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ABSTRACT: In recent years, hybrid design strategies combining
machine learning (ML) with electromagnetic optimization
algorithms have emerged as a new paradigm for the inverse design
of photonic structures and devices. While a trained, data-driven
neural network can rapidly identify solutions near the global
optimum with a given data set’s design space, an iterative
optimization algorithm can further refine the solution and
overcome data set limitations. Furthermore, such hybrid ML-
optimization methodologies can reduce computational costs and
expedite the discovery of novel electromagnetic components.
However, existing hybrid ML-optimization methods have yet to
optimize across both materials and geometries in a single
integrated and user-friendly environment. In addition, due to the
challenge of acquiring large data sets for ML, as well as the exponential growth of isolated models being trained for photonics design,
there is a need to standardize the ML-optimization workflow while making the pretrained models easily accessible. Motivated by
these challenges, here we introduce DeepAdjoint, a general-purpose, open-source, and multiobjective “all-in-one” global photonics
inverse design application framework that integrates pretrained deep generative networks with state-of-the-art electromagnetic
optimization algorithms such as the adjoint variables method. DeepAdjoint allows a designer to specify an arbitrary optical design
target, then obtain a photonic structure that is robust to fabrication tolerances and possesses the desired optical properties, all within
a single user-guided application interface. We demonstrate DeepAdjoint for the design of infrared-controlled metasurfaces and show
that a wide range of structures and absorption spectra can be achieved and optimized, including single- and multiresonance behavior
through single- and supercell-class structures, respectively. Our framework, thus, paves a path toward the systematic unification of
ML and optimization algorithms for photonic inverse design.
KEYWORDS: nanophotonics, deep learning, generative adversarial networks, adjoint optimization, inverse design

■ INTRODUCTION
Photonic structures and devices are now an essential
component of a broad range of information, life sciences,
and renewable energy technologies. Some examples include
plasmonic waveguides for photonic integrated circuits,1,2

optical filters for spectroscopy and super-resolution imaging,3,4

and metasurfaces or metamaterials for flat optical components
and solar energy harvesting.5,6 However, rising demands in
nanophotonic device performance and functionality have
resulted in the design process becoming increasingly complex
and computationally intensive.7 For instance, subwavelength
dielectric and metallic nanostructured materials can be
structured into complex geometric configurations that scatter,
localize, and tailor electromagnetic fields to achieve new
modalities in light−matter interactions.8 Due to the wide
choice of materials and the spatial degrees-of-freedom available
for design, the design space one must explore in contemporary
photonic inverse design is typically highly nonlinear and

nonconvex (i.e., contains many local optima) and, thus,
extremely challenging and time-consuming to navigate.
Motivated by this challenge, machine learning (ML) and

deep learning methods based on neural networks have shown
tremendous promise toward addressing conventional limita-
tions on photonic inverse design. Neural networks are capable
of capturing, interpolating, and optimizing nonlinear data-
based and physics-based relationships, including those found in
nanophotonic systems. Neural networks achieve such capa-
bilities by building an implicit relationship between input and
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output responses, which for nanophotonics inverse design are
the optical responses and geometric/material parameters,
respectively. A trained neural network is orders of magnitude
faster than typical full-wave simulations and can generate
nonintuitive physical structures in response to desired optical
properties.9 Accordingly, a substantial number of studies have
employed neural networks for designing a broad range of
photonic systems, including: metasurfaces,10,11,36,43−45 pho-
tonic crystals,12,13 and plasmonic nanostructures.14,15 How-
ever, despite numerous advancements, it is well-known that
neural networks cannot generalize too far beyond the
information available in the training data set.16−18 Due to
these limitations, hybrid algorithms combining deep learning
and conventional optimization methods have emerged as a
new class of efficient inverse design methodology.19,20

Recent studies have integrated different types of neural
networks and optimization schemes for photonic inverse
design. Early works paired neural networks with particle swarm
optimization21 (PSO) and evolutionary algorithms.22,23

Emerging works also have integrated deep learning with
optimization through more sophisticated design pipelines.41−45

Collectively, these studies successfully showed that the neural
network can perform a rough estimate of the desired solution
(i.e., a global search), while the iterative optimization
algorithm carries out an additional refinement step (i.e., a
local search). Since conventional optimization algorithms need
an ideal initial condition in order to obtain the optimal result,
and the neural network is restricted by its training data, the
combination of both techniques can simultaneously overcome
their individual limitations.20,24 Recent hybrid ML-optimiza-
tion approaches have also employed more advanced neural
networks and optimization algorithms. For example, generative
adversarial networks25 (GANs) and variational autoencoders26

(VAEs) were used together with the adjoint variables method
for photonic design. Adjoint-based optimization is one of the
most widely used algorithms for photonics inverse design
because regardless of the number of elements in the design
space, the algorithm can determine the shape or topology
gradient using only a forward and adjoint (time-reversed)
simulation at each iteration.27−29 As a result, GANs and VAEs
can design complex topological structures through image-based

representations, while the adjoint method can efficiently push
performance further.30 Additionally, generative models trained
on physics-informed losses (or using the adjoint method
within the training process) have also benefited from a
subsequent optimization-based refinement step.31 Thus, a
number of deep learning models have been trained across
various photonic device types, and a precedent has been
established for hybrid ML-optimization algorithms as the next
generation of inverse design methods. However, a hybrid ML-
optimization strategy that simultaneously optimizes across
multiple materials and geometries has yet to be realized.
Moreover, the integration between a data-driven ML model
and optimization algorithms typically involve elaborate and
highly specialized procedures. For example, to establish a link
between neural networks and conventional optimization
methods, intermediate steps are required to introduce
robustness, convert file formats, and/or to ensure that the
network outputs can be adapted to the algorithm of interest.
To streamline the ML-optimization process, here we

introduce an “all-in-one” global inverse design application
framework which seamlessly combines generative networks
with adjoint-based optimization algorithms to simultaneously
optimize across materials and geometries. “Global” in this
context refers to the network’s ability to perform a global
search within the surveyed design space, which includes
material properties and freeform topology, but the network
does not guarantee that the final generated device is globally
optimal. Schematically illustrated in Figure 1, our framework,
DeepAdjoint, allows a researcher to specify an arbitrary
spectral target (labeled “1” in Figure 1) and pass the target
directly into a pretrained generative network. Such pretrained
models can be data-driven38 (i.e., trained on loss functions that
quantify the error between training data and model
predictions), physics-driven39 (i.e., trained on partial differ-
ential equations that capture governing physical laws), or a
combination thereof.40 In this regard, we note that the
increasing number of deep learning models being generated for
photonics design (which we expect will continue to grow
exponentially in the near future) reinforces the need for a
design process that can integrate pretrained models, partic-
ularly when practices such as network sharing and model

Figure 1. DeepAdjoint: an photonics inverse design framework schematic combining deep learning and adjoint optimization. (1) An arbitrary
optical design target can be specified and (2) passed into a pretrained neural network to generate a nanophotonic structure that is (3) validated
using full-wave FDTD simulations. (4) The network’s design can then be automatically converted into an adjoint optimization procedure, which
can (5) yield device accuracy or performance that extends beyond the network’s potential limitations.
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serving are expanding within the machine learning commun-
ity.32−34

As a proof of concept, we employed a global inverse design
GAN model with the ability to simultaneously predict device
class, material properties (e.g., refractive index and Drude
plasma frequency), and nanoscale geometric structuring
(including planar topology and layer thickness) for metal−
insulator−metal (MIM) metasurfaces.9 After passing the target
into the GAN (labeled “2” in Figure 1), DeepAdjoint then
validates the GAN-generated design using full-wave numerical
simulations (labeled “3” in Figure 1). As a default simulation
tool, DeepAdjoint integrates directly with a commercial finite-
difference time-domain solver (Lumerical FDTD). The GAN-
generated design can then be further augmented by converting
the design into an adjoint optimization procedure (labeled “4”
in Figure 1), after which the final design can yield even greater
accuracy or performance by extending beyond the model’s
limitations (labeled “5” in Figure 1). We demonstrate this end-
to-end workflow for a range of optical device targets, including
single- and multiresonance responses, for infrared-controlled
MIM metasurfaces.

■ METHODS
To democratize the hybridization of deep learning with
electromagnetic optimization, and to make our framework
easily accessible to a wide range of practitioners, we deployed
and packaged DeepAdjoint as a standalone application with a

user-guided interface. Figure 2 presents the details of the
application, where each step in Figure 1 can be executed (and
the results can be observed) within a single user-friendly
environment. As an example step-by-step procedure for
designing MIM metasurfaces, DeepAdjoint first allows the
user to specify an input target absorption spectrum (labeled
“1” in Figure 2). Here, a Lorentzian function with a center
wavelength of 6 μm and full width half-maximum (fwhm) of
0.75 μm is defined and shown within the built-in visualization
tool (blue curve). Next, the user simply imports the generative
model, then generates the design (in ∼500 ms) with a single
button press at the step labeled “2” in Figure 2. In our
implementation of DeepAdjoint, we leveraged a conditional
deep convolutional generative adversarial network (DCGAN)
that was developed within a prior study,9 which facilitates the
simultaneous prediction of the material properties (i.e.,
refractive index and plasma frequency), layer thicknesses, and
planar geometries of photonic structure. This particular model
was trained on 20000 metasurface designs (of which 10% was
reserved for validation) derived from various shape templates:
cross, square, ellipse, bow-tie, and so on. The model inputs
were 800-point absorption spectrum vectors, while the model
outputs were MIM metasurface designs (in 3.2 × 3.2 μm2 unit
cells) represented as 64 × 64 × 3 pixel “RGB” images. Details
of the optimized model architecture can be found in the
Supporting Information.

Figure 2. DeepAdjoint application interface and step-by-step workflow. Users can (1) define targets, (2) generate designs, (3) validate designs, (4)
run adjoint optimizations, and (5) monitor optimization results.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.2c00968
ACS Photonics 2023, 10, 884−891

886

https://pubs.acs.org/doi/suppl/10.1021/acsphotonics.2c00968/suppl_file/ph2c00968_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c00968?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c00968?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c00968?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsphotonics.2c00968?fig=fig2&ref=pdf
pubs.acs.org/journal/apchd5?ref=pdf
https://doi.org/10.1021/acsphotonics.2c00968?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Since the direct output of the GAN is a set of matrix values
and must be converted into a simulation model for numerical
analysis, with the press of another button, DeepAdjoint
converts the GAN’s output into an FDTD model of the
metasurface, runs the simulation, then reports the results back
into the user interface for comparison (labeled “3” in Figure 2).
Following this step, the FDTD-validated absorption spectrum
(orange curve) and corresponding electric field profiles can be
observed directly on the application interface.
Next, the GAN’s design can be enhanced by applying the

adjoint optimization method (labeled “4” in Figure 2), where
an optimization target wavelength can be specified that the
algorithm aims to maximize. To execute the adjoint
optimization procedure, we implemented a customized version
of the LumOpt module37 (a Python wrapper for Lumerical
FDTD). In this particular implementation, a number of
enhancements were made to the base module in order to
support free-space reflective metasurface design and optimiza-
tion, which we summarized in Figure S3 of the Supporting
Information. At the time the study was conducted, the adjoint
optimization module we employed was limited to only the
optimization of a photonic structure’s planar geometry, and
thus the material properties and layer thicknesses (derived
from the GAN’s predictions) remained fixed during
optimization. We note that our demonstration of DeepAdjoint
also leveraged a deep learning model trained exclusively on
polarization-dependent designs. Accordingly, the proceeding

adjoint-optimized structures were optimized specifically for
single-polarization performance at normal incidence. However,
the presented methodology is generalizable to polarization-
independent structures and optimization beyond just the
planar geometries if, for instance, the integrated model was
trained with the corresponding designs and the optimization
module supported multidimensional exploration, respectively.
To configure the GAN’s design for adjoint optimization, an

automatic multistep process is performed (shown in Figure S1
of the Supporting Information), where the GAN’s output is
refined (by removing voids and defects) and transformed into
a set of discretized polygon points at the meta-atom or
resonator boundary. In doing so, the polygon points (i.e.,
optimizable parameters) are compatible with the adjoint shape
optimization process. Then, as the adjoint optimization
iteratively progresses, the coordinates of the polygon points
gradually change in the direction of figure-of-merit (FOM)
improvements (labeled “5” in Figure 2). Moreover, since the
presented metasurface designs operate in a reflective manner at
normal incidence, the typical forward and adjoint simulations
required are identical here and can be reduced to a single
simulation at each iteration. Thus, we note that our particular
implementation of the adjoint optimization algorithm has
increased computational efficiency for metasurface design.
Additionally, our framework allows the user to specify
minimum feature sizes and fabrication tolerances without

Figure 3. Metasurface designs created via adjoint optimization with randomized initial designs (orange lines). Optimization objectives include
maximizing horizontal polarization (θ = 0) absorption at (a) 6, (b) 7, and (c) 8 μm target wavelengths (red dashed lines). Optimized structures
and corresponding absorption spectra (yellow lines) possess various degrees of performance improvements and several extra unintended absorption
peaks due to the random, suboptimal nature of the starting designs. The left column shows instances where the adjoint optimization fails to
noticeably improve the starting design. Center and right columns show adjoint optimization results with symmetric and asymmetric starting
designs, respectively.
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sacrificing device performance (shown in Figure S2 of the
Supporting Information).

■ RESULTS AND DISCUSSION
To highlight the advantages of the proposed framework, we
first investigated the performance of the adjoint optimization
algorithm in relation to the algorithm’s initial designs (for the
particular MIM structure design space we evaluated in this
work). In Figure 3, three adjoint optimization runs were
executed at three different target wavelengths (indicated by the
dashed red lines): 6, 7, and 8 μm, which are presented in
Figure 3a, b, and c, respectively. Each optimization was
performed using randomized starting designs (orange lines),
and the objective was to maximize horizontal polarization (θ =
0) absorption at the designated target wavelength. At the end
of the optimization runs, we observe that the final designs
(yellow lines) typically exhibited higher absorption values/
peaks than the initial designs. Center and right columns of
Figure 3 show symmetric and asymmetric starting designs,
respectively. Importantly, we note that different starting
designs yielded different degrees of performance improvements
(i.e., different absorption peak amplitudes). Moreover, it can
be observed that several optimized designs possess extra
absorption peaks (beyond the target wavelengths) that were
originally unintended. In several instances, as shown in the left
column of Figure 3, a poor starting design can also cause the
adjoint optimization to fail by not finding noticeable
improvements to the initial structure. In Figure S4 of the
Supporting Information, we further assess the general
boundaries of this failure phenomenon, which is explained

by the starting design being too far from the sought target.
Thus, a deep learning algorithm that can provide the
optimization with an ideal starting design would not only
save computation time by reducing the number of
optimization iterations, but also allow the optimization to
succeed and reach an optimal solution without any excess
optical behaviors.
Next, we applied our DeepAdjoint framework to the

optimization of metasurfaces with single-resonance absorption
peaks. Figure 4 presents a series of optimized designs,
generated through DeepAdjoint, using a range of input
absorption spectra (blue lines) with “hand-drawn” Lorent-
zian-shaped peaks from 5 to 9 μm. Here, we observe that the
GAN’s designs and simulated spectra (orange lines) are close
matches to the input targets. However, several designs possess
off-centered peaks or lower amplitudes in comparison to the
original target. After using the GAN-generated designs as the
starting points for subsequent adjoint optimization runs (with
the optimization targets marked by the red dashed lines), it can
be observed that the off-centered peaks are rectified and the
low-amplitude peaks are increased by up to 75% (compared to
the starting spectra). Moreover, the final absorption peaks of
DeepAdjoint’s designs are 10% higher than the best adjoint
optimization-only designs using random starting points (from
Figure 3).
In Figures S4 and S5 of the Supporting Information, we

evaluated the computation times between traditional adjoint
optimization with random starting designs and DeepAdjoint,
respectively. From these results, we observed that DeepAdjoint
reduced optimization iterations by more than 50%. On a

Figure 4. Single-objective metasurface designs (one absorption peak) created via DeepAdjoint. Target absorption spectra (blue lines) are passed
into the generative model (GAN) to produce starting designs (orange lines) for adjoint optimization (red dashed lines). Optimized designs (yellow
lines) exhibit up to 75% performance enhancements in comparison to GAN-generated designs (shown in the inset images) and 10% improvement
over adjoint optimization-only designs with random starting points, indicating the hybrid approach exceeds the performance of each individual
method.
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distributed high-performance computing cluster with four
dedicated compute nodes, where a node has a minimum of
four 64-bit Intel Xeon or AMD Opteron CPU cores and 8 GB
memory, the DeepAdjoint optimizations corresponded to
approximately 1 h of total computation time. Thus, for
conditional photonics inverse design with a wide range of input
targets, we demonstrate that the hybridization of generative
networks with the adjoint optimization algorithm offers a
number of advantages, including superior device performance
in comparison to each standalone method, increased computa-
tional efficiency, and eliminating reliance on randomized
starting designs.
Because meta-structures with simple, single-resonator

periodic unit cells may only offer limited capabilities,23 we
next demonstrate the versatility of our ML-optimization
framework by applying it to multiobjective supercell designs,
where the goal is to design compound meta-atoms with
multiple resonant behaviors. We note that designing such
supercell structures is particularly challenging using conven-
tional approaches, since adjacent elements may exhibit
coupling and interference.35 Furthermore, the increased
number of parameters in the supercell naturally results in
additional optimization complexity and computational costs.
Accordingly, using DeepAdjoint, we address these challenges
by first specifying the individual target resonance peaks within
the supercell structure (as shown in the blue lines of Figure 5).
This in turn generates the individual unit cells which
contribute to the target absorption peaks (as previously
demonstrated). When the individual unit cells are merged
into supercell structures, it can be observed that the final
structures (orange lines) produce fairly close matches in
comparison to the input targets. However, compared to the
single unit cell designs, the supercells have lower absorption
peaks as a result of cross-element coupling. Thus, designing a
supercell is not as simple as generating and combining the
individual components, though this can provide a decent
approximation. In this regard, a multiobjective adjoint

optimization procedure can be applied to the generated
supercell structures, which simultaneously maximizes multiple
absorption peaks while accounting for the optical behaviors
produced by the entire supercell (including cross-element
coupling).
In Figure 5, the results of multiple supercell optimization

runs are presented (at the optimization targets indicated by the
red dashed lines). Here, we observe that the optimized
supercells (yellow lines) all yield up to 50% higher absorption
peaks than the initial designs, though the degree of absorption
enhancement appears to be peak-dependent (possibly due to
different coupling mechanisms induced by particular ele-
ments). In addition to increasing the target absorption peaks,
Figure 5 also shows that the adjoint optimization procedure
can rectify or recenter off-target peaks within the supercell. In
Figure S6 of the Supporting Information, we validated our
approach even further through the optimization of a larger
(four unit cell) supercell structure. As a result, we show that
our hybrid ML-optimization framework can be used to design
and achieve a wide range of optical behaviors, including
periodic unit cell structures with single resonances and
complex supercell structures with multiple resonances or
broadband characteristics. Furthermore, we note that at the
core of our methodology, a pretrained model with good
performance is a key prerequisite. Therefore, a potential
limitation of our approach is if the sought target is within a
regime that is poorly represented by the training data set,
which would contribute to the generation of poor starting
designs for optimization. To overcome these limitations, larger
and more diverse training data sets may be constructed. To a
further extent, in future works, automated feedback loops may
also be implemented that identify areas of weak training data
coverage, compensate the model with new data, and then
retrain the model to improve design performance and
generalization.

Figure 5. Multiobjective metasurface designs (multiple absorption peaks) created via DeepAdjoint. Target absorption spectra (blue lines) are
passed into the generative model (GAN) to produce starting designs (orange lines) for adjoint optimization (red dashed lines). Optimized designs
(yellow lines) exhibit up to 50% performance enhancements in comparison to GAN-generated supercell designs (shown in the inset images).
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■ CONCLUSION
In summary, we presented DeepAdjoint, a general-purpose,
open-source, and multiobjective “all-in-one” global photonics
inverse design application framework that streamlines and
augments the ML-optimization pipeline by integrating data-
driven deep generative networks with state-of-the-art electro-
magnetic optimization algorithms. DeepAdjoint allows a
designer to specify an arbitrary optical design target, then
obtain a photonic structure that is robust to fabrication
tolerances and possesses the sought optical properties, all
within a single user-guided workflow and application interface.
As a proof of concept, we demonstrated our framework for the
design and optimization of infrared-controlled metasurfaces
and showed that a wide range of structures and absorption
spectra can be achieved, including single- and multiresonance
behavior through single- and supercell-class structures,
respectively. By specifying an input target spectrum, a global
inverse design generative neural network serves as a rapid
global approximation search step (∼500 ms) and produces a
nanophotonic structure with material properties, layer
thicknesses, and planar geometry defined. Afterward, the
generated design can be sent through an adjoint optimization
procedure, which serves as a local search step to increase
performance further. As a result, the limitations of training data
restriction and starting point dependency for deep learning and
conventional optimization, respectively, can be simultaneously
overcome. Our proposed framework is thus an important step
toward leveraging the strengths of both data-driven machine
learning and optimization algorithms for a universal photonics
inverse design framework.
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