Id k <  e2 
10d 

<  
d 

:

Thus gsgg s  2  O10r1 , implying that

gsgg s  2  O10r1
 1[0; r2]   1[0; r1 +  r2]:

This nishes the proof of (6.12).

Given any 0 <  r  <  1, we now choose r  as in Lemma 6.6, and then dene our approximating
function r  2  Cc  (X d )  as the convolution

Z
 (x)  : =    (x)  =  (g) (g 1 x) d(g):

3 r = 2  G 3 r = 2
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It follows from r       0 and 
R 

r  d =  1 that r  takes values in [0; 1].     Moreover, for any g 2
supp(r )  Or=2 (so that g 1 is also contained in Or=2 since Or=2 is invariant under inver-

sion) and for any x  2  r , we have by (6.12)

g 1 x 2  Or=2r  3r=2;

implying that for any x  2  r ,
Z

 (x)  =  (g) (g 1 x) d(g) =  (g) d(g) =  1:
supp(r ) 3 r = 2 supp(r )

Thus e       r . Next, we claim that supp(r )  2r . To  prove this, note that since supp(r ) is compact and
contained in Or=2, there exists some  2  (0; r=2) such that supp(r )  Or=2 . Now if x  2  supp(r ) then
there exists some x  2  O x  with r (x  )  >  0; and by the denition of r  there then exists some g 2  supp(r )
Or=2  such that g 1x0 2  3r=2. Hence x0 2  Or=2 3r=2  2r  , and (since O is invariant under inversion) x  2
O x0  O 2r   2r . We have thus proved that supp(r )  2r . Using this inclusion together with the fact
that r  takes values in [0; 1], we conclude that r   e 2 r  

. (Note that r   e 2r  
follows already from the easier

fact that for any x0 2  X d ,  r (x0) >  0 implies x0 2  2r . However we need some control on supp(r ) below
when we discuss derivatives of r .)

For the norm bounds, we rst note that using the invariance of the Haar measure, for any Y 2  g
we have D  ( )  =  D  (  )   . More generally, for any monomial Z  in fY ; : : : ; Y g,

3 r = 2

(6.13) D  ( )  =  D  ( )   :
3 r = 2

Recall from Lemma 6.6 that supp(r )  Or=2 and k D Z ( r ) k L 1 ( G )  ‘ Z ;d  r1 d2  ‘ Z  , where ‘ Z  is the degree of
Z .  Furthermore, it is easily veried that (Or=2) d rd2  1. Using these facts, we have, for every x  2  X d
and every monomial Z  of degree ‘ Z   ‘,

(6.14) jDZ (r )(x)j  =  DZ (r )(g )e (g 1 x) d(g) 
d;‘ r1 d2  ‘ Z  (Or=2) d r  ‘ Z  :

supp(r )

Hence, using also supp(r )  2r and Theorem 5.1, we get

kr kL ‘  
d;‘ d(2r )1=2r ‘  

d;" r  4 + 4   1 ‘  " :

Finally, using the fact that for any 0 <  r  <  1, the support of  is contained in the xed
precompact set 2, we have kr kLip d supx2X d  

supj2f1;:::;ag D Y j  ( r )(x), and hence by (6.14), kr kLip d

r  1:

Now the bound in (6.11) follows, via the denition of the norm N ‘ .

7. P ro o f  of  Theorem 1.2

In this section, building on the analysis developed in the previous section, we give the proof
of Theorem 1.2. We keep the notation as in the previous section. In particular, throughout this
section, we x constants  >  0 and ‘  2  N as in Corollary 6.4, and for each 0 <  r  <  1 we x a
function r  2  Cc  (X d )  as in Lemma 6.5. Taking " =  1 in Lemma 6.5 we have that the norm bound in
(6.11) holds for L  : =  1 +  max 0; ‘ +  1   4   4    

 .
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7.1. Appl icat ion of eective equidistribution. For any 0 <  r  <  1, taking f  =  r  in the eective
equidistribution result (6.9) and applying the norm estimate (6.11), we get for any s >  0, (7.1)

r (gs A ) dA =  d (r ) +  Od e s r  L :
Y

When r  is small, the above integral should be expected to be small as well; however, the error term in
(7.1) blows up as r  !  0+ . To  remedy this issue, for r  very small we will instead prove an upper bound
on the integral, obtained by applying (7.1) for a suitable enlargened r-value. The result is as follows:

Lemma 7.1. Let  : =  { d + L .  There exists r0 2  (0; 2 ) such that for any 0 <  r  <  r0 and s >  0,

Z <  r { d  logd     
 
1 if r  >  e s;

(7.2)  (g  )  dA
Y d e { d s=2 if r   e s .

In particular, for any sequence fk gk 2N  (0; 2 ) with l i m k ! 1  k  =  0, we have 
(7.3)

X
k  (gk A ) dA =  1 ( )

X { d  logd
1

=  1 :
k k

Proof. First we note that by Theorem 5.1 and the relation e       r   e (see Lemma 6.5), we
have d (r ) d r { d  logd       1 . Furthermore, if r  >  e s, then the ratio of the main term and the error term
in (7.1) satises:

e s L  d 
r  

e 
s
r  L

r   >  logd

 
r

 ;

which we can force to be as large as we like by taking the constant r  suciently small (in a way
which only depends on d). Hence it follows from (7.1) that (7.2) holds in the case r  >  e s.

Next assume r   e s . Set  : =  2e s. If  <  r0, then by what we proved in the previous
paragraph,

(gs A ) dA d 
{ d  logd

 1  
d e {d s=2 ; Y

and hence the bound in (7.2) follows, since r   
2 r  

 
 
  (again see Lemma 6.5). In the remaining case

when   r0, we have s d 1 and e { d s=2 
d 1, and hence the bound in (7.2) holds simply because of r   1.

This completes the proof of (7.2).

For the last part of the lemma, since l i m k ! 1  k  =  0, after possibly deleting nitely many
terms from the two sums in (7.3), we may assume k <  r0 for all appearing terms. Next, using the
second bound in (7.2) and the fact that both of the series k e { d k =2 and

k e     k  
{ d  logd   

k

converge, it follows that the two divergence statements in (7.3) remain unaected if all the terms
for which k  e k  are removed from the respective series. After this operation, the equivalence in
(7.3) is an immediate consequence of the rst relation in (7.2).

7.2. T h e  convergence case. This case is now easily handled using Lemma 7.1.

Proof of the convergence case of Theorem 1.2. Let r  =  r      : [s0 ; 1)  !  ( 0 ; 1 )  be the continuous,
decreasing function corresponding to       as in Lemma 6.1. First note that since the series (1.10)
converges, we have l i m t ! 1  t (t) =  1 (or equivalently, l i m s ! 1  r(s) =  0 as seen from the proof of
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Lemma 6.1). Moreover, by the last part of Lemma 6.1, the fact that the series (1.10) converges
implies that the series k r (k ) { d  logd     1 +  r(k)

     
 also converges.

Now for each k >  s let us dene

B k  : =  
[  

g s
 1 [0; !1 r(k +  s)] and E k  : =  A  2  Y  : gk A 2  B k      ; 0s<1

where ! 1  : =  maxfmi ; nj : 1  i   m; 1  j   ng is as in Proposition 6.2. In view of Proposition 6.2 (and the
paragraph after it), it suces to show that for Leb-a.e. A  2  Y ,  gk A 2  B k  for only nitely many k >  s0, or
equivalently, that the limsup set l i m s u p k ! 1  E k  is of zero measure. Thus in view of the Borel-
Cantelli lemma, it suces to show that k Leb(E k )  <  1 .

To  prove this, we will approximate the shrinking targets f B k g k > s      from above. Since r(s) !  0 as s
!  1 ,  by enlarging s0 if necessary (equivalently, enlarging t0 as in Lemma 6.1), we may assume !1 r (s)
2  (0; )  for all s >  s0. Moreover, by Lemma 6.1, r ()  is decreasing; thus with k : =  !1 r (k ),  we have

(7.4) B k   k  ; 8 k >  s0:

Recall that for each 0 <  r  <  1 we have xed a function r  2  C 1 ( X d )  as in Lemma 6.5. Now for
each k >  s0, we have B     

   k
 (by (7.4) and Lemma 6.5), implying that
Z Z

(7.5) Leb(E k )  =   (gk A ) dA  (gk A ) dA:
Y Y

Next, it follows from k =  !1 r (k )  and the convergence of 
P

k  r (k ) { d  logd     1 +  r(k)
     

 that the series k
k

d  logd      
k         

also converges; in addition, l i m k ! 1  k  =  0 since l i m k ! 1  r(k) =  0. Hence by the last part
of Lemma 7.1 combined with (7.5), we have       k  Leb E k      <  1 ,  nishing the proof.

Remark 14. Let (m; n) =  (2; 1); thus d =  3. In [5, Theorem 1.1], Chow and Yang proved an
eective equidistribution result for certain Diophantine lines in Y  translated under the full (two
dimensional) diagonal subgroup of G  along certain restricted directions. In particular, their result
implies the following: Let (a; b) 2  R2  be a Diophantine vector (see [5, p. 2] for the denition), and let J
R  be a compact subinterval. Then these exist constants ‘0 2  N, c 2  (0; 1) and 0

 >  0 such that for any
pair of weights  =  ( 1+c0 ; 1+c

 )  with 0 <  c0
  c, for any f  2  C 1 ( X 3 )  and for any s >  0 (7.6)

jJ j
 

J  
f

gs v (x) dx =  3 (f )  +  O e 0 s kf kL 1 ;

where gs =  g;1 =  diag(e1 s; e2 s; e s ) with  as above, v (x )  : =  (ax +  b; x)t 2  R2  and k  k L 1  the
\ L 1 ,  degree ‘0" Sobolev norm dened by

kf kL ‘0     
 : =

X
kDZ (f )kC 0 :

deg(Z )‘0

Here k  k 0 is the uniform norm on C 1 ( X  ) as before. On the other hand, it is easy to see from
Lemma 6.6 and the relation (6.13) that there exists L0 >  1 such that

(7.7) kr kL ‘0     
 
‘0 r  L0 ; 8 0 <  r  <  1:

Using a similar analysis with (7.6) and (7.7) in place of (6.9) and (6.11) respectively, we can
conclude that if the series (1.10) (with d =  3) converges, then for Leb-a.e. x  2  J  the column vector
v (x)  =  (ax +  b; x)t is ;1-Dirichlet.
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7.3. T h e  divergence case. In this subsection we prove the divergence case of Theorem 1.2. We
rst record from [29] the following divergence Borel-Cantelli lemma which we will use.

Lemma 7.2. Let (X ; )  be a probability space. Let fhk gk2N be a sequence of measurable functions
on X  taking values in [0; 1]. Let bk : =  (hk ). Suppose k bk =  1  and

R P k 2 h (x)  
P k 2 b 

2 
d(x)

(7.8) lim inf P k 2 =  0 for some k1 2  N: i = k 1

Then for -a.e. x  2  X ,  hk (x) >  0 innitely often.

Proof. Let Y1; Y2; : : : be the sequence of random variables dened by Yk (x) =  
P k + k 1  1 hi (x) (k 2

N). Note that
Z  k2 k2 2

hi (x)  bi d(x) =   Yk 2  k 1 + 1       Yk2  k 1 + 1 ;
i = k 1                               i = k 1

hence (7.8) implies that lim sup (Yk )2=(Y 2) =  1. Therefore by part (iii) of the main theorem in
[29], for -a.e. x  we have l i m s u p k ! 1  Yk (x)=(Yk ) >  0. Also (Yk ) = k + k 1  1 bi !  1  as k !  1 .
Hence it follows that for -a.e. x  we have l i m k ! 1  Yk (x) =  + 1 ,  and in particular hi (x) >  0 for
innitely many i.

Remark 15. If one replaces the assumption (7.8) by the weaker assumption that
R P k 2 h (x)  

P k 2 b 
2 

d(x)
lim inf P k 2 = :  C  <  1 for some k1 2  N; i = k 1

then by the application of part (iii) of the main theorem in [29] we get instead

x  2  X  : lim sup 
(Yk ) 

>  0  
1 +  C

 
:

In particular, there is a positive measure set of x  2  X  such that hi (x) >  0 innitely often.

Proof of the divergence case of Theorem 1.2. First we note that in view of Remark 2 we may as-
sume l i m t ! 1  t (t) =  1. Let r  =  r      be the continuous, decreasing function corresponding to       as
in Lemma 6.1; then from the proof of that lemma we have l i m s ! 1  r(s) =  0. Also by Lemma 6.1,
since the series (1.10) diverges, the series k r (k ) { d  logd     1 +  r(k) also diverges. Moreover, by
Remark 12, condition (1.11) is equivalent to

(7.9) lim inf 

P
s 0 < k s 1  

r (k ) { d  logd +1  
1 +  r(k

)
 

=  0: 
1

s 0 < k s 1  
r (k ) { d  logd     1 +  r(k)

Now for any k >  s0 let

B k  =  
[  

g s
 1 [0; !2 r(k +  s)]

0s<1

be as before with ! 2  : =  minfmi ; nj : 1  i   m; 1  j   ng as in Proposition 6.2. In view of
Proposition 6.2 (and the paragraph after it) it suces to show that for Leb-a.e. A  2  Y ,  gk A 2  B
innitely often.
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In this case we will approximate the shrinking targets f B  g from below. Recall that for
each 0 <  r  <  1 we have xed a function r  2  C 1 ( X d )  as in Lemma 6.5. Again we may assume !2 r (s)
2  (0; 1 ) for all s >  s0, and since r ()  is decreasing, we have !  r ( k + 1 )   B k ,  implying that, with k : =  !2 r (k
+  1)=2:

(7.10) f  : =    ;
! 2 r ( k + 1 )

8 k >  s0:

Let us set, for each k >  s0,
Z Z

bk : =  fk (gk A )  dA =  Y  (gk A ) dA: Y

Then, similarly to the proof of the convergence case, by applying the last part of Lemma 7.1 and
using the relation k =  !2 r (k + 1)=2 and the facts that the series k r (k ) { d  logd     1 +  r(k)

     
 diverges

and l i m s ! 1  r(s) =  0, it follows that the series k bk also diverges.

Now for each k >  s0, let hk be the function on Y  dened by hk (A ) : =  fk (gk A ).  Then in view of
the denition of f k  : =  k  and the relation 

       
 k

  
2      

, the function hk takes values in [0; 1], and
Z Z

hk (A ) dA =  Y fk (gk A )  dA =  bk: Y

We will apply Lemma 7.2 to the probability space (Y ; Leb) and the sequence fhk gk > s  . We have
already seen that bk =  1 ;  thus in view of Lemma 7.2 it suces to show that fhk gk > s      satises
condition (7.8).

Let us take C  >  0 suciently large so that for all k >  C ,  k  2  (0; r0), where r0 is the constant as
in Lemma 7.1. For any k2 >  k1 >  C ,  let us denote

0 1

Qk1 ;k2 : = @
X  

hi (A )    
X  

b i A  dA =
X

(hi (A )hj (A )  bi bj ) dA:
i = k 1 i = k 1 k1 i ; j k2

Using the fact that for each k  i   k ,
Z Z

h2 (A ) b2      dA hi (A )  dA =  bi; Y
Y

we have
k2 Z

Qk1 ;k2 bi +  2 (hi (A )hj (A )  bi bj ) dA:
i = k 1 k 1 i < j k 2

F ix  k1  i  <  j   k2; we will use two dierent estimates for the term 
R  

hi (A )hj (A )       bi bj
 
dA

depending on whether minfi; j   ig is large or small. First, applying the eective doubly mixing
(6.10) to the pair ( f i ; f j ) ,  we get

(7.11)
Z 

f i (g i A ) f j (g j A )  dA =  d (f i )d (f j )  +  O e  minfi; j  i g N ‘ ( f i )N ‘ ( f j ) :  Y

On the other hand, by (6.9) we have
(7.12) bk =  d (fk )  +  O e k N ‘ ( f k ) ; 8 k >  C:
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d
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     j      j
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j
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j
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j      j

j d
X

{
j

1 X
{
j

1
! 2

X X
{ 1

r ( j )

1  1
j

 {

P  1 

Combining (7.12), (7.11), the norm estimate N ‘ ( f k )  =  N ‘ (  )  d 
 L  (by (6.11)) and noting that Y

hi (A )hj (A )  dA =  Y  f i (g i A ) f j (g j A )  dA, we have
 

(hi (A )hj (A )  bi bj ) dA
 
d e  minfi; j  ig  L  L  <  e  minfi; j  ig  2L : Y

On the other hand, using the trivial estimate jhihj bi bj j  hi hj +  bi bj  hj  +  bj  we have

(7.13)  (hi (A )hj (A )  bi bj ) dA (hj (A )  +  bj ) dA =  2bj : Y
Y

Combining these two bounds, we conclude:

(7.14) Qk1 ;k2 d 
X  

bi +  
X X  

min
n

e  minfi; j  ig  2L ; bj

o
:

i = k 1 j = k 1 + 1  i = k 1

In order to bound the above inner sum we replace k1 by 1 and use the symmetry i  !  j  i  to get

(7.15)
j  1 

min
n

e  minfi; j  ig  2L ; b j

o 
 2 

j  1 

min
n

e  i  2L ; bj

o
:

i = k 1 i = 1

In the last sum, all terms are  bj , and there are at most Od log 2 +  b 1 2 L terms which are
equal to bj  (indeed, remember that  depends only on d). Furthermore, if there are any terms
which are less than bj , then these are bounded above by bj ; bj e ; bj e 2; : : :, and so their sum is

Od(bj ). It follows that the last sum in (7.15) is Od     bj  min j; log 2 +  b 1 2 L , and hence from
(7.14) we get

Qk1 ;k2 d 
X  

bi +
k2

bj  min
n

j; log
 

2 +  b 1 2 L
o  

 
k2       

b j  min
n

j; log
 

2 +  b 1 2 L
o

:  i = k 1

j = k 1 + 1                                                                                       j = k 1

Let  =  { d + L  be as in Lemma 7.1 and set  : =  {
2

 . Then by (7.2) we have for each k1  j   k2:
Z <  { d  logd       1 if  >  e j ,

(7.16) bj =  (gj  )  dA
Y d e if j   e .

Thus for any k2 >  k1 >  C  we have (recalling that j  =  ! 2 r ( j  +  1)=2)

Qk1 ;k2 d       
X

e j j  +
X

j  
d  logd

 1 
log     2 +   { d  2 L  log d

 1  
k 1 j k 2

k 1 j k 2
( j e ) ( j > e )

k2 k 2 + 1

d 1 + j  
d  logd +1  1 + r ( j ) { d  logd +1 1 + :

j = k 1                                                                                       j = k 1 + 1

Similarly, by (7.16), for any xed k1 >  C  we have as k2 !  1 :
k2 k2 k2 +1  b

d log d                                 d  log d
                                        r ( j )  d

 log d
     

 1 +              ;
j = k 1 k 1 j k 2

j j = k 1
j j = k 1 + 1

(  > e )

where the second relation holds since the series 
P

j = k 1  j  
d  logd      

 
      

 
diverges (thi s  follows from the

relation j  =  ! 2 r ( j  + 1)=2 and the fact that the series j  r ( j ) { d  logd     1 +  r( j )      
 diverges), while the

same sum restricted to those j  for which j   e j  is convergent.
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d; ! 2

P
2k +

1

P P
2 2k k +

1
 1 2 2

P  1

P
k

k

t ! 1

F  (k )

  1

P
t kt0 1

P 2

•

Combining the last two bounds, we conclude that for any k1 >  C ,  and for k2 suciently large,

(7.17)
Qk1 ;k2

1 + j=k 1 +
1

 r ( j ) { d  logd +1 1 +  r
( j )     

 

:
j
= k 1  

bj j=k 1 +
1

 r ( j ) {
d

 logd     1 +  r
( j )

Since the series j  r ( j ) { d  logd     1 +  r
( j ) diverges, condition (7.9) implies that the limit inferior

of the expression in the right hand side of (7.17) tends to zero as k2 !  1 .  Hence (7.8) holds. We
have also noted that bk =  1 .  Hence by Lemma 7.2, for Leb-a.e. A  2  Mm;n (R=Z) we
have hk (A ) =  fk (gk A )  >  0 innitely often. Together with (7.10), this implies that for Leb-a.e. A  2
Mm;n (R=Z), the lattice gk A belongs to supp(fk )  B for innitely many k 2  N. This
nishes the proof.

Remark 16. For the divergence case in Theorem 1.2, we note that if one replaces the assumption

(1.11) by the weaker assumption that
k 1 F (k ) { d  logd +1      1

lim inf  <  1 ;
1

t0 kt1 
k 1 F (k ) { d  logd       F   

(
k

)

then, in view of Remark 12, Remark 15 and the estimate (7.17), we can conclude that, under this
weaker assumption, D I ; (  )c is of positive Lebesgue measure. It is an interesting question, to which
we do not know the answer, whether D I ; (  )  must always be of zero or full Lebesgue measure.
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