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Abstract

Bluetongue (BT) is a well-known vector-borne disease that infects rumi-
nants such as sheep, cattle, and deer with high mortality rates. Recent
outbreaks in Europe highlight the importance of understanding vector-
host dynamics and potential courses of action to mitigate the damage
that can be done by BT. We present an agent-based model (ABM), enti-
tled ‘MidgePy’, that focuses on the movement of individual Culicoides
spp. biting midges and their interactions with ruminants to understand
their role as vectors in BT outbreaks, especially in regions that do
not regularly experience outbreaks. The results of our sensitivity anal-
ysis suggest that midge survival rate has a significant impact on the
probability of a BTV outbreak as well as its severity. Using midge
flight activity as a proxy for temperature, we found that an increase
in environmental temperature corresponded with an increased proba-
bility of outbreak after identifying parameter regions where outbreaks
are more likely to occur. This suggests that future methods to control
BT spread could combine large-scale vaccination programs with biting
midge population control measures such as the use of pesticides. Spa-
tial heterogeneity in the environment is also explored to give insight
on optimal farm layouts to reduce the potential for BT outbreaks.

Keywords: vector-borne disease, epidemiology
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2 An ABM of biting midge dynamics to understand Bluetongue outbreaks

1 Introduction

In the late 2000s and early 2010s, multiple Bluetongue (BT) disease out-
breaks occurred across Northern Europe, a region which had not previously
experienced BT spread. The resulting epizootic, fueled by an abundance of
immunologically naive livestock, lasted several years until it was finally brought
under control through mass vaccination programs and the restriction of live-
stock movement across country borders (Gethmann et al (2020)). The epizootic
had a significant economic impact on the livestock industry, and its persistence
represents a continued threat to the European agricultural economy (Conraths
et al (2009)).

Occasional epizootics occur in any given year now and result in losses
amounting to hundreds of millions of dollars due to necessary vaccination pro-
grams or lost revenue (Mayo et al (2020)). Furthermore, livestock infected with
BT experience high morbidity and mortality rates (Saegerman et al (2008)).
Understanding how BT arrived in Northern Europe is of interest to help pre-
vent or mitigate potential outbreaks in new regions. Indeed, the case of BT
in Europe is considered an important example of how the geographical ranges
of vector-borne diseases can shift as climatic warming increases mean/me-
dian temperatures in higher latitudes (Brand and Keeling (2017); Samy and
Peterson (2016)).

BT is a vector-borne disease caused by Bluetongue Virus (BTV) that is
transmitted by Culicoides spp. biting midges (Diptera: Ceratopogonidae) and
affects a wide range of ruminants such as sheep, cattle, and deer. Thus, the
spatiotemporal dispersal of Culicoides spp. is central to the spread of BT
between farms that are geographically distant (Pedgley and Brooksby (1983);
Alba et al (2004); Sellers and Maarouf (1990, 1989); Chapman et al (2010)).

Previous mathematical models have focused on various aspects of the
spread of BT among animal populations with a considerable focus on
the Northern Europe BTV outbreaks of the 2000-2010s (reviewed in
Courtejoie et al (2018)). For example, Gubbins et al (2008) performed sensi-
tivity analysis on a temperature-dependent model that considered a vector
population and two host species to predict the risk of BT in Great Britain.
Szmaragd et al (2009, 2010) developed a model to examine the effects of vac-
cine uptake among farms in Great Britain following the 2006 BTV-8 outbreak.
Gourley et al (2011) used a delay differential equation model to investigate
reproduction numbers for BT. Implementing historical wind data, the model
of Sedda et al (2012) retroactively simulated the spatiotemporal spread of the
2006 BTV outbreak in Northern Europe. Guis et al (2012) developed a climate
driven model to predict how temporal changes in Ry would affect the future
risk of BT across Northern Europe. Additionally, Turner et al (2012) modeled
the effects of seasonality on the farm-to-farm spread of BT across England
and Li and Zhao (2019) examined how a temperature-dependent incubation
period affected the BT reproduction ratio.

Despite such advancements, the potential for BT to spread and impact
novel areas is comparatively understudied, and there is a need to examine
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the potential impact of BT in other locations that have not been historically
affected. In particular, while BTV is transmitted in many parts of North Amer-
ica, there exists only one confirmed vector: C. sonorensis (Gerry et al (2001)).
This poses a conundrum since the primary range for C. sonorensis does not
extend to the Southeastern United States, yet there have been confirmed cases
of BT in that region (Smith and Stallknecht (1996)). Entomologists have iden-
tified potential BTV vector species in the Southeastern United States including
C. stellifer, C. debilipalpis, and C. pallidicornis, however transmission of BT
by these species has yet to be directly observed (McGregor et al (2019)).

Here, we develop a mathematical model to study the potential of BT out-
breaks on individual farms in regions that have not previously experienced
frequent outbreaks. Our framework incorporates the movement of midges and
their interactions with ruminants. We develop an agent-based model (ABM)
that includes a spatial domain. This feature allows for much finer domain res-
olution than a multi-patch ordinary differential equations model and removes
the necessity to develop a system of partial differential equations. ABMs are
frequently used to understand aspects of vector-borne disease dynamics and
the navigation of insects. For example, Smith et al (2018) published a com-
prehensive review of how ABMs have been used to understand the role of
environmental heterogeneity in malaria spread, analyze the effectiveness of
intervention strategies, and describe parameter functions. The flight patterns
of insects such as moths (Bau and Cardé (2015); Liberzon et al (2018); Stepien
et al (2020); Golov et al (2021)), locusts (Topaz et al (2008); Bernoff et al
(2020)), flies (Lin et al (2015); Alderton et al (2018); Leitch et al (2021); Diouf
et al (2022)), honeybees (Dorin et al (2022)), and butterflies (Grant et al
(2018)) have all been studied with ABMs using a variety of modes including
simple random walks and directed movement toward a target.

This paper aims to understand the impacts of midge movement on the
transmission of BT using an ABM, and in particular, how aspects such as the
number of initial infected midges, the daily survival rate of the midges, the
extrinsic incubation period of midges inoculated with BTV, and the probability
of BTV transmission between a vector and host can affect the probability of
an outbreak on a single farm. We also study the effects of temperature using
the number of actively flying midges in a simulation as a proxy to determine
parameter regions where outbreaks are more likely. Spatial heterogeneity in the
environment is explored to give insight on optimal farm layouts to reduce the
potential for BT outbreaks. While many vector- and host-specific parameters
can affect the spread of BT, this study exclusively focuses on midge-specific
parameters.

The outline of this paper is as follows: in Section 2, we provide biological
information on BT and its spread. In Section 3, we describe an ABM ‘MidgePy’
to examine the spread of BT on an idealized small-scale large mammal farm of
approximately one square kilometer.. In Section 4, we perform sensitivity anal-
ysis of Culicoides spp. survival rates, the extrinsic incubation period of BTV,
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and BT transmission probability, as well as an analysis on outbreak proba-
bility and the effects of a heterogeneous spatial domain. Finally, in Section 5,
we summarize our results including their application to real-world efforts to
combat BT outbreaks.

2 Bluetongue (BT)

Bluetongue virus (BTV) is a virus from the family Reoviridae, genus Orbivirus
(Rivera et al (2021)). BTV causes Bluetongue (BT), a hemorrhagic disease in
ruminants that is transmitted by many species of Culicoides spp. biting midges
(Mellor (1990); Mellor et al (2000); Mellor (2000)). There are more than 20
known serotypes of BTV that circulate between different regions including the
Middle East, Europe, and North America (Gerbier et al (2008); Maclachlan
et al (2015); Saegerman et al (2008)).

While vaccines exist that prevent BT, the virus is not immunologically sim-
ple and thus the vaccines must be serotype specific. With the large number
of serotypes, each with varying virulence, it is difficult or impossible to vacci-
nate livestock against all strains (Noad and Roy (2009)). In addition, recent
studies have shown that, due to the segmented genome of BTV, the use of
live attenuated viruses to vaccinate ruminants has the possibility of introduc-
ing new genetic material to environments, increasing the risk of creating new
BTV serotypes (Rojas et al (2021)).

Transmission of BT from host to vector occurs when a competent Culi-
coides spp. vector bites a viremic ruminant, ingesting blood that contains
BTYV. The virus then undergoes an incubation period inside the midge, during
which it goes through multiple stages in the incubation cycle before eventually
replicating within the midge and reaching its salivary glands (Mellor (2000);
Mellor et al (2000)). The length of this process is known as the Extrinsic Incu-
bation Period (EIP) (Carpenter et al (2011)). In Culicoides spp. vectors, this
process typically lasts 14 days, however, it is significantly affected by the ambi-
ent temperature, which is accompanied by increasing Culicoides spp. activity
(Tsutsui et al (2011); Mayo et al (2020); Tugwell et al (2021)). Additionally,
the biting rate in Culicoides spp. has been shown to be positively correlated
with disease transmission rates (Elbers and Meiswinkel (2014)). Though it has
recently been shown that horizontal transmission of BT between ruminants is
possible (Maclachlan et al (2019)), the goal of this paper is to focus solely on
the vector-host transmission cycle, therefore, horizontal transmission of BT
will not be considered here.

3 Methods

We present a spatially and temporally explicit agent-based model (ABM),
simulated using ‘MidgePy’, an open-source package written in Python, that
characterizes the actions of ruminants and Culicoides spp. biting midges and
the spread of Bluetongue (BT) among these populations. The spatial landscape
of our study is based on a cervid farm in North Florida that has been the
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Fig. 1: Flowchart of the MidgePy algorithm that determines Culicoides spp.
behavior at each step.

focus of previous BT dynamics studies (McGregor et al (2019); Erram et al
(2019); Erram and Burkett-Cadena (2018)). However, the spatial landscape in
MidgePy is customizable so that the outbreak likelihood given the introduction
of BTV-infected midges to any region may be examined.

The MidgePy algorithm is depicted as a flow chart in Fig. 1, which we
subsequently describe.
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3.1 Model State Variables

MidgePy is comprised of two main classes of agents: a midge swarm class,
named MidgeSwarm, and a ruminant swarm class, named HostSwarm. Each
class holds arrays containing information on each agent, such as their location
and whether or not they are infected with BT. The length of the array indicates
the population size of the respective agent type. In particular, the MidgeSwarm
and HostSwarm classes contain arrays of lengths vP; and Py, respectively,
where v : 1 is the ratio of midges to ruminants in a simulation. See Table 1 for
a list of model parameters and their values.

An increase in the midges-per-ruminant ratio 7 significantly increased the
computational cost when running the model, and so we ran simulations to
determine a value of v that would allow for a reasonable computational time
yet be representative of the full population dynamics. Initial simulations were
run setting v = 30, and then increased to v = 100. Simulations run with
~v > 100 showed no significant differences in model output. Therefore it was
decided that v = 100 was a suitable parameter value for this analysis.

3.2 Initialization of Simulations

We considered both homogeneous and heterogeneous spatial domains in our
study. The homogeneous domain was set to be a continuous, homogeneous
square of size 1 km x 1 km. The heterogeneous spatial domain is described
subsequently in Section 3.2.1. Analogous to the cervid farms studied in McGre-
gor et al (2019), Erram et al (2019), and Erram and Burkett-Cadena (2018), we
assume Culicoides spp. are able to interact with both domestic and wild hosts,
but we only include domestic hosts located on the farm. Hence, midges can
fly beyond the limits of the farm domain, however the host population must
always remain within the limits. If a midge flies beyond the farm domain, it
continues following the same behavior it would as if it were within the domain
(Fig. 2).

At the beginning of each day in the simulation, each ruminant is given a
random position within the farm domain. Simulations where ruminants moved
in a random walk did not produce notably different results compared to sim-
ulations where ruminants remained static throughout each day, and thus, to
reduce computational complexity, ruminant locations were updated once daily.

Each day was simulated to be Ty = 5 hours long, which is approximately
the amount of time during dawn and dusk where Culicoides spp. midges are
most active (Fall et al (2015); Gonzélez et al (2017); Blackwell (1997)). At the
start of the simulation, an initial number of midges, I, are randomly selected
to be infected with BTV.

Unless otherwise stated, the simulation period of the model was 60 days.
This was chosen as the primary interest for this model was understanding
outbreak dynamics, and so longer periods were not necessary.
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Table 1: Model parameters of the agent-based model MidgePy. For all param-
eter values that do not have a reference, see Section 3.

Parameter  Description Value Units  Reference
At Time step 60 s
Tran Length of time after a blood meal 2 days
that a midge remains not hungry
Ty Length of each day simulated 5 hours Fall et al (2015);
Gonzalez et al
(2017);  Blackwell
(1997)
Py Ruminant population size 100
o Number of midges per ruminant 100 : 1
Uy Flight speed of a roaming midge 0.13 m/s Sedda et al (2012)
vy Flight speed of an active midge 0.5 m/s Sedda et al (2012);
Gethmann et al
(2020)
ddet Maximum distance a midge can 300 m
detect a ruminant
dpite Minimum distance required for a  vyAt m
midge to bite a ruminant
Pyton Probability of BTV transmission 0.9 Bessell et al (2016)
from vector to host
Pritov Probability of BTV transmission 0.14 Carpenter et al
from host to vector (2013)
pH Extrinsic incubation period of BTV~ 2 days
in ruminants
p Extrinsic incubation period of BTV~ 10-20 days Tsutsui et al
in Culicoides spp. (2011); Mayo
et al (2020); Tug-
well et al (2021);
Wittmann et al
(2002)
« Culicoides spp. daily survival prob-  0.5-0.9 Wittmann et al
ability (2002); Lysyk and
Danyk (2007);
Gerry and Mullens
(2000)
I Number of midges infected with 1-5

BTV at initialization

3.2.1 Heterogeneous Environment

Since midges’ habitat preferences, such as toward bodies of water or swamps,
could have an effect on the direction that they would fly (Erram et al (2019)),
we also considered a heterogeneous domain. The domain designed for our study
was inspired by the cervid farm located in Gadsden County, FL, USA that
was studied in McGregor et al (2019).

To examine the effects of heterogeneity, we generated a 200 pixel x 200 pixel
map, where each pixel in the map represents a 5 m x 5 m region in the domain.
FEach pixel was categorized into one out of five different habitat types, which
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Time Step
| |

0 500 1000
X (m)

Fig. 2: An example path of a midge over one day (300 time steps). The gray
dots represent hosts. The red dot indicates the host that the selected midge bit.
The dashed boundary indicates the simulated farm domain where the hosts
can roam.

were given a rank to correspond with the habitat preferences of the midges: 1
is considered the least favorable and 5 is the most favorable.

3.3 Midge Movement and Biting Behavior

At each time step, of length At, whether a midge has recently fed or not is
determined, which then dictates the type of movement that the midge will
undergo. We consider a midge to have recently fed if it had a blood meal from a
ruminant within the last Tty days, which we set to be 2 days. The midges that
have recently fed (time since last meal < T%,;) move in a random walk with
roaming flight velocity v,. Letting x(t) = (x(t),y(¢)) be the current location
of a midge, its location is updated according to

x, — x(t)

X(b+ At = x(t) + oAt

; (1)

where x,. is a random point uniformly selected within the domain. This ensures
that midges remain within the domain and do not travel too far outside the
region to detect ruminants when searching for a blood meal.

If a midge has not recently fed (time since last meal > T,), it will check
if there is a ruminant within a radius of distance dqe; from itself, which we set
to be 300 m. If there are no ruminants within that distance, the midge moves
in a random walk with roaming flight velocity v, as defined above in (1). If
ruminants are located within a midge’s detection distance dget, the midge will
fly in the direction of the closest ruminant with active flight velocity vy, such
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that its location is updated according to
xp — x(t)
x(t+ At) = x(t) + v At ——————— (2)
T e = x(0)

where xj, is the location of the host that is closest to the midge. The midge
will move according to (2) until it is within a minimum biting distance dpite,
after which the ruminant will be bitten.

For a heterogeneous domain (Section 3.2.1), we assume that midges under-
going random walk movement would preferentially move toward habitats that
are more favorable. Modifications for midge movement are then as follows: at
each time step that a midge is not searching for a blood meal, the midge deter-
mines the preference ranking of the habitats in its Moore neighborhood (the
surrounding eight 5 m x 5 m patches as well as the patch that the midge is
currently located in). The patches with the highest value according to prefer-
ence are selected, and then one patch is randomly chosen. The midge flies with
roaming flight velocity v, in the direction of the chosen patch and its location
is updated according to

xp — X(t)

x(t + At) = x(t) + v, At T, —x(0)] (3)
where x,, is the location of the center of the chosen patch (instead of the loca-
tion being updated according to (1)). The patch selection process is repeated
at each time step, so this means that the habitat distribution has an effect on
how directed versus how random a midges’ flight movement is: if there is just
one patch surrounding the midge with a higher ranking than all of the other
patches, the midge will fly directly to that patch. However, if there are mul-
tiple patches surrounding the midge with equal preference ranking, then the
midge will overall appear to move more in a random walk motion.

3.4 Transmission of Bluetongue Virus

After a midge bites a ruminant in the simulation, the subsequent steps are
followed: If the host is viremic with BTV, then BTV is transmitted to the
midge with probability Pygiov. If the midge is infectious with BTV, then BTV
is transmitted to the host with probability Pyiom-

After being bitten by a BT'V-infected midge, the viral pathogen undergoes
an intrinsic incubation for py days before the ruminant host becomes viremic
and could potentially infect other midges. Due to a lack of data providing
a more precise value, we set pg to be 2 days. Similarly, a midge that had
been infected by BTV would undergo an extrinsic incubation period, p. The
model did not consider the ability of ruminants or midges to recover from BT,
and as such they would remain viremic for the duration of the simulation.
Furthermore, we do not implement any changes in midge feeding behavior after
infection since the biting rate of midges is not well established in the literature
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and is highly dependent on the data collection and statistical analysis methods
employed (Méhlmann et al (2021)).

Studies have shown that ruminants are often asymptomatic when infected
with BT, and can remain viremic for several weeks (Singer et al (2001)). There-
fore due to the short simulation period and the long ruminant lifespan, even
with BT, the model did not consider ruminant death.

We assume in each simulation that the midges have a constant daily
survival rate, a. Laboratory findings have shown that the lifespan of Culi-
coides spp. with respect to a fixed temperature follow either an exponential
or Weibull distribution (Lysyk and Danyk (2007)). Assuming an exponential
distribution, then the mean expected survival time of the midges is 1/(1 — «)
days. At the end of each day simulated, it is determined whether each midge
will survive to the next day with probability a. If the midge is determined to
have died, it is replaced by a new midge that is not infected with BTV in a
random location so that the population size of midges remains constant.

4 Results

In this section, we analyze the sensitivity of the model parameters to the model
output (Section 4.1), determine the dependence of the number of infected
ruminants on Culicoides spp. survival rate, extrinsic incubation period, and
temperature using midge flight activity as a proxy (Section 4.2), evaluate
the dependence of outbreak probability on the initial number of infected
midges, their survival rate, and probability of transmission from vector to
host (Section 4.3), and examine the effects of a heterogeneous environment on
midge location preferences (Section 4.4).

4.1 Sensitivity Analysis

We determine how sensitive the model is to changes in the Culicoides spp.
daily survival rate, o, extrinsic incubation period, p, probability of BTV trans-
mission from vector to host Pyioq, probability of BTV transmission from host
to vector Pyiov, and initial number of infected midges, Iy, using Sobol’ sen-
sitivity analysis (Sobol’ (2001)) via Saltelli’s extension of the Sobol’ sequence
(Saltelli (2002); Saltelli et al (2010)) as implemented in the SALib Sensitiv-
ity Analysis Library (Herman and Usher (2017)). This is a variance-based
method which allows for calculation of model output changes with respect to
variation with a single parameter (first-order), and combinations of all param-
eters (total-order). By comparing the first-order and total-order indices, the
presence of higher-order interactions can be inferred.

The range of values for the parameters of interest were set to be a €
[0,1], p € [0,20], Pyton € [0,1], and Putov € [0, 1], which contain the typical
values observed for these parameters (Table 1). The total number of infected
ruminants after 60 days was used as the model output, and the resulting first-
and total-order indices were calculated. Due to computational constraints and
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First Order Indices Total Order Indices
1.25
1.00
lo
0.75 L
. 2
0.50 s 3
- 4
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Fig. 3: First-order and total-order indices for Sobol” sensitivity analysis of
the Culicoides spp. daily survival rate, «, the extrinsic incubation period,
p, the probability of BTV transmission from vector to host Pyon, and the
probability of transmission from host to vector Pyov. Ip indicates the initial
number of BTV infected midges. First-order indices are calculated with respect
to a single parameter, so interactions with other parameters are not taken
into account, while total-order indices account for all higher-order interactions
between parameters.

the stochastic nature of the model, a total of 96 simulations, with parameters
given by the Saltelli distribution, were run for each trial.

To clarify terminology used in this section, we define a simulation to be
a single execution of the model under a single set of parameters. A trial is
a group of simulations. We averaged the results from many trials to find the
expected values for the analysis in this section.

Both the first-order indices and total-order indices, shown in Fig. 3,
indicated that the model was much more sensitive to perturbations in the
Culicoides spp. survival rate a than it was to perturbations in the extrinsic
incubation period p or the transmission probabilities Pyton and Ppiov. Thus,
this analysis implies that focusing on the survival of midges is more important
than the incubation period and the probability of BTV transmission from host
to vector or vice versa in reducing the number of infected ruminants.

Additionally, it was found that the model sensitivity to o decreased as Iy
increased, which was to be expected as more BTV-infected Culicoides spp.
midges would reduce the need for high survival rates. Initial analysis was con-
ducted using 10 trials for each Iy, and then was increased to 15 trials. Little
change was noticed, and so the analysis shown was conducted using 15 trials.

4.2 Percentage of Infected Ruminants

A heat map, shown in Fig. 4, was generated to visualize the total percentage
of infected ruminants over a 60-day period given changes in the Culicoides
spp. survival rate a and extrinsic incubation rate p. We also varied the
total midge population, as given by the number of midges per ruminant, ~y.
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Fig. 4: Heat maps showing the percentage of ruminants infected given different
Clulicoides spp. daily survival rate, «, extrinsic incubation rate, p, and number
of midges per ruminant, v, over a 60 day period.

Since midges are more active in warmer temperatures (Tugwell et al (2021)),
increasing -y implies that there is more midge flight activity, which is cor-
related with warmer temperatures. Hence, we can implicitly examine the
effects of temperature by varying  as one proxy, noting that environmental
temperature can also affect other midge-specific parameters, such as a and
p (Lysyk and Danyk (2007); Tsutsui et al (2011); Mayo et al (2020)). Param-
eter values were chosen to be a € [0.6,0.9] in increments of 0.015, p € [10, 20]
in increments of 0.5, and v € {5, 10,50,100}. For each combination of param-
eters «, p, and v, 10 simulations of each case were run due to the stochastic
nature of the model and the tendency for low values of a or high values of p
to result in no outbreak at all. The average number of infected ruminants was
averaged over all the simulations for each («, p,)-set.

Fig. 4 illustrates that the number of infected ruminants is non-decreasing
as a and p increase for each fixed value of -, and it was very common for
simulations with large enough values of a and p to end with all of the ruminants
within the domain being infected with BTV. There appears to be a linear
bifurcation line with respect to a and p that determines the likelihood of an
outbreak. Low values of & combined with high values of p would result in few to
no outbreaks, while high o and low p result in large-scale outbreaks. This line
shifts as - increases, such that large midge populations correspond to larger
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outbreaks for similar combinations of o and p. This follows intuition, as a high
survival rate and short extrinsic incubation period would allow many more
Culicoides spp. midges to become infected with BTV and subsequently pass
the virus on to another ruminant. Additionally, in warmer temperatures where
midge flight activity is greater, there is an increased chance of an outbreak.

4.3 Outbreak Probability

For the purposes of this study, an outbreak was defined to be the occurrence
of a single BTV-infected ruminant. We fixed the initial number of infected
midges, Iy, and daily survival rate, «, for each simulation and allowed the
simulation to run until either all BTV-infected midges died without a sin-
gle ruminant becoming infected or a single ruminant had become infected
with BTV. Parameter values were chosen to be a € [0,1] in increments of
0.02, Pyton € {0.25,0.5,0.75,1}, and Iy € {1,2,3,4,5,15,50,100}. 500 simu-
lations were run for each (o, Pyton, Io)-set. From this, the estimated outbreak
probability was calculated by averaging over all the simulations.

Fig. 5 illustrates that for low values of Iy, the relationship between «
and the probability of outbreak is concave up for small Pyi,n and then is
approximately linear for large Pyop. As Iy increases, especially past Iy = 15
and for any value of Pyion, the outbreak curves approach a step function.
As Pyion increases but Iy is kept fixed, the concavity of the outbreak curves
decreases, i.e., a concave up curve becomes more linear and a concave down
curve approaches a step function. This indicates that an increase in «, Iy, or
Pyiop corresponds with higher outbreak probabilities.

4.4 Heterogeneous Environment Simulation

The effects of a heterogeneous environment were studied using the map
illustrated in Fig. 6a, which was inspired by the cervid farm studied in
McGregor et al (2019). Following the additional movement rules as described
in Section 3.3, midges preferentially travel to habitats that are more favorable
(3) instead of random walk motion (1). Due to computational constraints, a
single simulation of 30 days was run, and midge locations were saved at the
final time step. The spatial density of the midges is shown in Fig. 6b.

Fig. 6 indicates that there are strong structural similarities between the
density distribution of the simulated midges (Fig. 6b) and the preferred regions
in the map (Fig. 6a). Specifically, there is a long vertical cluster of midges
centered near (200, 500), which corresponds to the most preferred region in the
map (level 5). An additional highly-dense cluster is centered near (700, 800),
which corresponds to the next most preferred region of level 4, observing that
this cluster is closer to regions of level 3 and 1, rather than the level 5 region.
Finally, there is a noticeable lack of midges near (500, 250), which is linked to
the large and least preferred region of level 1.
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Fig. 5: The probability of outbreak given different initial numbers of infected
midges, Iy, depending on the daily survival rate, «, and the probability of
transmission from vector to host Pyiop. An outbreak was defined to be the
infection of a single ruminant. The probability of outbreak increases dramati-
cally as « increases. The shape of the curve is concave up or linear for low I
and for low Pyioy or high Pyion, respectively, and approaches a step function
for high Iy, regardless of the value of Pyioq.

5 Discussion

The goal of this paper was to develop a model that represents the spread
of BTV in a controlled idealized environment. This model was investigated
through methods that included sensitivity analysis and an examination of the
probability of outbreak. Results indicated that the model was more sensitive
to variations in Cwulicoides spp. survival rate than to the extrinsic incubation
period of BTV or transmission probability (Fig. 3), which was reinforced by
analysis of the probability of outbreak (Fig. 5). Additional visual analysis of
the heat map in Fig. 4 suggests that there exists a bifurcation when consid-
ering the relationship between survival rate and extrinsic incubation period,
which specifies parameter regimes in which outbreaks are expected. As such,
we conclude from this model that there exists a strong relationship between
survival rate and the spread of BTV.
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Fig. 6: Heterogeneous environment simulation. (a) Map of a heterogeneous
domain, where lighter colors and higher numbers indicate habitats that are
more favorable to midges. (b) A density plot of simulated midges at 30 days in
the heterogeneous environment, with a = 0.75, P; = 100, and ~ = 500. Units:

midges per m?.

It is first worth noting the limitations of the model. As it is extremely
difficult to accurately count the population of biting midges in a given system,
the population of midges was set to be 100 times the number of ruminants.
This ratio was chosen due to computational constraints. It is very likely that
this is an underestimation of the total number of midges, and so the true spread
of BTV would occur among a much larger vector population. Additionally,
the model does not consider ruminants that ultimately recover or die from
BTYV infection, thereby resulting in a non-decreasing number of viremic hosts
that will indefinitely contribute to the spread of BTV. Therefore it is possible
that the model is overestimating the number of infected ruminants over long
simulation periods (greater than one or two months).

Simulations of the model suggest that early in the outbreak, BTV could
be in the system while not being detected. This would occur during a short
window where there are no viremic ruminants or midges capable of spreading
BTV, and instead, the virus is within a host animal or midge after inoculation
has occurred but the virus has not yet completed its replication cycle. This
suggests that it is much more difficult for ecologists and epidemiologists to
detect and isolate early outbreaks of BTV in a region. We suggest that it would
be possible to counter this issue by repeated testing of susceptible hosts over
multiple days in at-risk areas.

A key focus of this model was analyzing possible outbreak scenarios. As
such, the analysis has shown that survival rate of the midges plays the most
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important factor in determining the probability of an outbreak. Other stud-
ies have also shown that vector mortality rate and density significantly affect
disease spread within host populations for mosquitoes transmitting malaria
(Mandal et al (2011)) and tsetse flies transmitting human African trypanoso-
miasis (Gervas et al (2018)). Therefore it would be prudent that, in regions at
risk of an outbreak, the main focus should be to reduce the survival rate of
vector species through means such as pest control. Other options include tem-
porary removal or isolation of BTV host species, which most commonly are
livestock used in agriculture.

One result of the model is that the outbreak probability increases with
Iy (Fig. 5). While the trend appears linear for low values of Iy, it was found
that this trend becomes increasingly concave. As I increases, the probabil-
ity of outbreak approaches a step function. While this follows intuition, and
helps to further validate the model, the results further suggest that high num-
bers of infected Culicoides spp. midges virtually guarantee the possibility of
an outbreak. This implies that population control measures such as pesti-
cides may not be enough to prevent epizootics, as long as there are enough
vectors already infected with BTV to continue the cycle. This presents a
predicament, as another strategy to prevent outbreaks is mass vaccination of
livestock in the surrounding region. However, the development of new vac-
cines is challenging due to the apparent increase of novel BTV serotypes which
are not immunologically simple (Maclachlan et al (2015)), increasing the eco-
nomic impact through very expensive vaccine development and administration
(Gerry et al (2001)). Ideally, outbreaks would be controlled by a combination
of vector population-control methods and vaccination programs.

Multiple studies have shown a strong seasonality with the growth and decay
of BTV (Gerry et al (2001); Carpenter et al (2011)). It is known that BTV can
lie dormant for multiple months during colder, more unfavorable conditions,
then return during spring and summer where its prevalence reaches its peak.
This model did not attempt to simulate outbreaks on large time scales, and
so seasonality was not considered in the design. Instead, the model assumes
constant parameters and consistent environmental variables. Additionally, one
of the key goals of this model was to understand BTV spread in the southeast
United States, particularly North Florida, where BTV remains endemic and
does not spread through outbreaks like in Europe. In the southeast and North
Florida in particular, the subtropical environment offers less seasonality than
in more northern regions. As such, the lack of seasonality in this model is not
as critical of a limitation as it would be in a model for more temperate regions.

In simulations with a heterogeneous environment where midges follow pref-
erential movement toward more favorable habitats, the midges showed a strong
ability to arrange themselves in habitats that are more preferable, such as
those commonly being bodies of water or swamps (Erram et al (2019)). Fur-
thermore, as illustrated in Fig. 6b, midges will not only concentrate in the
highest favored habitats, as expected, but there can be less favorable habitats
that midges will also cluster in, such as the level 4 region centered around
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(700, 800) which is closer to level 1 regions than expected. Thus, MidgePy
simulations can be used in regions containing high midge concentrations to
suggest optimal farm layouts that involve organizing pastures and fences to
avoid these areas. As Fig. 4 indicates, smaller midge populations correspond
with fewer BTV infected ruminants for similar p and «. Therefore, habitats
which are suitable for ruminants but not for midges should be prioritized to
reduce BT outbreak occurrence and severity.

Future work will focus on the development of a continuous model based
on differential equations to identify a functional relationship between the
Culoicoides spp. daily survival rate a and extrinsic incubation period p. While
the sensitivity analysis indicates o to be more influential than p in determining
the size of an outbreak, p still plays a significant role. In fact, there appears
to be a linear relationship between « and p that shows how high survival
rates may not be enough to guarantee an outbreak when combined with long
incubation periods.

This model was designed with simplicity in mind. For that reason, mod-
ifications and extensions to MidgePy can be implemented with relative ease
in order to investigate the spread of other vector-borne diseases. Other future
avenues of research using this model as a base include modeling malaria, which
is spread through humans and other animal hosts. This would add a new level
of complexity, as humans move significant distances more frequently than live-
stock. Additionally, there are other model parameters which are of potential
future interest, including the incubation period of BT within ruminants, py,
and midge biting rate, T¢,1. These parameters warrant further study, as well
as extending the model to include vaccination and ruminant death to account
for the high mortality rate found in some ruminants, particularly sheep, due
to BTV (Conraths et al (2009)), and to directly include environmental factors
such as temperature and its functional relationships with other parameters.
Such analysis could supplement biological research on BTV-host interactions.

Supplementary information. The source code for MidgePy used to gen-
erate the results for this article is available through GitHub at https://github.
com/stepien-lab/MidgePy [v1.0.0]. The code is platform independent and writ-
ten in Python. The data used for this article is available through OSF at
https://www.osf.io/fhven.
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