EQUIDISTRIBUTION IN THE SPACE OF 3-LATTICES AND
DIRICHLET-IMPROVABLE VECTORS ON PLANAR LINES
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ApsTRACT. Let X = SL3(R)/SL3(Z), and g; = diag(e®*,e™", ™). Let v denote
the push-forward of the normalized Lebesgue measure on a segment of a straight
line in the expanding horosphere of {g:}+>0, under the map h — hSL3(Z) from
SL3(R) to X. We give explicit necessary and sufficient Diophantine conditions on
the line for equidistribution of each of the following families of measures on X:

(1) ge-translates of v as t — oc.

(2) averages of gi-translates of v over t € [0,T] as T — oo.

(3) g¢,-translates of v for some t; — co.

We apply this dynamical result to show that Lebesgue-almost every point on
the planar line y = ax + b is not Dirichlet-improvable if and only if (a,b) ¢ Q2.

1. INTRODUCTION

1.1. Equidistribution of expanding translates of curves. Let G = SL,11(R),
I' = SL,+1(Z) and X = G/I'. Let ux denote the unique G-invariant probability
measure on X. Let g; = diag(e™, et ... e7!), so that the expanding horospherical

subgroup of GG associated to g is

1 o %
1
U+:{gEG:gtggt—>e,t—>—|—oo}:{( . )}%R”.

1

Let g = eI’ € X. Using the Margulis thickening method (see e.g. [KM96]), one
can show that the g;-translates of the horosphere Utz get equidistributed in X.
One may ask what happens if we replace the whole horosphere with a bounded piece
of a real-analytic submanifold therein. We note that X can be identified with the
space of unimodular lattices in R"*!, hence numerous applications of dynamics on
this space to Diophantine approximation, see e.g. [Dan85, KM98, KWO08].

If the analytic submanifold is non-degenerate, i.e. is not contained in a proper
affine subspace, then a result of the third named author in [Sha09a] tells us that
equidistribution still holds. See also [SY18] for a generalization to differentiable
submanifolds. It is thus a natural question to ask for conditions for equidistribution
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of degenerate submanifolds, such as proper affine subspaces of UT. One expects
these conditions to be expressed in terms of Diophantine properties of the affine
subspaces.

The main goal of this article is to give a complete solution to this problem in
the case n = 2, that is, study the case of straight lines in R?. In this case we
will show that the dynamics is completely controlled by Diophantine conditions
on the parameters of the straight line, and will give criteria for different types of
equidistribution phenomena.

In what follows we will specialize to n = 2; that is, let G = SL3(R), I" = SL3(Z),
and g; = diag(e?,e~!, e "), so that the expanding horospherical subgroup of G

associated to g; is
o= ()}
1

As before, we let g = eI’ € X = G/T. Note that, under the identification of X
with the space of unimodular lattices in R3, ¢ corresponds to the standard lattice
Z® C R®.

Let W, denote the set of vectors (a,b) € R? for which there exists C' > 0 such
that the system of inequalities®

lgb+p1| < Clg| >
lga + p2| < Clg| ™2

(1.1)

has infinitely many solutions (py,p2;q) € Z2 x N.
Similarly, let WY denote the set of vectors for which (1.1) has a non-zero solution
(p1,p2;q) € Z? x N for every C > 0.

1.1.1. Remark. One has an obvious inclusion Wy C Wh. It can be deduced from
[Roy15, Theorem 1.3] that this inclusion is strict, even though both sets have Haus-
dorff dimension equal to 1, see [Dod92].

Throughout the paper, I = [sp, s1] denotes an arbitrary compact interval with
non-empty interior, i.e. sy < s1. For (a,b) € R?, let ¢pop : I — U™ be the line

segment defined by
1 s as+b

¢a,b(3):( L ),VSEI.

Let A, p denote the push-forward of the normalized Lebesgue measure on I under
the map s — ¢qp(s)zo from I to X, and for any t € R, let g;\,; denote the translate
of Agp by g¢; that is, for any f € C.(X),

1
(1.2) /X fdAep = ]ff(gba,b(s)xo) ds := M/If(éa’b(S)xO) ds,

(13 | £atahan) = f Flasus(s)an) s,
X I
where |A] is the Lebesgue measure of A for any measurable subset A of R.

Here and throughout the paper, the notation with a brace and several inequalities is used to
indicate that all of the inequalities hold simultaneously.
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We say that a family {\;};cz of probability measures on X has no escape of
mass if for every € > 0 there exists a compact subset K of X such that \;(K) > 1—¢
for all i € 7.

We will prove the following criterion for non-escape of mass.

Theorem 1.1. The translates {gi\ap}t>0 have no escape of mass if and only if
(a,b) ¢ W;.

Furthermore, for Z = N or Ry, we say that a family {)\;};cz of probability
measures on X gets equidistributed in X if

[ran=3 [ raus, vi € c.x);
that is, A; converges to px with respect to the weak-* topology as i — co.

Theorem 1.2. The translates {g:\qp}e>0 get equidistributed in X if and only if
(a,b) & Ws.

Since the set W, has Lebesgue measure 0 in R?, a typical line gets equidistributed
under the flow g;.

Chow and Yang [CY19] proved effective equidistribution for translates of a Dio-
phantine line by diagonal elements near diag(e’, e, 1). Unfortunately their method
does not seem to apply to the flow g; = diag(e?, et e~*) here. We will instead
use Ratner’s measure rigidity theorem for unipotent flows [Rtn91], and tools from
geometric invariant theory.

1.2. Averaging over the time parameter. Define

-1
Wy = {(a, b) €R?:  limsup ogmaxt|gb +pil, |ga + pal} > 2}.

(p1,p2;q)EZ2 XN log g

In other words, W; consists of vectors (a, b) € R? for which there exists € > 0 such
that the system of inequalities

lgb + p1| < g~ *+9)
lga + pa| < q~+9)
has infinitely many solutions (py,p2;q) € Z2 x N.

1.2.1. Remark. In view of Remark 1.1.1, we have strict inclusions
W;— -,C«- Wé -,C«- W27

even though all of these sets have Hausdorff dimension equal to 1 (see [Dod92]).
The strictness of the inclusion W5~ C W} can be derived from a zero-infinity law for
Hausdorff measures of those sets with appropriate dimension functions, see [DV97].

We are also interested in the limit distributions of the averages of g;-translates of
Aap, namely the family {% f(;f Gt Aab dt}T o of probability measures on X. Similar
>



4 KLEINBOCK, DE SAXCE, SHAH, AND YANG

questions have been considered in [SW17] and from the measure rigidity point of
view in [ES19].

Theorem 1.3. The following are equivalent:

(1) The averages {% fOT Gthap At} >0 get equidistributed in X.

(2) The averages {% f(;[ Gt Aab At} >0 have no escape of mass.
(3) (a,b) ¢ Wy

1.2.2. Remark. It is shown in [Kle03] that the planar line {y = ax + b} is extremal
if and only if (a,b) ¢ Wy .

1.3. Equidistribution along a sequence. We are also interested in understanding
when {g:Aqp}e>0 equidistributes along some subsequence t; — oo.

Theorem 1.4. Let (a,b) € R2. Then the following are equivalent:
(1) (a,) ¢ Q.
(2) The closure of {giXap}ti>0 contains px with respect to the weak-* topology.
(3) For almost every s € R, the trajectory {gtpap(s)xo}i>0 is dense in X.

1.3.1. Remark. Suppose (a,b) € Q?, then gt Aap Will diverge, i.e. eventually leave any
fixed compact set, see Remark 3.0.2. Hence Theorem 1.4 gives us a dichotomy which
was somewhat unexpected: the gi\,, either diverge ast — oo, or get equidistributed
along some sequence t; — 00.

1.3.2. Remark. We also have dual versions of Theorem 1.1, Theorem 1.2, Theo-

rem 1.3 and Theorem 1.4 above. Let g; = diag(e,e’, e 2!), consider the map

<;3a7b: S (1 1 a? b), and let ;\a,b denote the push-forward of the normalized Lebes-

gue measure on I under the map s — qgaﬁb(s)xo from I to X. Then all the four
theorems are still valid for g; in place of g; and Ay in place of Ayp. Indeed, it suf-

1
fices to consider the outer automorphism ¢ — w-‘g~!-w of G, where w = (1 -1 );

under this automorphism g; is sent to g, Aqp is sent to Xa,b, and px is preserved.
See [Sha09a, Page 511].

1.3.3. Remark. It is also worthwhile to point out that even though the measures A,
depend on the choice of I = [sg, s1], the criteria in all the theorems stated above do
not; that is, the limiting behavior of these measures is the same for all nontrivial
intervals simultaneously. Using the arguments of this article, one can see that for
a given sequence t; — oo, if gy Aep — px, then for every finite interval J with
nonempty interior, we have gy, )‘ib — Ux.

1.4. Dirichlet-improvable vectors on planar lines. The motivation for our
study came from Diophantine approximation. Denote by ||| the supremum norm
on R™ (unless specified otherwise, all the norms on R™ will be taken to be the supre-
mum norm). Following Davenport and Schmidt [DS70b], for 0 < § < 1 we say
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that a vector x € R" is §-tmprovable if for every sufficiently large T', the system of
inequalities

lgx +p|| < 6T
lgl < T

has a solution (p, q), where p € Z™ and ¢ € Z \ {0}. One says that x is Dirichlet-
improvable if it is J-improvable for some 0 < § < 1, and that it is singular if it is
d-improvable for all 0 < § < 1.

Similarly, a real linear form on q € Z" is given by q +— x - q, parametrized by
x € R™. We say that this linear form is d-improvable if there exists 0 < § < 1 such
that for every sufficiently large T', the system of inequalities

. < —-n
lall <T

has a solution (p,q), where p € Z and q € Z™ \ {0}.

The notation DI(n,1) and DI(1,n) (resp., Sing(n,1) and Sing(1,n)) is used in
the literature to denote the set of Dirichlet-improvable (resp., singular) vectors and
linear forms. It is known that DI(n,1) = DI(1,n) and Sing(n,1) = Sing(1,n), see
[DS70a] and [Cas57, Chapter V, Theorem XII] respectively.

The readers who would like to know more background information are referred
to [KWO08, Sha09a| and references therein for Dirichlet-improvable vectors, and
[CC16,Dan85] and references therein for singular vectors.

Now let us again specialize to n = 2, and take x of the form (s,as + b). In the
simplest possible case (a,b) € Q? it is very easy to see that every point on the planar
line

Lap = {(z,y) €ER*: y = ax + b}

is singular: indeed, take a = k/m and b = ¢/m and notice that one has
(x,y) : (_k7m) = (Sa %5 + %) : (_kam) = E;

thus one can always find (p, q) such that the left hand side of the first inequality in
(1.4) iz zero.

Our next main theorem is the following stronger converse to the above computa-
tion:

Theorem 1.5. Let (a,b) € R?. If (a,b) ¢ Q?, then almost every point on the planar
line Ly is not Dirichlet-improvable.

The deduction of Theorem 1.5 from Theorem 1.4 uses Dani’s correspondence, and
has become a standard argument. We give the proof below for completeness.

Proof of Theorem 1.5 assuming Theorem 1.4. For 0 < § < 1, let K5 C X denote
the set of unimodular lattices in R?® whose shortest non-zero vector has norm at
least §. Then K contains an open neighborhood of xg, and is compact by Mahler’s
compactness criterion. For 0 < § < 1, let Dgs denote the set of s € R such that
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(s,as + b) is a d-improvable linear form. By Dani’s correspondence [Dan85] and
[KWO08, Proposition 2.1],

Ds ={s € R: gipgp(s)xo ¢ Kss for all large t}.

In particular, {gi¢qp(s)20}¢>0 is not dense in G/T for all s € Ds. By Theorem 1.4 we
have |Ds| = 0 for all 0 < § < 1. Finally, we conclude the proof by noting that the set
of s such that (s,as+b) is a Dirichlet-improvable point on L, equals (J,,,~ Dm-1,
and hence has Lebesgue measure 0. "o

1.5. Strategy of the proof. Given any sequence t; — oo, after passing to a sub-
sequence we obtain that g;, A, converges to a measure, say u, on X with respect to
the weak-* topology. It is straightforward to see that p must be invariant under a
non-trivial unipotent subgroup of G (Proposition 6.1). There are two possibilities:
if u is not a probability measure then we apply the Dani-Margulis non-divergence
criterion (Proposition 5.1), and if p is positive and not G-invariant then we apply
Ratner’s description of ergodic invariant measures for unipotent flows, combined
with the linearization technique (Theorem 4.1). In both cases we obtain the follow-
ing linear dynamical obstruction to equidistribution: There exist a finite-dimensional
representation V' of G over QQ, a non-zero vector vy € V(Q), a constant R > 0, and
a sequence {7;} C I = SL3(Z) such that for each i,

(1.5) SUII)Hgtiﬁba,b(S)%UOH <R
sE

The major effort involved in this proof is to analyze this linear dynamical obstruc-
tion and show that (a,b) must satisfy certain Diophantine approximation condition.

Using Kempf’s numerical criterion in geometric invariant theory, when the Gug is
not Zariski closed, we reduce the obstruction to the case of vy being a highest weight
vector (Theorem 2.1). Then we further reduce to the case of vy being a highest weight
vector of a fundamental representation of G, namely the standard representation
R3, or its exterior power A?R? (Lemma 2.2). It is straightforward to show that
the obstruction (1.5) does not arise for the exterior representation (Lemma 2.3), so
we are left only with the case of V' being the standard representation. In the case
of the standard representation the dynamical obstruction leads to the Diophantine
condition that (a,b) € W, (Lemma 3.1).

We are left with the case of Gug being Zariski closed. Using explicit descriptions
of finite-dimensional irreducible representations of SLo and SL3, we show that in
this case after passing to a further subsequence {y;v9} is constant and (a,b) € Q?
(Theorem 4.1).

We remark that for G = SL, for n > 3, analyzing the Zariski closed orbit case
involves much greater complexities, and the above strong conclusion about (a,b) is
not possible.

1.6. Comparison with previous work. We remark that Theorem 1.3 and Theo-
rem 1.5 sharpen the main results of Shi and Weiss [SW17]. More precisely, it was
shown in [SW17] that the averages of g;-translates of A, get equidistributed in X
if the line {y = ax + b} contains a badly approximable vector. By Remark 3.0.1
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below, this condition implies in particular that (a,b) ¢ W4, and so (a, b) ¢ W5 Our
results give sharp conditions of non-escape of mass and equidistribution for not only
averages, but also pure translates which was not considered in [SW17]. This is why
we are able to prove the much stronger Theorem 1.5.

1.7. Future directions. Instead of g;, one may consider more general flows. It
seems that our method is also applicable to the study of translates by elements in a
Weyl chamber, at least for certain cones. Then the non-effective version of Theorem
1.1 of [CY19] will be recovered. One would also be able to say something about
improvability of weighted Dirichlet Theorem, and the readers are referred to [Shal0]
for a detailed introduction to this subject.

One may also ask what happens to other Lie groups, e.g. G = SL,,(R) for n > 3.
When n = 4, things already become more complicated. Roughly speaking, SL3(R) is
small and one does not have many choices of possible intermediate subgroups. How-
ever, in SL, (R), where n > 3, there are more possibilities of intermediate subgroups;
see the follow-up paper [SY21] for more details.

1.8. Acknowledgements. We would like to thank Emmanuel Breuillard, Alexan-
der Gorodnik and Lior Silberman for helpful discussions. Part of the work was done
when the second and the fourth-named authors were visiting the Hausdorff Research
Institute for Mathematics (HIM) in Bonn for the trimester program “Dynamics:
Topology and Numbers” in 2020; they would like to thank HIM for hospitality. We
also thank the referees for their very careful detailed comments and corrections that
greatly helped us improve the readability of the paper.

2. INSTABILITY AND INVARIANT THEORY

To analyze limiting distributions of sequences of translates of measures on ho-
mogeneous spaces a technique has been developed, where one applies the Dani-
Margulis and Kleinbock-Margulis non-divergence criteria, Ratner’s theorem and the
linearization method, and reduces the problem to dynamics of subgroup actions on
finite-dimensional representations of semisimple groups, see [Sha09a,SY20]. In
[Yan20], this kind of linear dynamics was analysed in a very general situation using
invariant theory results due to Kempf [Kem?78]. We follow the same approach, and
this section is devoted to describing the basic tools from geometric invariant theory
that we shall need in our argument.

Let G be a reductive real algebraic group defined over Q, and p : G — GL(V)
a linear representation of G defined over Q. We say that a nonzero vector v € V
is unstable if the Zariski closure of the orbit Gv contains the origin. Hilbert-

Mumford’s unstability criterion states that a nonzero vector v is unstable if and only
t—0

if there exists a cocharacter \: G,, — G such that A(t)v — 0. Kempf [Kem78]
refined this criterion by studying the set of cocharacters, up to scaling, A such that
A(t) bring v to 0 at maximal speed as t — 0. Let us briefly recall his results.

Write X, (G) for the set of Q-cocharacters of G. For any nonzero v € V(Q) and any

nontrivial cocharacter A in X.(G), one can write v = ), v;, where A(t)v; = th;
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for all i. Let m(v,\) = min{i € Z : v; # 0}. Then

V= Upy(v,\) T Z Ui

i>m(v,\)

Thus for any g € G(Q), m(gv,gAg™!) = m(v, \).
For any A € X.(G), the group

. T -1 . .
P(\) = {p €qG: %g% A(t)pA(t) ™" exists in G}
is a parabolic subgroup of G defined over QQ, and
Ru(P(\) = {u € G limA(Hurt) ! = e}
t—0

is the unipotent radical of P(\) defined over Q. Also P()\) = Zg(A)Ry(P()N)), and
this product holds over Q-points, where Zg(\) is the centralizer of the image of A
in G.

We note that if u € R,(P())), then

(2.1) UV = Vpy(p ) + Z (uv);.

i>m(v,\)

Let S be a maximal Q-split torus in GG, we fix a positive definite integral bilinear
form (-, -) on the free abelian group X, (S) of Q-cocharacters on S which is invariant
under the Weyl group N¢(S)/Z¢(S); it induces a norm on X, (S) defined by ||A|| =
(A, A). This norm extends uniquely to a norm on the set X, (G) of Q-cocharacters
of G which is invariant under the conjugation by G(Q).

Kempf’s Theorem [Kem78, Theorem 4.2]. Let v € V(Q) be a nonzero unstable
vector. Then the following hold:
a) Let B, = sup{m(v,\)/||\|| : A € X.(G) nontrivial}. Then B, > 0.
b) Let A, = the set of indivisible A € X, (G) such that m(v,\) = B, - ||\||. Then,
(1) Ay is non-empty.
(2) There exists a Q-parabolic subgroup P, of G such that P, = P(\) for all
AEA,.
(3) The set Ay is a principle homogeneous space under conjugation by Q-points
of the unipotent radical of P,. In particular, P,(Q) acts transitively on A,
under conjugation.
(4) For any mazximal torus of P,, which is defined over Q, contains the image of
a unique member of A,.

In the above result we observe that for any g € G(Q), gv is also unstable, B, =
By, Agy = gAyg~t, and Py, = gP,g~!. Therefore, if g € P,(Q), then by (3) of b)
above, Ay, = Ay, and in particular, m(gv, A\) = m(v, A) for all A € A,,.

We will apply Kempf’s theorem to the group G = SL3(R). In that case, the
maximal torus S is chosen to be the subgroup of G = SL3(R) consisting of diagonal
matrices. Then § € X, (S) means that there exists a unique (a,b, c) € Z* such that
a+b+c=0and §(t) = diag(t?,t*,t°) for all t # 0. The Euclidean inner-product on
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73 restricts to a Weyl group invariant inner-product on X, (S) with respect to this
identification. So for § as above, ||d|| = Va? 4+ b% + ¢2. Let X*(S), denote the abelian
group of Q-characters on S. Define a bilinear pairing (-, -) : X*(S)x X.(S) — Z of the
Z-modules such that for any x € X*(S) and § € X.(S), we have x(5(t)) = t09 for
all t # 0. Let 6V € X*(S) denote the dual to § in the following sense: (6V,\) = (4, \)
for all A € X,(S). So for the § described as above, 6V (diag(t1, ta, t3)) = 45t for all
diag(tl, ta, tg) €Ss.
Choose simple roots

a1 diag(ty, te, t3) = tity ! and ao: diag(ty, t2, t3) = tats .
The corresponding fundamental weights are
w1 diag(tl, ta, tg) — 1 and w9 : diag(tl, to, tg) — t1to.

For any non-negative integers n; and ne, there exists a unique irreducible repre-
sentation of G with highest weight niwi + nows, where we use the additive notation
for X*(S) (see [FH91][Theorem 13.1]).

The standard parabolic subgroups of G are

{1} A={((i)} n-

We shall also use the following algebraic subgroups of G:

a- ()} a-{(1). e-

One has Pi = SzQz = SszUu for i = 0, 1, 2.

2.1. Reduction to a highest weight vector. The next result (Theorem 2.1) pro-
vides a powerful new technique that allows one to reduce the study of linear dynam-
ics of an arbitrary vector in an arbitrary representation to that of a highest weight
vector. From this we will further reduce the study to fundamental representations
(Lemma 2.2), opening the doors to directly relate the linear dynamics to Diophantine
properties of vectors (Lemma 3.1).

The proof of the following result was motivated by [Yan20, Proposition 2.4].

Throughout this article, we will assume that all the finite dimensional vector
spaces are equipped with some norm, denoted by |-||.

Theorem 2.1. Let V be a representation of G defined over Q. Let v be an unstable
vector in V(Q). Then there exists an irreducible representation W of G defined over
Q, a highest weight vector w' € W(Q), an element gy € G(Q), a real number § > 0,
and a real number C > 0 such that for any g € G one has

lggow'|| < Cllgv]|”.
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Proof. Without loss of generality, we may assume that the norms are K := SO(3)-
invariant. Given the unstable v € V(Q), let B, > 0, A, C X *(G), and a Q-parabolic
subgroup P, of G be as given by Kempf’s theorem. By [Bor91, Proposition 21.12],
there exist go € G(Q) and j € {0,1,2} such that P, = goPjgy*. Let v' = gg'v.
Then v € V(Q) is also unstable, and by Kempf’s theorem, Py = gg 1Pgo = P;
and since S C P; = P, we have that X,(S) contains a unique member, say ¢, of
A,. Therefore
P(§) =Py = P;.

Hence, Im§ is contained in S;, and §(t) = diag(t%,t°,t¢) for all ¢ # 0 such that
(a,b,c) €Z3, a+b+c=0anda>b>c.

Now let 6¥ € X*(S) be dual to . Let S5 denote the Q-subtorus of S; which is
the identity component of the kernel of §" in Sj. We have that Im§ N Ss is finite
and (Im6)Ss = 5.

We have that 6V = (a — b)w; + (b — ¢)wa, with a —b > 0 and b — ¢ > 0. Therefore
there exists an irreducible representation W of G defined over Q with the highest
weight §¥. Let w' € W(Q) be a highest weight vector. Let

(6,9) 1

b= m(v',0) " By

Now it suffices to show that there exists C' > 0 such that for any g € G we have

B
lgw'[} < Clgo’]["
To argue by contradiction, suppose that there exists a sequence {g;} C G such that
- lga'
lim =
imoo ||giw|
We note that P(0) = P; = S;Q;, Q; = H;U; fixes w', and S; acts on w' via the
character Y. Since G = KP; = KS;jH,;U;, we can write g; = k;s;hju; where k; € K,
s; € S5, hy € Hj and u; € U;. Since the norms are K-invariant, we may assume

that k; = e for all i. Now s;hu;w’ = 6V (s;)w’. Hence ||g;w'|| =16 (s;)|||w']|]. Since
S; = (Im6)Ss, we can write s; = 0(7;)0;, where 7; € R* and o; € S5. Then

4,0
(2:2) lgiaw!l| = 18" (S(ra)lllw'|| = 172/ @’

We consider the weight space decomposition V' = @V, , where S acts on V, by
multiplication via the character x of S, where each V, is defined over Q as S is a
Q-split torus. Let

V={zeV:§t)e=t""z} =p{V, : x € X*(5) and (x,8) = m(v',d)}.

Let m: V — V denote the natural projection defined over Q. Then 7 (v') € V(Q).
Since § € A, we have that w(v') = v;n(v,’a) # 0. Since S;H; is contained in the
centralizer of J, we have that 7 is SjHj-equivariant.
There exists C; > 0 such that ||7(z)| < C1||z| for all x € V. It follows that
@I _ psllow'l”
g gl e

(2.3)
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For any u € Uj, 6(t)ud(t)™ — e as t — 0, so by (2.1), m(w’) = 7(v'). Since

g9i = 0(7i)oihiui,

(2.4) I (giv) | = 18(r)m(oshiuic) )| = |7 ™2 |loihim (V)]

Combining (2.2), (2.3) and (2.4), since m(v',0)8 = (6,0), we get ||o;him(v')|| — 0.
Since o; € S5 and h; € Hj, we conclude that 7(v") is SsHj-unstable in V.

Thus SsH; is a reductive Q-group acting on V over Q and 7(v') € V(Q) \ {0} is
an unstable vector for this action. Therefore by (a) of Kempf’s theorem, there exists
X € X, (SsH;) such that A(¢t)w(v') = 0ast — 0.

Since SsH; NS is a maximal Q-split torus of SsH;, by the conjugacy of maximal
Q-split tori, there exists | € (SsH;)(Q) such that §, := IN~! € X,(SsH; N S). So
S (t)(Im(v")) = 0 ast — 0. Now Im(v') = w(lv'). So for any x € X*(S),

if (m(lv"))y # 0, then (x,d;) > 0.
Since S5H; NS = ker 8", we have 1 = 6Y(6;(t)) = "% for all ¢ # 0, and hence
(2.5) (5,8) = (8", 8) = 0.
Since | € Pj(Q) = Py(Q), as we noted after the statement of Kempf’s theorem,
§ € Ay and m(lv',6) = m(v', 6).
For a positive integer N, let y = N0 + 0; € X, (95), in the additive notation. For
N large enough, we claim that
m(lv',on) _ m(d, 1)
>
[on ] 6]
which will contradict the maximality of By, .
For any w € V, we write w = erx*(s) wy, where w, € V,. Note that for any
nonzero w € V and A € X, (5), we have

m(w, X) = min{(x, A) : x € X«(5), wy # 0}.

So to prove (2.6), we pick any x € X*(S) such that (Iv'), # 0, and we will show
that for all sufficiently large IV,

(2.6)

= Blv’7

e dw) _ m(o, )
[0 ]l [16]]
By definition m(lv', ) < (x,d). First suppose that (x,d) > m(lv’,§). Then

lim <X75N> _ <X75> m(lv',é),
N=oo |[on]l [16]] [16]]
because (x, 0;) < oco. Therefore (2.7) follows for all sufficiently large N.
Now suppose that (x,d) = m(lv',d). Since m(lv',d) = m(v',d), we have (Iv'), €
V. Since 7 is S-equivariant, we have (r(Iv')), = (o), # 0. Therefore (x, ) > 0.
To prove (2.7), we define an auxiliary function:

fs) = Pod+s a0 0)2 42506 6) (6 &) + 8%, )
16+ s- 6> (6,0) + 25(6,0,) + 52 (61, 61)

(2.7)

, Vs € R.
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Compute its derivative at 0:

, 2(x,0) (x, 1) (8,8) — 2(x, 8)2(6, 8
£(0) = O 0){x z>((5’25)2 (O, 0)°(8,01)

We have (x,d) = m(lv',0) > 0 and (x, ;) > 0. Also (4,0;) = 0 by (2.5). Therefore
7(0) > 0. Hence for N large we have

(2.8) f(1/N) > [(0).
Now (2.7) follows because each side of (2.8) is the square of each corresponding side
of (2.7). Therefore (2.6) holds, contradicting the maximality of By,. O

2.2. Reduction to fundamental representations. Let W; = R? and Wy =
A°R3. Let wy = e € Wy and wy = e; Aeg € Wo. Let w; and wy be the high-
est weights of W1 and W5. Then w; and ws are the fundamental weights of G, and
any dominant integral weight is a non-negative integral linear combination of w; and
w2.

Lemma 2.2. Let W be an irreducible representation of G with highest weight w =
niwi + nows, where ni,no are non-negative integers, and let w € W be a highest
weight vector. Then for any real-analytic map ¢ : I — G, where I C R is a nontrivial
compact interval, there exists a constant ¢ > 0 such that for any hy, he € G,

n1+n2
supln(s)hau] = - (in suplrpal )
sel 1<i<2 g¢7

Proof. Let the notation be as in the beginning of this section. We have G = KSyUj.
Hence for ¢ € G, we can write ¢ = ktu for kK € K,t € Sy = S and u € Up.
We note that w; and we are both fixed by Uy. Taking any K-invariant norms on

Wy and Wa, we have ||gwi|| = |wi(t)|||wi]] and ||[gwz| = |wa2(t)|||we]|]. We take a
K-invariant norm on W such that ||w| = [Jw1]|"*||w2]|"*. Then for any g € G,
lgwl| = llgw1[|"*[|gw2]|"*. Now let

F(g) = [|haghow|® and  F(g) = |haghowi]®, i=1,2,
Then F, Fy, F5 are regular functions on G, and

F(g) = Fi(g9)" F2(g9)"™.
Let Z be the Zariski closure of ¢(I) in G. Since v is analytic, Z is an irreducible
algebraic set. We use the norm
|1F'|| = sup| F(¢(s))|
sel

on the space of regular functions on Z. We claim that for any positive integers d
and dy, there exists a constant ¢ = ¢(dy,d2) > 0 such that for any polynomials
E; and Es of degrees dy and dy respectively on Z, we have ||E1Es|| > c||E1||||E2]|-
Indeed, by homogeneity we only need to check this for | E1| = ||E2|| = 1, and then
the possible values of || Fj Fsl|| form a compact subset of R~¢. Therefore,

ni+ng
ni no .
- = . i .
\EL = B B >c(nmup0
1<i<2
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O

2.3. From fundamental representations to the standard representation.
Let the notation be as before: We fix (a,b) € R?, I = [sg, s1] C R for some sy < s1,
and for any s € I and t € R, we have

s as+b e?t
bap(s) = (11 1+ ) and g; = < et t).

The following observation allows us to reduce our possibilities from all fundamental
representations to only the standard representation.

Lemma 2.3. There exists a constant C7 depending only on I such that for any
non-zero v € Wo(Z) = N*Z3 and t > 0,

(2.9) supllgia(s)0] > Cre.
EIS

Proof. Let eq, ea, e3 denote the standard basis of R? (and Z3). We write e;; = e; Nej

for the standard basis of /\2 R3. For any s € I and t > 0, one can readily compute
the matrix of g¢¢, (s) in the standard basis (e23, €13, e12):

2 _( i 80
/\ gtd)a,b(s) = se C; .

e
—et(as+b) 0 e
So, for any v = (qu) in /\2R3, se€landt >0,

672tp
gt%,b(s)v:( St )

et[—(as+b)p+r]

Now observe that

Ipl(s1 —s0) lql(s1 — 30)}

max{|sop + q|, |s1p + > min ,
{lsop -+ al Jsup-+ o} min { P11 Z00) WL =0

so that if (p,q,r) € Z3\ {0}, then
max }{]sp—i— ql,|-(as+b)p+r|} > Cy,

s€{so0,51
where
. 81— S8 S1— S0
C7 = min , ,1p >0,
' { 2 sl + sl }
because if (p,q) = (0,0) then |—(as + b)p+r| = |r| > 1. So (2.9) follows. O

By combining the above results we obtain the following;:

Proposition 2.4. Let V be a finite-dimensional representation of G defined over Q
and let vg € V(Q) \ {0}. Suppose that Gvg is not Zariski closed. Then given C > 0
there exists R > 0 such that the following holds: There exists tg > 0 such that for
any t >ty and any v € I, if

(2.10) Su?Hgtﬁf)a,b(S)VUOH <C,
se
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then there exists v € Z3 \ {0} such that

(2.11) sup||gi¢a,p(s)v]| < R.
sel

Proof. Let S denote the boundary of Gug. By [Kem?78, Lemma 1.1], there exists
a representation V’ of G and a G-equivariant polynomial map f: V — V', both
defined over Q, such that S = f~1(0). It follows that f(vg) € V/(Q) is unstable
in V’/, and there exists a constant C’ > 0 and a norm on V' such that (2.10) holds
for (f(vo),V’,C") in place of (vg,V,C). Hence by replacing vy with f(vy) we may
assume that vy is unstable in V.

Now we can apply Theorem 2.1, and conclude that there exists an irreducible
representation W of G defined over Q, a highest weight vector w € W(Q), an
element gy € G(Q), and a constant D > 0 such that for any ¢t > 0 and v € I if
(2.10) holds, then

sup|| gt Pap(s)vgow| < D.
sel

Combined with Lemma 2.2, this implies that there exists D’ > 0, such that for any
t >0 and v €I, if (2.10) holds, then

(2.12) 1%122 igl})||9t¢a,b(5)790wj|| <D

Since g9 € G(Q), there exists N € N such that N - Tgow; C W1(Z) = Z3 and
N -Tgows C Wa(Z) = N Z3.

By Lemma 2.3, for any ¢t > 0 and v € T, since vy := Nygows € A2 Z3 \ {0}, we
have sup,c;||gidap(s)va| > Cret. Set R = ND' and t := log RC;'. Then for any
t > tp and v € I', we have

SUI})Hgt%,b(S)(vgow)ll > R/N =D';
se

and hence if (2.12) holds, then sup,c;||giPap(s)(ygowr)|| < D'
Therefore, for any t > ¢y and v € I', if (2.10) holds, then (2.12) holds, so the
non-zero vector v = Nygow; € Z3 satisfies (2.11), as desired. O

3. DYNAMICS IN THE STANDARD REPRESENTATION
AND DIOPHANTINE CONDITIONS

In this section we relate asymptotic dynamics of the gs-action on the curves
{¢ap(s)v : s € I} for nonzero v € Z? in the standard representation, with some
Diophantine approximation properties of the vector (a,b). Our first lemma charac-
terizes the condition (a,b) € Ws in terms of vectors of bounded size in the lattices

Gtban(s)Z3, s € 1.
Lemma 3.1. The following are equivalent:

(1) (CL,b) € Ws.
(2) There exist t; — oo, {v;} C Z3\ {0} and R > 0 such that for all i,

(31) Sul[gHgtigba,b(s)viH <R.
sE
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. P1,i
Proof. We write v; = (quyi) € 73\ {0}. It follows that

et ((bQi+P1,i)+(af1i+p2,¢)S)

(3'2> gti¢a,b(3)vi = ( e"tipa :
e tig;

(2)=(1): Let so < s1 such that I = [sp,s1] and (3.1) holds for some R > 0.

1 .
Let Ry = (% i(l)) ’ - R, where ||-|| denotes the operator norm with respect to the

sup-norm. Then for all ¢, the following system of inequalities hold:

|gib + p1.i| < Rye 24,
(3.3) gia + pa2,i| < Rie 2,
\gi| < Reti.

Case 1. Suppose a subsequence of {¢;} is bounded.

After passing to a subsequence, we may assume that ¢; = ¢ is a constant. Since
qa and gb are fixed, Z is discrete and Rye2% — 0, the first two equations from (3.3)
force that ¢b + p1; = 0 and ga + p2; = 0 for all large i. Since (p1,,p2,,q) # 0, we
conclude that ¢ # 0 and (a,b) € Q2.

Case 2. Suppose |g;| — oo as i — oo.
Put Ry = R1R?. Then (3.3) shows that for all 4,

{|Qib + pril < Rolgi) ™2

(3.4) B
lgia + p2i| < Ralqil %

Therefore (a,b) € W,. Combining both cases we proved that (2)=(1).

(1)=(2): Suppose (a,b) € Wa. By (1.1) we pick a sequence (p1,p2.,qi) € Z>
such that 0 # ¢; — oo and (3.4) holds for some Ry > 0. Then for t; = log|gi|, we
get (3.3) for Ry = Ry and R =1 and |pa;| < Rie 2 + |aleli. So in view of (3.2),
we get that (3.1) holds for R = (|so| + |s1]| + 1)R1 + |a|] + 1, where I = [sq, s1]. This
completes the proof of (1)=(2). O

The second lemma shows that (a,b) € W) if and only if the curve ¢, is entirely
sent to the cusp under the action of g; in the space of lattices, along a subsequence
of times ¢; going to infinity.

Lemma 3.2. We have (a,b) € W} if and only if there exist t; — oo and {v;} C
73\ {0} such that

sup||g; @a,b(s)vill — 0.

sel

Proof. The proof is identical to that of Lemma 3.1, and we leave it to the reader. [

3.0.1. Remark. In view of the identification between X and the space of unimodular
lattices in R3, given a compact set K C X, there exists 6 > 0 such that for any
g € G, if gZ3 = gxo € K, then ||gv| > § for every v € Z3 \ {0}.

Suppose (a,b) € Wj. By Lemma 3.2, there exists sequences t; — oo and v; €
73\ {0} and iy € N such that sup,c;||ge, dap(s)vil| < & for all i > ip. Therefore
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Gt;bap(s)xo ¢ K for all s € I, and hence gy, Ay p(K) = 0 for all i > ip. So we say
that the measures gy, A\, 5 escape to infinity as i — oo.

In particular, {g:¢qp(s)xo : t > 0} is unbounded in X for every s € R. Hence by
Dani correspondence [Dan85], (s,as + b) is not badly approximable for any s € R.

The stronger condition that the measures gi\qp go to the cusp for all large t can
only be satisfied if (a,b) € Q?; this is the content of the following lemma.

Lemma 3.3. The following statements are equivalent:
(1) (a,b) € Q°.
(2) There exists v € Z3\ {0} such that sup,c;||gidap(s)v| — 0 ast — oo.
(3) There erxists R > 0 such that for each large t > 0, there exists v € 73\ {0}
such that

(3.5) sug)llgtqba,b(S)vH <R.
se

Proof. (1)=(2): Suppose that a = p1/q and b = py/q for some p1,p2 € Z and ¢q € N.
Let v = <:£?> € Z3\ {0}. Then for any s € R and ¢ > 0,
q

1 s as+b —Pp2 —p2—sp1+(as+b)g ¢ 0
gt¢a,b(3)v =0t < 1 ) <—571 > =gt —gz =e (—pz) .

1
Therefore (2) holds.
(2)=-(3): This is is obvious.
(3)=(1): We observe using (3.3) that (3) implies the following: for any ¢ > 0,
and all sufficiently large enough T > 0, setting t = logT — log Ry, there exists
(p1,p2,q) € Z3 \ {0} such that, all the following inequalities hold:

|q| S Rlet = T,
lgb+p1] < Rie 2 < cT71,
lga + pa| < Rye 2t < cTL.

This implies that a and b are both singular real numbers. But singular real numbers
are rational, see [Khi26] or [Cas57, Remark before Theorem XIV]. O

3.0.2. Remark. Suppose (a,b) € Q2. Given a compact set K C X, let § > 0 be as
in Remark 3.0.1. By the proof of (1)=(2) in Lemma 3.3, there exists v € Z3 \ {0}
and to > 0 such that ||gigap(s)v]| < 0 for all t > tg and all s € R. Therefore
Gidap(s)xo & K for all t > ty and for all s € R. Hence gi A, ,(K) = 0 for all ¢ > to.
Therefore g; A\, escapes to infinity as t — oo.

Finally, we have a version of Lemma 3.1 for the behavior on average of the measures
Gt Aap; this will relate to the set W; For R > 0, define

(3.6) Ir = {t €10, +00) : Jv € Z3\ {0} such that sup||gipas(s)v] < R} )
sel

Lemma 3.4. The following are equivalent:
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(1) For every R > 0,

TIrN[0,T
(3.7) lim sup Zen 0.1

T—o0 T
(2) There exists R > 0 such that (3.7) holds.
(3) (a,b) € Wy

We defer the proof of this result to Section 8.

4. REDUCTION OF LINEAR DYNAMICS TO THE STANDARD REPRESENTATION

The following is one of the main technical results in this article. It shows that
Proposition 2.4 still holds even if the orbit G- vy is closed, as long as it is not reduced

to {vo}.

Theorem 4.1. Let V be a finite-dimensional representation of G over Q and vy €
V(Q) \ {0} such that vg is not G-fivzed. Then given C > 0 there exists R > 0 and
to > 0 such that the following holds: For everyt > to, if there exists v € I' such that

sup||g¢Pap(s)yvoll < C,
sel

then there exists v € Z3\ {0} such that

sup||gigap(s)v]| < R.
sel

For the proof of the above theorem we introduce some notation and make some
observations.

4.1. Linear dynamics of g; and ¢,;(s) actions. Let V be an irreducible real
representation of G = SL3(R) over Q. Since G is Q-split, V ® C is G-irreducible over
C.
We express
gt = ctby, where by = diag(et/Q, et/2, e ") and ¢; = diag(egt/Q, e 32 1).

Let
(4.1) uzg(s):<11§),ulg(s):<1f1),havb:<11¢l1;).

Then we have ¢q(s) = ugg(—a)ui2(s)hqp. Since g, commutes with ugz(—a) and by
commutes with u12(s),

(4.2) Gtbap(8) = u23(—a)grui2(s)hep and giui2(s)hap = crur2(s)bihap-

Let H = Hy = <SL2(R) 1> < @, and consider V as the restricted representation of

H. We have a decomposition V = V; @V, where Vi = {v € V |Vh € H, hv = v} is
the subspace fixed by H, and V5 is the complement of V7 stable under the action of
H. Let m; and w9 be the H-equivariant projections from V' to V; and Vs respectively.
Since b; centralizes H, m and me are also bi-equivariant.

The following observation is based on [Sha09b, Lemma 2.3].
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Lemma 4.2 (Linear dynamics of an SLy action). For any m > 0, let W denote the
(m + 1)-dimensional irreducible representation of SLa(R). Let

a= () andu(s) = (*1).
Then there exists Ct > 0 such that for any w € W and t € R,
SuI;HatU(S)UJH > ™ (Crm) ™" |w|.
se

(m—2k)t

Proof. Let ey, ...,e, denote a basis of W such that aze, = e e for all k. For

any w € W, we express w = y -, wgek, where wy, € R. Then

m
w)y = Z wys”.
k=0

Let ||w| = maxo<k<m|wg|. Recall that I = [sq, s1] and let 7; = so + (j/m)(s1 — s0)
for 0 < j < m. Then

. >
(4.3) S:elgl(U() of = max

Z wk-T

where C; = (1 + max{|so|, [s1|})/(s1 — so), from an estimate for the norm of the
inverse of the (m+1) x (m+ 1)-Vandermonde matrix (Tjk) [Gau62, Theorem 1]. O

> (Crm) ™" [Jwl],

Corollary 4.3. There exist constants Ca > 0 and 8 > 3/2 such that for all v € V3
and all t > 0,

(4.4) SUPIICtUu( Joll = Cae™|Ju].
sel

Proof. Consider the action of H = SL(R) on any irreducible component W of
V5. By definition of V5, the representation W is non-trivial, i.e. dimW = m + 1,
with m > 1. Under the identification of H with SLg(R), we have ¢; = a3,/ and
u12(s) = u(s). Therefore Lemma 4.2 shows that

3m
supllcwlz( Jw| > Coe™ ],
sel

where Cy = (Crm)~™™ > 0. Since this holds for every H-irreducible component
W C Vs, we indeed obtain the desired inequality for all v in V5, with

3
8= min{;n cm=dimW —1, W C Vy irreducible}.

O

Let U = {u12(5)}ser, and VU12 be the subspace of Ujs-fixed vectors in V. Let
Ty, @ Vo — VU2 denote the {c;}scr-equivariant projection. We apply (4.3) of
Lemma 4.2 to each H-irreducible component of V' to obtain the following:

Corollary 4.4. There exists Cy = Cy(I,V) > 0 such that for anyv € V,

sup||mu,, (u12(s)v)|| = Callv|.
sel
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4.2. Consequences of description of irreducible representations of SL(3,R).
Let w = niwi + nowy be the highest weight of V', where ni,ny are non-negative
integers.

Lemma 4.5. dim(V;) = 1 and its weight is —(n1 — n2)wa. In particular, by acts on
Vi as the scalar multiplication by e~ (M —n2)t,

Proof. We consider the weight diagram and multiplicities of the weights of an irre-
ducible SLs-representation as in Figure 4.1; see [FH91, §13.2].

FIGURE 4.1. SLjs-representation with the highest weight 6w; + 2ws.
(Based on [FH91, Figure (13.6)].)

The weights of V' lie on hexagons Ho, ..., Hm—1, where m = min(nj,nz), and
triangles 7o, ..., T[jn;—ny|/3)- We set Hy, = To and also call it a hexagon, which is
degenerate. The multiplicity of a weight on any H; is ¢ + 1 and on any triangle is
m+ 1.

Consider any weight of V;. Then it is fixed by the Weyl reflection corresponding
to H, so it must be kws for some k € Z. Let £} be the line perpendicular to ws and
passing through kws. Then £ NH; # 0 if and only if 0 < ¢ < j — 1, where ji is the
multiplicity of kwo in V, and for each such ¢, £ N H; contains the highest and the
lowest weights of an irreducible representation of H containing kws.

In the above description, there is exactly one case when we have a trivial H-
representation; that is, when kws is a vertex of the triangle 7o = H,, and £y N H,,, =
{kwa}. In particular, dimV; = 1. The dominant vertex of 7p is (n1 — n2)w; or
(ng — n1)wa. A Weyl reflection sends wy to —wa. So in both cases, —(n; — n2)ws is
a vertex of 7o and k = —(ny — ng). This proves the claim. O

Lemma 4.6. Suppose n1 < ny. Then all the weights occurring in VU™ are non-
negative for the Lie algebra element diag(2, —1, —1) corresponding to g;.
In particular, by Corollary 4.4, for any v € V and t > 0,

(4.5) sup||gru12(s)v|| > Cuyllv]].
sel
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Proof. We consider the weight diagram of an irreducible SLs-representation as in
Figure 4.2; see [FH91, Proposition 12.18].

CHy 5 L>=0 (Hiatths,Ly=o ¢Hyy 0> =0

=Ly
Wy =-L3

0 AV L —Nal3
VAN VAVAV. Vs
\/ (. W CHypL>=0

Ly -2l

&N5) W
Miz-Mhly = NW, - QLAY

=10 -ty

FIGURE 4.2. Arrangement of weights of an SLs-representation.
(Based on [FH91, Figure (12.14)].)

We note that the weights on the vertical line passing through the origin in the
weight diagram (see Figure 4.2) vanish on diag(2,—1,—1) and those on the right
half take positive values.

The weights occurring in VY2 are the highest weights of irreducible represen-
tations of H in V, and they lie on two of the sides of the hexagons H;, where
0 < i < min(ny,ng) = nyg; if one draws the set of weights as in Figure 4.2,
then for each 4, one of the sides is a vertical segment from the dominant weight
(n1 —i)Ly — (ng — i) L3 to the weight (ny — i)L; — (ny — i) Lo, and the other side is
the segment joining the last weight to (ny —i)Ls — (ng — i) Ly. For diag(2, —1,—1),
all the weights on the vertical segment have constant non-negative value

Q(TLl —i) + (ng —i) > ng —ny,
and the weight (n; —i)Ls — (n2 — i) Lo has the value
(n1 — i)(—l) - (ng - i)(—l) =N2 — N1 Z 0.

So all the weights on both segments have a non-negative value for diag(2,—1, —1).
(Note that this is not the case in Figure 4.2, where n; =3 > 1 = na.) ([l

4.3. Proof of Theorem 4.1. If Gvg is not Zariski closed, then the result follows
from Proposition 2.4. So we assume that Gug is Zariski closed.

If the theorem fails to hold, then there exist sequences t; — oo and 7; € I' such
that

(4.6) SUII)Hgti¢a,b(3)'7iU0” <G,
s€

and for every sequence v; € Z3 \ {0},
(4.7) sup||gt; ap(s)vil| — oc.
sel
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Write ||-||y, to denote the operator norm on the linear space V. By (4.6) and (4.2),

for Cl = m > 07 for all i,

(4.8) C1 = sup||g,u12(s) (hapyivo) || = sup|lct, ur2(s) (be; hrapyivo) |-
sel sel
We recall that V = V; @ V5, where H acts trivially on V;, and V5 is a sum of
non-trivial irreducible representations of H, and for j = 1,2, m; : V. — Vj is the
corresponding projection. By Corollary 4.3, this implies that there exist Cs > 0 and
B > 3/2 such that

(4.9) Vi, ||mi (b hapyivo)| < Cs  and |72 (by, hapvive) || < Cye Pt

There are two cases. We will show that each will lead to a contradiction.

Case 1: {vvo}ien is unbounded in V.

Let n; and ng be non-negative integers such that the highest weight of the irre-
ducible G-representation V is nqwi + nows.

First suppose that n; > ny. The highest eigenvalue of b, on V is e("1/2tm2)t We
pick £ > 0 such that e(n;/2 + ng) < 5. By Lemma 4.5, b; acts on V; by the scalar
e~ (m=m2)t  Therefore, by (4.9), for all 1,

([6t,71 (bt hapyivo) || < Cze™sM—n2)b and
l|bet; ™2 (be; ha pyivo) || < Cyel—Ate(m/2an)t:,

S0 b(14e)t;hapyivo — 0 as @ — oo. This contradicts the fact that Gug is Zariski
closed.

Hence we must have n; < np. Then by (4.5) and (4.8) we get {hqpViv0}ien is
bounded, and it follows that {7;vo}ien is bounded. This contradicts the assumption
of Case 1.

Case 2: {vvo}ien is bounded in V.

In this case using (4.6) we will deduce that (a,b) € Q?, which contradicts (4.7) by
Lemma 3.3 .

Since T'vg a discrete subset of V' and {v;vg }ien is bounded, there exists j € N such
that y;v9 = vyjvp for infinitely many i € N. Therefore, replacing vgp with ~;vo and
~; with fyi'yj_l € I' for each i, after passing to a subsequence we may assume that
~ivo = vo for all ¢ and (4.6) holds. Let

F = Stabg(vo).

Since vg € V(Q) and vy is not G-fixed, F' is a proper algebraic subgroup of G
defined over Q. Since Guyg is Zariski closed, G/F = Guy is an affine variety. So by
Matsushima’s criterion [Bor69, §7.10], F is a reductive subgroup of G. Thus F is a
proper reductive algebraic subgroup of G defined over Q.

Now (4.9) implies that {bs,hqpvo}ien is bounded. Therefore after passing to a
subsequence we may assume that

bt hapVo — Voo for some vy € V' {0}.
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Since Gy is Zariski closed, we may write vo, = guvg for some g € G. Let
L = Stabg (veo)-

Then L = gFg~! and L # G. It is clear from (4.9) that v, € V1 is fixed by H, and
we also know that v is fixed by {b;}+cr by definition of vs. Hence L is a proper
reductive subgroup of G which contains the group generated by H and {b;};cr; the
normalizer Ng(H) of H. But N¢g(H) is a maximal reductive subgroup of G. Hence

L = Ng(H).
Claim. We can pick hy € G(Q) such that vee = hgvo.

To prove the claim, consider the center of F', denoted Z(F'). Then

t0 0

9Z(F)g™" = 2(L) = Z(Ne(H)) = S = { (67 )},

Therefore, since F' is an algebraic subgroup of G defined over Q, Z(F) is a one-
dimensional R-split torus in G defined over Q. In particular, Z(F)(Q) is Zariski
dense in Z(F'), and hence a single element, say v € Z(F)(Q), generates a Zariski
dense subgroup of Z(F). Since gyg~! € Sa, the roots of the characteristic polynomial
of v are t, t, and t~2 for some ¢t € R\ {0}. Since v € SL(3,Q), these roots permute
under the Galois action. We conclude that t is fixed by this action, so t € Q. Hence
there exists hg € G(Q) such that

hoyhg ' = diag(t,t,t72) € So.

Therefore hoZ(F)hy' C So. Hence hoZ(F)hg = Sa. The centralizers of Sy in G is
Ng(H) = L. Therefore the centralizer of Z(F') in G is conjugate to F' and contains
F, so it equals F. Therefore hth[j1 = L. Since gFg~! = L, we have hog™! €
Ng(L) = L, as L = Ng(H) is a maximal subgroup. Hence hovg = hog™ 000 = Vso.

This proves the claim.

Thus by, hepvo = btiha7b(halvoo) — Us. Since Stabg(vs) = Ng(H) and the
orbit Gus is locally compact, the map g[Ng(H)] — gvs from G/Ng(H) — V is a
homeomorphism onto its image. Therefore

bi;haphy ' [NG(H)] = [Ne(H)]

in G/Ng(H) as i — oo. Consider the standard projective action of G on P(R3).
Then Ng(H) fixes (e3). So

b haphg ' (e3) — (es)
as i — oo. Since b, = diag(e'/?, e/2 e7), we conclude that h,phg ' (e3) = (e3). So
holes = Ak, jes for some A # 0. Since hy' € G(Q), by (4.1) we get A(—b, —a, 1) €

Q3. So A € Q, and hence (a,b) € Q2.
As noted earlier, (a,b) € Q? contradicts (4.7) in view of by Lemma 3.3. g
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5. THE DANI-MARGULIS CRITERION FOR NON-ESCAPE OF MASS

Let Ay be the probability measure on X given by (1.2). The goal of this section
is to give a necessary and sufficient condition for non-escape of mass for {gy,\gp} as
t; — 00.

Define the unipotent one-parameter subgroup

W = {w(r) := (1{(1;) :reR} CG.
For any ¢t € R and s € I = [sg, 1], we have

(5.1) Gt@ap(s) = w(r)hy, where r = 63t(8 —50), ht = g1Pap(S0)-

Hence the trajectory {gi¢ap(s)mo : s € I} equals {w(r)hixo : 7 € [0,e3|I]]}, which
is a segment of a unipotent orbit.

By a criterion due to Dani and Margulis for analyzing non-escape of mass for
unipotent trajectories on the space of unimodular lattices, we obtain the following;:

Proposition 5.1. For any € > 0 and R > 0, there exist a compact set K C X and
tr > 0 such that for any t > t;, one of the following two possibilities holds:

(1) {s € I: gibap(s)ro € K} = (1 —¢)[I].
(2) There exists w € Z3 \ {0} such that

supllgibas(shul| < B.
sel

Proof. By the result of Dani and Margulis [DM89, 1.1. Theorem], given any € > 0
and R > 0, we can pick a compact set K C X such that given any finite interval
I C R and any t > 0 one of the following three statements holds: the above condition
(1), or the above condition (2) or the following additional condition (3): there exists
w e N*Z3\ {0} such that

sup||gtgap(s)w|| < R.
sel

Now if (3) holds for some ¢, then Cre! < R by Lemma 2.3. So the additional
condition (3) will not occur for ¢ > ¢; := log(C; ' R). O

Proposition 5.2. Let {t;};cn be a sequence of real numbers such that t; — co. The
following are equivalent:

(1) For every compact set K C X, gt,¢a5(1) N K =0 for all large i.
2) There exists € > 0 such that for every compact set K C X,

(
(5.2) Gt; Aap(K) < 1—¢, for all large i.
(3) There exist vectors {v;} C Z3\ {0} such that
)

SUII)”gtiﬁf)@b(S)Ui” —0 asi— oo.
se

Proof. (1) = (2) is obvious.
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(2) = (3): Fix € > 0 so that (5.2) holds for every compact K C X. For each
j € Nand R = 1/j, obtain a compact set K; C X as in Proposition 5.1. Then for
all 7,

gtiAa,b(KJ) ’I| |{8 erl: gt; Cbab( )LL‘() € K]H

So, by (5.2) there exists i; € N such that the possibility (1) of Proposition 5.1 does
not hold for all ¢ > i;; and hence its second assertion (2) must hold. So for all ¢ > i,
there exists w;,; € Z3 \ {0} such that

(5.4) SUI;HQti%,b(S)wg‘,ill <1/j.
EIS

For each i > i1, let j be maximal such that ¢ > i;, and put v; = w;;. Then (5.3)
follows from (5.4).
(3) = (1) is a straightforward consequence of Mahler’s compactness criterion. [

Proof of Theorem 1.1. To say that the sequence of g;-translates of A, ; has no escape
of mass means that there exists a sequence ¢; — oo such that condition (2), and
hence equivalently condition (3), of Proposition 5.2 fails to hold. It remains to apply
Lemma 3.2. g

6. RATNER’S THEOREM AND A LINEAR DYNAMICAL CRITERION
FOR AVOIDANCE OF SINGULAR SETS

The collection of probability measures on the one-point compactification, say X =
G/T U {00}, of X = G/T is compact with respect to the weak-* topology on X. So
given any sequence t; — 00, after passing to a subsequence, we obtain that g\,
converges to a probability measure fi on X. Let u denote the restriction of i to
X. Then g4, Aqp converges to p with respect to the weak-* topology; that is, for all
f € Ce(X), we have

tim [l Aas) = [ 7
1—00 X
For the proposition below, recall that
W:{w(r): (1{?) : TER}.
Proposition 6.1. Suppose that i is a weak-* limit of g, Ao for a sequence t; — oco.

Then w s invariant under the action of W.

Proof. By (5.1), for any ¢t > 0 and any f € C.(X),

(6.1) / fd(geAap) = ][f Gtdap(s)ro) ds = 63t/ f(w(r)hezo) dr

where h; = gt%,b(so). So for any g € R,

Jx f( 3t z) d(giAap)(x) = 6%[5 gw(ro)w(r)htxo)dr
(6.2) = ﬁ r?ﬂ f(w(r)hizo) dr = e%foe fw(r)hixo) dr + &

= fX f d(gt/\a,b) + €t
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where |e¢| < 2roe™!||f||.. Then observe that the left-most (resp., right-most) term
of (6.2) converges to [ f(w(ro)z)du(x) (resp., to [y fdu) ast =t; — oc. O

Proposition 6.2. Suppose that p is a weak-* limit of (1/T;) fOTi GtAap dt for a se-
quence T; — oo. Then p is tnvariant under the action of W.

Proof. We perform the average over ¢ € [0,7;] in (6.1) and (6.2) and take the limit
as ¢ — oo to conclude that p is w(rp)-invariant. O

With Proposition 6.1, we will be able to apply Ratner’s description of ergodic
invariant measures for actions of unipotent one-parameter subgroups on X to analyze
the limiting distributions of {g;A4} as ¢t — oco. For this purpose we will apply what
is now called ‘the linearization technique’ [DM93].

Let w: G — X denote the natural quotient map. Let H denote the collection of
closed connected subgroups H of G such that H NI is a lattice in H, and such that
a unipotent one-parameter subgroup contained in H acts ergodically with respect
to the H-invariant probability measure on H/H NI'. Then any H € H is a real
algebraic group defined over Q [Sha91l, (3.2) Proposition]. In particular, H is a
countable collection [Rtn91].

Let W be a one-parameter unipotent subgroup of G. For a closed connected
subgroup H of G, define

NHW)={geG: g 'WgcC H}.
Now, suppose that H € H. We define the associated singular set
SHW)= ] NEW).
FeM, FCH
Note that Ng(W)N(H,W) = N(H,W) = N(H,W)Ng(H). By [MS95, Proposi-
tion 2.1, Lemma 2.4],
NHW)NNH,W)y C S(H,W), ¥y € I'\Ng(H).
By Ratner’s theorem [Rtn91, Theorem 1], as explained in [MS95, Theorem 2.2],

we have the following.

Theorem 6.3 (Ratner). Given a W-invariant probability measure A on X, there
exists H € ‘H such that

Ma(N(H,W))) >0 and X\x(S(H,W)))=0.
Moreover, almost every W-ergodic component of \ restricted to n(N(H,W)) is a
measure of the form gup, where g € N(H,W)\S(H,W) and pg is a finite H-

invariant measure on 7(H) = H/HNT.
Further, if H as above is a normal subgroup of G, then X\ is H-invariant.

To justify the last sentence in Theorem 6.3, note that A(w(N(H,W))) > 0, so
N(H,W) # (. Since Ng(H) = G, we have N(H,W) = N(H,W)N¢g(H) = G, and
hence A restricted to w(N(H,W)) equals A. And for every g € G, gupy is H-invariant.
So almost every W-ergodic component of A is H-invariant, so A is H-invariant.
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Now let H € H and put d = dim H. Let g denote the Lie algebra of G and take
V= /\d g. Then V admits a Q-structure corresponding to the standard Q-structure
on g. Also G acts on V via the adjoint action of G on g. Since H is defined over Q,
its Lie algebra b is a Q-subspace of g. Fix py € /\d H(Q)\{0}. Then the orbit I'py
is a discrete subset of V. We note that for any g € Ng(H), gpy = det(Ad gly)pn-
Hence the stabilizer of py in G equals

N&(H) == {g € No(H): det(Adgly) = 1}.
Fix wg € g such that Lie(WW) = Rwy, and for V as above define
A={veV:vAwy =0}
Then A is a linear subspace of V' and we observe that
N(H,W) = {g€G: g pu € A}.
By the linearization technique [DM93, Proposition 4.2] we obtain the following:

Proposition 6.4. Let C be a compact subset of N(H, W)\ S(H,W). Given e > 0,
there ezists a compact set D C A such that, given a neighborhood ® of D in V', there
exists a neighborhood O of w(C) in X such that for any t € R and any subinterval
J C I, one of the following statements holds:

(1) {s € J: gt¢ap(s)rg € O} < el J].
(2) There exists v € I' such that gi¢qp(s)ypu € ® for all s € J.

Let Aqp be as in (1.2).

Proposition 6.5. Let ji be a weak-* limit of gy, Aap for a sequence t; — co. Suppose
w 1s not the G-invariant probability measure pux. Then there exists R > 0 and a
sequence {v;} C Z3\ {0} such that

(6.3) Su?Hgtﬂsa,b(S)Uz‘H <R.
ElS

In particular (a,b) € Wh.

Proof. If 1 is not a probability measure on X, then condition (2), and hence condi-
tion (3), of Proposition 5.2 hold. So (6.3) follows.

Therefore, we now assume that p is a probability measure on X. By Proposi-
tion 6.1 p is W-invariant. By Theorem 6.3, there exists H € H such that

p(m(N(H,W))) > 0 and p(x(S(H, W))) = 0,

and since p is not G-invariant, H # G. So dim(H) < dim(G).

We thus conclude that there exist € > 0 and a compact set C C N(H, W)\S(H, W)
such that p(7(C)) > . By Proposition 6.4 applied to £/2 in place of £, we obtain
a compact set D C A. Then we pick Ry > 0 such that D is contained in the open
norm-ball of radius R; in V, denoted ®, and obtain a neighborhood O of 7(C) in
G/T so that the conclusion of Proposition 6.4 holds.
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Since p(m(C)) > ¢, there exists ip € N such that for all ¢ > ig, g¢,Aap(O) > €. So
for i > ip, t = t; and J = I condition (1) of the conclusion of Proposition 6.4 fails
to hold, and hence condition (2) of the conclusion holds for some ~; € T'; that is,

SUII)Hgti¢a,b(3)(7ipH)H < Ry.
sE

Therefore (6.3) follows from Theorem 4.1 for a choice of R > 0 depending on py €
V(Q)\ {0} and R; > 0. O

Proposition 6.6. Let pu be a weak-* limit of p; == (1/T;) fOTi Gt; Aa,p At for a sequence
T; — o0o; here 0 < u(X) < 1. Suppose p # px. Then there exists R > 0 such that

(6.4) lim inf Ze 0 [0, 7]

I—o0 T;

> 0,

where I is defined in (3.6).

Proof. There are two possibilities: u(X) < 1, or p is a probability measure which is
not G-invariant. By Proposition 6.2, y is W-invariant. So there exists € > 0 such
that one of the following two possibilities occur:
(i) u(X) < 1—=
(ii) or, by Theorem 6.3, there exists H € H with H # G and a compact set
CC N(H,W)\ S(H,W) such that u(7(C)) > e.

First suppose that possibility (i) occurs. Take any R > 0 and pick a compact K C
X given by Proposition 5.1 for £/2 in place of e. Then, for each non-negative t ¢ Zp,
by definition (3.6), the possibility (2) of Proposition 5.1 does not hold, and hence its
possibility (1) must hold; that is, g:\qp(K) > 1 —¢e/2. Write x; = |Zr N [0, T3]|/T5.
So for all large 4,

1 (T
U—MW—W@STAQAMM&SMW%d—a

(2

and hence r; > €/2. So (6.4) holds.
Now suppose possibility (ii) occurs. Then for any open neighborhood O of 7(C),
1(O) > ¢, and so for all large i,

1 (5
1 Ay (O)dt > €.
- /O Ghap(O)dt >

Let
TZoN|[0,T;
Zo ={t€0,00) : giAap(O) > €/2} and k; = w

Then for all large 4,

1
(1 —ki)e/24+ ki > T/ Gitrap(O) dt > &,
©J0

and hence x; > €/2.
By Proposition 6.4 applied to the set C C N(H, W)\ S(H,W) and ¢/2 in place
of e, we obtain a compact set D C A. Pick R; > 0 such that D is contained in the
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open norm-ball of radius R; in V, denoted @, and obtain a neighborhood O of 7(C)
in G/T so that the conclusion of Proposition 6.4 holds.

Now suppose t € Zp. Then for J = I, the condition (1) of Proposition 6.4 fails to
hold, so condition (2) of Proposition 6.4 holds: there exists v € T" such that

(6.5) sul?llgtqba,b(S)wHH < Ry.
sE

Let R > 0 be the quantity given by Theorem 4.1 applied to v9 = py € V(Q) \ {0}
and C = Ry. Under (6.5), Theorem 4.1 shows that there exists v € Z3\ {0} such
that sup,c;llgedan(s)v|| < R; that is, t € Ig. Thus Ip C Ir. Therefore

[Ir N[0, T|/T; > ki >¢/2
for all large i, and (6.4) follows. O

7. PROOF OF THEOREM 1.2 AND THEOREM 1.4
In this section we prove Theorem 1.2 and Theorem 1.4.

Proof of Theorem 1.2. First suppose that the g;-translates of A\,; do not get
equidistributed in X as t — oco. Then there exist ¢; — oo such that g\, weak-*
converge to a measure which is not px. So by Proposition 6.5 we have (a,b) € Wh.
Conversely, suppose (a,b) € Wh. We want to show that the gi-translates of Aqp
do not get equidistributed in X.
By Lemma 3.1, there exist R > 1, t; — oo and {7;} C I" such that for all i € N,

(7.1) SUI})Hgtiﬁba,b(s)%el | <R.
se

Case 1: Suppose there exists ¢ > 0 such that for all ¢ > 1 and all s € I,

||gti¢a,b(5)'7iel || > c.

Then by Proposition 5.2, after passing to a subsequence, we may assume that g;, A, p
weak-* converge to a probability measure p. It suffices to show that the support of
w is not full.

Let E denote the set of unimodular lattices in R? containing a primitive vector
whose (sup)norm is in the interval [c, R]. Then E is closed and contains the support
of each gi;Aqp. Therefore the support of y is also contained in E. But X \ E is a
nonempty open set, as E does not contain the unimodular lattice ZM ~2e; +ZMeg +
ZMes, for any M > R such that M ~2 < ¢. Thus the support of y is not full.

Case 2: Suppose Case 1 does not occur. Then after passing to a subsequence, there
exists a sequence {s;} C I such that

(7'2) ||gti¢a,b(5i)'7i€1|| =c; — 0as 11— o0.

Pii
We write y;e; = (Pq;,i) €73 Then forallse I and t € R

eZtxy(s)
(7'3) gtéa,b(s)’}’iel = < e tpa ) s

—t
€ 7q;



EQUIDISTRIBUTION AND DIRICHLET-IMPROVABLE VECTORS 29

where x1(s) = (ag; +p2.)s+ (bgi +p1,i). So by (7.2), e i|pa;| < ¢; and e tilg;| < ¢,
and by (7.1), |e*iz1(s)| < R. We note that if p; = 0 and ¢; = 0, then |z1(s)| =
Ip1.i| > 1, and hence e*i < R for all large 4, which is absurd. Hence

cie' > max{[pa,l, la;]} > 1;
that is, t; +loge; > 0 for all 4. Let ¢ :=t; + (1/3)loge; > —(2/3) log ¢, so t, — oc.
By (7.3), for all s € I,

1/3 0;1/367”%‘}

2/3 At — ¢t
c;’e Mz (s),|c; e pay

“gt;¢a,b(5)7iel H S max { ) )

< max {Rcf/3,c;1/3ci} < Rc?/g.
Since ¢; — 0, by Proposition 5.2, for any compact K C X we have gy A ,(K) =0

for all large . U

Proof of Theorem 1.4. (1)=(2): Assume (a,b) ¢ Q2. Then (3) of Lemma 3.3
fails to hold, so there exists a sequence ¢; — oo such that for every sequence {v;} C

73\ {0},
SuII)Hgtid)a,b(s)'UiH — 00 as i — 00.
sE€

weak-*

So by Proposition 6.5, we conclude that g;, A, — px.
(2)=(1): If (a,b) € Q2 then by Remark 3.0.2, the translated measure gi)\qp
escapes to oo as t — oo. Therefore (2) fails to hold.
Thus (1) and (2) are equivalent. Next we will prove that (1)=(3) and (3)=-(1).
(1)=(3): We assume (1) and argue by contradiction, supposing that the set

E ={s e R:{g¢qp(s)xo}t>0 is not dense in X'}

has positive Lebesgue measure. We take a countable topological basis { B; };ien of X
consisting of non-empty open subsets, and let

E; ={s e R: {gdap(s)xo}i>0 N B; =0} .
One has E = (J;ey Ei. Since |E| > 0, there exists igp € N such that |E;| > 0.
Without loss of generality we may assume that |E;| > 0. By the Lebesgue density
theorem, there exists a compact interval I C R with non-empty interior such that
OB, mx(By)
T 2
as px(B1) > 0. Because we assumed (1), and since we have proved that (1)=(2),
there exists ¢; — oo such that g, A\qp — px in the weak-* topology. Since Bj is
non-empty and open, for all large 1,
1
1]
which, by the definition of Ey, implies that
I\ Er| S px (B1)
1] 2

(7.4)

px (B1)
2 b

[{s €1:91,0p(s)0 € Bi}| >
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This contradicts (7.4). Hence we must have |E| = 0.

(3)=(1): To prove this by contraposition, suppose that (a,b) € Q. Let B C X
be a non-empty relatively compact open set. By Remark 3.0.2, there exists tg > 0
such that gi{¢ep(s)zo : s € R} N B = for all ¢ > ty. If ¢ € N be such that
qa € Z, then ¢up(s + q)Z3 = ¢qp(s)Z3 for all s € R. Therefore {¢,p(s)zo : s € R}
is compact. So C := Up<i<toGe{Pap(s)xo : s € R} is a compact subset of a 2-
dimensional submanifold of X. So B\ C' is a non-empty open subset of X. Therefore
for every s € R,

{gtPap(s)xzo:t >0} N(B\C) = 0;
in particular, {g:¢qp(s)xo : t > 0} is not dense in X. So (3) fails to hold. O

8. BEHAVIOR ON AVERAGE — PROOFS OF LEMMA 3.4 AND THEOREM 1.3

In this section, we discuss the averages of the g;-translates, and prove Theorem 1.3.
As Lemma 3.4 will be used in the proof of Theorem 1.3, we first provide its proof.

Proof of Lemma 3.4. (1)=(2) is obvious.
To prove that (2)=(3), we pick R > 1 such that (3.7) holds. For any v = (%) €
Z3\ {0} and t > 0, by (3.3) we get

(a(8)) < Rie™

81) su <R= +pa| < Rye™
(8:1)  suplgidas(s)ol g0 +pa| < Rae gl < Ret,

sel

lgb + p1| < Rie %
i {

lq| < Re!

where R; = H ii‘; HR > R, and ((71)) denotes the sup-norm distance between

(z2) and its nearest integral vector. Note that if ¢ = 0in (8.1), then ¢t < (1/2) log R;.
For each g € N, define

(8.2) E,={t>0:e'g< Rand e* (q(?)) < Ry}
={t>0: R q<e <R (q(2) )
= (logq — logR,—§10g< q(b)+ % log R1) N (0,00).
Now t € E, if and only if the right-most term of (8.1) holds, so
(8.3) By #0 <= (a(3)) < Ri(Rg )

Let P(Z?) denote the set of primitive integral vectors in Z3. From (3.6), note that
(8.4) Ir = {t € [0, +00) : sup||giap(s)v]| < R, for some v € P(Z?)\ {0}} .
sel
Let Q be the collection of ¢ € N such that E, # @, and

(q(%)) = max{|gb + p1l,|qa + pz|} for some p1,ps € Z such that (%) € P(Z3).
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Let t9g = (1/2)log Ry. Then by (8.4), (8.1) and (8.2) we get
(85) Ir ﬂ t(), U E
qeQ

We may assume that (a,b) € Q?, because otherwise (a,b) € W, and we are done.
Then for any ¢ € Q, E, is a finite interval. Therefore by (3.7), Q is infinite. We
write @ = {q1,q2, ... }, where ¢; < g;+1 for all 7.

Claim 1. If E; and Ey are both non-empty for some q,¢' € Q and ¢ > ¢, then
¢ < Cq, where C = 2R1R? > 2. In particular, for any n € N,
(8.6) log ¢ < logC + 2~ log g, Vi < n.

Indeed, by definition of Q and (8.3), there exist (%) , (

)+ () (o) G2)

By primitivity, = (g ) # ql/ (i ;) Hence, by triangular inequality,

1 1 1 4
<[5 (] <ot <mat

aq q \P2

Therefore ¢> < (2R1R?)q’. This proves the first part of the claim.
For the second assertion of the claim, we iteratively apply the inequality ¢> < C¢’
to g =g¢j and ¢’ = gj41, for j =14,...,n—1 to get

p/
’2> € P(Z3) such that
ql

<RR2/2

< R1R?¢™?% and ‘ q

logC'"  loggit1

1 .
0g q; < 9 + 9
logC  logC  loggi+2
2 + 4 + 4

< ...
<logC + 2" Dog gy,.

Next, in view of (3.7) and (8.5), to achieve the quantity lim sup;_, ., M

it is enough to let T' vary along the sequence {T),} of right endpoints of 1ntervals
E,,, which, by (8.2), can be rewritten T, = log ¢, —log R + |E,, |. Then,

nl
0Tl Usco Ba| _— ¥7 1B,
T, ~ logg, —log R+ |E,
Therefore we infer from (3.7) and (8.5) that

n
E
hmsup Z’L 1| qz’
n—00 IOan 10gR+ ’Eq

l

> 0.

]
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It follows that there exists € > 0 such that
Z?:l’qu'|

(8.7) lim sup =4e > 0.
n—00 10g dn
Claim 2. We claim that
E
(8.8) lim sup B | > €.
n—oo 10g(dn
Indeed, suppose lim sup,, llfgqgi < e. Then there exists N > 0 such that gy > C

and for all n > N, |E,,| < 2¢logq,. Therefore

i1 Eq Nl Eq, n9cloo g
lim sup M = lim sup M < limsup M
n—»00 log dn n—00 IOg qn o0 log an
2¢(n — N)logC +2e 30 2~ (9] n '
<lim sup {-:(n ) gl + 2¢ szN 0g dn — 0+ 2 Z 2—(71—1) < de,
n—00 log ¢,

i=N
because by (8.6), for any i < n,

log ¢ < logC + 2~ ) log g, and logg, > 2*~) (log gn — log C).
This contradicts (8.7), and proves Claim 2.

Now in view of (8.8), for any ) > 0 there exists ¢ > @ such that |E,| > elogg.
By (8.2), this means

1
(1/2)log Ry +log R —log g — S log (g (3)) > elogg,

or equivalently,

(g (L)) < RiR*q~ (1),
Hence (q(?)) < ¢~(>*®) has infinitely many solutions ¢ € N, which means (a,b) €
Wy, This proves (2)=>(3).

Now to prove (3)=-(1), suppose that (a,b) € W5". Then there exists ¢ > 0 and an
increasing sequence {¢, }nen of positive integers such that

{anb + prn| < g 2T

(89) —(2+¢) ’ for some Pin,P2n € Z.

|Q71a +p2,n| < dn

For each n € N, pick v, = (%ZZ) € 7?2 such that (8.9) holds. For any t € R,

th((bqn-i—m,n)+(aqn+p2,n)8)

(810) gtd)a,b(s)vn = ( eftpz,n .
eith

Pick any constants 0 < ¢; < ¢z < 1/2, independent of n. Let
t € [(1+ c1e)log qn, (1 + c2e) log ¢y
Then

_ (1—2¢9)e _ cie
509 € BN g g, <
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By (8.9),

P2l < 4 ®F + lalgn < 1+ algn
and so, by (8.10),

(8.11) gt bap(s)vn| < Cre™ 1, Vs € I = [sg, s1],

where 1 := min { T (11;2062225} >0 and Cy := (1 + |so| + |s1| + |a]).

Given any R > 0, let N > 0 such that for every n > N,
Clq;(l-i-cla)q < R.

For n > N, by (8.11), one has [(1 + c1¢)log qn, (1 + co¢) log g,] C Zr. So, setting
T, = (1 + co¢) log g, we get

|Zr N [0,T,,]] S I[(1+ c1e)log g, (1 + c2e) log qn)|  (c2 —c1)e

T, - T, 1+ coe
Therefore T 0.7) ( )
. r M0, Cy — C1)E
lim su > > 0.
e = 1+ e
This proves that (3)=-(1). O

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. (1)=-(2) is obvious.

To prove (2)=(3) by contrapositive, suppose that (a,b) € Wy . Let K be a com-
pact subset of X, which, as we may recall, is identified with the space of unimodular
lattices in R3. By Mahler’s criterion, there exists R > 0 such that every nonzero
vector in any lattice in K has norm at least R. So, by (3.6), for any t € Zg, we have
Gt¢Pap(s)Z" ¢ K for all s € I; in particular,

(8.12) gihas(K) = 0.

Since (a,b) € W5, Lemma 3.4 shows that there exists a sequence T;, — oo and
an £ > 0 such that for all n,
|Zr N [0, T5]| > e,
T, -
and hence, by (8.12),

I
/ Gtdap(K)dt <1 —¢,
T Jo

where the € is independent of K. Thus, the family of averages {% f(;[ GtAap dt}r>0
has escape of mass. This proves that (2)=(3).

To prove (3)=-(1) by contraposition, suppose that (1) fails to hold. Then there
exists a sequence T; — oo such that u; := (1/T5) fOTZ gtAqp dt does not converge to
wx. Since the p; are probability measures, by passing to a subsequence, without loss
of generality we may assume that p; converges to a Borel measure 1 on X which is
not px; here 0 < u(X) < 1. Then by Proposition 6.6 there exists R > 0 such that

1 T;
liminf7| r N0, T

1—00 Tz

> 0.
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Then by Lemma 3.4, we get (a,b) € W, , which contradicts (3). O
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