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The May—Leonard model was introduced to examine the behavior of three competing populations where rich dynam-
ics, such as limit cycles and nonperiodic cyclic solutions, arise. In this work, we perturb the system by adding the
capability of global mutations, allowing one species to evolve to the other two in a linear manner. We find that for
small mutation rates the perturbed system not only retains some of the dynamics seen in the classical model, such as
the three-species equal-population equilibrium bifurcating to a limit cycle, but also exhibits new behavior. For instance,
we capture curves of fold bifurcations where pairs of equilibria emerge and then coalesce. As a result, we uncover
parameter regimes with new types of stable fixed points that are distinct from the single- and dual-population equilibria
characteristic of the original model. On the contrary, the linearly-perturbed system fails to maintain heteroclinic con-
nections that exist in the original system. In short, a linear perturbation proves to be significant enough to substantially

influence the dynamics, even with small mutation rates.

Almost 50 years ago, May and Leonard' introduced an
extension of the classical Lotka—Volterra nonlinear sys-
tem to examine the long-term dynamics of three compet-
ing populations. In their work, they found that solutions
exhibit three distinct behaviors depending on the param-
eter values chosen, with the system approaching either a
stable fixed point, a periodic orbit or, even more interest-
ingly, what is now known to be a heteroclinic cycle. In
the latter case, the observed trajectories are characterized
by nonperiodic oscillations of bounded amplitude but ever
increasing cycle time. Here, we establish and study an ex-
tended May-Leonard model by including a linear pertur-
bation that represents the ability of each species to adopt a
competing strategy. We find that incorporating the linear
perturbation increases the number of physically-relevant
equilibrium states for certain parameter values. In addi-
tion, we also find that the region in parameter space where
periodic orbits exist is much larger than in the case of the
original May—Leonard equations, and that the system no
longer exhibits nonperiodic cyclic solutions. Therefore,
allowing for a small linear mutation term representing
global mutations foments coexistence of different species.
In biological terms, this would imply that equipping popu-
lations with the possibility of switching from one strategy
to another with a small transition or mutation rate can fa-
vor biodiversity.

I. INTRODUCTION

During the last half a century, work on the May-Leonard
model!, a population dynamics model of three competing
species, and its variations has led to a variety of results. In par-
ticular, Schuster et al.? described the @-limit set of the original
model and proved the existence of a heteroclinic cycle, while
Tang et al.> constructed a Lyapunov function to find the basin

of attraction. It was also determined by Gaunersdorfer* that
the time averages of the trajectories tending to the heteroclinic
orbits in the model do not converge but spiral to the boundary
of a polygon. Approximate analytic solutions to the system
were also derived by Phillipson et al.’> and conditions under
which the system is integrable have been studied by Leach
and Miritzis®, Llibre and Valls’, and BIé et al 8.

Extensions of the May—Leonard model' have included in-
corporating asymmetric competitive effects in order to deter-
mine conditions for existence and stability of limit cycles and
nonperiodic oscillations, as well as existence of first integrals
of the Darboux type (Schuster et al.2, Chi et al.®, Wolkow-
icz!%, Antonov et al.'!"2). Instead of requiring equal intrinsic
growth rates for each competing population as in the May—
Leonard model!, existence of Hopf bifurcations and the sta-
bility of steady states were studied under the assumption of
unequal intrinsic growth rates (Coste et al.'3, Zeeman'*, van
der Hoff et al.!3). Park!® extended the model to include an
external influx and efflux of individuals into each population.
Balanced flow among the groups resulted in persistent coex-
istence of all groups, including cases with oscillatory dynam-
ics, while imbalanced flow resulted in various population sur-
vival states. More examples of various general three-species
competition models can be found in the review paper by Do-
bramysl et al.!”.

The same year that the May—Leonard model' was pub-
lished, Gilpin'® considered the effects of adding a constant
perturbation to these equations. He found that this constant
term allowed for the formation of limit cycles in regions of pa-
rameter space where the original model exhibited only nonpe-
riodic oscillations. Other types of perturbations have not been
considered until more recently. For example, in 2014, Zhao
and Cen!® showed that adding small quadratic perturbations
to the model results in exactly one or two limit cycles bifur-
cating from the periodic orbits of the May—Leonard system.
Other perturbations recently studied have been periodic in na-
ture. In particular, it has been found that periodically forcing
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the May-Leonard system results in the existence of strange at-
tractors (Rodrigues?). Additionally, periodic, quasiperiodic,
and chaotic solutions have been shown to exist under differ-
ent parameter conditions for small periodic perturbations to
the asymmetric May—Leonard model (Afraimovich et al.?!)
and time-periodic perturbations to a general 3-D competitive
Lotka-Volterra model, of which the May—Leonard model is a
subcase (Chen et al.?2).

In this work, we add a linear perturbation to the symmetric
May—-Leonard model. This linear perturbation models muta-
tions among the competing populations, whereby individuals
in one class are able to mutate into another class. The first to
examine these types of perturbations in a rock—paper—scissors
model with replicator-mutator equations was Mobilia>} about
a decade ago, followed by Toupo and Strogatz>*, among oth-
ers (Yang et al.?>, Park?®, Hu et al.?’, Mittal et al.?®, Kabir
and Tanimoto?’, Mukhopadhyay et al.3?). Both the replicator
equations and the May-Leonard model have a similar struc-
ture, with the main difference being that in the former case the
unknowns represent fractions of a fixed population, while in
the latter case the total population is not assumed to be a fixed
number a priori.

As was the case in the May—Leonard equations, depending
on the parameter values chosen, the trajectories of the repli-
cator equations exhibit three types of long-term behavior. So-
lutions can either approach the equal-population stable fixed
point, a heteroclinic cycle or, in contrast to the May—Leonard
model, one of the infinitely many neutrally stable cycles that
fill the state space. The effect of adding global mutations
to this system, where each species can mutate to any of the
other two with the same rate, is the loss of the saddle fixed
points that form the heteroclinic cycle, as well as the emer-
gence of a stable limit cycle from a supercritical Hopf bifur-
cation for certain parameter values (Mobilia>}). In contrast,
we find that adding to the May—Leonard system a linear per-
turbation modeling global mutations increases the number of
physically-relevant steady states for certain parameter values,
and consequently changes the ensuing dynamics. We summa-
rize our findings, for small mutation rates, below:

e As expected, the perturbation changes the nature of
some steady states. We recover the trivial and equal-
population equilibria; however, we also find a richer
variety of fixed points that we view as perturbations of
the single- and dual-population equilibria found in the
May-Leonard model.

e As in the original equations, the linearly-perturbed sys-
tem exhibits periodic solutions. However, while for the
May-Leonard model these trajectories are only present
along a line in parameter space, in the case of the
linearly-perturbed system, they can be observed for a
wider set of parameter values.

e In contrast to the May—Leonard system, the numerical
results we present suggest that the linearly-perturbed
May-Leonard model does not possess heteroclinic cy-
cles. This means that the system no longer exhibits non-
periodic cyclic solutions of bounded amplitude but in-
creasing cycle time.

2

Practical applications of the May—Leonard model' in the
existing scientific literature are limited in number; the model
is nonetheless used, in one instance in the literature, to calcu-
late the cropping quotas for three competing herbivore species
(Fay and Greeff3!). Such limited applicability stems, in part,
from the assumption that populations follow a cyclic domi-
nance competition pattern, which can be restrictive. For ex-
ample, in the parameter regime that predicts nonperiodic os-
cillations in the May—Leonard model, no single species dom-
inates, as the other two species will always rebound in size.
However, after just a few cycles, the value of the two smaller
populations will decrease below unity. As pointed out by May
and Leonard in their paper, this behavior is idealized, and if
we were to consider a real population, these species would
instead go extinct (May and Leonard").

On the other hand, it is in the cyclic dominance competition
pattern aspect that the model’s equations resemble the repli-
cator equations used to model evolutionary games. Indeed,
evolutionary games are widely used in theoretical biology to
study interactions between species which follow a cyclic dom-
inance pattern (MobiliaB, Czérén et al.32, Kerr et al.33, Szol-
noki et al.>*, Hofbauer and Sigmund>®). Although this form
of competition seems to be rare in nature, there are a few ex-
amples where this behavior occurs. These include the mat-
ing strategies of side-blotched lizards (Sinervo and Lively>®,
Zamudio and Sinervo37), and the interactions between three
different strains of E. coli (Kerr et al.>3). In this context, mu-
tation can be seen as the ability of a population to change its
competing strategy. Previous work in this area by Toupo and
Strogatz>* and Mobilia>> has shown that global mutations re-
sult in the emergence of a limit cycle. It is perhaps then not
surprising that the numerical and analytical results we present
here lead to the same conclusion.

Outline: This paper is organized as follows. We first re-
view the fixed points of the May—Leonard model! and their
corresponding stability in Section II. We then introduce the
linearly-perturbed May-Leonard model in Section III, and ex-
plore how this modification alters the dynamics for different
parameter regimes in Section IV. In particular, we find that
the system fails to maintain the heteroclinic connections that
exist in the original model, justifying the lack of nonperiodic
oscillations we observe in simulations. Finally, we summarize
our findings in Section V, where we further comment on the
effects of adding the linear perturbation to the model.

II. MAY-LEONARD MODEL

May and Leonard! extended the classic Lotka—Volterra
equations for two competitors to a system of three competi-
tors, my(t), my(t), and ms3(t), described by equations of the
general form

dm,-(t) 3 .
0 r,-mi(t)<ljzztlaijmj(t)>, i=1,2,3. (1)

Under symmetry assumptions that the intrinsic growth rates
are equal, r := r; = r, = r3, and that the competitors affect
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each other in a cyclic manner such that @ := o = 3 =
o31 and B := o = o3 = 3, along with a rescaling of the
populations m; and time ¢ such that o; = 1 and r = 1, the
May-Leonard model' becomes

%ZM](I-M[ —(sz—ﬁm3), (2a)
% :m2(1 —ﬁml—mz—am3), (2b)
dm3

?—m3<l—(xm1—ﬁm2—m3). (2¢)

Solutions to (2) tend to one of the system’s 8 fixed points, a
limit cycle, or a nonperiodic oscillation of bounded amplitude
but increasing cycle time.

A. Fixed Points and Stability

The May-Leonard model (2) possesses 5 distinct nonnega-
tive fixed points,

eo = (0,0,0), (3a)
e1=(1,0,0), ex=(0,1,0), e3=1(0,0,1), (3b)

1 1 1
€c = ) , ) 3c
(1+a+ﬁ l+a+p 1+a+B> )

known to exist for all values of a,f3 > 0, as well as 3 dual-
population fixed points

fi=(0 5. =), (4a)
f= (120 %%). (4b)
fi= (1%, £5.0), (4c)

for which positivity, and thus their physical relevance, de-
pends on the values of o and 3. For example, for these fixed
points to exist, we require a8 # 1.

The stability of these fixed points as a function of the two
parameters o and f is studied in depth in May and Leonard'.
Their results are summarized in the stability diagram in Fig. 1,
which we will also describe here.

The fixed point at the origin, eq, is always unstable. In
Region A, the only stable fixed point is the equal-population
fixed point, e..

In Region B, the situation is reversed and all single-
population fixed points, e, e, and e3, are stable, while the
fixed point e, is now unstable. In this region, the long term
dynamics of the system depend on the initial conditions, and
thus the system approaches one of the fixed points, e;, e, or
e3, according to its initial configuration.

In Region C, the system has nonperiodic cyclic solutions
that lie on the hyperplane m; +my +m3 = 1. These solutions
approach and then leave each of the single-population fixed
points. The time the system spends near each e; increases
as the system evolves, and this loitering behavior follows a
logarithmic scale. On the border between Regions A and C,
where the parameters satisfy a + 8 = 2, the system exhibits a
limit cycle.

(€)
Nonperiodic
Oscillation

(€)
Nonperiodic
Oscillation

FIG. 1. Stability diagram of fixed points, limit cycles, and nonperi-
odic oscillations of the May—Leonard model (2). In Region A, only
the equal-population fixed point e (3¢) is stable. In Region B, which
is bounded by the lines & = 1 and 8 = 1, the single-population fixed
points e1, e, and e3 (3b) are stable. In Region C, nonperiodic oscil-
lations exist. Along the line ot + 8 = 2, limit cycles exist.

I1l. MAY-LEONARD MODEL WITH LINEAR
PERTURBATIONS

We extend the May—Leonard model (1) to include linear
perturbations that are of the same form as the “global muta-
tions” in Toupo and Strogatz>*, where each population m; can
mutate into the other two with rate . The general form of this
linearly-perturbed May-Leonard model, is

dm,- 3 3
7 =rm; [ 1— Z a;jmj | + U —2m; + ij , 9

j=1 j=1

J#i
for i = 1,2,3. Assuming, as in Section II, equal intrinsic
growth rates and that the competitors affect each other in a

cyclic manner, along with the same rescaling of populations
m; and time ¢, (5) becomes

% :m1(1*m1 *Oﬂm2*ﬁm3) +“(—2m1+m2+m3),
(6a)

% :mz(l—ﬁml —mz—(xm3> —|—,u(m1 —2m2+m3),
(6b)

% :m3(1—o¢m1 —3m2—m3> +H(ml+m2_2m3)'

(6¢)

We assume that the competition parameters o, > 0 and
the mutation parameter it > 0. In the rest of this paper, we
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study how the stability diagram of the May—Leonard model
(Fig. 1) changes when the mutation parameter, U, in the
linearly-perturbed model (6) is nonzero.

IV. STABILITY DIAGRAM

In this section, we use perturbation analysis and the contin-
uation software package AUTO 0738 to investigate the effects
of the mutation parameter, i, on the number and stability of
nonnegative fixed points in system (6). Our results are sum-
marized in Fig. 2.

3

(€)
Limit Cycle

B
(D)——>
Coexistence + Equal
1r Population Coexistence %, (C)
G Limit Cycle

0 :

0 1 2 3

a

FIG. 2. Stability regions of the linearly-perturbed May-Leonard
model (6) for 4 = 0.03. In Region A, only the equal-population fixed
point e. (3¢) is stable. Crossing into Regions B and C, this fixed point
loses stability in a Hopf bifurcation giving rise to a limit cycle that
exists in Regions C and C’. In Region B, six new fixed points emerge
from a fold bifurcation, three of which are stable while the other three
are unstable. Region D differs from Region B only in the fact that
the equal-population fixed point e, (3c) is stable in Region D.

A. Fixed Points

We first focus on how the steady states of the linearly-
perturbed May—Leonard model (6) change as u increases. A
short computation shows that the fixed point at the origin,
eo (3a), and the equal-population steady state, e, (3c), per-
sist for all values of ¢t > 0. Though the expression for e, (3c)
depends only on & and 8, we find that its stability depends in
a nontrivial way on the parameter i. Indeed, in Section IV B
we show that this fixed point undergoes a Hopf bifurcation at
a critical value, p, = po(a, ).

On the other hand, when u > 0, we no longer find single-
and dual-population fixed points corresponding to (3b) and

(4) of the May—Leonard model (2). Instead, depending on the
parameters @, 3, and U, the system might exhibit six triple-
population equilibria. Due to the symmetries of the system,
these steady states can be split into two families, where mem-
bers within a family can be mapped to each other by permut-
ing their components. We also find that these six fixed points
disappear in a fold bifurcation as the value of u is increased.
In particular, fixing the value of 3, one can numerically com-
pute two sets of curves in the y— plane where this bifurcation
occurs (Fig. 3).

(@ =05

0 3 ! 2
0 0.2 0.4 0.6 0.8 1
I

M B=15

FIG. 3. Curves of fold bifurcations split the u—o plane into dis-
tinct regions. In Region 1, the components of the triple-population
fixed points are all positive. In Region 3, the triple-population fixed
points have at least one negative component. In Region 2, no triple-
population fixed points exist. The horizontal dash-dotted line repre-
sents the condition o3 = 1, where the triple-population fixed point
has an unbounded component (see Appendix A). The vertical dotted
line represents t = 0.03, which corresponds with the value used to
produce the bifurcation curves in Fig. 4.

We distinguish whether the system supports triple-
population fixed points with only positive components or not.
In particular, we find that for small values of 3, the only pos-
itive steady state is the equal-population equilibrium e, (3c),
whereas for larger values of 3, positive triple-population fixed
points exist. This can be seen in Fig. 3(a) and 3(b), where
we take B = 0.5 and B = 1.5, respectively. In both figures,
regions labeled with the number 2 correspond to parameter
values where no triple-population equilibria exist. Similarly,
regions labeled as 3 correspond to values of o and p where
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these fixed points appear but have at least one negative com-
ponent. In the regions labeled as 3, we also observe that for
certain parameter values, which we plot as a dotted line, these
fixed points have an unbounded component. Finally, the re-
gion labeled as 1, which is only present in Fig. 3(b), consists
of those parameter values where triple-population fixed points
exist and have only positive components. To understand the
emergence of the triple-population equilibria in this region,
we fix the value of u to be a very small number and track
these steady states as the other two parameters are varied.

As we look for equilibrium points in the a—f plane (for
small ), we discover a series of fold bifurcations that define
regions of existence of triple-population equilibria. Specifi-
cally, when o and 3 are small, we find that all six fixed points
have at least one negative component and are therefore not
physically relevant. As the values of o and 8 increase, these
two families of equilibria collide and disappear at a curve of
fold bifurcations, which is depicted in Fig. 4 by the left-most
dashed curve (labeled as 1). The only fixed points that exist
here are the origin and the equal-population equilibria. As «
and f increase further, a new set of six equilibria re-emerge,
this time with positive components. The second fold bifurca-
tion where this occurs is depicted in Fig. 4 by the right-most
dashed curve (labeled as 2). As can be seen in Fig. 4, this
disappearance and re-emergence can happen more than once
for specific a or 8 values. For example, fix o at o = 1.5. For
small f values, there are no physically relevant equilibrium
points, other than the origin and the equal-population ones.
As B increases to around 1.29, a set of six triple-population
points emerge. When 8 reaches 2.55, these points coalesce
and disappear.

FIG. 4. Bifurcation curves for the linearly-perturbed May—Leonard
model (6) with g = 0.03. Curves were computed using AUTO 0738,
The solid line represents the locus of Hopf bifurcations for the fixed
point e, (3c). The dashed curves labeled 1) and 2) represent the locus
of fold bifurcations. In between these curves, the only equilibria that
exist are eg (3a) and e, (3¢). To the left of curve 1), we find that six
additional equilibria emerge, all of which have at least one negative
component, while to the right of curve 2), we find a different set of
six additional positive equilibria.

Going back to Fig. 3, we want to relate Regions 1, 2, and 3
in this diagram with the sections in Fig. 4 which are separated
by dashed curves. We observe that along the vertical dotted
line representing 1 = 0.03 in Fig. 3(b), Region 3 corresponds
with the section to the left of the dashed curve labeled 1) in
Fig. 4, where the triple-population fixed points have at least
one negative component. As we continue up the line yu =
0.03 into Region 2 in Fig. 3(b), we move into the section in
between the dashed curves labeled 1) and 2) in Fig. 4, where
only the equal-population, e, (3c), and zero-population fixed
point, eq (3a), exist. Going back to Fig. 3(b) and crossing into
Region 1, we move into the section to the right of the dashed
curve labeled 2) in Fig. 4, where the triple-population fixed
points all have positive components. A similar description
can be made for the case when 8 = 0.5 (Fig. 3(a)).

Fig. 4 also shows how the locus of Hopf and fold bifur-
cations divide the a—f plane. The right-most curve of fold
bifurcations (labeled as 2) together with the Hopf line create
the four stability regions depicted in Fig. 2. We find that in
Regions A and C, the only nonnegative equilibria are ¢ (3a)
and e, (3c), while in Regions B and D, we have an additional
six positive steady states. In the following subsections, we
describe the dynamics of the system in each of these four re-
gions, as well as along the Hopf bifurcation line.

B. Region A

In this subsection, we investigate the stability of the equal-
population fixed point, e. (3¢c), in Region A. We find that for
parameter values of (1 > 1/6, this fixed point is stable for all
positive values of o and 8, while for values of u < 1/6, the
equilibrium point loses its stability through a Hopf bifurca-
tion. In the latter case, we also obtain an expression, 3. =
Be(ot, i), for the location in the o—f3 plane where this transi-
tion occurs. Given a fixed value u*, the line 8, = B.(ot, u*)
then represents the stability boundary for the equal-population
fixed point. In fact, Region A is defined to be the region be-
low this line, for which a precise expression is obtained later
in equation (11). The following theorem summarizes what we
know about Region A.

Theorem 1. For a, 3 > 0, the fixed point, e. (3c), is always
stable for u > 1/6. But for \L < 1/6, it is only stable when
o+ <(6u+2)/(1-6u).

Proof. We start with the Jacobian of system (6) evaluated at
the equilibrium point e, (3¢),

L ap 211
J=—— B Lal+tu| 1 2 1|,
I+o+B g g 1 1 -2

which is a circulant matrix. A circulant matrix is a square ma-
trix whose rows are composed of cyclically shifted versions
of the same elements. The eigenvalues (and eigenvectors)
of a circulant matrix can be elegantly expressed in terms of
these elements and the root of unity (Davis®®). Particularly,
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the eigenvalues of J are given by the expression,

-1 - :
- _ j-1
A <1+a+ﬁ 2“)+<1+a+ﬁ+“)n
-B > 2j-2
(1+a+[3+“ o

for j=1,2,3, where n = exp(T”) = f% + ?i. The eigen-
values can be simplified to

A=—1, (8a)

o[22 ][ VB

21+ oa+p) 20+ a+P) (8b)

Thus, a necessary and sufficient condition for stability of
the fixed point e., with the assumption that 1 + @+ 3 > 0, is

(a+B—-2)—6u(l+oa+pB) <0,
which can be rewritten as
(6u—1)(a+p)>—-6u—2. ©)

Ifu> %, condition (9) is always satisfied since a + 8 is
assumed to be positive, and e, is always stable for this case. If
u< %, the condition becomes

(10)

Fig. 5 illustrates the stability regions corresponding to con-
dition (10) for different values of u. For values of o and f3

FIG. 5. Stability region for the equal-population fixed point e, (3¢)
for various p values, with it < 1/6. Corresponding to the condition
(10), for a given U, the equal-population fixed point ¢, (3c) is stable
below the line (11) and is unstable above the line.

below the line

o U)=—0+——r 11
pela ) = —at g (an
for a given u less than 1/6, the fixed point e, is stable, and
above the line (11), e, is unstable. Therefore, the line (11) de-
scribes the critical value of the parameter 3 where the equal-
population equilibrium e, undergoes a Hopf bifurcation. [

C. Region C

Continuing with the analysis of the equal-population fixed
point e, (3c), in this subsection we show that this equilib-
rium undergoes a supercritical Hopf bifurcation for the criti-
cal values in (11). Consequently, the linearly-perturbed May—
Leonard system (6) admits a limit cycle solution in Region C.
This region is defined to be the two portions of the @—f plane
which are above the line (11) and outside the bifurcation curve
labeled 2) in Fig. 4. To prove that the Hopf bifurcation is su-
percritical, we calculate the first Lyapunov coefficient follow-
ing the analysis in Kuznetsov*® (Chapter 5.4) and show that it
is negative for all positive values of ¢ and 3.

To set up the notation and simplify the analysis, we first
recall how to calculate the Lyapunov coefficient for a general
n-dimensional system of the form
%:Ax+F(x), xeR™ (12)
In what follows we assume that A is an n X n matrix that has
a pair of complex eigenvalues A = + i, where ® > 0, and
F(x) = O(]|x||?) represents all the nonlinear terms.

The Taylor expansion of F(x) about the origin is given by

1 1
F(x)= EB(x,x)+8C(x,x,x)+0(||x||4), (13)
where
" J°F,
xjykv (14a)
jkzzl a aék
L O
Ci(x,y,2) = —EaEaE | XV (14b)
l j71§:1 aé]a‘gkagé E=0 !
for i = 1,---,n. The first Lyapunov coefficient can then be

computed as

1 _ _ _
01(0) = %9‘[<p,C(q7q,q)> —2(p,B(¢,A""'B(4.4)))
+(p.B(3. (iol, ~A)"'B(g.q) )|, (1)
where the complex vectors p and ¢ satisfy

n
Ag=ing, A'p=—iop, (p.q)=Y pigi=1  (16)

We now proceed to find ¢;(0) for the linearly-perturbed
May-Leonard model (6), where n = 3, in order to show the
following result.
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Theorem 2. For o, B >0, £1(0) < 0 in Region C. Therefore,
the Hopf bifurcation is supercritical.

Proof. Since this system has only quadratic nonlinearities, the
formula for the first Lyapunov coefficient stated above (15)
reduces to

(0) = 5o %[ ~2(p.Blg.A'Blg.4)))
+(p.B(, ik, ~A)"'Blg.)))]. (A7)

We first need to change coordinates so that the equal-
population equilibrium occurs at the origin. However, because
system (6) has only quadratic nonlinearities, the coefficients
in the Taylor expansion for F'(x) (13) remain unchanged. In
other words, the vector valued function B : R” x R” — R”" is
always the same, regardless of whether we compute the Taylor
expansion at the origin or at some other point. In particular, it
takes the form

(2x1 + axp + Bxs)yr + axyys + Bxiys
B(x,y) = — | Bxay1 + (Bx1 4+ 2x2 + 0x3)y2 + axzy3 | . (18)
axsyy + Bxsyz + (axi + Bxz +2x3)y3

The Jacobian of the system evaluated at the equilibrium
ec (3c) is given by J in (7), which admits the pair of com-
plex eigenvalues (8b). Assuming these eigenvalues are purely
imaginary, we then get the critical value of . where the Hopf
Bifurcation occurs,

a+p -2

=— 19
b= S0 ratp) 1
with the imaginary eigenvalues
V3(B-a)
==t |—0——|i=+io. 20
23 +atp) |’ o (20)

We first consider the case where @ > 0, that is § > a. Re-
placing u. by (19) in J and rewriting its entries in terms of
o (20), we get the matrix A,

1 1—vV30 1+V30
1
A:fg 14++30 1 1-v30| . ¥2))
1-V30 1+v3w 1

Since A is a circulant matrix (Davis®”), the normalized eigen-
vector corresponding to i@ is

1
1 1 V3
= — ,  wheren=—=+4 —Ii. 22
1= 5 1;12 n T (22)

This is also the normalized eigenvector of AT | also a circu-
lant matrix, corresponding to —i®. Hence, we take

1

1
—g=— |14+, 23
pq\@_ (23)

1

B — b —
oM

which satisfies (16).  Continuing the computations us-
ing Mathematica, the real part of the first term of the
first Lyapunov coefficient, —2(p, B(q,A~'B(q,q)), results in
—1/3(a¢+B —2)(4+ a+ B). The second term,

(p,B(g,(2iwl,—A)"'B(q,q))),

turns out to be a purely imaginary number. Replacing these
expressions in (17) leads to

(a+B—-2)(o+p+4)
6w

Z1(0):_ )
V3(B—a)
2@+p+1)

In Region C, we know that o+ 3 > 2, s0 ¢;(0) < 0. Therefore,
the Hopf bifurcation is supercritical.

In the case where @ < 0, thatis § < a, we get A 3 = Fi|©|
and the eigenvectors can be chosen to be the conjugates of

those in the previous case. We then get a similar expression
for £,(0),

where @ =

(24)

(a+B—-2)(a+B+4)

B I

(25)

which again is negative in Region C. O

Notice that when o = 3 the value of @ = 0. In this case,
the Jacobian evaluated at the equal-population equilibrium,
e. (3¢), is given by

111
A=—|11 1}, (26)
111
and has two simple zero eigenvalues.

Thus, with the exception of the point where o = f3, the
above calculations are valid for almost all parameter values
along the line B, (o, ) (11) and show that the Hopf bifurca-
tion is supercritical. The analysis, however, does not distin-
guish between sections of the Hopf line that lie adjacent to
Region B (where the dynamics tends to a stable fixed point,
as illustrated later in Fig. 6(a)) and those sections that are next
to Region C (where we observe limit cycles, as illustrated in
Fig. 6(b)).

Therefore, in order to justify the existence of limit cycles
close to the Hopf bifurcation line (11) and within Region
C, we first notice that in this part of parameter space the
only equilibria that are present in the system are the equal-
population fixed point, e, (3c), and the fixed point at the ori-
gin, eg (3a), both of which are unstable. In addition, we know
that at the bifurcation point, the equal-population fixed point
has two center directions and one stable direction. As a re-
sult, the center manifold for this equilibrium is attracting, and
the dynamics of the system near this point will remain in this
locally invariant manifold. Because the bifurcation is super-
critical, we then know that a limit cycle is formed.

On the other hand, we know that in sections of parame-
ter space that are at the intersection of the Hopf bifurcation
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FIG. 6. Solutions corresponding to different o and 8 values in Re-
gion C’ (which corresponds to the line (11)) with g = 0.03 and ini-
tial condition m = (0.5,0.4,0.1). We denote the part of the line (11)
where a € [1.272,1.3865] and B = —a+2.6585 as “inside” the fold
bifurcation curve; this is the boundary between Regions B and D (see
Fig. 2). (a) Inside the curve, the solution tends to a triple-population
fixed point. (b) Outside the curve, the solution is periodic.

line (11) and Region B, the system has an additional six fixed
points that emerge from the fold line (Fig. 4), three of which
are stable (Section IV E). We suspect the presence of these
stable fixed points is what prevents the system from forming a
limit cycle, but we do not have a general proof for this result.
We can, however, confirm using AUTO that in this region no
periodic orbits bifurcate from the Hopf point. This also holds
in the degenerate case, when the parameters @ and f3 lie on the
part of the Hopf line that borders Region B, and which in ad-
dition satisfy @ = 3. We explore the dynamics of the system
for these particular values of the parameters in the following
subsection.

D. Region C’

Region C' encompasses the points lying on the Hopf bi-
furcation line (11). To determine the system’s dynamics at
the degenerate point (oc = f3), which also lies on the line, we
perform a change of coordinates that highlights the periodic
structure inherent in the system. In particular, we use the
generalized cylindrical coordinates, which were introduced
to study the time evolution of nonperiodic oscillations of the
May-Leonard model (2) in Phillipson*! and Phillipson et al.>.

We translate the linearly-perturbed May-Leonard equa-
tions (6) to coordinates x; with respect to the equal-population
fixed point e (3¢), i.e., x;(t) =m;(t) — 1/(1+ o+ ), and then
utilize the generalized cylindrical coordinates R, 8, and Z, via
the transformation

x1 =2Rcos0 +Z, (27a)
X2 = —Rcos @ —v/3Rsinf + Z, (27b)
x3 = —Rcos 0 +v3Rsin 0 + Z. (27¢)

With these transformations, the linearly-perturbed May—
Leonard model (6) becomes

dR ol
o = (A =3R—oR <a)51n(39) - ;Lcos(w))
- (";3) RZ, (284)
6 .
=o- GR<wcos(36) —l—?Lsm(36)) towZ, (28b)
Z—f = —Z—0Z>+2A0R?, (28¢)
where
a+p—2 V3(B—a)
o=1+a+p, 20+arp) T 20ratp)
(29)

The only difference between (28) and the May—Leonard
model (2) in cylindrical coordinates (Phillipson et al.”) is the
first term in the dR/dt equation (28a), (A —3)R. Thus, since
the other two equations (28b)—(28c) are exactly the same, we
refer the reader to Phillipson et al.> for the case when u = 0,
and here we analyze how finding the fixed points of the cylin-
drical coordinates system (28) is modified when u # 0.

Since Region C' is defined to be the Hopf bifurcation line
Be(o, 1) (11), we set

i pe(a )= P2

61 tatp) ¢

which is equivalent to setting 4 = A /3. Thus, the first term
in the dR/dr equation (28a) vanishes, and the system under
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investigation is

dR 0 . o+3

== —OR (a)sm(39) —/'Lcos(36)) - <2> RZ,
(31a)

de .

i O'R(a)cos(36) +2 sm(36)> +owZ, (31b)

‘fi—f =_—Z—0Z>+2AcR%. (31c)

We propose the following theorem regarding the dynamics
of system (31) in Region C'.

Theorem 3. Fixed point solutions of (31) exist if and only if
o = 0 (equivalently, oo = ).

Proof. Trivial fixed points of the system (31) are of the form
(R*,6*,Z2*) = (0,6,0), where the angular coordinate 0 is ar-
bitrary and the condition @ = 0 must be satisfied. Since R
is a radial coordinate and Z is a cylindrical coordinate, this
corresponds to a stationary fixed point in the original coordi-
nates (mj,mp,m3). In fact, by (27) and the definition of x;, it
corresponds to the equal-population fixed point, e, (3c).

Positive fixed points of the system (31) with @ = 0 (equiv-
alently, @ = ) are of the form

* k¥ B +2 n ﬁ —1
w02~ (s 5 sgen) "eE

(32)

Fig. 7(a) indicates that solutions in the generalized cylindri-

cal coordinates do not oscillate, but rather tend to one of the

six fixed points given in (32). These steady states correspond

to the equilibria in the original (mj,my, m3)-coordinates that

emerge from the fold bifurcation.

Now assume that @ is not necessarily zero. First, notice that
the fixed points expression (32) is similar in form to the fixed
points expression found for the May-Leonard model (2) in
generalized cylindrical coordinates (Phillipson et al.>). How-
ever, in parameter regions for which fixed points of the May—
Leonard model in generalized cylindrical coordinates exist,
the angular coordinate 8* is equally realizable and the system
never settles down to a fixed value for 6. Here, since there are
no oscillations in the solution (Fig. 7(a)), the system tends to
just one angular coordinate 6*.

To determine the relationship between 8 and u for which
positive fixed points of the system (28) exist, Fig. 7 illustrates
that as U increases, there is a range for which a positive fixed
point exists (Fig. 7(b)) and then vanishes (Fig. 7(c)). To find
an analytic expression for these bounds, we first observe that
since O appears in the cylindrical coordinates system (28) in
the trigonometric arguments as (36), fixed point solutions will
require O = zin/3 for n € Z. Solving for the fixed points un-
der the assumption that 8 = 0, without loss of generality, we
find that we must have @ = 0 for the equations to be satis-
fied. (Since the right-hand side of (31b) is a product of @ with
another factor, if we take that factor to be equal to 0 and set
® # 0, then we find that the fixed point satisfies R* = 1/3 and
Z* = 0 with the condition that @ + 8 = 2, which is equivalent
to 1 = 0. Thus, that system is equivalent to the May—Leonard
model (2).) O
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FIG. 7. Simulation of the cylindrical coordinates system (28)
with a = 8 =2, g, = u.(B,B) = 0.0667, and initial conditions
(Ro, 60,Zy) = (0.1666,—1.0372,0.11075). The left vertical axis cor-
responds to R and Z and the right vertical axis corresponds to 6,
in degrees. (a) 4 = U, = 0.0667: Positive fixed points are of the
form (32) with (R*,0%,Z*) = (0.14815,0,0.037037). The numer-
ical simulation at t = 500 predicts the same values. (b) 4 = .+
0.003 = 0.0697: Fixed points are of the form (33) with (R* ,Z*) =
(0.0097616,0.0001904) and (R%,Z%) = (0.13505,0.031513). The
numerical simulation at r = 500 predicts (R*,Z*) = (R%,Z%).
(c) 4 = po~+0.005 = 0.0717: The positive fixed point is lost and
the system tends to (R*,0%,Z*) = (0, 6,0) for an arbitrary 6.

Setting 8 = 0 and o = f in (28), we find that the fixed
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points satisfy

B (1428
7 6(1+B) 3(1+B)
" V(B=1)(2+B)>(8u>— 1+ B(1—4u)?)
6(B>—1) ’
(33a)
7o Bl Mo Bl (33b)

2+B)(1+2B) 2+B  2+8

Hence, for a given 8 # 1 and p and with 6 = 0, there are
at most two positive fixed points given by (R*,0%,Z*) =
(R:,0,Z%) and (R*,0%,Z*) = (R*,0,Z*). We plot the re-
gion in B—p space for which both of these fixed points are
nonnegative in Fig. 8.

Furthermore, we observe in Fig. 7(a)-7(b) that (R*,Z*)
is attained as a local minimum early in the simulations and
(R%.,Z%) is the maximum value attained as ¢ increases. For
values of § and p that are within the shaded region illus-
trated in Fig. 8, simulations in Fig. 7(a)-7(b) indicate that the
system starts in the direction toward one location, but then
tends toward a second location in the long term. This reflects
the fact that the fixed points (R* ,Z* ) are unstable, while the
fixed points (R%,Z%) are stable. Thus, we do not observe
any oscillations in the generalized cylindrical coordinates sys-
tem (28), let alone nonperiodic oscillations as observed in the
May-Leonard model (2).

0.2

0.151

p 0.1f

0.051

FIG. 8. Nonnegative fixed points in f—u space. The shaded re-
gion shows the values of u and f for which all R, and Z% (33) are
nonnegative, and thus system (28) with 6 = 0 has nonnegative fixed
points. The orange lower bounding curve is (30) with @ = f3, i.e.,

t=ue(B,p)=(B—-1)/3(1+2B)).

E. Region B

In this subsection, we focus on the number and stability of
fixed points that exist for parameter values in Region B. This
region is the part of the a—f plane that is above the Hopf bi-
furcation line (11) and that is also enclosed by the bifurcation
curve labeled 2) in Fig. 4.
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We summarize our results for this region in Proposition 4.
We also justify why heteroclinic cycles are unlikely to occur
in the linearly-perturbed model (6) in Remark 5, and comment
on some interesting dynamics seen in this region of parameter
space in Remark 6.

Proposition 4. For parameter values o and B within Region
B, the linearly-perturbed May—Leonard Model (6) has a to-
tal of eight nonnegative hyperbolic steady states: the trivial-
population equilibrium, ey (3a), and the equal-population
equilibrium, e, (3c), which are both unstable, and an addi-
tional six fixed points that emerge through a fold bifurcation,
three of which are stable.

While we do not give an analytic expression for the curve
of fold bifurcations, in what follows we present numerical ev-
idence of its existence. We corroborate this result by com-
puting a second order approximation (in the parameter () for
the equilibria that emerge as a result of this bifurcation and
numerically determine their stability.

Our computations using the numerical continuation soft-
ware AUTO 0738 show that for a fixed and large enough value
of B, a pair of positive equilibria emerge via a fold bifurca-
tion as the parameter o is increased, (see Fig. 4). These fixed
points then coalesce in a second fold bifurcation when o is
increased even further. Due to the symmetries inherent in the
linearly-perturbed May—Leonard model (6), we conclude that
there are actually three fold bifurcations that occur along these
curves. As a result, in addition to the fixed point at the origin
eo (3a) and the equal-population equilibrium e, (3c) (which
are present for all values o, > 0 and are both unstable in
this region), there are six other positive steady states inside
Region B.

These six new equilibria also depend on u in an interesting
way. While one set of fixed points can be traced back to a fam-
ily of single-population equilibria, (3b), as 4 — 0, the other
set originates from a family of dual-population fixed points,
(4). Indeed, this is confirmed in Appendix A, where we com-
pute a second-order approximation in u for these steady states
using a perturbation analysis. In Fig. 9, we compare our an-
alytic results with those obtained numerically using AUTO
0738 for parameter values = 0.03, B =2, and o € (1,7).
The continuation curve, which plots the m|-component of all
six equilibria versus the parameter «, is represented as a black
solid curve, while the second-order approximations are shown
as dashed curves. The blue dash-dotted curves correspond
to components of the steady state that can be traced back to
a single-population fixed point, while the red dashed curves
emerge from a dual-population equilibrium. Fig. 9 illustrates
that the second-order approximations (Appendix A) closely
estimate the numerically calculated continuation curves for
values of & in a neighborhood of 3.

Due to the symmetries present in the system, the continua-
tion curve is also a plot of the other two components, m; and
m3, of the two fixed points that emerge from the fold bifurca-
tion when 8 =2 and « is small.

The first bifurcation at ¢ ~ 1.3993 corresponds to the left-
most leg of curve 2) shown in Fig. 4. Then, as the value of
« is increased, these steady states coalesce in a second fold



AlIP
é/__ Publishing

Linearly-perturbed May-Leonard model

08 T T —

ool |

m;

0.4

\
\
- v
></
0.2 ke

0.1 \

008F |

0.06 - / \

0.04 &\ \
S

0.02 B
o
\\\_.__:::_::_.:__:__-} .
0 . . .
1 2 3 4 5 6
o
(b)

FIG. 9. (a) Continuation curves for the equilibria that emerge from
the fold bifurcation obtained by varying ¢, with £t =0.03 and =2
fixed. The solid curve represents the continuation curve obtained us-
ing AUTO 0738, Dashed curves represent the second-order approxi-
mation in 4 (Appendix A) for the fixed points that originated from a
single-population equilibrium (blue dash-dotted curves) and from a
dual-population equilibrium (red dashed curves). (b) Zoom in on the
bottom region of (a).

bifurcation at & = 6.4363. This corresponds to the right-most
leg of curve 2) in Fig. 4.

We also studied the stability of these six new fixed points
numerically. These results are summarized in Fig. 10, where
we see that the equilibria that emerged from the single-
population steady state (3b) are stable, while the equilibria
corresponding to the dual-population fixed point (4) have one
unstable direction. As a result, the dynamics inside Region B
are determined by the initial conditions.

Remark 5. We notice that for positive values of the param-
eter U, the linearly-perturbed May—Leonard model (6) does
not possess heteroclinic cycles. We subsequently explain this
behavior.

The heteroclinic connections that exist in the original May—
Leonard model (2), and which join the single-population equi-
libria, live in the invariant coordinate planes m; =0,i=1,2,3.
In these invariant sets, two single-population fixed points ap-
pear as a saddle and sink, and one can prove that their re-
spective unstable and stable manifolds intersect transversely

11
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FIG. 10. (a) Stability of equilibria that emerge from the fold bifurca-
tion obtained by varying o, with t =0.03 and 8 = 2 fixed. The solid
curve represents the continuation curve obtained using AUTO 0738.
Open blue circles represent stable equilibria, while red stars represent
equilibria with one unstable direction. (b) Zoom in on the bottom re-
gion of (a).

(Schuster et al.*?). In the linearly-perturbed model (6), sad-
dle fixed points only appear in Region B in Fig. 2. Since
these fixed points correspond to triple-population fixed points,
they no longer lie on the coordinate planes. In addition, these
planes are no longer invariant sets as soon as {l becomes posi-
tive. Consequently, the heteroclinic connections need to occur
in R3. Since each fixed point has a 2-dimensional stable mani-
fold and 1-dimensional unstable manifold, it then follows that
the intersection of these manifolds is no longer robust. As a
result, it is unlikely that the heteroclinic cycle persists when
u>0.

Remark 6. Interestingly, when the values of o and 3 are near
the fold bifurcation, but still inside Region B, we find periodic
trajectories that persist under small perturbations of the ini-
tial conditions and the parameters (Fig. 11). However, when
o and B are well within Region B, these cyclic solutions are
lost and trajectories approach one of the three stable equilib-
ria. We suspect that these periodic solutions are the remnants
of the nonperiodic trajectories that approach the heteroclinic
cycle in the original May—Leonard model (2).
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FIG. 11. (a) Periodic solution appearing for the parameter val-
ues o = 1.3224, B = 1.6018, pu = 0.03, and initial condition
m = (0.3548,0.2548,0.2548). The blue circles represent stable fixed
points, while the red stars represent unstable fixed points. (b) Plot of
the first component m; vs. time.

F. Region D

Region D is the part of the a—f3 plane that lies below the
Hopf bifurcation line (11) and that is also enclosed by the bi-
furcation curve labeled 2) in Fig. 4. We summarize our find-
ings for this region in the following proposition and present
numerical evidence for these results.

Proposition 7. For parameter values o and B within Region
D, the linearly-perturbed May—Leonard model (6) has a to-
tal of eight nonnegative hyperbolic steady states: the trivial-
population equilibrium, ey (3a), which is unstable, the equal-
population equilibrium, e, (3¢), which is stable, and an addi-
tional six fixed points that emerge through a fold bifurcation,
three of which are stable.

The bifurcation diagram illustrated in Fig. 4 justifies the re-
sults stated in the above proposition. Below the Hopf line,
the equal-population equilibrium, e, (3c), is stable, while
above the bifurcation curve labeled 2) in Fig. 4, numerical
continuation, together with the results in Appendix A, indi-
cates the emergence of six new steady states. The stability of
these fixed points was tested numerically and a similar plot as

12

0.8
0.7

0.6

AN

ma

0.4
0.3

0.2

01 . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6
my

(a)

0.25

0.2

0.15
my

0.1

0.05

0 200 400 600 800 1000
time

(b)

FIG. 12. (a) Sample trajectory for the parameter values o = 1.3, § =
1.3, and g = 0.03, with initial condition m = (0.01,0.8,0.7). The
blue circles represent stable fixed points, while the red stars represent
unstable fixed points. (b) Plot of the first component 7 vs. time.

shown in Fig. 10 was obtained (not shown). Thus, we con-
clude that three of the six fixed points are stable.

As an illustration of the dynamics in Region D, in Fig. 12,
we plot only the positive equilibria and a sample trajectory
in the m;—my plane for values of ¢ = 1.3, f = 1.3, and u =
0.03. The equal-population equilibrium e, (3c) is surrounded
by the family of three unstable fixed points, while the second
set of stable steady states appear in the outskirts of the plot
(Fig. 12(a)).

V. DISCUSSION

In this work, we considered the effects of adding a linear
perturbation to the three species competition model set forth
by May and Leonard! and identified changes in the resulting
dynamics of the system. In particular, we focused on linear
perturbations representing global mutations, where each of the
three species in the model can mutate into the other two with
the same constant rate (see also Tuopo and Strogatz*). As a
result, the perturbed May—Leonard model (6) has linear and
quadratic terms describing the competition among and muta-
tion between three species.
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Not surprisingly, we found that adding a linear term to
the equations changed the number and structure of the sys-
tem’s fixed points. While both the original and the linearly-
perturbed models possess the trivial and equal-population
equilibria, the single- and dual- population steady states found
in the original May-Leonard system (2) are no longer present
in our model (6). Instead, adding global mutations results in
six triple-population fixed points, some of which have nega-
tive components. In this paper, we studied the existence and
stability of those equilibria which possess only nonnegative
components, since they are the only physically relevant fixed
points. This was done using a combination of mathematical
analysis and numerically-produced bifurcation diagrams.

Our results are summarized in a stability diagram (Fig. 2),
which splits the a—[3 parameter space into four distinct re-
gions labeled A, B, C, and D. In Region A, we found that
the linearly perturbed system (6) has only two nonnegative
steady states, the trivial- and equal-population fixed points.
We proved that the equal-population equilibrium is the only
stable fixed point in this region. We also showed that as one
moves from Region A into Region C, the equal-population
equilibrium undergoes a supercritical Hopf bifurcation. As
a result, the system exhibits periodic solutions, which we
showed persist far from the bifurcation line (labeled C'). In
Region B, global mutations give rise to six triple-population
steady states, all of which have positive components. Three of
these equilibria are stable, thus the final state of the system in
this region depends on the initial conditions. Finally, in Re-
gion D, all eight possible equilibria have nonnegative compo-
nents. In this region, the equal-population fixed point as well
as three of the triple-population steady states are stable. Con-
sequently, the long-term dynamics of the system in Region D
also depend on the initial conditions.

The results presented here are specific to the May—Leonard
model, which is symmetric with respect to cyclic permuta-
tions of the variables, and for linear perturbations that respect
this symmetry. We have shown that when this perturbation is
small enough, the stability diagram of the modified system (6)
closely resembles that of the original model (2). In partic-
ular, our results show that while the locations of the fixed
points shift by a small amount when small global mutations
are added, their stability is preserved by such a perturbation.
Consequently, the heteroclinic cycle that is present in the orig-
inal May-Leonard equations (2) disappears when considering
the linearly-perturbed system (6). This happens not because
the perturbation breaks the cyclic symmetry of the system, but
rather because it dislodges the fixed points from the invariant
simplex where the heteroclinic connections take place (i.e.,
the equilibria no longer lie in the plane m; +my +m3 = N,
where N represents the total population). Similar behavior
should be expected for other n-dimensional systems, provided
that the heteroclinic cycle lies in an (n — 1)-dimensional in-
variant set and that the added linear perturbation is small and
respects the cyclic symmetry of the system.

As mentioned in the introduction (Section I), the May—
Leonard model (2) closely resembles the replicator equations
used in evolutionary game theory. Indeed, both systems use
a cyclic dominance competition pattern, however, while the
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May—Leonard model tracks the total population of the differ-
ent species, replicator games focus on population densities.
As a result, when global mutations are introduced, the phase
diagram of the perturbed May—Leonard model (6) (Fig. 2) has
a much richer structure compared to the phase diagram of the
rock—paper—scissors game found in Toupo and Strogatz>*.
In particular, our results show that in addition to enlarging
the region of parameter space where cyclic behavior can be
expected, a linear perturbation modeling cyclic mutation also
foments coexistence of species: it gives rise to strictly positive
steady states that are distinct from the equal-population equi-
librium. In biological terms, this would imply that allowing
species to switch from one strategy to another with a small
transition, or mutation rate, can favor biodiversity. Because
one can view the linear perturbation as a cooperative force in
the modified system (6), our results also corroborate observa-
tions that coexistence is stabilized in cooperative systems.

Finally, although the simplex, m; + my +m3 = N, is
no longer an attracting set for the linearly-perturbed May—
Leonard system (6), we strongly suspect that a similar in-
variant object exists. Indeed, our numerical simulations sug-
gest the presence of a compact and attracting 2-D manifold.
However, analytically proving the existence of such a carry-
ing simplex remains an open question. Notice, though, that
the existence of an attracting 2-D manifold, together with the
Poincaré—Bendixson theorem, would imply that trajectories
of the modified equations (6) can only approach a stable fixed
point, a periodic orbit, or a heteroclinic cycle. Nonetheless, it
is possible that when extending the equations to the 4-D case,
the dynamics of the system become chaotic. For example,
previous numerical work by Wang and Xiao** demonstrates
that periodic solutions in the 4-D Lotka—Volterra system can
undergo successive period-doubling cascades. It would be in-
teresting to see if similar chaotic behavior is present in a 4-D
linearly-perturbed May—Leonard model. We leave these and
related musings as open questions and future work.
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The data that support the findings of this study are openly
available in a GitHub repository at https://github.com/
tstepien/linearly-perturbed-May-Leonard [v1.0.0].
The source code is platform independent and written in MAT-
LAB and Mathematica.

Appendix A: Second-Order Approximation of Fixed Points

For small values of i, we obtain an expression for the equi-
libria of the linearly-perturbed May—Leonard model (6) us-
ing a perturbation analysis together with the software system
Mathematica.

First, we find expansions for the equilibria that bifurcate
from the single-population fixed points e; (3b). We work on
e1; equilibria corresponding to e, and e3 can be obtained by
permutation because of the symmetry in the system. Setting
U = (my,mp,m3), we write

U(p) = U+ uUy + p*Us + p2Us + - -,

with Uy = e; (3b). Inserting this ansatz into system (6), one
finds that U} = (uy,vy,w;) is given by

1
Vl—ﬁ»
1
M= a1
l/t1=—06v’1—[))W1—2=l_aﬁ—i—lfoc—z7
while U, = (u2,v2,wz) has the components
by & n 2B —1 n 1—oap
PTB-1  (a-D)B-1? " (a-1)(B-1)?
B 20 —1 1—of
"2 la—1p Tl 12— (a—1pB-1)
o+ -2
EECECED R
1 ,B(oc—ﬁ)_ 3+
Ti—a (a—1p (a—1(B-1)
o o(a—1)

+

(B-12 (B-1)

A similar analysis allows us to find expansions for the
equilibria that bifurcate from the dual-population fixed points
fi (4). We work on f3, noting that the other equilibria can be
obtained by symmetry. The components of U; = (uj,vy,w;)
are given by

2—o0—f
T apT—a(a—1)-BB-1)
_1-3a+a’+4af—20°B-B* o —[3
YT @B -D@B-1)  ap-1""
v1_1—a2—3[3+4aﬁ—2a[32+[33 o— [32

(a—1D)(B-1)(ap—-1) ap—1"
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and U = (up,v2,ws) is given by

(aB—D(1+a—2B)1-2a+B)(—2+a+fB)

T - nB-Dap-1-ala—1)-BB-1)P
2-a-B)(1-3a+40?—2a°+2a* — 205 +a® —3B)
T @B (@B-T-al@-1)-B(B-1)

N 2—a—B)8aB —12a*B+a’B +40*B —3a°B)
(a—1P3(B 13 (af-1-a(a—1)-B(B 1))

N (2—oa—B)(3B% —4aB?+15a*B* —8a’B* +4a*B?)
(a—1P3B -1 (afp-1-ala-1)-B(B~-1))

n (2—a—B)(—2° —5ap* —2a°B°> — B’ +28%)
(a—1PB-1P3(af-1-a(a—1)-B(B-1))

n 2-a-B)Bap*-p)

(=13 (B =13 (af-1-a(a—1)-B(B 1))

a’—B

“apo 1"
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2T 1B 1 ap—1-a(a—1)-B(B 1))
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(a— 1)3(ﬁ 13(af—1-a(a—1)-B(B—1))
(2 —B)(— 12082+ 15a*B2 — 203 B% - 233)
(a )(ﬂ D3(aB—-1-a(a—1)-B(B~-1))
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(0‘ D3B-1)P(ap-1-a(a-1)-B(B-1))
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