DYNAMICAL BOREL-CANTELLI LEMMA FOR
RECURRENCE UNDER LIPSCHITZ TWISTS
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ABSTRACT. In the study of some dynamical systems the limsup set of
a sequence of measurable sets is often of interest. The shrinking targets
and recurrence are two of the most commonly studied problems that
concern limsup sets. However, the zero-one laws for the shrinking targets
and recurrence are usually treated separately and proved differently. In
this paper, we introduce a generalized definition that can specialize into
the shrinking targets and recurrence; our approach gives a unified proof
of the zero-one laws for the two problems.

1. INTRODUCTION

Throughout the paper, let (X,d) be a separable and compact metric
space, and let (X, u,T) be a probability measure preserving system. One
of the most fundamental results in ergodic theory is the Poincaré Recur-
rence Theorem, see e.g. [EW, Theorem 2.11], which asserts that almost all
points in measurable dynamical systems return close to themselves under a
measure-preserving map; namely, that

where Ry is the set of recurrence for T':
Ry :={zx € X :liminfd(T"x,z) = 0}.
n—oo
One of the first results concerning the speed of recurrence is due to Bosher-
nitzan in [B]. Namely, assume that the a-dimensional Hausdorff measure of
X is zero for some a > 0. Then
lim inf n'/*d(T"z, ) = 0

n—oo
for p-almost every x € X. In other words, for a function ¢ : N — R™T let us
define the following set:
Ryp(v) :={zx € X : d(T"z,x) < ¢(n) for infinitely many n € N}.
Then the Poincaré Recurrence Theorem says that the set

RT = ﬂ RT(ElN)
e>0
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has full measure, and, with the notation

Ys(x) :=2x7%, (1.2)
Bosherniztan’s result says that Rr(ev;/,) has full measure for any ¢ > 0
and for any a such that H*(X) = 0.

It is a natural problem to find necessary and sufficient conditions on
to guarantee that the set Rp(1)) has measure zero or one. In fact, under
some additional assumptions one expects this condition to be the conver-
gence/divergence of the sum of measures of the sets

Ar(n,¢) :={z € X : d(T"x,z) < ¢¥(n)}. (1.3)
And indeed this was proved in several special cases such as [BF, CWW,
HLSW]; see also [KKP, DFL, Pe] for similar results.

Note that a topic closely related to recurrence is the so-called shrinking
target problem, which is concerned with determining the speed at which
the orbit of a p-typical point accumulates near a fixed point y € X. More
precisely, for y € X one can define the set

RY = {a; € X :liminfd(T"x,y) = 0} ,

n—o0

and, more generally, for a function v : N — R define
RY(¢) :={x € X : d(T"x,y) < ¢(n) for infinitely many n € N}.

Equivalently, letting B(z,r) stand for the open ball in X centered in z of
radius 7, we can write R%.(1) = limsup AY(n, ), where

Al (n, ) ={z € X : d(T"z,y) < ¢(n)} = T "B(y,¢(n)). (1.4)
Clearly
p(RY) =1 for any y € suppp if T is ergodic; (1.5)
furthermore, there have been plenty of results in the literature giving 0-1
laws for ,U,(ng(lb)). In fact, one can often use mixing properties of T to
conclude that p(R%.(¢)) is equal to zero/one if and only if the series

(o) o0

> (A () = M(B(% 1/1(71)))

n=1 n=1
converges/diverges. See [Ph, CK, KM, FMP, HNPV] and many other ref-
erences.

The goal of the current paper is to study a property unifying these two
settings, and to prove a zero—one law applying to both. Namely, for a Borel
measurable function f : X — X define R:J;, the set of f-twisted recurrent
points for T', by

R} = {z € X sliminf d(T"z, f(x)) = 0}

The two previous settings correspond to f being the identity and constant
functions respectively. We will show in the next section that ,u(R%) =1 for
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any measurable f if T is ergodic and g has full support. Furthermore, one
can study the rate of twisted recurrence as follows: for ) : N — R* define

ATz, f(x)) < v(n) } o)

T(w) {x for infinitely many n € N

so that Réi = Nes0 R{q(al x). In general the rate of twisted recurrence can
be arbitrary slow, see §2 for examples. The main goal of the paper is to
prove, under assumptions similar to those of [HLSW], a zero—one law for
the sets R:];(w) for a large class of functions f.

To state the main result of the paper, we need to adapt and modify the
settings and assumptions from [HLSW]. Throughout the paper we write
a < bif a < Cb for some constant C' > 0, and a < bif a $band b < a.

Our main assumption is that there exist at most countably many pairwise
disjoint open subsets X;, i € Z, of X such that T'|x, is continuous and
injective for each ¢, and p(X~\ U; X;) = 0. Those will be called cylinders of
order 1. Then for any m € N one can define

Fpp 1= {Xh AT X, N AT~ DX, iy, i € I} (1.7)

to be the collection of cylinders of order m. Note that for J € F,, and
x,y € J, the points T"x and T™y are in the same partition set X; for
0 < n < m, and hence T,...,T™ are injective on J. Also, since T is
continuous, each cylinder in F,, is open.

Now let us list our assumptions on the measure p. The first one is
Ahlfors regularity of dimension § > 0; namely, that there exist positive
real numbers 71, 12, rg such that

mr® < w(B(z,r)) < nard for any ball B(z,r) € X with 0 < r <ry. (1.8)

As a consequence, since p was assumed to be a probability measure, the
space X has finite diameter.

Next, we assume that (X, u,7T) is uniformly mixing (a property intro-
duced in [FMP]), that is: there exist a summable sequence of positive real
numbers (a,)pen such such that

(WENTTF) = p(E)u(F)| < anp(F)
for any balls E, F' C X and for all n > 1.

(1.9)

Note that it was proved in [FMP] that under the aforementioned mixing
assumption, for any y € X and any 1 the set R%.(¢) is null (resp., conull) if
the series

> (Bl v(m)) = b’
n=1 =1

converges (resp., diverges). However, in order to similarly treat the sets
Ré(@[)) for more general functions f we will require some more information
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on the expanding properties of T'. For a m-cylinder J, we define

m m

KJ = inf —d(T (lZ,T y),
z,yeJ, x#y d(x, y)
and impose the following additional assumptions:
e Bounded distortion: There exists a constant K7 > 0 such that
m m
d(Tmz, T™mz)/d(x, z) (1.10)

for all m € N and z,y,z € J € Fp, with x # y and z # 2.

e Expanding properties:

inf Kj— ooasm — oo (1.11)
JEFm
and
sup Z K}‘; < o0. (1.12)
meN jeF,,

e Conformality: There exists a constant Ko > 1 such that
B(T™z, Ky 'Kyr) C T"B(x,r) C B(T™z, KoK )

1.13
for any m € N and any ball B(z,r) C J € Fp,. (1.13)

Remark 1.1. Notice that the bounded distortion condition (1.10) implies
the second inclusion in (1.13) with K5 replaced by K;. However the first
inclusion there does not automatically follow from (1.10), hence the need
for an additional condition.

Remark 1.2. We note that conditions (1.8)—(1.13) are essentially equivalent
to Conditions I-V from [HLSW]. Namely:

e (1.8) is a slightly weaker version of [HLSW, Condition I].

e (1.9) replaces [HLSW, Condition II] where the rate of mixing was
assumed to be exponential.

e As for (1.10)—(1.13), in [HLSW] the standing assumption was that
the restriction of T' to X; for every 1 is differentiable and expanding,
namely it was assumed that

| D (T7Y)|7! > 1 for any z € U; X;. (1.14)

The role of (1.10) was played there by [HLSW, Condition III] stated
as follows: there exists a constant K7 > 0 such that

ATz, T™ _
K 1< d(i,y)|DzT2|| <KiVmeNandVz,y € J € F,, with z # y.
e Similarly, the constant K for J € F,, was defined in [HLSW]
by K; := inf,ecy||D,T™||, and the role of (1.11) was played by
infjer, Ky > 1 for some m € N, which, in view of (1.14), is easily
seen to be equivalent to infjcr, Kj — o0 as m — oo. Conditions
IV and V of [HLSW] are identical to (1.12) and (1.13) respectively.
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Examples of dynamical systems satisfying conditions (1.8)—(1.13) include,
as mentioned in [HLSW], S-transformations

Mg :x— Sxr mod 1
of the unit interval, where 8 € Rs1, as well as the Gauss map. In §7 we
add another example to the list: expanding maps defined by systems of
contracting similarities with the open set condition.

Let us now specify the class of functions f which we can treat by our
technique. Say that f: X — X is Lipschitz if

d(f(2), f(y))
x,yES)L}Px;éy d(l’, y) =0

and that f is piecewise Lipschitz if there exist at most countably many
measurable subsets Y; of X and Lipschitz functions f; : X — X, ¢ € Z, such
that u(X~\U;Y;) = 0 and f|y, = f; for each ¢. An example: when X = [0, 1],
the function f(x) = /z is piecewise Lipschitz but not Lipschitz.

Now we are ready to state our main theorems.

Theorem 1.3. Assume that (X, u, T') satisfies conditions (1.8)—(1.13). Then
for any function ¥ : N — Ry with lim, o ¥ (n) = 0 and any piecewise Lip-
schitz function f: X — X, the set R:J;(qb) is null if and only if the series

> p(n)’ (1.15)
n=1
CONVETGES.

It is natural to expect that Theorem 1.3 can be strengthened to the full
measure of R:];(¢) in the case when the series (1.15) diverges. This was done
in [HLSW] in the case f = Idx. Unfortunately for an arbitrary Lipschitz
function f the full measure conclusion is outside of our reach. In the follow-
ing theorems we handle several special cases. First, employing an argument
from [HLSW], we prove

Theorem 1.4. Let (X,pu,T), v :N—=R and f: X — X be as in Theorem
1.8. Furthermore, assume that

Tof=foT. (1.16)
Then M(Rgﬂ(w)) = 1 whenever the series (1.15) diverges.

Clearly (1.16) holds when f = const or f = Idx, but not in general.
Next we present an alternative approach to upgrading Theorem 1.3 to a full
measure result, requiring introducing additional assumptions on (X, p, T).

Namely, let {X;}iez be as defined above. We say the partition {X;};c7 is
pseudo-Markov with respect to T' if

e for all 7,7 € Z, T X, is measurable;
o T'X;NX; # @ implies X; C TX; for any i, j € Z;
e there exists 7 > 0 such that p(7'X;) > 7u(X) for any i € 7.
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Theorem 1.5. Let (X,u,T), v : N - R and f : X — X be as in
Theorem 1.3. Furthermore, assume that {X;}ier is pseudo-Markov. Then

M(R;(I/J)) = 1 whenever the series (1.15) diverges.

Examples of systems with pseudo-Markov (in fact, truly Markov) parti-
tions include the Gauss map, the multiplication map M}, where b > 2 is an
integer, and, more generally, conformal expanders described in §7. One can
also show that S-transformations for some specific 8 admit pseudo-Markov
partitions. This is however not true for arbitrary 8. Yet, the twisted recur-
rence set-up was recently considered in [LWW] for T' = Mg, where 8 > 1 is
arbitrary, establishing the conclusion of Theorems 1.4 and 1.5 in that case.
Namely they prove

Theorem 1.6. Let X = [0,1], T = Mg, p the Mg-invariant probability
measure on [0,1], and let ¢ : N - R and f : X — X be as in Theorem 1.3.
Then ,u(R:];(w)) is equal to O (resp., 1) whenever the series (1.15) converges
(resp., diverges).

In §8 we show how our methods can be modified to yield an an indepen-
dent proof of the above theorem.

We also remark that the paper [DFL] suggests an even more general set-
up: there the authors consider a uniformly Lipschitz function ® : X x X — R
and under certain assumptions recover zero—one laws for sets of the form

{m c x ¢1(n) < ®(x, T"z) < ¢(n) }

for infinitely many n € N
Our set-up corresponds to ¢; = 0, g3 = ¥ and P(x,y) = d(f(a:),y). It
would be interesting to see if the methods of our paper can be applied to
the generalized setting of [DFL].

The structure of the paper is as follows. In §2 we discuss several basic
properties of f-twisted recurrence sets and some examples of such sets. In
63 we prove the convergence part of Theorem 1.3. In §4 we study quasi-
independence properties of the sequence of measurable sets whose limsup set
is given by (1.6). In §85-6 we consider the divergence case and complete the
proof of Theorems 1.3, 1.4 and 1.5. In §7 we discuss examples of dynamical
systems to which our theorems apply. The final section contains a separate
discussion of S-transformations and results in proving Theorem 1.6.

Acknowledgements. The authors are grateful to Dmitry Dolgopyat, Bas-
sam Fayad, Mumtaz Hussain, Osama Khalil, Bao-Wei Wang and two anony-
mous referees for helpful discussions.

2. MORE ABOUT f-TWISTED RECURRENCE

We start with several elementary observations concerning sets of f-twisted
recurrence.
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Lemma 2.1. Let ¢ : N — R be an arbitrary function, and let f : X — X
be such that there exist at most countably many measurable subsets Y; of X
and functions f; : X — X, 1 € Z, such that p(X\U; Y;) =0,

fly, = fi and M(Rgf (w)) =1 for eachi € T. (2.1)

Then M(Ré@ﬁ)) =1.
Proof. Indeed, it follows from (1.6) and (2.1) that

p(RAW) NY:) = p(RE®W) NY;) = (i)
for each 7 € 7. O

Let us say that a function is simple if it takes at most countably many
values.

Corollary 2.2. Suppose T is ergodic and suppu is dense in X. Then
/J(R;) =1 for any simple function f: X — X.

Proof. Immediate from Lemma 2.1 and (1.5). O

Lemma 2.3. Let (fn)nen be a sequence of functions X — X such that
,LL(R:J;") = 1 for each n. Suppose that f, — f uniformly on a set of full
measure. Then ,u(Ré) =1.

Proof. Since (), R;” has full measure, for almost every x € X and each
n € N one has

.. k _
hkn_1>£fd(T z, fn(x)) = 0.

Fix € > 0; then there exists N so that for all n > N, d(f,(z), f(z)) < § for
almost every z € X; on the other hand, for almost every x € X such that
d(fn(z), f(z)) < 5, d(T*z, f,(x)) < § for infinitely many k. This implies
d(T*z, f(z)) < € for infinitely many k. Since € is chosen arbitrarily, we have
liminfy o d(Tk:c, f(:c)) =0. O

Corollary 2.4. Suppose that T is ergodic and supp u is dense in X. Then
,LL(R;) =1 for any Borel-measurable f : X — X.

Proof. Let {x,}72; be a dense subset of X. Let ¢ >0 and f: X — X be a
Borel-measurable function. Then {B(zp,€)}72, covers X. Define

ge(x) = x,, where n = inf{m : f(z) € B(xm,e)} (2.2)
Then g, is simple and ||ge — f||lco < €. Since ¢ is chosen arbitrarily, f is

a uniform limit of simple functions. By Corollary 2.2 and Lemma 2.3, z is
f-recurrent for almost every x € X. ([

Next, let us observe that the properties of sets Ré(@[)) could be strikingly
different from the conclusion of Theorem 1.3 if the assumptions of that
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theorem are not imposed. Let us start with the simplest possible non-
trivial’ example of an ergodic dynamical system: an irrational circle rotation
X =R/Z, i = Lebesgue measure, T, (z) = x + o mod Z where a € R\Q.
Then the condition defining the recurrence set

Ry, (¢) = {z: [lna—m| < 1(n) for infinitely many n € N and some m € Z}

is independent of z; hence Rr, (1) is either X or @, and this dichotomy is
different for different a. More precisely, Dirichlet’s Theorem implies that
Ry, (1) = X for any « (see (1.2) for this notation), and the same is true
for ¢ replaced with %Tﬂl, but not with ¢y for ¢ < % In particular, «

is badly approximable if and only if Ry, (ci)1) = @ for some ¢ > 0. On the
other hand, the theory of continued fractions shows that for any positive
non-increasing ¢ (decaying arbitrarily fast) there exists a such that Ry, (1)
contains 0 (and hence coincides with R/Z).

Likewise, studying targets shrinking to y € X for the above system re-
duces to inhomogeneous Diophantine approximation:

RY, (¢) = {x : dist(na, y — x) < 1b(n) for infinitely many n € N}

According to Minkowski’s theorem [C, Chapter III, Theorem II], for any irra-
tional o and any y € R/Z, the complement of RY, (311) is at most countable.
A precise zero-one law for sets R%& (¢) again depends on the Diophantine
properties of . For example, it is a theorem of Kurzweil [K] that « is badly
approximable if and only if the following statement holds: for any non-
increasing 1, the set R, (1) is null/conull if Y777 | 4(k) converges/diverges.
However, well approximable o come with their own convergence/divergence
condition on ¢ guaranteeing that R, (¢) is null or conull; see [FK] for the
most general statement.

Clearly the set-up of f-twisted recurrence can be similarly and straight-
forwardly restated in a Diophantine approximation language:

Réia (v) = {z € X : dist (no, f(z) — z) < ¢(n) for infinitely many n € N} .

Thus if f(z) = = 4+ fmod Z for a fixed §, then Ry, () is either X or
@; alternatively, if the pushforward of Lebesgue measure by the map z —
f(z)—= is absolutely continuous with respect to Lebesgue, then the zero/one
law for the sets Ré,a (1) depends on the Diophantine properties of a as
described in [FK].

The situation is even trickier if one considers irrational rotations of higher-
dimensional tori. Namely, if we let X = R?/Z? and pu = Lebesgue measure,
then it is shown in [GP] that for any (arbitrarily slowly decaying) non-
increasing function ¢ with lim; o 1(t) = 0 there exists an ergodic trans-
lation T, : © — z 4+ o mod Z? such that p(RY, () = 0 for any y € X.
Moreover, by suitably reparametrizing the aforementioned example one can

Ior us ergodic self-maps T of finite sets X will be trivial: indeed, since those are
transitive, it easily follows that Ré (¢) = X for any f and any positive 1.



RECURRENCE UNDER LIPSCHITZ SHIFTS 9

construct a smooth mixing transformation on the three dimensional torus
with the same property. Thus some conditions on the speed of mixing is
crucial for a zero-one law as in Theorem 1.3.

3. THE CONVERGENCE PART

In the next two sections we prove Theorem 1.3, thereby assuming that
(X, u, T) satisfies conditions (1.8)—(1.13) and fixing ¢ : N — RT with
limy, 00 ¥(n) = 0. Similarly to (1.3) and (1.4), for an arbitrary f: X — X
let us define

Ay = AL (n,0) = {z e X : d(T"z, f(z)) < ¢(n)}. (3.1)

Clearly R;(q/)) = limsup A,.

Unlike the shrinking target case, corresponding to constant functions f,
the sets A,, cannot be expressed in the form T~"B,, for some balls B,,. Our
strategy is to consider the intersection of A,, with f~'B(zq,r), where o € X

and r > 0, and approximate this intersection by the preimages of some balls
under 7.

Lemma 3.1. For any xo € X, any r > 0 and any subset E of f~'B(xq,7),

ENA, C ENT "B(zo,%(n)+r). (3.2)
Furthermore, if r < 1 (n), then
ENT "B(zo,¥(n) —r) C EN A,. (3.3)

Proof. Fix a point x € EN A,,. Then
d(f(z),z0) <7 and d(T"z, f(z)) < ¥(n),
which implies that
d(T"x,z0) < d(T"x, f(z)) + d(f(x),z0) < ¢(n)+r.

Hence EN A, C ENT "B(zg,%(n) +7).
On the other hand, fix € ENT " B(xo,¢(n)—r). Then d(f(z),z0) <r
and d(T"z,x0) < 1(n) — r. Hence

d(T":L‘, f(iL‘)) <d(T"z,x0) + d(:):o, f(:v)) < (n),
thus ENT"B(zo,¢(n) —r) C EN Ay, O

Choose ng € N such that 5¢(n) < ro for all n > ng, where ry is as in
(1.8); the next several statements in this section will be proved for n > ng.

Lemma 3.2. Let B = B(xo,¥(n)/2) for some zg € X and n > ng. Then
for any open ball E contained in f~'B,

270 (mpu(E) — maan)$(n)’ < p(E N Ay) < 02(3/2)° (W(E) + an)p(n)’,

with 6,m1,m2 as in (1.8) and (ap)nen as in (1.9).
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Proof. Let r = 1(n)/2, and let E be an open ball contained in f~!B(xq, ).
Combining (3.2) with (1.9), we get

)
W(E N A) (EmT "B (w0, (n) ~ 7))
W E) (T~ " B(wo, ¥ ) ) — anu(ENT"B(zo,¥(n) — 1))
w(E)u (T B(o, ¥(n )—anM(T*"B(xo,zp(n)m))
— () (B (w0, t(n )—anu( (20, 0(n)/2))
(mu(E) n2an)2”P(n)°

and

WENA) < ,u(E AT~ B(z0,%(n) + 7‘)>
< W(EY(TB(wo, ¥(n) + 1)) + anp(E N T~ B(ao, p(n) + 1)
- M(E)u(T_"B(xO, 3w(n)/2)) + anp (T—"B(xo, 3w(n)/2))
< w(B)pn(B(0,30(n)/2) ) + anp( B (w0, 36:(n)/2))

establishing the claim. O

To prove Theorems 1.3-1.6, in view of Lemma 2.1 it is enough to assume
that f is Lipschitz. Thus for the rest of the paper we let f : X — X be a
p-Lipschitz function for some p > 0.

The next lemma estimates the measure of the sets A,,.

Lemma 3.3. Forn > ng,
'R0 () = (p/5)°an < p(An) < 07 'ma(3/2)° (1570(n)° + (2p)°an).

Proof. Takez € X,y € f~{2}and z € B (y, M) Then by the p-Lipshitz
condition, d(z, f(2)) < pd(y, z) < 1(n)/2. Thus

B(y,v(n)/p) C f7'B(z,4(n)/2).

We have an open covering

{B(y.v(n)/p) -y € X}
with each B ( ) C f'B(z,(n)/2) for some z € X.

By Vitali’s covermg theorem (5r-covering lemma), we can find countably
many disjoint balls {B (yj, %) } such that
P J)jeg

xXcl|JB < , )>. (3.4)

JjeT




RECURRENCE UNDER LIPSCHITZ SHIFTS 11
By the disjointness of { < v )} , we have
y ] Y% ) f e,
4
() ¥(n)
Yy < B( . —) < u(X) =1.
Zm( % <> n(B(w 2 ) ) S HE)
JjeT JjET

Hence | J| < n;* (ﬁ) On the other hand, by (3.4) we have

ZUQ (5@25:))5 > ZM <B<yj7 5@25:))) >pu(X) =1,

jeT JjeT

0
hence | J| > ny ! <%) .
By Lemma 3.2, since for each j we have B (y], %) C f_lB(a:j, 1/1(71)/2)
and B (yj, 5 ”)) C f7LB(x;,50(n)/2), it follows that

p(An) <Y p (B<yj’ 51#; )> mAn)

jeJ
< mis/2) (815, 5) ) o vt
<ot (225) s/ [ (P 4 ] iy
= 01 '12(3/2)° (12574 ()’ + (2p) )
and
>J€Z; ( mAn>
n 1)
ey A
d
>yt <5j?n)> [7712“s (@b( )> 2" an} W(n)°
=1y 'nf107%9(n)’ — 0y (2p/5)°ne2 an,
finishing the proof of the lemma. ([

Proposition 3.4.

i@[)(n)é =00 +— i wu(Ay,) = oo (3.5)
n=1 n=1
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Proof. By Lemma 3.3 we know that

ny 'i107° Y " w(n)’ = (p/5)° Y an

n>ngo n>ngo
<D u(An)
n>ngo
<y 'na(3/2)° (77255 > Y(n p)°’ > an> .
n>ngo n>ng
Since {ay} is summable, (3.5) holds. O

Remark 3.5. Note that Proposition 3.4 and the Borel-Cantelli Lemma
immediately imply the convergence case of Theorem 1.3: if > | 1(n) < oo,

then M(R;(w)) = p(limsup,, A,) = 0. Note also that or this conclusion
one only needs the first two conditions of Theorem 1.3, that is, (1.8) and
(1.9); the remaining conditions (1.10)—(1.13) will be used in the proof of the
divergence case.

4. A QUASI-INDEPENDENCE ESTIMATE

Now let us make use of assumptions (1.10)—(1.13). The following lemma
was stated and used in [HLSW]; we prove it here since our set-up is slightly
different.

Lemma 4.1. For m € N, J a cylinder in F,, and for any open set U
contained in J, p(T™U) < K5u(U).

Proof. By (1.8) and (1.13), we know that for all open balls B C J with
radius smaller than 7o, it holds that u(7™B) < Ku(B). Let U C J be an
open subset. Consider the cover

S={B(z,r):z €U, B(z,5r)CU, r<r}

of U. By Vitali’s covering theorem, & has a countable sub-collection B of
disjoint balls so that

U B(z,r) CU C U B(x,5r).
B(z,r)eB B(z,r)eB
Since T™ is injective on J,
U T"B(x,r) C T™U C U T™B(z,5r).
B(z,r)eB B(z,r)eB

Hence

K Z w(B(z,r)) < w(T™U).
B(z,r)eB

On the other hand, u(U) =< ZB(I’T)GBM(B(.%, 7)), and the lemma is proved.
O
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Now recall that we were working with the sets A,, defined in (3.1). The
next lemma shows that the intersection of a cylinder of high enough level
with A, is contained in a small ball. Namely, let mg > ng be such that

K; diam(X)
L]

Kj > max ,Qp} for all m > mg and J € F,, (which is possible

in view of (1.11)).

Lemma 4.2. For m > my, for every cylinder J € F,, and any z € JN A,
there exists a ball of radius

2¢p(m)
r= , 4.1
K p (4.1)
say B(z,r), such that
JNA, CB(z,r)NJ. (4.2)

Proof. Choose any x,z € J N A,,. Since J € F,, in view of (1.10) we have
d(T™z, T"2)K ;' > d(z, 2).
On the other hand,
d(T™x, T™z) d(me,f(ﬂz)) + d(f(:c)jf(z)) + d(Tmzjf(z))
2¢p(m) + pd(x, z).

Then K d(z,z) < 21p(m) + pd(z, 2), i.e. d(z,2z) < %. O

<
<

Now let us prove a quasi-independence property of the sequence {A,},.
For any m € N and J € F,,, define

J*:=B(z,r)NJ, (4.3)
where 7 and z are defined in (4.1) and (4.2).

Lemma 4.3. For all n > m > mqg and for each J € Fyy,,
(T 0 A 0 An) S K5 [6(m) 9 (n)° + an-mo(n)® + agp(m)’]
Proof. Let J € F,;,. By Lemma 4.2
JNA,NA, CJ NA,
where J* is defined in (4.3). Now let us estimate pu(J* N A4,).
Case (i): pr = %@ < (n).
Note that for all 2 € B(z,r) we have d(f(z), f(z)) < pd(z,z) < pr,

therefore B(z,7) C f~'B(f(z),pr). Thus J* is a subset of f~'B(f(2),pr),
and we can apply Lemma 3.1 to J* and obtain

J*NAy, C T NT "B(f(2),%(n) +pr) C J*NT "B(f(2),2¢(n)). (4.4)
Then apply Lemma 4.1 to J* N T*”B(f(z), 2¢(n)), getting
(T NTTB(f(2),20(m) ) S K570 (T N T== ™ B(f(2), 20(n)) )

< K;M(TmB(z, r AT~ B(f(2), w(n))).
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Since m > mg, we have inf;cr K; > 2p. Then by the conformality as-

sumption (1.12), we have

T™B(z,r) = T™B (z, 125(7_”; )

) ¢ (I Katu(m).

CcB <TmZ,K2KJ

where K is defined in (1.12). Thus

W(J7* N Ay) < K;%(B(Tmz, AKyp(m)) N T~ ™ B(f(2), 21/)(71))).

By the mixing property (1.8),
(J*NAy) < K7 (TmB(Tmz, 4Ky (m)) N T~ "M B(f(2), 2¢(n))>
S K7 (BT, 4Ka0(m) ) u(B(2.26(0)) ) + n-mp(B(z20(m)) )]
S K70 [0m) () + an-mip(n)?].

Case (ii): pr = zfgi = > (n).
) by a collection of balls of radius ¥ (n).

We replace the ball B(f(z),pr
r), denoted by {z;}1<i<n,. .-

Choose a maximal Sw( )-separated set in B (f(z) P

Then
Nm n

U B zz, CB(f(z),2p7’).

Since p is Ahlfors regular and m > ny,
N ( Pt (m) )5
T\ (Ky = p)(n)

Since B(z;,¥(n)) C f~'B(f(zi),p(n)), we can apply Lemma 3.1 to each
ball B(zz, (n)) with 1 <4 < Ny, ,, and obtain

N(B(Zia ¥(n)) N An) < p

= (B(zi,¢(n)) NT "Bz, (1 +p)q/)(n))>
M(B(ZM#( )))M(B(zi, (1 —I—p)w(n))> + anu(B(Zi, (1 —|—p)w(n))>

[ S+ an] (n)°.
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Now summing over 1 <4 < N,, 5, we have
Nm n

w(J*NA,) < Z u(B(zi,w(n)) N An)

4
< (5 [oo) + e
S K7 [(m)’¢(n)’ + anp(m)°].

Combining the two cases we obtain the desired conclusion. O

Proposition 4.4. For n > m > my,
(A O An) S D(m)°0(1)° + anomtp (n)° + antp (m)°.
Proof. This follows directly from the previous lemma and (1.12), since

W(AR N A) S 30 K5 [Bm)P o)’ + an o (n)? + anii(m)’]

JGfm

S $(m)°P(n) + an-mp(n)’ + antp(m)°.

(1.12)

5. PROOF OF THEOREMS 1.3 AND 1.4
To prove the divergence case of Theorem 1.3, let us recall

Lemma 5.1 (Chung-Erdés inequality, [CE]). Let (X, pu) be a probability
space, and let {Ey,}y, be a sequence of events such that Y 7 p(Ep) = .
Then

N 2
(1_ . > o (anl u(En))

imsup E,, | > limsu .

a n~>oop Naoop Zﬁmzl w(E, N Ey)

The next lemma is based on the above inequality.

Lemma 5.2. Let (X, u) be a probability space. Let (Ey)r be a sequence
of measurable subsets of X, and let (ap)n, (bn)n be sequences of positive
numbers such that > >2 | a, < 0o and Y o2 | by, = co. Assume that for some
$1, 82,83 > 0 it holds that

Sl(bn - an) < /'L(En) < 33(bn + an) for allm € N

and
wW(Em NE,) < so(bmbn + an—mby + anby,)  for all m < n.

Then p(limsup,,_, . Fn) > 5t

= 255"

Proof. Let us denote Zi" 1 ar = S. Choose € > 0. On the one hand,

N N
Z” >slz )251<ans> 2(8175)an
n=1 n=1
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when N is Sufﬁciently large, because > o | b, = co. On the other hand,

N

m,n:l 1<m<n<N

<53Zb +an) +2522 Z (bmbn + an—mbn + anbm)

m=1n=m+1

<33Zb +33S+2522 Z b br, +25282b +25282b

m=1n=m+1

2 2
< 2sp (an> + (s34 4529) Zb +535 < (255 +¢) <Zb>
n=1

n=1

when N is sufficiently large, again because > - | b, = co. Hence by Lemma 5.1

2
. . ((51 —&) Y bn) (51 —¢)?
| limsup E,, | > limsup 7= ,
A VR s te) (Thaba) TR

and, since € was arbitrary, the conclusion follows. O

Proof of Theorem 1.3, the divergence part. Take E,, = Ay;p4n, where myg is
chosen prior to Lemma 4.2. By Lemma 3.3, there exist s1, s3 > 0 such that

S1 (w(mO + n)(S - amo+n) < u(En) < s3 (w(mo + n)é + amo-i-n)
for any n € N. Also by Proposition 4.4 there exists so > 0 such that
PERNER) < 9 (¢ (mo+m)y (mo+n)+an—mt?’ (mo+n)+amq 4 nt)" (mo+m))
for n > m. By taking b, = ¥(mo + n)5 the above lemma implies that
M(Rij;(w)) = p(limsup,,_, Fpn) > 285 > 0. O

We conclude the section with the proof of Theorem 1.4, that is, a passage
from positive measure to full measure under the assumption that f and T
commute. This proof is adapted from [HLSW].

Proof of Theorem 1.4. Suppose that (1.16) holds. Consider the set
/ L R EI -1 n
R'(¢) := {x €X: hnrgloréfw(n) d(T"z, f(z)) < oo}

Take a point x € R'(¢)) N f~1X;. By definition, there exist c¢(x) > 0 and
{nk}r C N so that
Y(ng) (T, f(z)) < c(z) VEk>1

Let s(x) be a positive real number such that B(f(z),s(z)) C X;. Since
(n) — 0, take N € N such that for all k > N,

c(@) (i) < s(x)
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Then d(T"*z, f < e(x)(ng) < s(x), therefore T" x € X; for all k > N.

(z))

Hence for all £ > N,

a(T(Ta), (f(T2)) ) A a(T(T2), T(f(2)) = d(T(T"2), T(f(x)))

< d(T™a, f(z)) < c(z)(ng).

This implies R’ ()N(U; f 7' Xi) € T~ R'(¥), thus p(R' (v)NT'R'(v)) = 0.

But R:];(w) C R'(¥), hence u(R'(¢)) > 0, and by the ergodicity of T,
p(R(¥)) = L.

Now we show that M(R;(q/))) = 1. Take a sequence of positive numbers
{f(n) : n > 1} such that

S M:oo and lim /(n) = co.
2 4w )

n—oo

Consider 1(n) := ¢(n)/¢(n); then R'(¢) has full measure, i.e. for y-almost
every x € X,

larggfi(n)_ld(T"m,f(m)) < 0.

By Egorov’s theorem, for any € > 0 there exists M > 0 such that the set

Ry = {SE eX: Qf}((n))d(T”:p,f(:E)) < M for infinitely many n € N}
n
is of measure at least 1 —e. Then Ry C Ré(w), by letting ¢(n) — co. Since
¢ is arbitrary, it implies M(R:J;(w)) =1 O

6. PROOF OF THEOREM 1.5

We first prove a local version of Lemma 3.3; i.e., fix a ball B with suffi-
ciently small radius and estimate p(A, N B) for n sufficiently large.

Lemma 6.1. For any r < ro/2 there exists n, € N such that for any open
ball B = B(z,r) in X and all n > n,,

2
?727]210(5”(3) [Ziw(n)fF _ (Qp)ﬁan} < u(A, N B)

1530 PHVIRY 5
< B (B) [m5 (1) +an(20)
1
Proof. Let n, € N be such that

W}gn) < g (6.1)

for all n > n,. As in the proof of Lemma 3.3, we have an open covering

o) v
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of B, with each B(y7 v ) C f- 1B(az: Y(n )/2) for some z € X. Again by

Vitali’s Covering Theorem we can find countable sub-collection of disjoint
balls {B(y;,v(n)/2p) }jej such that

B c | B(y;,5¢(n)/2p). (6.2)
jeTJ

Then we have

S m(wn)/2p)’ <3 u ( (w5, ¥ (n /2p)) < u(B(x,2r)) <22 u(B),

JjeJ JjeJ (6-1) n
hence
12(4p)° 11(B)
J| < —F. 6.3
1= Ry o)
On the other hand,
d
> m(50(n)/20)° > > (B (s, 50(n) /20) )
JjeJ JjeT
B(y,sw(n))ﬂB(x r/2)#2 B(y,w’(n))ﬂB(a: r/2)#D
m
> x,7/2 B),
(@)u( (z,7/2)) > it P)
therefore
Hjejzg(ww) cBH
2p
(6.4)

. . (n) *u(B)
2, H]GJ.B(y],21?)(13(3:,1"/2)7&@}‘2 m.

Since for each j € J we have B(yj,w(n)/2p) C f_lB(xj,w(n)/Q) and
B(yj, 51/1(n)/2p) C f_lB(:zzj7 51[)(71)/2), similarly to the proof of Lemma 3.3

we can write

(A, N B) <> p(B(y;, 51(n)/2p) N Ay)
JjET

Lem%a 3.2 ]ezj 772(3/2)6 [,U <B (yj’ 5¢(n)/2p)) + an] 1/}(71)5
. (p)’uB)
pas)  mv(n)?

290
N 77727;)#(3) [772561/1(71)5 - an(2p)5]

12(3/2)° [ (50(n)/20) ¥ (n)° + antp(n)’

(6.3
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and
WANB) > S u(Blyyvn)/20) N A)
B(yj ,¢{7§§2p)CB
=" J; 270 [mu(B(y;, ¢(n)/2p)) — maan] ¢(n)°
B(y; 4(n)/2p)C B
64509 m 2 [n% (w)/2p)" - 7’2“”} vn)?
m ﬁj 5 )
a5 | L) - (2.
finishing the proof. 0

Lemma 6.2. Let m > mg, and let J be a cylinder in F,,. Then
diam(J) < K; diam(X)K ;"

Proof. Let x,y € J. By (1.10) and the definition of K,

Kid(T™z, T™y)

d <
(m,y) < 5, ,

hence by (1.10)
d(z,y) < K diam(X) K,
which implies the needed upper bound on diam(.J). O

For the rest of the section, let us assume that {X;};c7 is pseudo-Markov.
Let 0 < 7 < 1 be such that pu(7TX;) > 7u(X) for all ¢ € 7.

Lemma 6.3. For alln € N and for a nonempty cylinder
J=X;,, NT7'X;,n---nT"X, €F,
one hasT"J =TX;,.

Proof. For each 0 < j < n, we have T*jHXij N T*J'XZ-].+1 # &, and then
TXz-j N Xin % &, so by the pseudo-Markov condition, TXij ) Xij+1' Now
let x € X;,, then since T'X;, |, D X;, , there exists some z,-1 € X;,_,
so that Tx,—1 = x. Similarly, there exists some x,_2 € X;, , such that
Txy_9 = xp—1. Continue this process until we find such z¢p € X;,. Then
Ti~ gy € X, for each 0 < j < n, so in particular zp € J and T gy = x.
Hence 7" 1J D X, .

For the reverse containment, since J C T "T!X; | it follows that
T"'J C X;,. It remains to apply 7 to both sides of T 1J = X; to
conclude the lemma. O

Lemma 6.4. Let m > mg, and let J be a cylinder in F,,. Then
p(J) 2 K5°.
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Proof. Write J in the form

J=X,NT'X;,n--- 77X,

then
Kyu(J) = pu(T™)) = w(TX;,)>7u(X),

Lemma 4.1 Lemma 6.3

thus u(J) > K;°. O

We now prove a local estimate for the quasi-independence of the intersec-
tion of sets { A}, with balls.

Corollary 6.5. For any open ball B = B(x,r) in X with 2r < ro, there
exists m, € N so that for all n > m > m,.,

(BN Ay N AL S u(B) [9(m)*(n)° + an—mb(n)’ + antp(m)’ |,

where the implicit constant in the above inequality is independent of B.

Proof. Let ¢ > mg and let I € F,. For all n > m > ¢, by Lemma 4.3 we get

pINAnNAy) = > p(JNARNA) S DY u(J*NA)

JEFm JEFm
JciI JciI

< S0 K [0 () + an o (0)’) + [ (m) () + anip(m))

JEFm
JcI

S K7 [ () + anmto(n)® + agp(m)’] (6.5)

Lemma 6.4

Now let B(z,r) be an open ball in X with r < rg/2. By the expanding
property (1.11), we can take some m, > mq so that for all ¢ > m,,

inf K;>r 'K diam(X);
Jlél}_q J>T 1 diam(X);

Let ¢ > m,. Then by Lemma 6.2 for all J € F,, diam(J) < r, so

Bz,r)c || JcCB2r).
JeF,,
JNB(z,r)#2
Then

p(Blx,r) < Y ulJd) < p(B(x,2r).
B o
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Therefore by (6.5),

p(Bla,r)NAnNAyn) < Y u(JNANAp)
JeFy,
JNB(z,r)£o
> K [ ) + an-mto(n)® + antp(m)’]
6.5)  jer,,
JNB(z,r)#o

S Y w0 [$m) ) + () + ani(m)|

~Y
Lemma 6.4 JEF,,
JNB(z,r)#£2

< (B(@,20)) [$m) ()" + an-mio(n)® + apip(m)’|

= 25%”(3(1‘, 7“)) [¢(m)6w(n)6 + an—m¢(n)6 + an¢(m)6] :

A

O

Finally let us apply the following generalization of the Lebesgue Density
Theorem to finish the proof of Theorem 1.5. Recall that a probability mea-
sure p on X is called doubling if there exists a constant D > 0 so that for
any € X and r > 0,

w(B(x,2r)) < Du(B(x, ).
It is clear that Ahlfors regular measures are doubling.

Theorem 6.6 (Lebesgue Density Theorem). Let (X,d) be a metric space
with a Borel doubling probability measure u, and let E be a Borel subset of
X. Suppose there exist constants C' > 0 and ro > 0 so that for all balls
B C X with radii less than rg, we have

u(ENB) = Cu(B).
Then p(E) = 1.
For a proof, see [BDV, §8, Lemma 7).

Proof of Theorem 1.5. By Lemma 6.1 and Corollary 6.5, there exist positive
constants $1, s2, s3 so that for all B = B(z,r) in X with r < r¢/2 and for
all n > max{n,, m,},

p(B)s1 (v(n)’ = an) < u(B N A) < p(B)sy (6(n)° +an)

(BN Ay A) < 1(B)ss (¢(m)%(n)5 ¥ anemth(n)® + anw(m)5> .
Now take b, = t(n)® and

B - AN B if k> max{n,,m,}
ko o) otherwise.
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| | w(B)s)? 8
limsup 4,, N B) = p(limsup Er) > (7 =1
:U‘( 7L~>oop n ) IU‘( k;—)oop k) - 252,“(B) 252

Then by the Lebesgue Density Theorem (Theorem 6.6),
w(RL(v)) = plimsup Ay) = 1.

u(B).

7. EXAMPLES

Here we list several examples of dynamical systems to which our theorems
apply. The first two come from the paper [HLSW]:
e X =[0,1],T: z+ Bz mod 1, where 8 > 1, and p is the T-invariant
probability measure absolutely continuous with respect to Lebesgue
measure, namely (see [R])

Leb(E) if 5 is an integer,
_ k
wE) = W Ay w if 8 is not an integer,
2iZ0 TaE

where {x} denotes the fractional part of z;

e X =10,1],T: 2+~ % mod 1, and p is the Gauss measure given by
_ d
dp = (log2)g(cl+x)'

Sections 3.1-3.2 of [HLSW] together with Remark 1.2 show that in both
cases the assumptions of Theorem 1.3 are satisfied. In fact, in both cases
uniform mixing with exponential rate was first exhibited in [Ph], together
with a quantitative shrinking target property of these systems.

The pseudo-Markov property holds for the Gauss map but only for some
special pB-transformations. We will prove the full measure in the divergence
case for arbitrary S-transformations in §8.

Our last example deals with self-similar sets. Let
0 :={f;(z) : R = R},
be a system of similarities with
10;(x) — 0;(y)| = rilx —y| forall z,y e R, i =1,...,L,

where 0 < r; < 1 for all i. Then by [H, Theorem 3.1.(3)] there exists a
unique nonempty compact set X C R, called the attractor of the system,
such that

L
X =[J6oi(x).
=1

Furthermore, we assume that © satisfies the open set condition: that is,
there exists a non-empty bounded open set U C R such that

L
J0:(U) c U and 6;(U) N 6,;(U) = @ for all i # j.
=1
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Then it is known that the Hausdorff dimension of X is equal to the unique
solution & € [0,1] of the equation S°F 79 = 1 (see [F, Theorem 9.3]).

i=1"%
Furthermore, the normalized restriction p of the J-dimensional Hausdorff
measure to X is positive, finite and satisfies

L
p=S 10 (0)n. (7.1)
=1

(For a proof, see [H, Theorem 4.4.(1)].)

To define the corresponding expanding map and construct the cylinders,
we consider the following lemma from [Sc, Gr]:

Lemma 7.1 ([Sc], Theorem 2.2; [Gr], Lemma 3.3). Let {6; : R™ — R"}E |
be a system of similarities satisfying the open set condition, X its attractor,
and p the self-similar measure given by (7.1). Then there exists a nonempty
compact set A with

(i) 6;(A) C A foralli=1,...,L;
(ii) 6;(int(A)) N6;(int(A)) = @ for each i # j;

(ili) p(int(A)NX) =1.

We remark that parts (i) and (ii) are stated in [Sc, Theorem 2.2], and
part (iii) follows from the proof of [Gr, Lemma 3.3], where it is shown that
p((ANint(A)) =0 and X = supppu C A.

Now define

X; == 0;(int(A) N X). (7.2)
Each X; is open in X because 6; is an open map. The disjointness of X;
and X for i # j follows from Lemma 7.1(ii). Finally, one can write

L L L
m (U XZ-> = p(fi(int(A) N X)) = rfu(int(A) N X)
=1 =1 =1

L
(by Lemma 7.1(iif)) =) ) =1= u(X).
=1

Hence one can define the map 7' : X — X p-almost everywhere by setting
T|x, = 0; '|x,. Tt follows from (7.1) that (X,pu,T) is a measure-preserving
system. Clearly T'|x, is continuous and injective for every i. Therefore the
collection {X;}E | satisfies our assumption for being cylinders of order 1.

For i= (i1,...,im) € {1,...,L}™ let us define
m
0 :=0;,0---00;, and r;:= Hmk.
k=1

Using the definition (1.7) of cylinders of order m together with (7.2), it is
easy to see that the set F,, of cylinders of order m is precisely

{X;:=6i(int(A)NX):ie{l,....,L}"},
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and the restriction of T™ onto X; € F, coincides with 6, ! This, in partic-
ular, implies that

p(Xs) =rf (7.3)
and Ty _ pm
KJ:“JU_’y’:ril forall z,y € J = X; € Fp. (7.4)
r—=y
Denote
Tmax = mMax T;.
i=1,..,.L

Let us now verify assumptions (1.8)—(1.13) of Theorem 1.3.
(1.8): By [H, Theorem 5.3(1)(i)],

B(x,r

v < lim inf M < lim sup
r—0 7“6 r—0 7«5

for some 0 < 1 < 72 < oo and all x € X. Clearly it implies that

is Ahlfors regular of dimension 4.

(1.9): (T is uniformly mixing) Let E be a non-empty open ball in X, let F’
be a measurable set in X, and let m € N. Note that for all cylinders
J =X € Fp, where i € {1,..., L} one can write

p(JNT™™F) = r{u(T™J N F) = r{ p(int(A) N F) 5 w(J)p(F).

Note that since E is an interval, we can (up to a set of measure zero)
write F as a disjoint union of cylinders of order m and at most two
balls contained in cylinders of order m; i.e.,

E = ( U J ) UFE;UEy
JEFm,JCE
where the unions above are disjoint, and FEi, F are contained in
some cylinders Ji,Js € F,, respectively, hence have measure not

greater than v . Then

(WENT™™F) — p(E)u(F)|

=| > unTE) = 3 W) + (B 0T = p( By u(F)

JEFm, JEFm,
JCE JCE

+ (B2 NT™™F) — M(EQ)M(F)‘

= By N TP — (B (F) + u(Ba 0 T F) = (B u(F)
S (A NT"E) 4+ p(J)p(F) + p(Jo NTF) + p(J2) u(F)

= 4 u(F),

and (1.9) follows with a,, = 477

max-*

(1.10): Follows from (7.4) with K; = 1.
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(1.11): Again from (7.4), for all m € N we have

inf Ky= inf oril=r"
JEFm ie{1,...,.L}m

which goes to co as m — oo.
(1.12): In view of (7.4), for all m € N one can write
ZK;‘S: Z rf:(r‘f+-~+rfn)m:1.
JEFm ie{1,...,.L}m™
(1.13): Also follows from (7.4) with Ky = 1.
It is clear that {X;};e7 is pseudo-Markov. Thus, by Theorem 1.5, for any

function 1 : N — RT and any Lipshitz function f : X — X, the f-twisted
recurrence set R:J;(d)) satisfies

o n(RL()) = 0if 502 9(n)® < oo;
o u(RE()) = 1t 3202, (n)® = oo

8. PROOF OF THEOREM 1.6

Let 8 > 1 be a real number and suppose >, ¢(n) = oo. In this section,
we will consider the system

X =10,1], T = Mg, p the Mg-invariant measure,
and the partition

{Xi: (;Z;l) :i:O,l,...7Lﬁj—1}U{XLBJ: <L?1>} (8.1)

If 5 is an integer, then (8.1) is pseudo-Markov. Furthermore, if 3 satisfies
B2 —kB—¢=0, forsomek>"¢eN*
then
TX;=X Vi<|[B] and TXg = <0,2> )

and hence (8.1) is also pseudo-Markov. In both cases, we have
7 (Rg(w)) = 1. by Theorem 1.5. We now prove the general case, which is

also proved in [LWW].

We will apply Lemmas 6.1 and 4.3. We remark that analogous results are
also proved in [LWW]; however our lemmas are proved in a more general
abstract setting, do not depend on the actual arithmetic and symbolic coding
of the systems, and have a much weaker assumption on the regularity of the
cylinders.

We first state some facts about (X, u, T).

Lemma 8.1 ([R]). For (X,u,T) defined above, 11 is equivalent to Leb and

e k
w(E) = %ﬂk} Y oreo W for all Lebesgue-measurable set E.

Z;O:O gk
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For a proof, see [R, Theorem 1].

To state the next lemma, we define the lexicographical order <. For two
words a = (g, a9,...) and 8 = (51, B2,...), we write a < 3 if there exists
k € N so that a; = §; for all ¢ < k and oy < Sr. We write a < gif a <
or a = 3. Denote the S-expansion of 1 by

o é.n
1=y =
b

If {&,}n is not eventually zero, then we define & = &, for all n € N. If {£, },,
is eventually zero, then denote M := max{n € N: ¢, # 0} and define

n

¢ — &k ifn=k mod M¢, k>0
fME—l ifn=0 mod M.

A classical result says that the right-most cylinder has the maximal coding
in lexicographical order, in the following sense:

Lemma 8.2 ([P]). Let (X,pu,T) and {X;}icz be defined above, and let
J=X;,NT7'X;, n---nT"HLX;

n—1°
Then J is nonempty if and only if
(45,8541, in—1) < (§,&5,...), foreachj=0,...,n—1.
For a proof, see [P, Theorem 3].

For a cylinder J € F,, we always have Leb(J) < 7. Let us call J full if
the upper bound is reached; i.e., Leb(J) = 57".

Lemma 8.3 ([FW]). Let J be as in Lemma 8.2. If J is nonempty, then
X, NT'X;,n---nT "X,

In—1
is full for all jn—1 < in—1.
For a proof, see [FW, Lemma 3.2(1)].

Proposition 8.4. For alln € N and for all J € F,, with J # &, there exists
some full cylinder I € Fp, with

Leb(J)
5

IcJ and Leb(l)>

A similar inequality is proved in [LWW].

Proof. Let J € F,, with J # @. By Lemma 8.2, the set

k
Ny=QkeN:Jn (T "7 XNT " F X, # 2
=0
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is nonempty. Let k; = infANj;. If k; = 0, then trivially we have
JnN ﬂ?io T—"=I+1 Xy = J. Now suppose k; > 0. Assume
ks
J2JNn (T X,
j=0
Then there exists some 1 < ¢ < n — 1 such that
ky—1
Jn () T XonT " RHX; #£ @ (8.2)
j=0

But by Lemma 8.3, i = 1 must satisfy (8.2), which contradicts the minimal-
ity of ky in Ny, so

kg
JN()T " Xy =,
j=0
By Lemma 8.3
k1+1
Leb (Jn () 77" X | =g+
§=0
On the other hand,
kg
Leb [ JN ()T "7 X, | <p ™k,
j=0
hence
kj+1
Leb(J) < BLeb | Jn (| T 7M1 X,
§=0
Taking I = J N ﬂfggl T3+t Xy, we finish the proof. O

Note that Ky = 8" for all J € F,,. Now we can prove Theorem 1.6.

Proof of Theorem 1.6. Sections 3.1-3.2 of [HLSW] together with Remark

1.2 show that the system satisfies (1.8)—(1.13). By Lemma 6.1, there exists

positive constants s1, s3 so that for all B = (z,r) with r < 3 and for all

n > ng,
s1a(B) (¥(n)’ — an) < p(BNA) < sg(B) (0(n) +an). (83)

By Lemma 8.1, there exist a constant a > 0 such that

1
—Leb(E) < pu(E) < aLeb(E), for all Lebesgue-measurable E C X.
a
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Suppose I € F, and Leb(I) = 79 Then by Lemma 4.3, for all n > m >
q > my,

pINAnNA) S Y g™ (w(m)%(n)é + ap—mtp(n)’ + anw(m)‘s)
JEFm
Jci

< Leb(D) (£(m)?$(n)? + an - (n)’ + anto(m)’)
< ap(1) (£ 9 () + an-mib(n)? + anp(m)°)
so there exists a constant sy such that
(IO A 1 An) < sop(D) (0(m)° ()" + @b (0) + antp(m)?) . (3.4)

Note that in this system all cylinders are intervals, so by (8.3) and (8.4)
together with Lemma 5.2, there exists a constant v > 0 so that for all ¢ > my
and for all cylinders I € F, with Leb(I) = 579, we have

p(INRF () > yp(I).
By Proposition 8.4, for all cylinders J € F,,, there exists a cylinder I C J
with I € Fy, Leb(I) = 3%, and Leb(I) > § Leb(J). If n > my, then

g
p(JNRE(Y)) > p(INRE () > yu(l) > a2gh):
Now take B(z,r) C X with r < 1. Take n € N with n > —logg 7. Then
for all J € F,, diam(J) < 287" < r/2, and
B(x,r/2) C |_| J C B(z,r).
JEFn
JNB(z,r/2)#£0

Hence

p(BEnnBf @) 2el L InRf@) |2 Y ge)

JeFn JeFn
JNB(z,r/2)#2 JNB(z,r/2)#2
2 i
> %M(B(a:,r/Z)) > 2a4ﬁu(B(a:,r)).

Thus it follows from the Lebesgue Density Theorem (Theorem 6.6) that
W(RE(w) = 1. 5
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