

001
002
003
004
005
An agent-based model of biting midge
006
dynamics to understand Bluetongue
007
outbreaks
008
009
010
011
012

Shane L. Gladson¹ and Tracy L. Stepien^{1*}

¹Department of Mathematics, University of Florida, Gainesville,
FL, USA.

*Corresponding author(s). E-mail(s): tstepien@ufl.edu;
Contributing authors: shanegladson@ufl.edu;

Abstract

Bluetongue (BT) is a well-known vector-borne disease that infects ruminants such as sheep, cattle, and deer with high mortality rates. Recent outbreaks in Europe highlight the importance of understanding vector-host dynamics and potential courses of action to mitigate the damage that can be done by BT. We present an agent-based model (ABM), entitled ‘MidgePy’, that focuses on the movement of individual *Culicoides* spp. biting midges and their interactions with ruminants to understand their role as vectors in BT outbreaks, especially in regions that do not regularly experience outbreaks. The results of our sensitivity analysis suggest that midge survival rate has a significant impact on the probability of a BTV outbreak as well as its severity. Using midge flight activity as a proxy for temperature, we found that an increase in environmental temperature corresponded with an increased probability of outbreak after identifying parameter regions where outbreaks are more likely to occur. This suggests that future methods to control BT spread could combine large-scale vaccination programs with biting midge population control measures such as the use of pesticides. Spatial heterogeneity in the environment is also explored to give insight on optimal farm layouts to reduce the potential for BT outbreaks.

Keywords: vector-borne disease, epidemiology

047

1 Introduction

048 In the late 2000s and early 2010s, multiple Bluetongue (BT) disease out-
049 breaks occurred across Northern Europe, a region which had not previously
050 experienced BT spread. The resulting epizootic, fueled by an abundance of
051 immunologically naive livestock, lasted several years until it was finally brought
052 under control through mass vaccination programs and the restriction of live-
053 stock movement across country borders (Gethmann et al (2020)). The epizootic
054 had a significant economic impact on the livestock industry, and its persistence
055 represents a continued threat to the European agricultural economy (Conraths
056 et al (2009)).

057 Occasional epizootics occur in any given year now and result in losses
058 amounting to hundreds of millions of dollars due to necessary vaccination pro-
059 grams or lost revenue (Mayo et al (2020)). Furthermore, livestock infected with
060 BT experience high morbidity and mortality rates (Saegerman et al (2008)).
061 Understanding how BT arrived in Northern Europe is of interest to help pre-
062 vent or mitigate potential outbreaks in new regions. Indeed, the case of BT
063 in Europe is considered an important example of how the geographical ranges
064 of vector-borne diseases can shift as climatic warming increases mean/me-
065 dian temperatures in higher latitudes (Brand and Keeling (2017); Samy and
066 Peterson (2016)).

067 BT is a vector-borne disease caused by Bluetongue Virus (BTV) that is
068 transmitted by *Culicoides* spp. biting midges (Diptera: Ceratopogonidae) and
069 affects a wide range of ruminants such as sheep, cattle, and deer. Thus, the
070 spatiotemporal dispersal of *Culicoides* spp. is central to the spread of BT
071 between farms that are geographically distant (Pedgley and Brooksby (1983);
072 Alba et al (2004); Sellers and Maarouf (1990, 1989); Chapman et al (2010)).

073 Previous mathematical models have focused on various aspects of the
074 spread of BT among animal populations with a considerable focus on
075 the Northern Europe BTV outbreaks of the 2000–2010s (reviewed in
076 Courtejoie et al (2018)). For example, Gubbins et al (2008) performed sensi-
077 tivity analysis on a temperature-dependent model that considered a vector
078 population and two host species to predict the risk of BT in Great Britain.
079 Szmaragd et al (2009, 2010) developed a model to examine the effects of vac-
080 cine uptake among farms in Great Britain following the 2006 BTV-8 outbreak.
081 Gourley et al (2011) used a delay differential equation model to investigate
082 reproduction numbers for BT. Implementing historical wind data, the model
083 of Sedda et al (2012) retroactively simulated the spatiotemporal spread of the
084 2006 BTV outbreak in Northern Europe. Guis et al (2012) developed a climate
085 driven model to predict how temporal changes in R_0 would affect the future
086 risk of BT across Northern Europe. Additionally, Turner et al (2012) modeled
087 the effects of seasonality on the farm-to-farm spread of BT across England
088 and Li and Zhao (2019) examined how a temperature-dependent incubation
089 period affected the BT reproduction ratio.

090 Despite such advancements, the potential for BT to spread and impact
091 novel areas is comparatively understudied, and there is a need to examine

the potential impact of BT in other locations that have not been historically affected. In particular, while BTV is transmitted in many parts of North America, there exists only one confirmed vector: *C. sonorensis* (Gerry et al (2001)). This poses a conundrum since the primary range for *C. sonorensis* does not extend to the Southeastern United States, yet there have been confirmed cases of BT in that region (Smith and Stallknecht (1996)). Entomologists have identified potential BTV vector species in the Southeastern United States including *C. stellifer*, *C. debilipalpis*, and *C. pallidicornis*, however transmission of BT by these species has yet to be directly observed (McGregor et al (2019)).

Here, we develop a mathematical model to study the potential of BT outbreaks on individual farms in regions that have not previously experienced frequent outbreaks. Our framework incorporates the movement of midges and their interactions with ruminants. We develop an agent-based model (ABM) that includes a spatial domain. This feature allows for much finer domain resolution than a multi-patch ordinary differential equations model and removes the necessity to develop a system of partial differential equations. ABMs are frequently used to understand aspects of vector-borne disease dynamics and the navigation of insects. For example, Smith et al (2018) published a comprehensive review of how ABMs have been used to understand the role of environmental heterogeneity in malaria spread, analyze the effectiveness of intervention strategies, and describe parameter functions. The flight patterns of insects such as moths (Bau and Cardé (2015); Liberzon et al (2018); Stepien et al (2020); Golov et al (2021)), locusts (Topaz et al (2008); Bernoff et al (2020)), flies (Lin et al (2015); Alderton et al (2018); Leitch et al (2021); Diouf et al (2022)), honeybees (Dorin et al (2022)), and butterflies (Grant et al (2018)) have all been studied with ABMs using a variety of modes including simple random walks and directed movement toward a target.

This paper aims to understand the impacts of midge movement on the transmission of BT using an ABM, and in particular, how aspects such as the number of initial infected midges, the daily survival rate of the midges, the extrinsic incubation period of midges inoculated with BTV, and the probability of BTV transmission between a vector and host can affect the probability of an outbreak on a single farm. We also study the effects of temperature using the number of actively flying midges in a simulation as a proxy to determine parameter regions where outbreaks are more likely. Spatial heterogeneity in the environment is explored to give insight on optimal farm layouts to reduce the potential for BT outbreaks. While many vector- and host-specific parameters can affect the spread of BT, this study exclusively focuses on midge-specific parameters.

The outline of this paper is as follows: in Section 2, we provide biological information on BT and its spread. In Section 3, we describe an ABM ‘MidgePy’ to examine the spread of BT on an idealized small-scale large mammal farm of approximately one square kilometer.. In Section 4, we perform sensitivity analysis of *Culicoides* spp. survival rates, the extrinsic incubation period of BTV,

139 and BT transmission probability, as well as an analysis on outbreak probability
140 and the effects of a heterogeneous spatial domain. Finally, in Section 5,
141 we summarize our results including their application to real-world efforts to
142 combat BT outbreaks.

143

144 2 Bluetongue (BT)

145

146 Bluetongue virus (BT) is a virus from the family *Reoviridae*, genus *Orbivirus*
147 ([Rivera et al \(2021\)](#)). BT causes Bluetongue (BT), a hemorrhagic disease in
148 ruminants that is transmitted by many species of *Culicoides* spp. biting midges
149 ([Mellor \(1990\)](#); [Mellor et al \(2000\)](#); [Mellor \(2000\)](#)). There are more than 20
150 known serotypes of BT that circulate between different regions including the
151 Middle East, Europe, and North America ([Gerbier et al \(2008\)](#); [MacLachlan](#)
152 [et al \(2015\)](#); [Saegerman et al \(2008\)](#)).

153 While vaccines exist that prevent BT, the virus is not immunologically sim-
154 ple and thus the vaccines must be serotype specific. With the large number
155 of serotypes, each with varying virulence, it is difficult or impossible to vacci-
156 nate livestock against all strains ([Noad and Roy \(2009\)](#)). In addition, recent
157 studies have shown that, due to the segmented genome of BT, the use of
158 live attenuated viruses to vaccinate ruminants has the possibility of introduc-
159 ing new genetic material to environments, increasing the risk of creating new
160 BT serotypes ([Rojas et al \(2021\)](#)).

161 Transmission of BT from host to vector occurs when a competent *Culi-*
162 *coides* spp. vector bites a viremic ruminant, ingesting blood that contains
163 BT. The virus then undergoes an incubation period inside the midge, during
164 which it goes through multiple stages in the incubation cycle before eventually
165 replicating within the midge and reaching its salivary glands ([Mellor \(2000\)](#);
166 [Mellor et al \(2000\)](#)). The length of this process is known as the Extrinsic Incu-
167 bation Period (EIP) ([Carpenter et al \(2011\)](#)). In *Culicoides* spp. vectors, this
168 process typically lasts 14 days, however, it is significantly affected by the ambi-
169 ent temperature, which is accompanied by increasing *Culicoides* spp. activity
170 ([Tsutsui et al \(2011\)](#); [Mayo et al \(2020\)](#); [Tugwell et al \(2021\)](#)). Additionally,
171 the biting rate in *Culicoides* spp. has been shown to be positively correlated
172 with disease transmission rates ([Elbers and Meiswinkel \(2014\)](#)). Though it has
173 recently been shown that horizontal transmission of BT between ruminants is
174 possible ([MacLachlan et al \(2019\)](#)), the goal of this paper is to focus solely on
175 the vector-host transmission cycle, therefore, horizontal transmission of BT
176 will not be considered here.

177

178 3 Methods

179

180 We present a spatially and temporally explicit agent-based model (ABM),
181 simulated using ‘MidgePy’, an open-source package written in Python, that
182 characterizes the actions of ruminants and *Culicoides* spp. biting midges and
183 the spread of Bluetongue (BT) among these populations. The spatial landscape
184 of our study is based on a cervid farm in North Florida that has been the

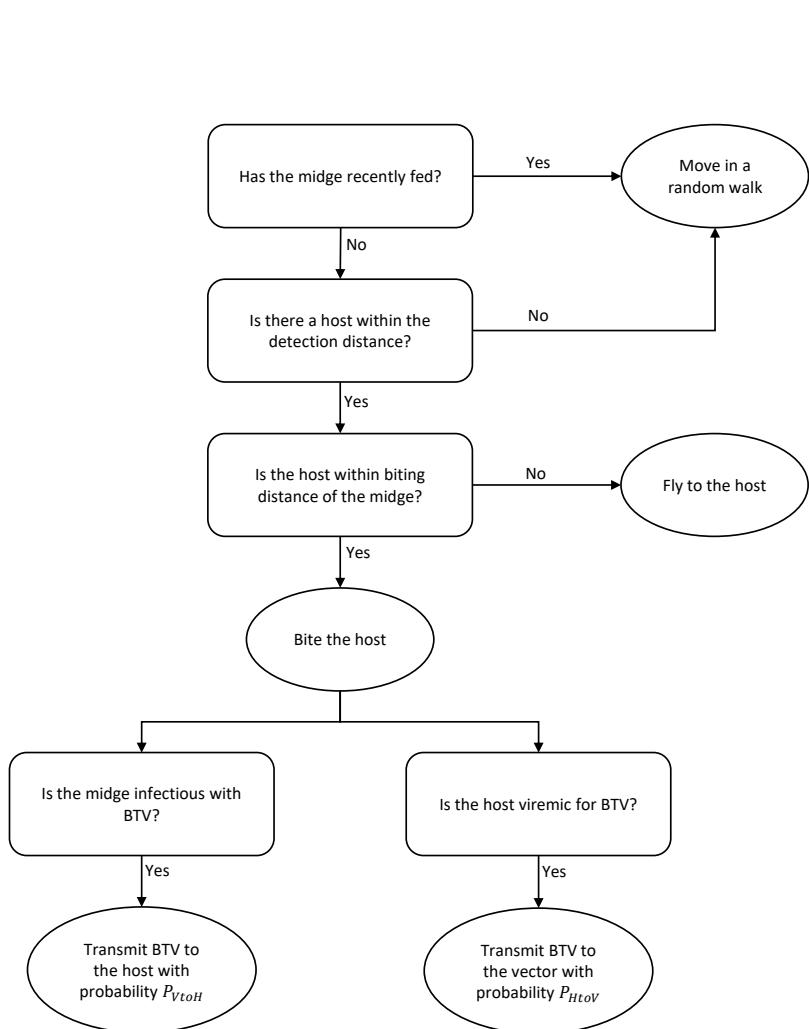


Fig. 1: Flowchart of the MidgePy algorithm that determines *Culicoides* spp. behavior at each step.

focus of previous BT dynamics studies (McGregor et al (2019); Erram et al (2019); Erram and Burkett-Cadena (2018)). However, the spatial landscape in MidgePy is customizable so that the outbreak likelihood given the introduction of BTV-infected midges to any region may be examined.

The MidgePy algorithm is depicted as a flow chart in Fig. 1, which we subsequently describe.

231

3.1 Model State Variables

232 MidgePy is comprised of two main classes of agents: a midge swarm class,
 233 named MidgeSwarm, and a ruminant swarm class, named HostSwarm. Each
 234 class holds arrays containing information on each agent, such as their location
 235 and whether or not they are infected with BT. The length of the array indicates
 236 the population size of the respective agent type. In particular, the MidgeSwarm
 237 and HostSwarm classes contain arrays of lengths γP_d and P_d , respectively,
 238 where $\gamma : 1$ is the ratio of midges to ruminants in a simulation. See Table 1 for
 239 a list of model parameters and their values.

240 An increase in the midges-per-ruminant ratio γ significantly increased the
 241 computational cost when running the model, and so we ran simulations to
 242 determine a value of γ that would allow for a reasonable computational time
 243 yet be representative of the full population dynamics. Initial simulations were
 244 run setting $\gamma = 30$, and then increased to $\gamma = 100$. Simulations run with
 245 $\gamma > 100$ showed no significant differences in model output. Therefore it was
 246 decided that $\gamma = 100$ was a suitable parameter value for this analysis.

247

3.2 Initialization of Simulations

248 We considered both homogeneous and heterogeneous spatial domains in our
 249 study. The homogeneous domain was set to be a continuous, homogeneous
 250 square of size 1 km \times 1 km. The heterogeneous spatial domain is described
 251 subsequently in Section 3.2.1. Analogous to the cervid farms studied in [McGregor et al \(2019\)](#), [Erram et al \(2019\)](#), and [Erram and Burkett-Cadena \(2018\)](#), we
 252 assume *Culicoides* spp. are able to interact with both domestic and wild hosts,
 253 but we only include domestic hosts located on the farm. Hence, midges can
 254 fly beyond the limits of the farm domain, however the host population must
 255 always remain within the limits. If a midge flies beyond the farm domain, it
 256 continues following the same behavior it would as if it were within the domain
 257 (Fig. 2).

258 At the beginning of each day in the simulation, each ruminant is given a
 259 random position within the farm domain. Simulations where ruminants moved
 260 in a random walk did not produce notably different results compared to sim-
 261 ulations where ruminants remained static throughout each day, and thus, to
 262 reduce computational complexity, ruminant locations were updated once daily.

263 Each day was simulated to be $T_d = 5$ hours long, which is approximately
 264 the amount of time during dawn and dusk where *Culicoides* spp. midges are
 265 most active ([Fall et al \(2015\)](#); [González et al \(2017\)](#); [Blackwell \(1997\)](#)). At the
 266 start of the simulation, an initial number of midges, I_0 , are randomly selected
 267 to be infected with BTV.

268 Unless otherwise stated, the simulation period of the model was 60 days.
 269 This was chosen as the primary interest for this model was understanding
 270 outbreak dynamics, and so longer periods were not necessary.

271

272

273

274

275

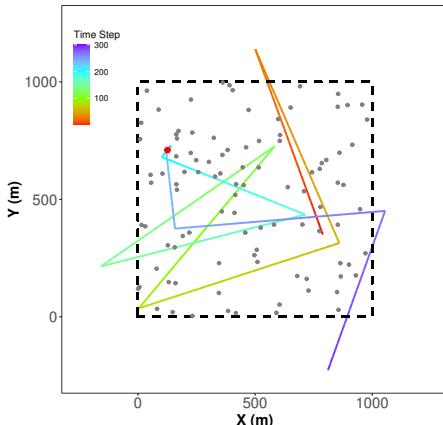
276

Table 1: Model parameters of the agent-based model MidgePy. For all parameter values that do not have a reference, see Section 3.				
Parameter	Description	Value	Units	Reference
Δt	Time step	60	s	
T_{full}	Length of time after a blood meal that a midge remains not hungry	2	days	
T_d	Length of each day simulated	5	hours	Fall et al (2015); González et al (2017); Blackwell (1997)
P_d	Ruminant population size	100		
γ	Number of midges per ruminant	100 : 1		
v_r	Flight speed of a roaming midge	0.13	m/s	Sedda et al (2012)
v_f	Flight speed of an active midge	0.5	m/s	Sedda et al (2012); Gethmann et al (2020)
d_{det}	Maximum distance a midge can detect a ruminant	300	m	
d_{bite}	Minimum distance required for a midge to bite a ruminant	$v_f \Delta t$	m	
$P_{V \rightarrow H}$	Probability of BTV transmission from vector to host	0.9		Bessell et al (2016)
$P_{H \rightarrow V}$	Probability of BTV transmission from host to vector	0.14		Carpenter et al (2013)
ρ_H	Extrinsic incubation period of BTV in ruminants	2	days	
ρ	Extrinsic incubation period of BTV in <i>Culicoides</i> spp.	10–20	days	Tsutsui et al (2011); Mayo et al (2020); Tugwell et al (2021); Wittmann et al (2002)
α	<i>Culicoides</i> spp. daily survival probability	0.5–0.9		Wittmann et al (2002); Lysyk and Danyk (2007); Gerry and Mullens (2000)
I_0	Number of midges infected with BTV at initialization	1–5		

3.2.1 Heterogeneous Environment

Since midges' habitat preferences, such as toward bodies of water or swamps, could have an effect on the direction that they would fly (Erram et al (2019)), we also considered a heterogeneous domain. The domain designed for our study was inspired by the cervid farm located in Gadsden County, FL, USA that was studied in McGregor et al (2019).

To examine the effects of heterogeneity, we generated a 200 pixel \times 200 pixel map, where each pixel in the map represents a 5 m \times 5 m region in the domain. Each pixel was categorized into one out of five different habitat types, which

323
324
325
326
327
328
329
330
331
332
333
334
335336 **Fig. 2:** An example path of a midge over one day (300 time steps). The gray
337 dots represent hosts. The red dot indicates the host that the selected midge bit.
338 The dashed boundary indicates the simulated farm domain where the hosts
339 can roam.
340

341

342 were given a rank to correspond with the habitat preferences of the midges: 1
343 is considered the least favorable and 5 is the most favorable.
344345

3.3 Midge Movement and Biting Behavior

346347 At each time step, of length Δt , whether a midge has recently fed or not is
348 determined, which then dictates the type of movement that the midge will
349 undergo. We consider a midge to have recently fed if it had a blood meal from a
350 ruminant within the last T_{full} days, which we set to be 2 days. The midges that
351 have recently fed (time since last meal $< T_{\text{full}}$) move in a random walk with
352 roaming flight velocity v_r . Letting $\mathbf{x}(t) = (x(t), y(t))$ be the current location
353 of a midge, its location is updated according to
354

355
$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + v_r \Delta t \frac{\mathbf{x}_r - \mathbf{x}(t)}{\|\mathbf{x}_r - \mathbf{x}(t)\|}, \quad (1)$$

356

357

358 where \mathbf{x}_r is a random point uniformly selected within the domain. This ensures
359 that midges remain within the domain and do not travel too far outside the
360 region to detect ruminants when searching for a blood meal.
361362 If a midge has not recently fed (time since last meal $\geq T_{\text{full}}$), it will check
363 if there is a ruminant within a radius of distance d_{det} from itself, which we set
364 to be 300 m. If there are no ruminants within that distance, the midge moves
365 in a random walk with roaming flight velocity v_r as defined above in (1). If
366 ruminants are located within a midge's detection distance d_{det} , the midge will
367 fly in the direction of the closest ruminant with active flight velocity v_f , such
368

that its location is updated according to

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + v_f \Delta t \frac{\mathbf{x}_h - \mathbf{x}(t)}{\|\mathbf{x}_h - \mathbf{x}(t)\|}, \quad (2)$$

where \mathbf{x}_h is the location of the host that is closest to the midge. The midge will move according to (2) until it is within a minimum biting distance d_{bite} , after which the ruminant will be bitten.

For a heterogeneous domain (Section 3.2.1), we assume that midges undergoing random walk movement would preferentially move toward habitats that are more favorable. Modifications for midge movement are then as follows: at each time step that a midge is not searching for a blood meal, the midge determines the preference ranking of the habitats in its Moore neighborhood (the surrounding eight 5 m \times 5 m patches as well as the patch that the midge is currently located in). The patches with the highest value according to preference are selected, and then one patch is randomly chosen. The midge flies with roaming flight velocity v_r in the direction of the chosen patch and its location is updated according to

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + v_r \Delta t \frac{\mathbf{x}_p - \mathbf{x}(t)}{\|\mathbf{x}_p - \mathbf{x}(t)\|}, \quad (3)$$

where \mathbf{x}_p is the location of the center of the chosen patch (instead of the location being updated according to (1)). The patch selection process is repeated at each time step, so this means that the habitat distribution has an effect on how directed versus how random a midges' flight movement is: if there is just one patch surrounding the midge with a higher ranking than all of the other patches, the midge will fly directly to that patch. However, if there are multiple patches surrounding the midge with equal preference ranking, then the midge will overall appear to move more in a random walk motion.

3.4 Transmission of Bluetongue Virus

After a midge bites a ruminant in the simulation, the subsequent steps are followed: If the host is viremic with BTV, then BTV is transmitted to the midge with probability P_{HtoV} . If the midge is infectious with BTV, then BTV is transmitted to the host with probability P_{VtoH} .

After being bitten by a BTV-infected midge, the viral pathogen undergoes an intrinsic incubation for ρ_H days before the ruminant host becomes viremic and could potentially infect other midges. Due to a lack of data providing a more precise value, we set ρ_H to be 2 days. Similarly, a midge that had been infected by BTV would undergo an extrinsic incubation period, ρ . The model did not consider the ability of ruminants or midges to recover from BT, and as such they would remain viremic for the duration of the simulation. Furthermore, we do not implement any changes in midge feeding behavior after infection since the biting rate of midges is not well established in the literature

415 and is highly dependent on the data collection and statistical analysis methods
416 employed (Möhlmann et al (2021)).

417 Studies have shown that ruminants are often asymptomatic when infected
418 with BT, and can remain viremic for several weeks (Singer et al (2001)). Therefore
419 due to the short simulation period and the long ruminant lifespan, even
420 with BT, the model did not consider ruminant death.

421 We assume in each simulation that the midges have a constant daily
422 survival rate, α . Laboratory findings have shown that the lifespan of *Culicoides* spp.
423 with respect to a fixed temperature follow either an exponential or Weibull distribution
424 (Lysyk and Danyk (2007)). Assuming an exponential distribution, then the mean expected
425 survival time of the midges is $1/(1 - \alpha)$ days. At the end of each day simulated, it is determined
426 whether each midge will survive to the next day with probability α . If the midge is determined
427 to have died, it is replaced by a new midge that is not infected with BTV in a
428 random location so that the population size of midges remains constant.
429

430

431 4 Results

432

433 In this section, we analyze the sensitivity of the model parameters to the model
434 output (Section 4.1), determine the dependence of the number of infected
435 ruminants on *Culicoides* spp. survival rate, extrinsic incubation period, and
436 temperature using midge flight activity as a proxy (Section 4.2), evaluate
437 the dependence of outbreak probability on the initial number of infected
438 midges, their survival rate, and probability of transmission from vector to
439 host (Section 4.3), and examine the effects of a heterogeneous environment on
440 midge location preferences (Section 4.4).

441

442 4.1 Sensitivity Analysis

443

444 We determine how sensitive the model is to changes in the *Culicoides* spp.
445 daily survival rate, α , extrinsic incubation period, ρ , probability of BTV trans-
446 mission from vector to host $P_{V \rightarrow H}$, probability of BTV transmission from host
447 to vector $P_{H \rightarrow V}$, and initial number of infected midges, I_0 , using Sobol' sen-
448 sitivity analysis (Sobol' (2001)) via Saltelli's extension of the Sobol' sequence
449 (Saltelli (2002); Saltelli et al (2010)) as implemented in the SALib Sensitivity
450 Analysis Library (Herman and Usher (2017)). This is a variance-based
451 method which allows for calculation of model output changes with respect to
452 variation with a single parameter (first-order), and combinations of all param-
453 eters (total-order). By comparing the first-order and total-order indices, the
454 presence of higher-order interactions can be inferred.

455 The range of values for the parameters of interest were set to be $\alpha \in$
456 $[0, 1]$, $\rho \in [0, 20]$, $P_{V \rightarrow H} \in [0, 1]$, and $P_{H \rightarrow V} \in [0, 1]$, which contain the typical
457 values observed for these parameters (Table 1). The total number of infected
458 ruminants after 60 days was used as the model output, and the resulting first-
459 and total-order indices were calculated. Due to computational constraints and
460

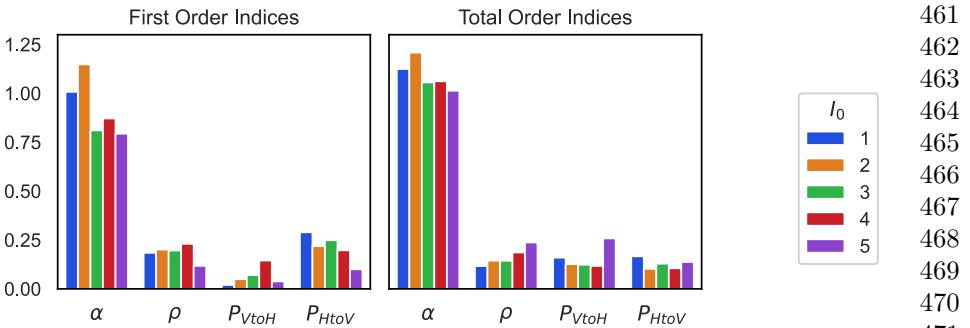


Fig. 3: First-order and total-order indices for Sobol' sensitivity analysis of the *Culicoides* spp. daily survival rate, α , the extrinsic incubation period, ρ , the probability of BTV transmission from vector to host P_{VtoH} , and the probability of transmission from host to vector P_{HtoV} . I_0 indicates the initial number of BTV infected midges. First-order indices are calculated with respect to a single parameter, so interactions with other parameters are not taken into account, while total-order indices account for all higher-order interactions between parameters.

the stochastic nature of the model, a total of 96 simulations, with parameters given by the Saltelli distribution, were run for each trial.

To clarify terminology used in this section, we define a simulation to be a single execution of the model under a single set of parameters. A trial is a group of simulations. We averaged the results from many trials to find the expected values for the analysis in this section.

Both the first-order indices and total-order indices, shown in Fig. 3, indicated that the model was much more sensitive to perturbations in the *Culicoides* spp. survival rate α than it was to perturbations in the extrinsic incubation period ρ or the transmission probabilities P_{VtoH} and P_{HtoV} . Thus, this analysis implies that focusing on the survival of midges is more important than the incubation period and the probability of BTV transmission from host to vector or vice versa in reducing the number of infected ruminants.

Additionally, it was found that the model sensitivity to α decreased as I_0 increased, which was to be expected as more BTV-infected *Culicoides* spp. midges would reduce the need for high survival rates. Initial analysis was conducted using 10 trials for each I_0 , and then was increased to 15 trials. Little change was noticed, and so the analysis shown was conducted using 15 trials.

4.2 Percentage of Infected Ruminants

A heat map, shown in Fig. 4, was generated to visualize the total percentage of infected ruminants over a 60-day period given changes in the *Culicoides* spp. survival rate α and extrinsic incubation rate ρ . We also varied the total midge population, as given by the number of midges per ruminant, γ .

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

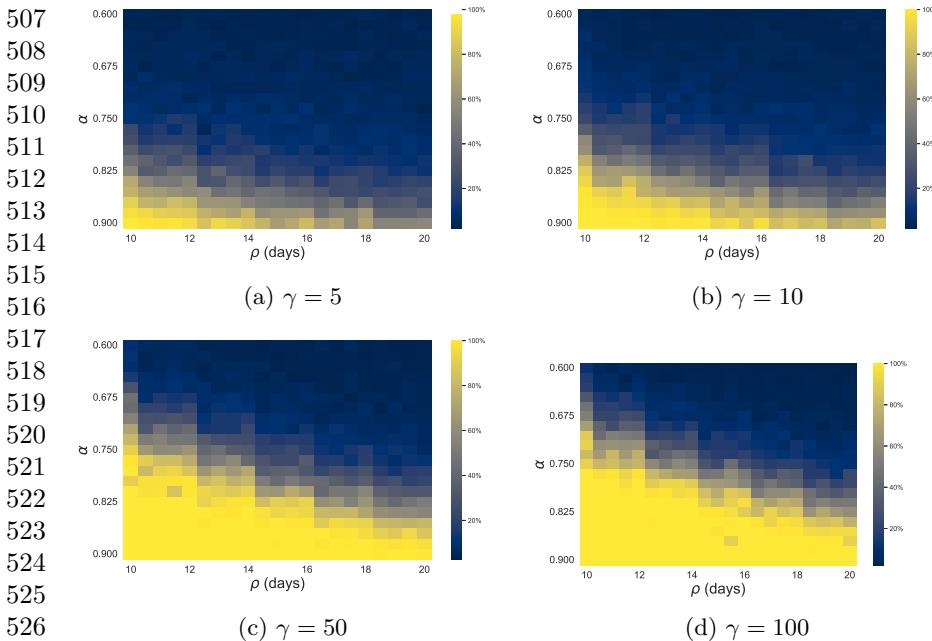


Fig. 4: Heat maps showing the percentage of ruminants infected given different *Culicoides* spp. daily survival rate, α , extrinsic incubation rate, ρ , and number of midges per ruminant, γ , over a 60 day period.

Since midges are more active in warmer temperatures (Tugwell et al (2021)), increasing γ implies that there is more midge flight activity, which is correlated with warmer temperatures. Hence, we can implicitly examine the effects of temperature by varying γ as one proxy, noting that environmental temperature can also affect other midge-specific parameters, such as α and ρ (Lysyk and Danyk (2007); Tsutsui et al (2011); Mayo et al (2020)). Parameter values were chosen to be $\alpha \in [0.6, 0.9]$ in increments of 0.015, $\rho \in [10, 20]$ in increments of 0.5, and $\gamma \in \{5, 10, 50, 100\}$. For each combination of parameters α , ρ , and γ , 10 simulations of each case were run due to the stochastic nature of the model and the tendency for low values of α or high values of ρ to result in no outbreak at all. The average number of infected ruminants was averaged over all the simulations for each (α, ρ, γ) -set.

Fig. 4 illustrates that the number of infected ruminants is non-decreasing as α and ρ increase for each fixed value of γ , and it was very common for simulations with large enough values of α and ρ to end with all of the ruminants within the domain being infected with BTV. There appears to be a linear bifurcation line with respect to α and ρ that determines the likelihood of an outbreak. Low values of α combined with high values of ρ would result in few to no outbreaks, while high α and low ρ result in large-scale outbreaks. This line shifts as γ increases, such that large midge populations correspond to larger

outbreaks for similar combinations of α and ρ . This follows intuition, as a high survival rate and short extrinsic incubation period would allow many more *Culicoides* spp. midges to become infected with BTV and subsequently pass the virus on to another ruminant. Additionally, in warmer temperatures where midge flight activity is greater, there is an increased chance of an outbreak.

4.3 Outbreak Probability

For the purposes of this study, an outbreak was defined to be the occurrence of a single BTV-infected ruminant. We fixed the initial number of infected midges, I_0 , and daily survival rate, α , for each simulation and allowed the simulation to run until either all BTV-infected midges died without a single ruminant becoming infected or a single ruminant had become infected with BTV. Parameter values were chosen to be $\alpha \in [0, 1]$ in increments of 0.02, $P_{VtoH} \in \{0.25, 0.5, 0.75, 1\}$, and $I_0 \in \{1, 2, 3, 4, 5, 15, 50, 100\}$. 500 simulations were run for each (α, P_{VtoH}, I_0) -set. From this, the estimated outbreak probability was calculated by averaging over all the simulations.

Fig. 5 illustrates that for low values of I_0 , the relationship between α and the probability of outbreak is concave up for small P_{VtoH} and then is approximately linear for large P_{VtoH} . As I_0 increases, especially past $I_0 = 15$ and for any value of P_{VtoH} , the outbreak curves approach a step function. As P_{VtoH} increases but I_0 is kept fixed, the concavity of the outbreak curves decreases, i.e., a concave up curve becomes more linear and a concave down curve approaches a step function. This indicates that an increase in α , I_0 , or P_{VtoH} corresponds with higher outbreak probabilities.

4.4 Heterogeneous Environment Simulation

The effects of a heterogeneous environment were studied using the map illustrated in Fig. 6a, which was inspired by the cervid farm studied in McGregor et al (2019). Following the additional movement rules as described in Section 3.3, midges preferentially travel to habitats that are more favorable (3) instead of random walk motion (1). Due to computational constraints, a single simulation of 30 days was run, and midge locations were saved at the final time step. The spatial density of the midges is shown in Fig. 6b.

Fig. 6 indicates that there are strong structural similarities between the density distribution of the simulated midges (Fig. 6b) and the preferred regions in the map (Fig. 6a). Specifically, there is a long vertical cluster of midges centered near (200, 500), which corresponds to the most preferred region in the map (level 5). An additional highly-dense cluster is centered near (700, 800), which corresponds to the next most preferred region of level 4, observing that this cluster is closer to regions of level 3 and 1, rather than the level 5 region. Finally, there is a noticeable lack of midges near (500, 250), which is linked to the large and least preferred region of level 1.

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

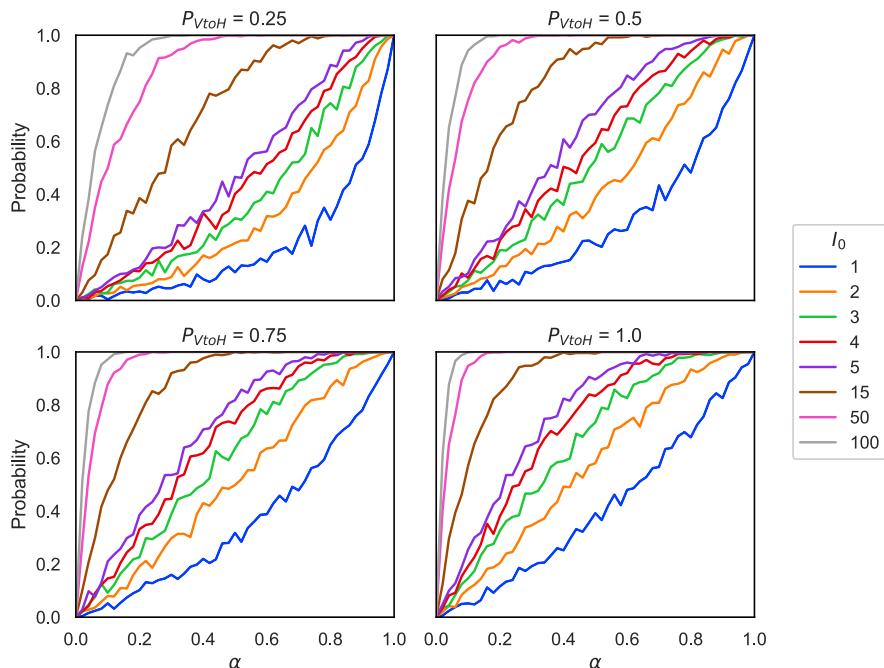


Fig. 5: The probability of outbreak given different initial numbers of infected midges, I_0 , depending on the daily survival rate, α , and the probability of transmission from vector to host P_{VtoH} . An outbreak was defined to be the infection of a single ruminant. The probability of outbreak increases dramatically as α increases. The shape of the curve is concave up or linear for low I_0 and for low P_{VtoH} or high P_{VtoH} , respectively, and approaches a step function for high I_0 , regardless of the value of P_{VtoH} .

5 Discussion

The goal of this paper was to develop a model that represents the spread of BTV in a controlled idealized environment. This model was investigated through methods that included sensitivity analysis and an examination of the probability of outbreak. Results indicated that the model was more sensitive to variations in *Culicoides* spp. survival rate than to the extrinsic incubation period of BTV or transmission probability (Fig. 3), which was reinforced by analysis of the probability of outbreak (Fig. 5). Additional visual analysis of the heat map in Fig. 4 suggests that there exists a bifurcation when considering the relationship between survival rate and extrinsic incubation period, which specifies parameter regimes in which outbreaks are expected. As such, we conclude from this model that there exists a strong relationship between survival rate and the spread of BTV.

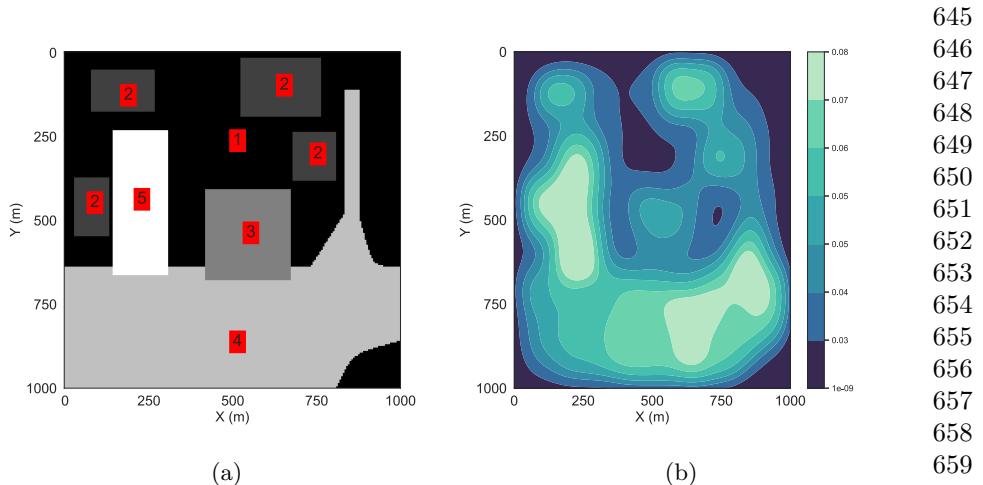


Fig. 6: Heterogeneous environment simulation. (a) Map of a heterogeneous domain, where lighter colors and higher numbers indicate habitats that are more favorable to midges. (b) A density plot of simulated midges at 30 days in the heterogeneous environment, with $\alpha = 0.75$, $P_d = 100$, and $\gamma = 500$. Units: midges per m^2 .

It is first worth noting the limitations of the model. As it is extremely difficult to accurately count the population of biting midges in a given system, the population of midges was set to be 100 times the number of ruminants. This ratio was chosen due to computational constraints. It is very likely that this is an underestimation of the total number of midges, and so the true spread of BTV would occur among a much larger vector population. Additionally, the model does not consider ruminants that ultimately recover or die from BTV infection, thereby resulting in a non-decreasing number of viremic hosts that will indefinitely contribute to the spread of BTV. Therefore it is possible that the model is overestimating the number of infected ruminants over long simulation periods (greater than one or two months).

Simulations of the model suggest that early in the outbreak, BTV could be in the system while not being detected. This would occur during a short window where there are no viremic ruminants or midges capable of spreading BTV, and instead, the virus is within a host animal or midge after inoculation has occurred but the virus has not yet completed its replication cycle. This suggests that it is much more difficult for ecologists and epidemiologists to detect and isolate early outbreaks of BTV in a region. We suggest that it would be possible to counter this issue by repeated testing of susceptible hosts over multiple days in at-risk areas.

A key focus of this model was analyzing possible outbreak scenarios. As such, the analysis has shown that survival rate of the midges plays the most

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

691 important factor in determining the probability of an outbreak. Other studies
692 have also shown that vector mortality rate and density significantly affect
693 disease spread within host populations for mosquitoes transmitting malaria
694 (Mandal et al (2011)) and tsetse flies transmitting human African trypanoso-
695 miasis (Gervas et al (2018)). Therefore it would be prudent that, in regions at
696 risk of an outbreak, the main focus should be to reduce the survival rate of
697 vector species through means such as pest control. Other options include tem-
698 porary removal or isolation of BTV host species, which most commonly are
699 livestock used in agriculture.

700 One result of the model is that the outbreak probability increases with
701 I_0 (Fig. 5). While the trend appears linear for low values of I_0 , it was found
702 that this trend becomes increasingly concave. As I_0 increases, the probabili-
703 ty of outbreak approaches a step function. While this follows intuition, and
704 helps to further validate the model, the results further suggest that high num-
705 bers of infected *Culicoides* spp. midges virtually guarantee the possibility of
706 an outbreak. This implies that population control measures such as pesti-
707 cides may not be enough to prevent epizootics, as long as there are enough
708 vectors already infected with BTV to continue the cycle. This presents a
709 predicament, as another strategy to prevent outbreaks is mass vaccination of
710 livestock in the surrounding region. However, the development of new vac-
711 cines is challenging due to the apparent increase of novel BTV serotypes which
712 are not immunologically simple (MacLachlan et al (2015)), increasing the eco-
713 nomic impact through very expensive vaccine development and adminstration
714 (Gerry et al (2001)). Ideally, outbreaks would be controlled by a combination
715 of vector population-control methods and vaccination programs.

716 Multiple studies have shown a strong seasonality with the growth and decay
717 of BTV (Gerry et al (2001); Carpenter et al (2011)). It is known that BTV can
718 lie dormant for multiple months during colder, more unfavorable conditions,
719 then return during spring and summer where its prevalence reaches its peak.
720 This model did not attempt to simulate outbreaks on large time scales, and
721 so seasonality was not considered in the design. Instead, the model assumes
722 constant parameters and consistent environmental variables. Additionally, one
723 of the key goals of this model was to understand BTV spread in the southeast
724 United States, particularly North Florida, where BTV remains endemic and
725 does not spread through outbreaks like in Europe. In the southeast and North
726 Florida in particular, the subtropical environment offers less seasonality than
727 in more northern regions. As such, the lack of seasonality in this model is not
728 as critical of a limitation as it would be in a model for more temperate regions.

729 In simulations with a heterogeneous environment where midges follow pref-
730 erential movement toward more favorable habitats, the midges showed a strong
731 ability to arrange themselves in habitats that are more preferable, such as
732 those commonly being bodies of water or swamps (Erram et al (2019)). Fur-
733 thermore, as illustrated in Fig. 6b, midges will not only concentrate in the
734 highest favored habitats, as expected, but there can be less favorable habitats
735 that midges will also cluster in, such as the level 4 region centered around
736

(700, 800) which is closer to level 1 regions than expected. Thus, MidgePy simulations can be used in regions containing high midge concentrations to suggest optimal farm layouts that involve organizing pastures and fences to avoid these areas. As Fig. 4 indicates, smaller midge populations correspond with fewer BTV infected ruminants for similar ρ and α . Therefore, habitats which are suitable for ruminants but not for midges should be prioritized to reduce BT outbreak occurrence and severity.

Future work will focus on the development of a continuous model based on differential equations to identify a functional relationship between the *Culicoides* spp. daily survival rate α and extrinsic incubation period ρ . While the sensitivity analysis indicates α to be more influential than ρ in determining the size of an outbreak, ρ still plays a significant role. In fact, there appears to be a linear relationship between α and ρ that shows how high survival rates may not be enough to guarantee an outbreak when combined with long incubation periods.

This model was designed with simplicity in mind. For that reason, modifications and extensions to MidgePy can be implemented with relative ease in order to investigate the spread of other vector-borne diseases. Other future avenues of research using this model as a base include modeling malaria, which is spread through humans and other animal hosts. This would add a new level of complexity, as humans move significant distances more frequently than livestock. Additionally, there are other model parameters which are of potential future interest, including the incubation period of BT within ruminants, ρ_H , and midge biting rate, T_{full} . These parameters warrant further study, as well as extending the model to include vaccination and ruminant death to account for the high mortality rate found in some ruminants, particularly sheep, due to BTV (Conraths et al (2009)), and to directly include environmental factors such as temperature and its functional relationships with other parameters. Such analysis could supplement biological research on BTV-host interactions.

Supplementary information. The source code for MidgePy used to generate the results for this article is available through GitHub at <https://github.com/stepien-lab/MidgePy> [v1.0.0]. The code is platform independent and written in Python. The data used for this article is available through OSF at <https://www.osf.io/fhven>.

Acknowledgments. The authors acknowledge University of Florida Research Computing for providing computational resources and support that have contributed to the research results reported in this publication.

T.L.S. acknowledges support from a Simons Collaboration Grant for Mathematicians (#710482) and NSF grant DMS-2151566.

The authors would like to thank the anonymous reviewers for their careful reading and many helpful suggestions.

Statements and Declarations

Competing interests. The authors declare no competing interests.

783 References

784
785 Alba A, Casal J, Domingo M (2004) Possible introduction of bluetongue into
786 the Balearic Islands, Spain, in 2000, via air streams. *Veterinary Record*
787 155(15):460–461. <https://doi.org/10.1136/vr.155.15.460>

788 Alderton S, Macleod ET, Anderson NE, et al (2018) An agent-based model
789 of tsetse fly response to seasonal climatic drivers: Assessing the impact
790 on sleeping sickness transmission rates. *PLOS Neglected Tropical Diseases*
791 12(2):1–29. <https://doi.org/10.1371/journal.pntd.0006188>

792 Bau J, Cardé RT (2015) Modeling optimal strategies for finding a resource-
793 linked, windborne odor plume: Theories, robotics, and biomimetic lessons
794 from flying insects. *Integrative and Comparative Biology* 55(3):461–477.
795 <https://doi.org/10.1093/icb/icv036>

796 Bernoff AJ, Culshaw-Maurer M, Everett RA, et al (2020) Agent-based
797 and continuous models of hopper bands for the australian plague locust:
800 How resource consumption mediates pulse formation and geometry. *PLOS*
801 *Computational Biology* 16(5):1–29. <https://doi.org/10.1371/journal.pcbi.1007820>

802 Bessell PR, Searle KR, Auty HK, et al (2016) Assessing the potential for
803 bluetongue virus 8 to spread and vaccination strategies in Scotland. *Scientific*
804 *Reports* 6(1):38,940. <https://doi.org/10.1038/srep38940>

805 Blackwell A (1997) Diel flight periodicity of the biting midge *Culicoides*
806 *impunctatus* and the effects of meteorological conditions. *Medical and Veterinary Entomology* 11(4):361–367. <https://doi.org/10.1111/j.1365-2915.1997.tb00423.x>

807 Brand SPC, Keeling MJ (2017) The impact of temperature changes on vector-
808 borne disease transmission: *Culicoides* midges and bluetongue virus. *Journal*
809 *of The Royal Society Interface* 14(128):20160,481. <https://doi.org/10.1098/rsif.2016.0481>

810 Carpenter S, Wilson A, Barber J, et al (2011) Temperature dependence of the
811 extrinsic incubation period of orbiviruses in *Culicoides* biting midges. *PLOS*
812 *ONE* 6(11):1–8. <https://doi.org/10.1371/journal.pone.0027987>

813 Carpenter S, Groschup MH, Garros C, et al (2013) Culicoides biting midges,
814 arboviruses and public health in Europe. *Antiviral Research* 100(1):102–113.
815 <https://doi.org/10.1016/j.antiviral.2013.07.020>

816 Chapman JW, Nesbit RL, Burgin LE, et al (2010) Flight orientation behaviors
817 promote optimal migration trajectories in high-flying insects. *Science*
818 327(5966):682–685. <https://doi.org/10.1126/science.1182990>

819
820
821
822
823
824
825
826
827
828

Conraths FJ, Gethmann JM, Staubach C, et al (2009) Epidemiology of bluetongue virus serotype 8, Germany. Emerging infectious diseases 15(3):433–435. <https://doi.org/10.3201/eid1503.081210> 829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Courtejoie N, Zanella G, Durand B (2018) Bluetongue transmission and control in Europe: A systematic review of compartmental mathematical models. Preventive Veterinary Medicine 156:113–125. <https://doi.org/10.1016/j.prevetmed.2018.05.012> 833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Diouf EG, Brévault T, Ndiaye S, et al (2022) An agent-based model to simulate the boosted Sterile Insect Technique for fruit fly management. Ecological Modelling 468:109,951. <https://doi.org/10.1016/j.ecolmodel.2022.109951> 837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Dorin A, Taylor T, Dyer AG (2022) Goldilocks' quarter-hectare urban farm: An agent-based model for improved pollination of community gardens and small-holder farms. PLOS Sustainability and Transformation 1(7):1–23. <https://doi.org/10.1371/journal.pstr.0000021> 841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Elbers A, Meiswinkel R (2014) *Culicoides* (Diptera: Ceratopogonidae) host preferences and biting rates in the Netherlands: Comparing cattle, sheep and the black-light suction trap. Veterinary Parasitology 205(1):330–337. <https://doi.org/10.1016/j.vetpar.2014.06.004> 846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Erram D, Burkett-Cadena N (2018) Laboratory studies on the oviposition stimuli of *Culicoides stellifer* (Diptera: Ceratopogonidae), a suspected vector of Orbiviruses in the United States. Parasites & Vectors 11(1):300. <https://doi.org/10.1186/s13071-018-2891-8> 851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Erram D, Blosser EM, Burkett-Cadena N (2019) Habitat associations of *Culicoides* species (Diptera: Ceratopogonidae) abundant on a commercial cervid farm in Florida, USA. Parasites & Vectors 12(1). <https://doi.org/10.1186/s13071-019-3626-1> 856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Fall M, Fall AG, Seck MT, et al (2015) Circadian activity of *Culicoides oxystoma* (Diptera: Ceratopogonidae), potential vector of bluetongue and African horse sickness viruses in the Niayes area, Senegal. Parasitology Research 114(8):3151–3158. <https://doi.org/10.1007/s00436-015-4534-8> 860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

Gerbier G, Baldet T, A.Tran, et al (2008) Modelling local dispersal of bluetongue virus serotype 8 using random walk. Preventive Veterinary Medicine 87(1):119–130. <https://doi.org/10.1016/j.prevetmed.2008.06.012> 865
866
867
868
869
870
871
872
873
874

Gerry AC, Mullens BA (2000) Seasonal Abundance and Survivorship of *Culicoides sonorensis* (Diptera: Ceratopogonidae) at a Southern California Dairy, with Reference to Potential Bluetongue Virus Transmission and Persistence. Journal of Medical Entomology 37(5):675–688. <https://doi.org/10.1603/0022-2585-37.5.675> 869
870
871
872
873
874

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 Gerry AC, Mullens BA, MacLachlan NJ, et al (2001) Seasonal transmission of bluetongue virus by *Culicoides sonorensis* (Diptera: Ceratopogonidae) at a southern California dairy and evaluation of vectorial capacity as a predictor of bluetongue virus transmission. *Journal of Medical Entomology* 38(2):197–209. <https://doi.org/10.1603/0022-2585-38.2.197>

Gervas HE, Opoku NKDO, Ibrahim S (2018) Mathematical modelling of human African trypanosomiasis using control measures. *Computational and Mathematical Methods in Medicine* 2018:5293,568. <https://doi.org/10.1155/2018/5293568>

Gethmann J, Probst C, Conraths FJ (2020) Economic impact of a bluetongue serotype 8 epidemic in Germany. *Frontiers in Veterinary Science* 7:65. <https://doi.org/10.3389/fvets.2020.00065>

Golov Y, Benelli N, Gurka R, et al (2021) Open-source computational simulation of moth-inspired navigation algorithm: A benchmark framework. *MethodsX* 8:101,529. <https://doi.org/10.1016/j.mex.2021.101529>

González M, Alarcón-Elbal P, Venter G, et al (2017) Flight and swarming behaviour of *Culicoides* species (Diptera: Ceratopogonidae) on a livestock farm in Northern Spain. *Veterinaria Italiana* 53:157–166. <https://doi.org/10.12834/VetIt.371.1663.4>

Gourley SA, Thieme HR, van den Driessche P (2011) Stability and persistence in a model for bluetongue dynamics. *SIAM Journal on Applied Mathematics* 71(4):1280–1306. <https://doi.org/10.1137/090775014>

Grant TJ, Parry HR, Zalucki MP, et al (2018) Predicting monarch butterfly (*Danaus plexippus*) movement and egg-laying with a spatially-explicit agent-based model: The role of monarch perceptual range and spatial memory. *Ecological Modelling* 374:37–50. <https://doi.org/10.1016/j.ecolmodel.2018.02.011>

Gubbins S, Carpenter S, Baylis M, et al (2008) Assessing the risk of bluetongue to UK livestock: uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number. *Journal of The Royal Society Interface* 5(20):363–371. <https://doi.org/10.1098/rsif.2007.1110>

Guis H, Caminade C, Calvete C, et al (2012) Modelling the effects of past and future climate on the risk of bluetongue emergence in Europe. *Journal of The Royal Society Interface* 9(67):339–350. <https://doi.org/10.1098/rsif.2011.0255>

Herman J, Usher W (2017) SALib: An open-source python library for sensitivity analysis. *The Journal of Open Source Software* 2(9). <https://doi.org/10.21105/joss.00097>

Leitch KJ, Ponce FV, Dickson WB, et al (2021) The long-distance flight behavior of <i>Drosophila</i> supports an agent-based model for wind-assisted dispersal in insects. <i>Proceedings of the National Academy of Sciences</i> 118(17):e2013342,118. https://doi.org/10.1073/pnas.2013342118	921 922 923 924 925
Li F, Zhao XQ (2019) Dynamics of a periodic bluetongue model with a temperature-dependent incubation period. <i>SIAM Journal on Applied Mathematics</i> 79(6):2479–2505. https://doi.org/10.1137/18M1218364	926 927 928 929 930
Liberzon A, Harrington K, Daniel N, et al (2018) Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source. <i>PLOS ONE</i> 6(13):1–18. https://doi.org/10.1371/journal.pone.0198422	931 932 929 930 931 932
Lin S, DeVisser MH, Messina JP (2015) An agent-based model to simulate tsetse fly distribution and control techniques: A case study in Nguru-man, Kenya. <i>Ecological Modelling</i> 314:80–89. https://doi.org/10.1016/j.ecolmodel.2015.07.015	933 934 935 936 937
Lysyk TJ, Danyk T (2007) Effect of temperature on life history parameters of adult <i>Culicoides sonorensis</i> (Diptera: Ceratopogonidae) in relation to geographic origin and vectorial capacity for bluetongue virus. <i>Journal of Medical Entomology</i> 44(5):741–751. https://doi.org/10.1093/jmedent/44.5.741	938 939 940 941 942 943
MacLachlan NJ, Mayo CE, Daniels PW, et al (2015) Bluetongue. <i>Rev Sci Tech</i> 34(2):329–340. https://doi.org/10.20506/rst.34.2.2360	944 945 946
MacLachlan NJ, Zientara S, Wilson WC, et al (2019) Bluetongue and epizootic hemorrhagic disease viruses: Recent developments with these globally re-emerging arboviral infections of ruminants. <i>Current Opinion in Virology</i> 34:56–62. https://doi.org/10.1016/j.coviro.2018.12.005	947 948 949 950 951
Mandal S, Sarkar RR, Sinha S (2011) Mathematical models of malaria - a review. <i>Malaria Journal</i> 10(1):202. https://doi.org/10.1186/1475-2875-10-202	952 953 954
Mayo C, McDermott E, Kopanke J, et al (2020) Ecological dynamics impacting bluetongue virus transmission in North America. <i>Frontiers in Veterinary Science</i> 7:186. https://doi.org/10.3389/fvets.2020.00186	955 956 957 958
McGregor BL, Stenn T, Sayler KA, et al (2019) Host use patterns of <i>Culicoides</i> spp. biting midges at a big game preserve in Florida, U.S.A., and implications for the transmission of orbiviruses. <i>Medical and Veterinary Entomology</i> 33(1):110–120. https://doi.org/10.1111/mve.12331	959 960 961 962 963
Mellor P (2000) Replication of arboviruses in insect vectors. <i>Journal of Comparative Pathology</i> 123(4):231–247. https://doi.org/10.1053/jcpa.2000.964	964 965 966

967 0434

968

969 Mellor PS (1990) The replication of bluetongue virus in *Culicoides* vec-
970 tors. In: Roy P, Gorman BM (eds) Bluetongue Viruses. Springer
971 Berlin Heidelberg, Berlin, Heidelberg, pp 143–161, https://doi.org/10.1007/978-3-642-75247-6_6

972

973 Mellor PS, Boorman J, Baylis M (2000) *Culicoides* biting midges: Their role
974 as arbovirus vectors. Annual Review of Entomology 45(1):307–340. <https://doi.org/10.1146/annurev.ento.45.1.307>

975

976

977 Möhlmann TWR, Keeling MJ, Wennergren U, et al (2021) Biting midge
978 dynamics and bluetongue transmission: A multiscale model linking catch
979 data with climate and disease outbreaks. Scientific Reports 11:1892. <https://doi.org/10.1038/s41598-021-81096-9>

980

981

982 Noad R, Roy P (2009) Bluetongue vaccines. Vaccine 27:D86–D89. <https://doi.org/10.1016/j.vaccine.2009.08.037>

983

984

985 Pedgley DE, Brooksby JB (1983) Windborne spread of insect-transmitted dis-
986 eases of animals and man. Philosophical Transactions of the Royal Society of
987 London B, Biological Sciences 302(1111):463–470. <https://doi.org/10.1098/rstb.1983.0068>

986

987

988

989 Rivera NA, Varga C, Ruder MG, et al (2021) Bluetongue and epizootic hem-
990 orrhagic disease in the United States of America at the wildlife–livestock
991 interface. Pathogens 10(8):915. <https://doi.org/10.3390/pathogens10080915>

992

993

994 Rojas JM, Martín V, Sevilla N (2021) Vaccination as a strategy to prevent
995 bluetongue virus vertical transmission. Pathogens 10(11):1528. <https://doi.org/10.3390/pathogens10111528>

996

997

998 Saegerman C, Berkvens D, Mellor PS (2008) Bluetongue epidemiology in the
999 European Union. Emerging Infectious Disease Journal 14(4):539. <https://doi.org/10.3201/eid1404.071441>

1000

1001 Saltelli A (2002) Making best use of model evaluations to compute sensi-
1002 tivity indices. Computer Physics Communications 145(2):280–297. [https://doi.org/doi.org/10.1016/S0010-4655\(02\)00280-1](https://doi.org/doi.org/10.1016/S0010-4655(02)00280-1)

1002

1003

1004

1005 Saltelli A, Annoni P, Azzini I, et al (2010) Variance based sensitivity analysis of
1006 model output. design and estimator for the total sensitivity index. Computer
1007 Physics Communications 181(2):259–270. <https://doi.org/doi.org/10.1016/j.cpc.2009.09.018>

1008

1009

1010 Samy AM, Peterson AT (2016) Climate change influences on the global
1011 potential distribution of bluetongue virus. PLOS ONE 11(3):1–12. <https://doi.org/10.1371/journal.pone.0151311>

1012

//doi.org/10.1371/journal.pone.0150489 1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Sedda L, Brown HE, Purse BV, et al (2012) A new algorithm quantifies the roles of wind and midge flight activity in the bluetongue epizootic in northwest Europe. *Proc Biol Sci* 279(1737):2354–2362. <https://doi.org/10.1098/rspb.2011.2555>

Sellers RF, Maarouf AR (1989) Trajectory analysis and bluetongue virus serotype 2 in Florida 1982. *Can J Vet Res* 53(1):100–102

Sellers RF, Maarouf AR (1990) Trajectory analysis of winds and vesicular stomatitis in North America, 1982–5. *Epidemiology and Infection* 104(2):313–328. <https://doi.org/10.1017/S0950268800059495>

Singer RS, MacLachlan JN, Carpenter TE (2001) Maximal predicted duration of viremia in bluetongue virus–infected cattle. *Journal of Veterinary Diagnostic Investigation* 13(1):43–49. <https://doi.org/10.1177/104063870101300109>

Smith KE, Stallknecht DE (1996) *Culicoides* (Diptera: Ceratopogonidae) collected during epizootics of hemorrhagic disease among captive white-tailed deer. *Journal of Medical Entomology* 33(3):507–510. <https://doi.org/10.1093/jmedent/33.3.507>

Smith NR, Trauer JM, Gambhir M, et al (2018) Agent-based models of malaria transmission: a systematic review. *Malaria Journal* 17(1):299. <https://doi.org/10.1186/s12936-018-2442-y>

Sobol' IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. *Math Comput Simulat* 55(1):271–280. [https://doi.org/10.1016/S0378-4754\(00\)00270-6](https://doi.org/10.1016/S0378-4754(00)00270-6)

Stepien TL, Zmurchok C, Hengenius JB, et al (2020) Moth mating: Modeling female pheromone calling and male navigational strategies to optimize reproductive success. *Applied Sciences* 10(18):6543. <https://doi.org/10.3390/app10186543>

Szmaragd C, Wilson AJ, Carpenter S, et al (2009) A modeling framework to describe the transmission of bluetongue virus within and between farms in Great Britain. *PLOS ONE* 4(11):1–10. <https://doi.org/10.1371/journal.pone.0007741>

Szmaragd C, Wilson AJ, Carpenter S, et al (2010) The spread of bluetongue virus serotype 8 in Great Britain and its control by vaccination. *PLOS One* 5(2):1–8. <https://doi.org/10.1371/journal.pone.0009353>

1059 Topaz CM, Bernoff AJ, Logan S, et al (2008) A model for rolling swarms
1060 of locusts. *The European Physical Journal Special Topics* 157(1):93–109.
1061 <https://doi.org/10.1140/epjst/e2008-00633-y>

1062

1063 Tsutsui T, Hayama Y, Yamakawa M, et al (2011) Flight behavior of adult
1064 *Culicoides oxystoma* and *Culicoides maculatus* under different temperatures
1065 in the laboratory. *Parasitology Research* 108(6):1575–1578. <https://doi.org/10.1007/s00436-010-2048-y>

1067

1068 Tugwell LA, England ME, Gubbins S, et al (2021) Thermal limits for flight
1069 activity of field-collected *Culicoides* in the United Kingdom defined under
1070 laboratory conditions. *Parasites & Vectors* 14(1):55. <https://doi.org/10.1186/s13071-020-04552-x>

1072

1073 Turner J, Bowers RG, Baylis M (2012) Modelling bluetongue virus transmis-
1074 sion between farms using animal and vector movements. *Scientific Reports*
1075 2(1):319. <https://doi.org/10.1038/srep00319>

1076

1077 Wittmann EJ, Mellor PS, Baylis M (2002) Effect of temperature on the
1078 transmission of orbiviruses by the biting midge, *culicoides sonorensis*. *Med-
1079 ical and Veterinary Entomology* 16(2):147–156. <https://doi.org/10.1046/j.1365-2915.2002.00357.x>

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104