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Abstract

This article reviews belief propagation (BP) for clas-
sical inference problems and describes its extension to
quantum systems, which is known as BP with quan-
tum messages (BPQM). Since BP plays a key role
in many low-complexity decoders for error-correcting
codes, BPQM enables allows the practical extension
of these decoders to classical quantum channels, such
as the pure state channel.

1 Introduction

Belief propagation (BP) plays a key role in all
known capacity-approaching coding schemes with
low-complexity decoders. Introduced already in the
1960s, Gallager’s low-density parity-check (LDPC)
decoder [1] contains the essence of the BP algorithm
which later was formalized by Pearl in [2, 3]. The
discovery of turbo codes in 1993 [4] brought with it
the turbo decoding algorithm, now recognized as an
instance of BP [5]. In the late 1990s, these ideas
led to formalization of factor graphs and the sum-
product algorithm [6, 7]. More recently, Arıkan’s
polar codes provide an elegant deterministic con-
struction of capacity-achieving codes [8]. For polar
codes, the low-complexity successive-cancellation de-
coder can also be seen as an instance of BP, albeit
with a modified processing order that includes inter-
mediate hard decisions.

Until recently, however, these amazing success sto-
ries from classical coding could not be translated
into low-complexity capacity-achieving schemes for
classical-quantum (CQ) channels. For example, in
2012 polar codes were shown to achieve the symmetric
Holevo information rate for any CQ channel [9], but
a low-complexity decoder for non-commuting outputs
was explicitly mentioned as an interesting open prob-

lem. The missing element was a BP decoder for CQ
channels.

In 2016, Renes defined BP with quantum messages
(BPQM) as a quantum version of BP that applies to
some inference problems on CQ channels [10]. In par-
ticular, Renes applied BPQM to binary linear codes
defined by tree factor graphs that are transmitted
over the CQ pure-state channel (PSC). The PSC is
the simplest non-trivial CQ channel and can be seen
as the quantum analog of the classical binary sym-
metric channel (BSC). The PSC is also a good model
for a number of practical communication problems in-
volving quantum states [11, 12]. In 2021, after some
investigation and evolution, BPQM was shown to pro-
vide low-complexity minimum-error detection for this
problem [13, 14]. As a result, the large body of prac-
tical work on LDPC and polar codes can now be ap-
plied to the PSC. Recently, BPQM has been extended
to symmetric binary-input CQ channels, though the
proposed approach is suboptimal in this case [15, 16].

The goal of this paper is to provide a gentle in-
troduction to BP for channels with classical inputs
and quantum outputs (i.e., CQ channels). While we
defer a precise discussion of this until after the re-
view of quantum theory, the i-th channel output in
the CQ case is a quantum system whose state de-
pends on the classical channel input xi. These out-
puts should not be treated as observations, and there
is no natural analog of a conditional distribution (say
of Xi) given these outputs. Indeed, the 2022 No-
bel prize in physics was awarded to Aspect, Clauser,
and Zeilinger for experiments that definitively demon-
strate the quantum-mechanical description of photons
is incompatible with the possibility that all physical
quantities associated with photons, e.g. polarization,
always have definite values.

Instead, one must extract classical information from
the channel output via measurement in order to have
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any knowledge of Xi beyond the prior. Moreover, the
receiver cannot determine the exact quantum state
of these systems with certainty, as measurements are
stochastic and fundamentally disturb the state. For
that reason, we will discuss generalizations of BP that
implement a collective measurement on the entire col-
lection of channel outputs in order to estimate Xi (or
the entire vector X1, . . . , XN ) with a minimal error
probability. Belief-propagation with quantum mes-
sages (BPQM) [10, 14, 13, 15, 16] is the name given
to a family of quantum algorithms (i.e., which are ex-
ecuted on a quantum computer) that can implement
this measurement efficiently in some cases.

1.1 Notation

We denote the natural numbers by N = {1, 2, . . .}
and use the shorthand [n] := {1, . . . , n} for n ∈
N. The ring of integers modulo-2 is denoted by
Z2. Vectors are written in bold, x = (x1, . . . , xN ).
For a subset A = {a1, a2, . . . , a|A|} ⊆ [N ] with
a1 < a2 < · · · < a|A|, we define the subvector
xA = (xa1 , xa2 , . . . , xa|A|). The Kronecker delta func-
tion is denoted by δij . Random variables are writ-
ten as capital letters. Joint and conditional probabil-
ity mass functions (pmfs) are denoted by P with a
subscript indicating the order and conditioning (e.g.,
PX2,X3|X1

(x2, x3|x1) equals the conditional probabil-
ity that X2 = x2 and X3 = x3 given that X1 = x1).

2 Belief Propagation

2.1 Introduction

The belief propagation (BP) algorithm was intro-
duced by Pearl [2, 3] in 1982 as an efficient inference
algorithm for Bayesian belief networks. While it is
important to note that similar ideas and special cases
(e.g., [17, 18, 19]) were proposed earlier in other fields,
this work is important because it formalized a general
version of the idea and popularized it among computer
scientists under the moniker belief propagation [6, 20].

From a contemporary viewpoint, the core idea is
that a set of random variables (say X1, . . . , XN ) can
be associated with a graph whose vertices represent
the random variables and whose edges encode the con-
ditional independence structure of the random vari-
ables. In particular, if a subset of variables forms a

x1
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x2 x3 x4 x5

Figure 1: Factor graph associated with (1).

boundary that cuts the graph into two parts, then the
random variables in the two parts are conditionally in-
dependent given the random variables on the bound-
ary. If the associated graph is a tree, then the BP
algorithm computes the exact marginal probability of
each Xi by using local updating rules that pass mes-
sages along the edges. There are a few variations of
the precise formulation (e.g., Markov random fields,
Bayesian belief networks, factor graphs, and tensor
networks) whose details differ but which are all equiv-
alent when the graph is a tree [19, 20, 6, 21].

Example 1. Consider the case where N = 5, X =
{0, 1}, and the joint probability mass function (pmf)
of (X1, . . . , X5) ∈ X 5 satisfies

PX1,...,X5(x1, x2, x3, x4, x5) = (1)
PX1(x1)PX2,X3|X1

(x2, x3|x1)PX4,X5|X1
(x4, x5|x1).

The factor graph associated with this representation
is shown in Figure 1. Since the last term in (1) does
not depend on x2 or x3, it follows that X4, X5 are con-
ditionally independent ofX2, X3 givenX1. This prop-
erty is represented in the factor graph by the fact that
the vertex labeled x1 forms a boundary that cuts the
graph into two parts where the left part contains ver-
tices x2, x3 and the right part contains vertices x4, x5.

More formally, a factor graph is defined as follows.
Let X be a finite set, [N ] := {1, 2, . . . , N}, and A
be a collection of subsets of [N ]. A factor graph is a
bipartite graph that represents a function f : XN → R
in the factored form

f(x) :=
∏
A∈A

fA(xA), (2)

where, for A ⊆ [N ], we let fA : X |A| → R denote a
function of xA (i.e., that depends only on variables
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indexed by A). The factor graph has a variable node
labeled i ∈ [N ] that is associated with the variable xi
and a factor node labeled A ∈ A that is associated
with the subset A ⊆ [N ]. The edges of the graph are
formed by connecting each factor node to the variables
in its associated subset A. In other words, there is an
edge between variable node i and factor node A if and
only if i ∈ A.

This formalism is now used to connect Example 1
with the graph in Figure 1. To do this, we choose
X = {0, 1}, N = 5, and A = {{1}, {1, 2, 3}, {1, 4, 5}}.
Then, we choose

f1(x1) = PX1(x1),

f123(x1, x2, x3) = PX2,X3|X1
(x2, x3|x1),

f145(x1, x4, x5) = PX4,X5|X1
(x4, x5|x1).

Using these choices, we find that (2) implies f(x) =
PX(x) for the model defined by (1).

While the random variables X = (X1, . . . , XN ) de-
fine the true system state, one typically has access
only to noisy outputs Y = (Y1, . . . , YN ) ∈ YN from a
memoryless channel described by a conditional pmf,

PY1,...,YN |X1,...,XN
(y1, . . . , yN |x1, . . . , xN )

= Q(y1, . . . , yN |x1, . . . , xN ) :=
N∏
i=1

Qi(yi|xi), (3)

where Qi(y|x) is the conditional probability of output
y ∈ Y given input x ∈ X for the i-th channel. These
additional channel outputs could simply be added to
the original set of random variables without affect-
ing any key properties (e.g., they cannot introduce
cycles in the factor graph). But, that approach is
typically avoided due to the notational burden and
because the channel outputs are treated as fixed ob-
served values y = (y1, . . . , yN ). Then, BP can be used
to compute marginals of the conditional distribution
PX1,...,XN |Y1,...,YN (x1, . . . , xn|y1, . . . , yN ). In this work,
we assume that Y is a finite set for simplicity but most
of the statements hold under more general conditions.

2.2 Channel Combining Perspective

In this section, we describe the channel combining per-
spective for classical BP decoding, which is the natu-
ral bridge to the BPQM decoding algorithm.

Restricting attention to cases (e.g., Example 1)
where the factor graph is a tree rooted at x1, the
channel combining perspective allows one to easily
construct the effective channel from the root, x1, of
the tree to all the observations in the tree, y, as de-
scribed by the conditional pmf PY |X1

. The construc-
tion proceeds recursively from the leaves to the root,
and the channel of any given node in the factor graph
is formed by combining the channels of its children
and any local observations. The initial channels at
the leaf nodes are the physical noisy channels them-
selves. This procedure is equivalent to what is known
as density evolution analysis on a tree [22, 23].

Given the effective channel PY |X1
, the most likely

value of x1 can be computed, in principle, from the
observed channel output y. However, the number of
possible values taken by y grows very rapidly with
the depth of the tree and directly computing the most
likely x1 can be cumbersome. For the case of classical
binary-input symmetric channels, this difficulty can
be avoided because any channel can be represented
as a weighted mixture of BSCs with different error
rates [22, 23]. This allows for efficient representation
of PY |X1

even for very large depth.
In the case of CQ channels, the effective channel

can also be constructed via channel combining. The
task of determining the most likely x1 is then to make
the appropriate measurement on the collection of all
quantum outputs. However, this is potentially a quite
cumbersome task. As with the BSC, for the case of
CQ channels with outputs described by pure quantum
states, a more efficient representation of the combined
channels is possible. This in turn makes it possible
to efficiently implement the desired measurement to
determine x1. Section 4 presents this in detail.

2.3 Channel Combining Details

We now describe the channel combining steps for tree
factor graphs. In this case, for any factor node A ∈ A,
we define its parent variable node xpa(A) to be the
unique neighbor of A which is closest to the root so
that pa(A) is the index of the parent node. We also
define the index set of its children, ch(A) = A\pa(A),
to contain the indices of all the other adjacent variable
nodes. We will also assume that the observer does
not receive X but only the noisy channel outputs Y
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defined by (3). Thus, we define the joint function

f(x,y) := f(x1, . . . , xN )Q(y1, . . . , yN |x1 . . . , xN )

and observe that, under our assumptions, this equals
the joint probability PX,Y (x,y).

The channel-combining perspective starts by view-
ing the entire factor graph as a channel with input
x1, output y = (y1, . . . , yN ), and conditional output
probability given by

PY |X1
(y|x1) =

∑
(x2,...,xN )∈XN−1

PY ,X2,...,XN |X1
(y, x2, . . . , xN |x1)

(4)

The key observation is that the same idea can be ap-
plied to any subtree. In particular, for the vertex
labeled i ∈ [N ] which is associated with xi, consider
the subtree generated by keeping this vertex and all
nodes and edges below it in the tree.

Let the set Si contain the labels of all variable nodes
in the subtree rooted at i (i.e, the labels of xi and
all variable below xi in the tree). The channel for
this subtree has input xi, output ySi , and conditional
output probability

Wi(ySi |xi) := Qi(yi|xi)
∏

A:pa(A)=i

WA(yA∗ |xi), (5)

where WA(yA∗ |xpa(A)) is the channel defined for the
subtree rooted at factor node A ∈ A and the set A∗ =
Spa(A)\pa(A) contains the indices of all variable nodes
below xi in the tree.

Equation 5 highlights a key property of tree fac-
tor graphs. A degree-j variable node, xi, can be seen
as the input to j + 1 conditionally independent chan-
nels. The first is a direct channel with input xi and
conditional output probability Qi(yi|xi). The other j
are subtree channels associated with the j child factor
nodes.

For a child factor node A ∈ A, the subtree chan-
nel is denoted by WA(yA∗ |xpa(A)), where the input
has index pa(A) because the parent variable in A is
the input to the combined channel. The input to this
channel is xpa(A) and the output is yA∗ . The condi-
tional probability of the channel output is

WA(yA∗ |xpa(A))

= Z−1
A

∑
xch(A)∈X |ch(A)|

fA(xA)
∏

j∈ch(A)

Wj(ySj |xj), (6)

where ZA is the normalization constant chosen so that
the sum over yA∗ equals 1. This recursive definition
terminates when all children of A are leaves because,
if xj is a leaf node, then Sj = {j} and Wj(ySj |xj)
simplifies to Qj(yj |xj).

The operation in (6) is known as factor node com-
bining and it represents the case where the symbol,
xpa(A), is used to conditionally generate the values
of the child variable nodes, xch(A), and then each of
these values are transmitted independently through
subchannels Wj( · |xj) for j ∈ ch(A). The two left-
most graphs in Figure 2 illustrate factor node com-
bining for A1 and A2 in the example. In that case,
BP decoding of x1 is performed by first using (6) to
compute WA1 and WA2 for the observed y values and
all x1 ∈ X .

The operation in (5) is known as variable node com-
bining and it represents the case where the symbol xi
is transmitted independently through multiple chan-
nels (i.e., Qi and allWA with pa(A) = i). The variable
node combining operation for x1 is depicted by the
rightmost graph in Figure 2. This operation combines
the values of WA1 and WA2 computed earlier with the
observation of x1 through Q1. Thus, the value of (4)
can be computed by applying channel combining op-
erations like this starting from the leaves. Then, using
Bayes’ rule, one can compute PX1|Y and this is equiv-
alent to performing BP decoding on the tree.

If the received values are known (e.g., when decod-
ing observed channel outputs), then the inputs and
outputs of the recursive steps are vectors in R|X | that
specify the relevant conditional probabilities of the
actual observations for each possible channel input.
This is equivalent to standard BP decoding on tree
factor graphs.

If the received values have not yet been observed
(e.g., when analyzing the effective channels them-
selves), then the inputs and output of this recursion
are transition probability matrices for finite output
channels with X inputs. The recursion relies implic-
itly on the fact that, for any finite set of channels
with input alphabet X and a finite output alphabet,
the new channel formed by combining also has input
alphabet X and a finite output alphabet. As noted
earlier, this is equivalent to what is known as density
evolution analysis on a tree [22, 23].

Finally, the channel combining perspective does not
extend naturally to factor graphs with cycles whereas
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the standard BP algorithm is well defined. However,
in that case, BP does not compute the marginals ex-
actly [24].

2.4 Symmetric Binary-Input Channels

BP and density evolution simplify considerably for the
case of symmetric binary-input channels. The sim-
plest channel of this type is the binary symmetric
channel (BSC) which is defined by Y = X = {0, 1}
and a parameter p ∈ [0, 12 ] that specifies the prob-
ability the output is not equal to the input (i.e., the
transition probability is Vp(y|x) = 1

2+(−1)x+y(12−p)).
For a random input X ∈ X , the random output

Y ∈ Y of any symmetric binary-input channel can be
mapped into a sufficient statistic (X̂, R) ∈ X × [0, 12 ],
where X̂ = x̂(Y ) is the maximum-likelihood (ML)
estimate of X given Y and R = r(Y ) := Pr(X ̸=
x̂(Y )) is the probability the ML estimate is wrong.
The channel is symmetric if R is independent of the
channel input X. Using this, any symmetric binary-
input channel Q(y|x) is equivalent to a mixture of
BSCs and its conditional pmf can be written as

Q(y|x) = PR(r(y))Vr(y)(x̂(y)|x).

Variable Node Combining. Using this result, it
is sufficient to define the variable node combining rule
for two BSCs and then extend it to two general sym-
metric binary-input channels by considering all pairs
of BSCs they can generate. Thus, we first consider
two BSCs, with outputs x̂1, x̂2 and error probabili-
ties r1, r2. The ML estimate of the combined channel
is denoted by x̂ and its error probability denoted by
r(x̂1, x̂2). From (5), we see that the combined channel
will have conditional pmf

W (x̂1, x̂2|x) = Vr1(x̂1|x)Vr2(x̂2|x).

This implies that the ML estimate from the BSC with
the smaller error probability will determine the ML
estimate for the combined channel and we have

x̂ =

{
x̂1 if r1 ≤ r2,

x̂2 otherwise.

Once the ML estimate has been determined, one can
compute the error probability for the combined chan-
nel using the BSC error probabilities. The two chan-
nel outputs agree (i.e., x̂1 = x̂2) with probability

r1r2 + (1 − r1)(1 − r2) and, in this case, the error
probability of the combined channel is

r(x̂1, x̂2) =
r1r2

r1r2 + (1− r1)(1− r2)

because it makes an error only if both BSCs make
errors. The two channel outputs disagree (i.e., x̂1 ̸=
x̂2) with probability r1(1−r2)+(1−r1)r2 and, in this
case, the error probability of the combined channel is

r(x̂1, x̂2) =
min{r1(1− r2), (1− r1)r2}
r1(1− r2) + (1− r1)r2

because it makes an error only if the more reliable
BSC makes an error and the less reliable BSC does
not.

Check Node Combining. Check node combining
is a specific example of factor node combining used for
the decoding of binary linear codes [23, 10]. It corre-
sponds to the case where X = {0, 1} and the factor
node (say A) is defined by the even-parity function fA
where fA(x1, . . . , xk) = 1 if (x1, . . . , xk) contains an
even number of ones and fA equals 0 otherwise.

Here, we will focus on the case where k = 3 with
A = {1, 2, 3} and pa(A) = 1. Using (6), we see that
the combined channel takes the input x1, draws the
child node values x2, x3 according to

PX2,X3|X1
(x2, x3|x1) =

fA(x1, x2, x3)∑
(x′2,x

′
3)∈X 2 fA(x1, x′2, x

′
3)
,

and then transmits those values through the two chan-
nels. Like the variable node combining case, we will
assume the two channels are BSCs because symmet-
ric binary-input channels are equivalent to mixtures
of BSCs.

Since fA(x1, x2, x3) equals 1 for even-weight inputs
and 0 otherwise, this is equivalent to picking X3 to
be a uniform random bit and then computing X2 =
x1⊕X3 to satisfy the overall parity constraint. Then,
the bits x2 and x3 are transmitted through BSCs with
error probabilities r1 and r2. The channel outputs are
denoted x̂2 and x̂3. The goal of check node combining
is to represent all the information about x1 contained
in x̂2 and x̂3 as a channel from x1 to a new output y.
Since x1 = x2⊕x3, it turns out that the ML estimate
of x1 is given by x̂2⊕x̂3 and the ML estimate is wrong
if and only if exactly one of x̂2 and x̂3 is wrong. Thus,
the combined channel is a BSC with output y = x̂2 ⊕
x̂3 and error probability r1(1− r2) + r2(1− r1).
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Figure 2: Effective channels defined by the channel
combining for the factor graph in Figure 1.

3 Introduction to Quantum Theory

This paper is targeted at researchers with little or no
background in quantum mechanics but it does assume
some familiarity with tensor linear algebra. Therefore,
we start with a brief review of the necessary quantum
theory. It is worth noting that, while quantum me-
chanics is a physical theory, this paper treats quantum
theory from a purely mathematical perspective where
each operation is defined without reference to how it
might be implemented physically.

3.1 Quantum States and Dirac Notation

An isolated quantum system with d perfectly distin-
guishable states can be represented by a “pure state”
vector ψ in the Hilbert space Cd with unit length. An
important special case is where d = 2 because the ba-
sic unit of quantum information (based on two-level
systems) is a quantum bit or, simply, a qubit. A qubit
that is in a deterministic quantum state is called pure
state and represented mathematically by a unit vec-
tor in C2. In this section, we try to provide most of
the background required for this work. For a more
complete picture, see [25, 26, 27].

Let d = 2n for some integer n ≥ 1 and recall that a
complex length-d vector ψ ∈ Cd can be expressed as a
linear combination of standard basis vectors. For the
standard basis vector ev, all elements are zero except
the entry indexed by v which equals 1. For n = 1,
the two basis vectors e0 and e1 are denoted by |0⟩ and
|1⟩, respectively, using the Dirac’s “braket” notation.
These are to be read as “ket 0” and “ket 1”, respec-
tively, and they are length d = 2 column vectors.

Conjugate transposes are denoted by ⟨0| := |0⟩† and
⟨1| := |1⟩†, respectively, which are to be read as “bra 0”

and “bra 1”. This naming was chosen so that the inner
product e†iej = ⟨i|j⟩ = δij , where i, j ∈ {0, 1}, appears
like a bracket (“braket”). Therefore, any length d =
2 complex vector ψ can be written as “ket psi” |ψ⟩,
where

|ψ⟩ = α0 |0⟩+ α1 |1⟩ = α0

[
1
0

]
+ α1

[
0
1

]
=

[
α0

α1

]
∈ C2.

Mathematically, such a qubit (n = 1) pure state is
simply a unit vector in C2, which means it can be
represented as |ψ⟩ as above with the additional con-
straint that |α0|2 + |α1|2 = 1.

For n ≥ 1 qubits, the standard basis vectors
are defined by ev = ev1 ⊗ ev2 ⊗ · · · ⊗ evn , where
v = (v1, . . . , vn) ∈ Zn2 and ⊗ denotes the Kronecker
product. In Dirac notation, we write |v⟩ = ev =
|v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vn⟩. Thus, a general n-qubit pure
state is represented as

|ψ⟩ =
∑
v∈Zn

2

αv |v⟩ , (7)

where

∥ψ∥2 := ⟨ψ|ψ⟩ =
∑
v∈Zn

2

|αv|2 = 1. (8)

This set of standard basis vectors is called the com-
putational basis of a quantum system. If |ϕ⟩ =∑

v∈Zn
2
βv |v⟩ is another pure state, then its inner

product with |ψ⟩ is given by ⟨ϕ|ψ⟩ =
∑

v∈Zn
2
β∗vαv =

⟨ψ|ϕ⟩†, where β∗v is the complex conjugate of βv ∈ C.
This inner product is called the overlap between the
two states.

All reversible operations on a quantum system can
be represented by unitary evolution. In particular,
if |ψ⟩ ∈ Cd and U ∈ Cd×d is unitary matrix, then
applying U to |ψ⟩ to get |ψ′⟩ = U |ψ⟩ is assumed to
be a physically realizable quantum operation.

Consider two independent (i.e., non-interacting)
quantum systems in pure states |ψ⟩ ∈ Cd1 and |ϕ⟩ ∈
Cd2 . Using the Kronecker product, these two systems
can be combined into a common Hilbert space of di-
mension d1d2. The combined system will be the pure
state |ψ⟩ ⊗ |ϕ⟩ ∈ Cd1d2 . After combining, one can ap-
ply quantum operations that act jointly on the two
systems. We also note that, for |ψ1⟩ , |ψ2⟩ ∈ Cd1 and
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|ϕ1⟩ , |ϕ2⟩ ∈ Cd2 , the implied inner product on Cd1d2
satisfies

(|ψ1⟩ ⊗ |ϕ1⟩)†(|ψ2⟩ ⊗ |ϕ2⟩)
= (⟨ψ1| ⊗ ⟨ϕ1|)(|ψ2⟩ ⊗ |ϕ2⟩) = ⟨ψ1|ψ2⟩ ⟨ϕ1|ϕ2⟩ . (9)

From this, one can interpret (7) as joining the Hilbert
spaces of n independent qubits so that one can operate
on them jointly.

3.2 Measurement of Pure States

The only way to obtain classical information about a
quantum system is measurement. The simplest type
of measurement is called a von Neumann (or projec-
tive) measurement and it is the only type we con-
sider in this article. A von Neumann measurement
is defined by a set of orthogonal projection matrices
{Πi}i∈[M ], where Πi ∈ Cd×d, such that

ΠiΠj = δijΠi,

M∑
i=1

Πi = Id,

where δij is the Kronecker delta and Id is the d × d
identity matrix.

To explain the effect of this measurement on a pure
state |ψ⟩, we describe how to simulate the measure-
ment process on a classical computer. One starts with
the implied orthogonal decomposition

|ψ⟩ =
M∑
i=1

Πi |ψ⟩︸ ︷︷ ︸
|ψi⟩

,

where pi = ∥Πi |ψ⟩ ∥2 = ⟨ψ|Πi |ψ⟩ is the squared Eu-
clidean norm of the i-th component. From the def-
inition of the measurement projectors, it is evident
that

M∑
i=1

pi =

M∑
i=1

⟨ψ|Πi |ψ⟩ = ⟨ψ|

(
M∑
i=1

Πi

)
|ψ⟩ = 1

and ⟨ψ|Πi |ψ⟩ = ⟨ψi|ψi⟩ = pi. Thus, we can treat
{pi}i∈[M ] as a probability distribution on [M ] and
draw a sample j from it. The value j is called the
outcome of the measurement. By the Born rule of
quantum mechanics, the post-measurement state |ψ′⟩
equals the normalized projection of |ψ⟩ onto the range
of Πj and we get∣∣ψ′〉 = |ψj⟩

∥ |ψj⟩ ∥
=

Πj |ψ⟩√
pj

.

|0⟩

|1⟩
|+⟩

|−⟩
|ψ1(θ)⟩

|ψ0(θ)⟩
θ

Figure 3: Diagram of the |0⟩ , |1⟩ plane showing the
output vectors for the PSC (with θ = π

4 ) along with
projectors from Example 2.

A special case of the von Neumann measurement is
the scenario where all the projectors have rank 1, i.e.,
Πi = |ϕi⟩ ⟨ϕi| for a set of orthogonal quantum states
{|ϕi⟩}i∈[M ] and M = d.

Note that the change in the original state due to
measurement is a distinguishing feature of quantum
systems. For classical systems, it is assumed that one
can read the value of a register without any possibil-
ity of disturbing its value. In reality, however, this
assumption is based on the fact that the probability
of disturbing the value is negligible.

Now, we introduce notation for a few special quan-
tum states. The plus and minus states are defined by
|+⟩ := 1√

2
(|0⟩+ |1⟩) and |−⟩ := 1√

2
(|0⟩−|1⟩). Also, for

θ ∈ [0, π/2] and x ∈ Z2, we define the parameterized
qubit pure state

|ψx(θ)⟩ := cos

(
θ

2

)
|0⟩+ (−1)x sin

(
θ

2

)
|1⟩

and note that θ will be dropped when it is clear from
the context. See Figure 3 for a diagram of the PSC.

Definition 1. The pure-state channel (PSC) is a
binary-input CQ channel with parameter θ ∈ [0, π/2]
whose output is a qubit in a deterministic pure state.
If the transmitter sends 0, then the receiver’s qubit is
in the pure state |ψ0(θ)⟩ and if the transmitter sends
1, then the receiver’s qubit is in the pure state |ψ1(θ)⟩.
This channel can also be parameterized by its overlap

⟨ψ0(θ)|ψ1(θ)⟩ = cos2
(
θ

2

)
− sin2

(
θ

2

)
= cos(θ).

(10)
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At this point we can already appreciate the chal-
lenge that the laws of quantum mechanics impose
when transmitting classical information over a CQ
channel such as the PSC. While the state of the out-
put qubit is fully deterministic, it is impossible for
the receiver to learn with certainty whether the state
is |ψ0(θ)⟩ or |ψ1(θ)⟩, since measurements necessarily
perturb the system. The following example describes
a strategy for the receiver to guess the state of the
PSC’s qubit output with the highest success proba-
bility, assuming an equiprobable input.

Example 2. To distinguish between |ψ0⟩ and |ψ1⟩,
one can use the 2× 2 projection matrices

Π0 = |+⟩⟨+| = 1

2

[
1 1
1 1

]
, Π1 = |−⟩⟨−| = 1

2

[
1 −1
−1 1

]
.

Using these, the conditional probability of outcome y
given the channel input x is given by

qx,y = ∥Πyψx∥2 =
1

2

(
cos

θ

2
+ (−1)x+y sin

θ

2

)2

=
1

2
+ (−1)x+y

sin(θ)

2
.

This measurement minimizes the error probability
when the channel inputs are equally likely.

Perhaps the most straightforward strategy for
transmitting information over a collection of PSCs
would be to perform individual optimal measurements
(as in Example 2) on each channel output, effectively
converting each PSC to a BSC. While this approach is
simpler, its performance is degraded because the clas-
sical capacity of the resulting BSC is strictly lower
than the quantum (Holevo) capacity of the original
PSC if θ ∈ (0, π/2). In this case, a truly quantum
decoder, which performs quantum information pro-
cessing on the channel outputs, is required to achieve
optimal performance.

3.3 Mixed Quantum States

A quantum system can also be in a mixed state, which
is equivalent to a classical random mixture of pure
states. In particular, it can be in one of several dis-
tinct states {|ψj⟩}j∈[J ] with associated probabilities
pj . For such a “bag of states” model, a succinct de-
scription of the quantum state is given by its density

matrix ρ ∈ Cd×d which is defined by

ρ :=

J∑
j=1

pj |ψj⟩ ⟨ψj | . (11)

It is easy to verify that this matrix is positive semi-
definite and has trace 1.

Let D(d) denote the set of d × d positive semidef-
inite matrices with unit trace. Any ρ ∈ D(d) is a
valid density matrix for some quantum system with
d distinguishable states. While the density matrix of
a “bag of states” model is unique, the interpretation
of a density matrix as a mixture of pure states is not
necessarily unique. Moreover, it is not possible to dis-
tinguish between mixed states whose density matri-
ces are equal even if they were generated by different
“bag of states” models. We note that it is typical in
quantum to refer to mixed state simply as a state and
instead use the modifier “pure state” to distinguish
between the two cases.

When a system in a mixed state ρ ∈ D(d) under-
goes a reversible evolution according to the unitary
U ∈ Cd×d, its state evolves to UρUH . This can be
understood by observing that, for all j ∈ [J ], the
state |ψj⟩ in our bag of states (e.g., see (2)) separately
evolves to U |ψj⟩.

Consider the effect of a von Neumann measure-
ment {Πi} on a system described by the state ρ =∑J

j=1 pj |ψj⟩ ⟨ψj |. Let qj,i = ⟨ψj |Πi |ψj⟩ denote the
conditional probability of measurement outcome i
given that the system is in pure-state |ψj⟩. If the
outcome is i, then the overall post-measurement state
is

ρi =
J∑
j=1

pjqj,i
pi

∣∣ψij〉 〈ψij∣∣ = Πi ρΠi
pi

, (12)

where pjqj,i/pi equals the probability that the system
is in pure-state |ψj⟩ given measurement outcome i and
the associated pure state is∣∣ψij〉 = Πi |ψj⟩√

qj,i
. (13)

Computing the trace on both sides of (12) and using
the cyclic property of the trace shows that

pi =
J∑

j′=1

pj′qj′,i = Tr [Πiρ] . (14)
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Therefore, the density matrix encodes all the neces-
sary information about the system in order to track its
evolution through arbitrary quantum processes, i.e.,
unitary operations and measurements.

Now, we can define a CQ channel to have a classical
input and quantum output.

Definition 2. A CQ channel W is defined by an in-
put alphabet X , an output dimension d, and a map-
ping W : X → D(d) that specifies the mixed state
channel output for each input.

Definition 3. Two CQ channels W1 : X → D(d) and
W2 : X → D(d) are unitarily equivalent if there exists
a unitary matrix U ∈ Cd×d such that UW1(x)U

H =
W2(x) for all x ∈ X .

If the channelW1 is unitarily equivalent toW2, then
we can effectively realize W2 by post-processing the
output of W1 with the appropriate unitary transfor-
mation (and vice versa). For this reason, two unitarily
equivalent channels are identical from an information
theoretic perspective.

Combining Quantum Systems. Consider two in-
dependent (i.e., non-interacting) quantum systems in
mixed states ρ1 ∈ D(d1) and ρ2 ∈ D(d2). These two
systems can be combined into a common Hilbert space
of dimension d1d2. The combined system will have
the density matrix ρ = ρ1 ⊗ ρ2 ∈ D(d1d2) whose
“marginalization” (i.e., partial trace) down to either
component system equals the original density matrix
for that system. In the combined space, one can apply
operations that act jointly on the two systems.

Similarly, consider two independent CQ channels
W1,W2 with input alphabets X1,X2 and output di-
mensions d1, d2. These can be combined into a single
“product channel” W : X → D(d), with X = X1 ×X2

and d = d1d2, that is defined by

W (x1, x2) =W1(x1)⊗W2(x2).

This is the quantum analog of the classical channel
W (y1, y2|x1, x2) = W (y1|x1)W (y2|x2) defined by the
independent uses of classical channels W1(y1|x1) and
W2(y2|x2).

4 Channel Combining for PSCs

Now we are in a position to consider the effect of ap-
plying the channel combining operations to binary-
input pure-state channels, as first introduced in [10].

4.1 Variable Node Combining

Consider the binary-input PSCs W1 and W2 with pa-
rameters θ1 and θ2. The variable node combining
operation sends the same input through both chan-
nels and combines their output spaces using a tensor
product. If the channel input is x, then the first PSC
will output |ψx(θ1)⟩ and the second PSC will output
|ψx(θ2)⟩. Thus, for input x, the output of both chan-
nels in the combined Hilbert space C4 will be

|ϕx⟩ := |ψx(θ1)⟩ ⊗ |ψx(θ2)⟩ .

Since the tensor product of pure states is a pure state,
it will become evident below that the combined chan-
nel must be unitarily equivalent to a PSC (e.g., with
parameter θ).

To consolidate these two channel outputs into a sin-
gle channel output for the new PSC whose output will
be stored in the first qubit, we need a unitary opera-
tion V ∈ C4×4 that satisfies

V |ϕx⟩ = |ψx(θ)⟩ ⊗ |0⟩ for all x ∈ X .

Since V is unitary, this operation will preserve all the
information in the two channel outputs.

Here, we note that unitary transforms preserve in-
ner products between vectors and, for any four unit
vectors |χ1⟩ , |χ2⟩ , |χ3⟩ , |χ4⟩ ∈ Cd with ⟨χ1|χ2⟩ =
⟨χ3|χ4⟩, there is a unitary transformation mapping
|χ1⟩ to |χ3⟩ and |χ2⟩ to |χ4⟩. Thus, we can use (9)
and (10) to see that the unitary U exists if and only
if

⟨ϕ0|ϕ1⟩ = ⟨ψ0(θ1)|ψ1(θ1)⟩︸ ︷︷ ︸
cos(θ1)

⟨ψ0(θ2)|ψ1(θ2)⟩︸ ︷︷ ︸
cos(θ2)

= ⟨ψ0(θ)|ψ1(θ)⟩︸ ︷︷ ︸
cos(θ)

.

This demonstrates that lossless variable node combin-
ing is possible for the PSC and that the new PSC will
have θ = cos−1

(
cos(θ1) cos(θ2)

)
. We note that the

matrix V is not unique and it depends on the values
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|0⟩

|1⟩
|+⟩

|−⟩

|ψ1(θ1)⟩

|ψ0(θ1)⟩
θ1

⊗
|0⟩

|1⟩
|+⟩

|−⟩
|ψ1(θ2)⟩

|ψ0(θ2)⟩
θ2 ≡ |00⟩

|10⟩
|+⟩ ⊗ |0⟩

|−⟩ ⊗ |0⟩
|ψ1(θ)⟩

|ψ0(θ)⟩
θ

Figure 4: Diagram illustrating variable node combining operation for two PSCs with parameters θ1 = 45◦ and
θ2 = 52◦. The result is a PSC with parameter θ = cos−1

(
cos(θ1) cos(θ2)

)
≈ 64◦.

of θ1 and θ2. Following [10, Eqn. 6], we will denote
one such V by

U�(θ1, θ2) :=


a+ 0 0 a−
a− 0 0 −a+
0 b+ b− 0
0 b− −b+ 0

 , (15)

a± :=
1√
2

cos
(
θ1−θ2

2

)
± cos

(
θ1+θ2

2

)√
1 + cos(θ1) cos(θ2)

,

b± :=
1√
2

sin
(
θ1+θ2

2

)
∓ sin

(
θ1−θ2

2

)√
1− cos(θ1) cos(θ2)

.

This idea generalizes easily to combining any finite
number of PSCs and is illustrated in Figure 4.

4.2 Check Node Combining

Now, we describe check node combining for two PSCs
by building on the approach for two BSCs in Sec-
tion 2.4. In particular, we let x1 denote the input to
the combined channel and let x2 and x3 denote the in-
puts to the channels which are being combined. As be-
fore, due to the even-parity constraint, the combined
channel output only depends on x1 and x3. Specifi-
cally, it equals the pure state

|ϕx1,x3⟩ := |ψx1⊕x3(θ1)⟩ ⊗ |ψx3(θ3)⟩ (16)

=

(
cos

θ1
2
|0⟩+ (−1)x1+x3 sin

θ1
2
|1⟩
)

⊗
(
cos

θ2
2
|0⟩+ (−1)x3 sin

θ2
2
|1⟩
)

= cos
θ1
2
cos

θ2
2
|00⟩+ (−1)x3 cos

θ1
2
sin

θ2
2
|01⟩

+ (−1)x1+x3 sin
θ1
2
cos

θ2
2
|10⟩ (17)

+ (−1)x1 sin
θ1
2
sin

θ2
2
|11⟩ ,

where we have expanded the tensor product in antic-
ipation of the next step. Our goal is to map all the
information about x1 into the first qubit and treat
this qubit as the output of a new PSC.

Observe that, if we group the first and last terms
in (17) (i.e., terms involving |00⟩ and |11⟩), then to-
gether they form a scaled PSC with input x1. Like-
wise, if we group the second and third terms in (17)
(i.e., terms involving |01⟩ and |10⟩), then together
they form a scaled PSC with input x1 (since (−1)x3

is in both terms). Now, we exploit these observations
in two steps. First, we apply a unitary V that maps
|00⟩ 7→ |00⟩, |11⟩ 7→ |10⟩, |01⟩ 7→ |01⟩, and |10⟩ 7→ |11⟩
(i.e., |v1, v2⟩ 7→ |v1, v1 ⊕ v2⟩) so that the second qubit
distinguishes between the two pairs we observed and
the first qubit can act as the new PSC output. The
unitary V is also known as CNOT1→2 and, at this
point, we have constructed a superposition of PSCs
with common input x1 where the common output is
the first qubit and the channel parameter depends
conditionally on the second qubit.

To verify the last statement and compute the PSC
parameters associated with this construction, we will
now analyze projective measurement of the second
qubit defined by Π0 = |00⟩ ⟨00| + |10⟩ ⟨10| and Π1 =
|01⟩ ⟨01| + |11⟩ ⟨11|. Using the results of Section 3.2,
we see that the probabilities of the two outcomes are
given by

p0 = ⟨ϕx1,x3 |V HΠ0V |ϕx1,x3⟩

= cos2
(
θ1
2

)
cos2

(
θ2
2

)
+ sin2

(
θ1
2

)
sin2

(
θ2
2

)
=

1

2
+

1

2
cos(θ1) cos(θ2), (18)
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|0⟩

|1⟩
|+⟩

|−⟩
|ψ1(θ1)⟩

|ψ0(θ1)⟩
θ1 � |0⟩

|1⟩
|+⟩

|−⟩
|ψ1(θ2)⟩

|ψ0(θ2)⟩
θ2 ≡ √

p0 |00⟩

|10⟩
|+⟩ ⊗ |0⟩

|−⟩ ⊗ |0⟩
|ψ1(α1)⟩

|ψ0(α1)⟩
α1 +

√
p1 |01⟩

|11⟩
|+⟩ ⊗ |1⟩

|−⟩ ⊗ |1⟩

|ψ1(α2)⟩

|ψ0(α2)⟩
α2

Figure 5: Diagram illustrating the check node combining operation for two PSCs with parameters θ1 and θ2.
The result is unitarily equivalent to the weighted superposition, with weights √

p0 and √
p1, of two PSCs with

parameters α1 and α2.

p1 = ⟨ϕx1,x3 |V HΠ1V |ϕx1,x3⟩

= cos2
(
θ1
2

)
sin2

(
θ2
2

)
+ sin2

(
θ1
2

)
cos2

(
θ2
2

)
=

1

2
− 1

2
cos(θ1) cos(θ2), (19)

where the last step in each derivation follows from
applying the product identities for sine and cosine a
few times. Thus, the post-measurement states for the
two outcomes will be

1
√
p0
Π0V |ϕx1,x3⟩

=
1

√
p0

(
cos

θ1
2
cos

θ2
2
|00⟩+ (−1)x1 sin

θ1
2
sin

θ2
2
|10⟩
)

= |ψx(α0)⟩ ⊗ |0⟩ ,
1

√
p1
Π1V |ϕx1,x3⟩

=
(−1)x3

√
p1

(
sin

θ1
2
cos

θ2
2
|01⟩+ (−1)x1 cos

θ1
2
sin

θ2
2
|11⟩

)
= (−1)x3 |ψx(α1)⟩ ⊗ |1⟩ ,

where α0 and α1 are the parameters of the post-
measurement PSCs associated with Π0 and Π1 respec-
tively. We also note that the overall phase factor of
(−1)x3 on the second state does not affect the mea-
surement error rate (e.g., see Example 2) or future
processing. By computing the overlap of these chan-
nels and applying trigonometric identities, one can
also compute the two possible channel parameters

cos(α0) =
cos(θ1) + cos(θ2)

1 + cos(θ1) cos(θ2)
, (20)

cos(α1) =
cos(θ1)− cos(θ2)

1 + cos(θ1) cos(θ2)
. (21)

While the previous calculation is based on mea-
suring the second qubit, this can be avoided by
using the quantum principle of deferred measure-
ment [10, 13, 14]. The primary drawback of deferring
measurements is that all unitary operations done af-
ter the deferred measurement must be implemented
as conditional unitary operations that depend on the
system that was not measured.

This operation is illustrated in Figure 5. It can also
be extended to any finite number of PSCs by sequen-
tially combining the channels as one would compute
a cumulative sum.

4.3 Decoding with BPQM

For mixtures of PSC channels, both channel combin-
ing operations result in mixtures of PSC channels, just
as combining mixtures of BSCs results in mixtures of
BSCs. Thus, the effective channel from x1 to all the
PSC outputs can be succinctly described as a mixture
of PSCs. This yields a method of performing the opti-
mal measurement on the actual PSC output systems
in order to determine x1.

Working from the leaves toward the root, the quan-
tum operations associated to the two combinations are
recursively applied to the appropriate qubits. At vari-
able nodes, the unitary in (15) is applied, using the
classical information describing the parameters of the
two PSCs, and one qubit is discarded. At check nodes,
a CNOT gate is applied and the target qubit is mea-
sured. The measurement result determines the PSC
parameter of the remaining control qubit, and this
information is used in subsequent variable node oper-
ations. The sequence of operations defines a quantum
circuit consisting of unitary operations and measure-
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ments. The output of the circuit is a single qubit, as-
sociated to the root node, which is then measured to
determine the most-likely channel input. The depth
of the resulting quantum circuit is precisely the depth
of the factor graph.

5 Combining General CQ Channels

Now, we will apply the channel combining perspec-
tive to factor graphs where the classical random vari-
ables are transmitted through CQ channels. First,
we generalize (3) to the quantum case. Consider the
case where the i-th factor graph variable is transmit-
ted through the CQ channel Qi : X → D(di), where
D(di) is the set of density matrices for the i-th quan-
tum system of dimension di. In this case, the condi-
tional independence of the observations implies that
the overall density matrix for input x = (x1, . . . , xN )
is given by the tensor product

Q(x) := Q1(x1)⊗Q2(x2)⊗ · · · ⊗QN (xN ).

Using this, the quantum generalization of (4) is

W1(x1) =
∑

(x2,...,xN )∈XN−1

PX2,...,XN |X1
(x2, . . . , xN |x1)Q(x)

=
1

PX1(x1)

∑
(x2,...,xN )∈XN−1

f(x)Q(x).

This gives the density matrix for the entire joint quan-
tum system as a function of the root variable x1.
Given the set of density matrices {W1(x1)}x1∈X , one
can solve for an optimal quantum measurement whose
outcome maximizes the guessing probability for x1.

The goal of BPQM is to implement an optimal mea-
surement efficiently using unitary operations acting
on small numbers of qubits. To do this, one needs to
identify simple quantum operations that implement
the combining transformations one step at a time. For
example, the classical variable node combining rule
in (5) generalizes to the quantum rule

Wi(xi) = Qi(xi)⊗

 ⊗
A:pa(A)=i

WA(xi)

 , (22)

where Wi(x) is the combined CQ channel for variable
node i. Similarly, the classical factor node combining

rule in (6) generalizes to the quantum rule

WA(xpa(A)) = Z−1
A

∑
xch(A)∈X |ch(A)|

fA(xA)

 ⊗
j∈ch(A)

Wj(xj)

 ,

(23)

where WA(x) is the combined CQ channel factor node
A and ZA is the normalization constant chosen so that
the resulting matrix has unit trace.

These recursions allow one to analyze general tree-
like factor graphs where the variables are observed
through independent CQ channels. However, the di-
mensions of the density matrices may grow so rapidly
that this approach becomes infeasible. This is simi-
lar to growth in output alphabet which is challenging
for the classical case. For binary-input PSCs, how-
ever, the combining rules outlined in Section 4 can be
used to efficiently represent these density matrices as
weighted mixtures of PSCs with different parameters.
This can be seen as a special case of the techniques
introduced in [15, 16]. Still, this problem is much
less studied in the quantum case and it would be in-
teresting to find efficient methods that work in more
generality.

For general CQ channels, the decoding problem on
a quantum computer is even more challenging. While
the rules outlined in Section 4 were introduced in [10]
and studied further in [28, 13, 14], it is still not clear if
there are efficient and optimal BPQM decoding rules
for channels besides the PSC. Suboptimal rules have
been introduced and analyzed for symmetric binary-
input CQ channels in [15, 16]. The primary challenge
is finding ways to compress the relevant information,
from all the CQ observations in a subtree, into the
small number of qubits to be passed as messages.

Classical BP also extends to factor graphs with cy-
cles (as an approximate marginalization algorithm)
by simply continuing to pass messages around loops
in the factor graph [6, 24]. While something similar
can be managed for BPQM [14], another peculiarity of
quantum mechanics makes this extension much more
challenging. The “no cloning” theorem says that quan-
tum states cannot be cloned exactly. Thus, if a vari-
able is measured the first time around a loop, its quan-
tum information collapses and leaves only the classical
outcome for subsequent rounds. One approach that
provides some gain in experiments is to use “approxi-
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mate” cloning [14]. But, this is really the only method
that has been explored so far.

Lastly, we mention that there is a powerful theory of
duality for CQ channels that relates the performance
of optimal inference for problems utilizing a code and
a channel to related problems utilizing the dual code
and dual channel [29]. For this work, it is particularly
relevant to note that the dual channel for the BSC is
the PSC and vice versa. This special case is discussed
in more detail in [30, 31].

6 Conclusions and Open Problems

This article notes the importance of BP in efficient
error-correction schemes for classical channels and dis-
cusses the extension of BP to BPQM in order to apply
the same ideas to CQ channels. While the extension
to PSCs is well understood, many questions remain
for more general CQ channels. In particular, we list
here some interesting open questions:

1. Can we apply BPQM to loopy factor graphs and
achieve gains or understanding beyond [14]?

2. What assumptions are required to generalize
BPQM for PSCs to non-binary CQ channels with
pure-state outputs?

3. Is there a BPQM algorithm that is lossless, or
with arbitrarily small loss, for general symmet-
ric binary-input CQ channels with qubit outputs
where the messages consist of a bounded number
of qubits?

4. Is there a BPQM algorithm that is lossless, or
with arbitrarily small loss, for general CQ chan-
nels where the message dimension is a bounded
multiple of the channel output dimension?
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