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Abstract

Carboxysomes are a class of bacterial microcompartments that form proteinaceous 

organelles within the cytoplasm of cyanobacteria and play a central role in photosyn­

thetic metabolism by defining a cellular microenvironment permissive to CO2 fixation. 

Critical aspects of the assembly of the carboxysomes remain relatively unknown, es­

pecially with regard to the dynamics of this microcompartment. Progress in under­

standing of carboxysome dynamics is impeded in part because analysis of the sub­

tle changes in carboxysome morphology with microscopy remains a low-throughput 

and subjective process. Here we use deep learning techniques, specifically a Rota­

tionally Invariant Variational Autoencoder (rVAE), to analyze fluorescence microscopy 

images of cyanobacteria bearing a carboxysome reporter and quantitatively evaluate 

how carboxysome shell remodelling impacts subtle trends in the morphology of the 

microcompartment over time. Towards this goal, we use a recently developed tool to 

control endogenous protein levels, including carboxysomal components, in the model 

cyanobacterium Synechococcous elongatus PCC 7942. By utilizing this system, pro­

teins that compose the carboxysome can be tuned in real-time as a method to examine 

carboxysome dynamics. We find that rVAEs are able to assist in the quantitative eval­

uation of changes in carboxysome numbers, shape, and size over time. We propose 

that rVAEs may be a useful tool to accelerate the analysis of carboxysome assembly 

and dynamics in response to genetic or environmental perturbation, and may be more 

generally useful to probe regulatory processes involving a broader array of bacterial 

microcompartments.

Introduction

Cyanobacteria are prokaryotic autotrophs that are under investigation as an alternative 

chassis for the solar-driven conversion of CO2 into useful bioproducts.1-4 Like other mem­

bers of the green photosynthetic lineage, carbon fixation is accomplished in cyanobacte­

ria through the enzymatic activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Ru-
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bisco).5 Among the model cyanobacterial species, Synechococcus elongatus PCC 7942 (here­

after S. elongatus) has a well-developed genetic toolkit and has been the subject of extensive 

research on circadian rhythms, carbon metabolism, metabolic engineering, and carboxysome

biogenesis.6-9

The carboxysome is a proteinaceous bacterial microcompartment that exists within the 

cytosol of cyanobacteria, encapsulates a phase-separated pool of Rubisco, and creates a 

micro-environment favorable to the carboxylation reaction.10,11 Despite the carboxysome’s 

central role in cyanobacterial metabolism, a complete picture of its biogenesis and remodeling 

remains elusive, though over the years several key studies have provided insights.6,12,13 One 

open question within the field regards the degree to which the carboxysome is in dynamic 

exchange with cytosolic components, and if this microcompartment can be reconfigured 

once assembled. While it is well-documented that carboxysome size, number, distribution, 

and shell composition are modulated under different environments,14-18 it is unclear if the 

observed restructuring is only true for newly-synthesized carboxysomes, or if pre-existing 

carboxyomes are sufficiently dynamic to be remodeled in response to changing conditions. 

For example, some evidence suggests that once carboxysomes are formed, they are static 

until they are ultimately degraded as a unit.13 Several tools and reporter constructs have 

been developed in order to track the dynamics of carboxysome positioning and morphological 

features in living cells,6,12,13,19,20 yet the variability of carboxysome features in natural pop­

ulations and resolution limits of fluorescence microscopy complicate quantitative evaluation 

of changes in carboxysome size, composition, and intracellular positioning.

Towards a better understanding of carboxysome biogenesis, we sought to develop a quan­

titative method for investigating the temporal dynamics of carboxysome remodelling. In 

recent work, 20 we used a method for protein down regulation based on the Lon protease 

from Mesoplasma florum (mf-lon), allowing rapid inducible degradation of proteins of inter­

est. This approach offers the advantage that carboxysome components can be specifically 

targeted in a manner that causes dynamic rearrangement of carboxysome morphology begin­
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ning at an experimentally defined time point. We previously targeted the carboxysome shell 

protein CcmO: carboxysomes deficient in CcmO form a distinct phenotype related to their 

inability to close completely.6 Using fluorescence microscopy, we previously showed that mf- 

lon degraded CcmO and led to carboxysome remodelling within 24-72 hours of activation. 

Here we describe a workflow that leverages the use of deep learning techniques to segment 

and analyze the fluorescence microscopy images and quantitatively evaluate trends in car­

boxysome degradation. The workflow is schematically represented in Fig. 1): it segments 

the images using Cellpose21 and analyzes the resultant objects (individual carboxysomes, the 

set of carboxysomes per cell, and the cell themselves) using a Rotationally Invariant Varia­

tional Autoencoder, rVAE. We find that application of these deep learning techniques allows 

for high-throughput analysis of cyanobacterial microscopy data and that significant changes 

in carboxysome morphology can be confidently detected within hours of the initiation of 

carboxysome remodelling.

Segmentation rVAE Predictions

Individual carboxysomes

first segmented using Cellpose.21 The resultant objects are individual carboxysomes, set of 
carboxysomes per cells, and cells. Changes with time in the shape and size of individual 
carbyxsomes, and size and position of the carboxysomes in a set, are then analyzed using a 
rVAE.
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Methods

Microbial culturing conditions

S. elongatus cultures were grown in baffled flasks (Corning) with BG-11 medium (Sigma) 

supplemented with 1 g/L HEPES, pH 8.3, in a Multitron II shaking incubator (Infors HT). 

Cultures were grown under continuous light with GroLux bulbs (Sylvania) at 125 p mol 

photons 2 % 32 °C, and 130 rpm shaking. Carboxysomes were degraded by

inserting a protein degradation tag (PDT) at the C-terminus of the shell protein CcmO, 

which is essential for carboxysome closure, and expression of a non-native Lon protease from 

Mesoplasma florum.20 For visualization of changes in carboxysome morphology, a second 

copy of the small subunit of Rubisco, rbcS, was tagged with a C-terminal fusion of mNeon- 

Green (mNG). For the induced samples, cultures were induced with 30 pM theophylline. 

More detailed culturing, genetic assembly, and transformation information was previously

described. 20

Microscopy

All experiments were performed on live cells in exponential growth. Images were collected 

with a Zeiss Axio Observer D1 inverted microscope with a Zeiss Plan Apochromat 100 x 

lens. Epifluorescence images were collected of both chlorophyll a autofluorescence (Aex =

545, Agm = 605) and mNG (Ag^ = 500, A^m = 535).

Segmentation

A total of 90 images, each with dimensions (1460,1936) pixels, were segmented with Cell­

pose 21 and analyzed with an rVAE. The set of 90 images is divided into control and induced 

sample groups, which contain 42 and 39 images, respectively. Both groups contain a time 

series with images collected at 4, 8, 24, 48, and 72 hours post induction.
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Segmentation was performed with Cellpose, 21 and for each image, masks for the car- 

boxysomes and the cells were created. We used a diameter setting of 7 and 20 for generating 

the masks for carboxysomes and the cells, respectively.

From these masks, two types of sub-image stacks were obtained. One stack contains only 

individual carboxysomes, whereas the other contains the set of carboxysomes per cell. The 

latter was generated by using the cell channel mask, within which we selected the set of 

carboxysomes in each cell. The resultant images were padded to have a size of 115 x 115 

pixels. The dimension of each stack for the control and induced groups are given in Table 1.

As it can be seen in Table 1, there are significantly less sub-images in the stacks for the 

set of carboxysomes than in the stack for individual ones. This is due to the position of the 

focal plane, which is inclined in some of the samples and causes some group of cells to be 

visualized different than others. This affects the segmentation, and the end result is that 

there are fewer cell masks than expected. Because these masks are used as the molds within 

which we selected the set of carboxysomes sub-images, the stacks for the set of carboxsyomes 

have less sub-images than the stacks for the individual ones.

rVAE analysis

The rVAE was implemented within the AtomAI Package22 and, for stacks of images with 

1 (3) channels, trained for 1000 (400) epochs using 3 fully connected layers for both the 

encoder and decoder. Each layer had 128 neurons and was activated by the tanh() function, 

whose weights were optimized using the Adam optimizer with a learning rate of 0.0001.

The computational cost of training a rVAE was low. Training was performed in Google 

Collaboratory (Colab) using 1 GPU, and the computational time depended on size of the 

stack and the number of iterations chosen. For example, training the rVAE for 100 epochs 

on 327800 images of 40x40 pixels takes about 2 hours and 30 minutes in Colab. Most of the 

computational time, however, was spent on preparing the images for training. This included 

preparing the stacks for segmentation, performing segmentation, saving the stacks in Google
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Table 1: Dimensions of the sub-images stacks for the control and induced sam­
ples. When the stack of images contain both the Chla and mNG channels, the 
tensor that characterizes the stack has one more dimension. For example, for 
a stack that contains one channel only, either Chla or mNG, the tensor might 
have the following dimension (4388, 115, 115, 1). The first number represents 
the number of images in the stack; the second and the third represent the width 
and height of each image; the fourth number can be seen as representing the 
‘color’ of each image. This color can be Chla or mNG , however when the stack 
contains both channels, it has the following dimension (4388, 115, 115, 2).

Time (hrs) control induced
4 (40619, 40, 40) (42101, 40, 40)

Individual 8 (53053, 40, 40) (2756, 40, 40)
24 (49713, 40, 40) (41867, 40, 40)carboxysomes 48 (23255, 40, 40) (20408, 40, 40)
72 (40378, 40, 40) (13650, 40, 40)

4 (4388, 115, 115) (4159, 115, 115)

Set of 8 (7492, 115, 115) (528, 115, 115)
24 (7665, 115, 115) (10325,115,115)carboxysomes 48 (2977, 115, 115) (4875, 115, 115)
72 (6594, 115, 115) (3981, 115, 115)

Drive, and reloading them. We have included in the Supporting the notebooks used to train 

the rVAE. They also contain links to the data used for training, which is directly downloaded 

from Google Drive.

Results and discussion

Elucidating complex biological interactions via microscopy, particularly those which change 

over time, is a challenging process. Subtle differences in protein localization, phenotypic 

variation within control samples, and observational subjectivity often preclude strong con­

clusions from being made based solely on observation.

In order to visualize dynamic changes in carboxysome morphology, we tagged the small 

subunit of Rubisco (RbcS) with a fluorescent protein, mNeonGreen (mNG, see Methods, 

Section ). Rubisco is strongly concentrated to the carboxysome lumen in cyanobacteria,
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therefore reporter fusions will localize as puncta organized in a characteristic pattern down 

the midzone of S. elongatus cells. We genomically integrated a second copy of the rbcS gene 

fused to mNG and expressed under the native Rubisco promoter. In order to have exper­

imental control over a well-defined feature related to carboxysome morphology, we utilized 

the recently-described system for inducible down-regulation of the trimeric carboxysome 

shell protein, CcmO.20 Briefly, this approach relies upon tagging the endogenous ccmO gene 

with a C-terminal protein translation quality control sequence that is orthogonally recog­

nized by the Mesoplasma florum protease, mf-lon. By placing mf-lon expression under a 

riboswitch control element that is responsive to theophylline,23 the targeted protein can be 

rapidly degraded in S. elongatus within minutes to hours of experiment-controlled expres­

sion of the exogenous protease. Because CcmO is an important shell protein required for the 

formation of a completely enclosed microcompartment surface,24 loss of this protein leads 

to a well-established phenotype of enlarged, incompletely enclosed, and polar aggregates of 

Rubisco.6

We acquired epifluorescence images of both the cell chlorophyll a autofluorescence (Chla) 

and the carboxysomes (mNG) over the course of 72 hours with an uninduced control set (0 

mM theophylline) and cells induced to express mf-lon with 30 pM theophylline. Prior 

to image analysis, segmentation was performed for the cell and carboxysome channels using 

Cellpose,21 a recently developed algorithm specifically trained for cellular segmentation. Fig­

ures 2a,b show examples of segmentation for the channels containing cells and carboxysomes, 

respectively. A detailed explanation of the segmentation procedure and the image dataset 

is given in section Methods. From the segmented images, we cropped sub-images contain­

ing either individual carboxysomes or all the carboxysomes in a cyanobacterium. Examples 

of cropped sub-images are shown in Figs. 2c,d. We repeated this procedure for each seg­

mented image, generating stacks of sub-images for the control and induced samples. Table 

1 summarizes the sub-images stacks and their dimensions.

To improve analysis of microscopy data, we utilized a rotationally invariant Variational
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Autoencoder (rVAE), which is comprised of an encoder and a decoder network. The encoder 

compresses images into a low-dimensional representation, known as the latent space. The 

vectors in this space contain the most relevant information of each image. The decoder 

reconstructs images starting from the latent space. During encoding, it’s often desirable to 

disentangle relevant information from mere rotations and translations. Because we wish to 

understand how degradation affects the structure of the carboxysome, rotations and trans­

lations are irrelevant. A rVAE, unlike a “vanilla" VAE,25 can disentangle rotations and 

translation during encoding,26 and this is the reason why we used an rVAE in our analysis. 

Specifically, we used the rVAE implementation in Kalinin et al.27 and AtomAI.22 This rVAE 

encodes the images into unstructured latent variables (of which we used only two, denoted 

as L1 and L2) and the latent variables that encoded the rotational angle (Lq) and the x-/y- 

translations (LAx and Lay). In the sections below, we present results for L1 and L2 only. 

The results for Lq , LAx and LAy are included in both the Jupyter notebooks that were used 

to run the analysis, as well as in the Supporting Information.
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Figure 2: Segmentation of a fluorescence microscopy image shows: (a) the cyanobacteria 
cells; (b) the carboxysomes within all the cells; (c) an individual carboxysome; (d) the set 
of carboxysomes within a cyanobacterium.

Individual Carboxysomes

Images of individual carboxysomes decoded from the latent space are shown in Fig. 3a, where 

LI and L2 vary along the x and y axis, respectively. For a more intuitive understanding of
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what LI and L2 represent, we decoded the images by varying LI and fixing L2, and vice 

versa. We found that 1,2 was inversely correlated with carboxysome size, (Fig. 3b) whereas 

LI represents the shape of the carboxysome, with high circularity in the LI > 0 range and 

an elongated phenotype when LI < 0 (Fig. 3c). The carboxysome shapes and sizes shown 

here correspond with a distillation of the myriad of carboxysome morphologies observed in 

both wildtype cells and those cells in which the CcmO has been degraded.20

Figure 3: Decoded images of individual carboxysomes obtained by sampling the latent space 
for the control and induced samples, (a) Evolution of decoded images as a function of LI 
(x-axis) and L2 (y-axis). LI and L2 vary between [—1.5,1.5] in increments of 0.5; Decoded 
images at specific values of the latent variables: (b) L 1 = 0 and L2 = 0,1, 2,3,4; (c) 
LI = —1.5, —1,0,1,2 and L2 = 2. In (b) and (c) the axis denote the width and height of 
each image in pixels.

The LI histogram for the control and induced samples are shown overlaid in Fig. 4a. For 

the control samples, a small change with time is observed, whereas for the induced samples
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the change is significant and characterized by the appearance of a “shoulder" at LI > 1.0 

which grows steadily with time (see red arrow from 8 hours on). The L2 histograms for the 

control and induced samples are shown in Fig. 4b. For the control samples, variation is 

again small with time, whereas for the induced samples a decreasing with time of the large 

peak at L2 = 0 and the appearance of a new peak in the region L2 = [—2, —1] are observed 

(see red arrows at 48 and 72 hours of induction).

4 8 24 48 72

L2

Figure 4: Overlaid histograms for the stacks of individual carboxysomes sub-images, Table 1, 
for both the control (blue) and induced samples (red), (a) histogram for LI; ((b) histogram 
for L2. The arrows indicate changes in the histogram that appear due to induction (see text 
for a discussion). The numbers 4, 8, 24, 48, 72 above each figure denote the time in hours.

The results above indicated that induced degradation of CcmO changes LI and L2 with 

time. To visualize what those changes meant in terms of carboxysomeal structural dynamics, 

we used the L1-L2 joint distribution. This distribution is shown in Fig. 5 for the control 

and induced samples. It is seen that at 72 hours the number of carboxysomes increases in 

the region defined by LI > 1 and L2 = [-2,-1]. Therefore, decoding images from those
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regions will visualize the structural changes caused by degradation.

Figure 5: Contour plots showing the kernel density estimate (KDE) of the L1-L2 joint 
distribution for the (a) control and (b) induced samples of the individual carboxysomes set. 
The KDE is a smoothed out version of a histogram, and it enables computing a probability 
density function. The numbers 4,8,24,48,72 above each figure denote the time in hours 
post induction.

The carboxysome images decoded in the regions LI > 1 and L‘2 = [-2,-1] are shown 

in Fig. 6, where LI increases from bottom to top and L2 decreases from left to right 

(the specific values for LI and L2 are given in the caption of Fig. 6). The carboxysome 

morphology becomes rounder when LI increases and larger as L2 decreases. Taken together, 

these data highlight the change in carboxysome morphology as the result of proteolysis by 

m,f-lon, with the carboxysomes getting larger and more round over time as Rubisco continues 

to aggregate in the absence of an intact shell. These observations are consistent with previous 

work. 2°
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Figure 6: Images of individual carboxysomes decoded by sampling the latent space of the 
induced sample at specific values of LI and L2: (a) LI = 1.6; L2 = —0.5, —1.0, —2.0, —2.5 
(b) LI = 1.0; L2 = —0.5, —1.0, —2.0, —2.5 (c) LI = 0.0; L2 = —0.5, —1.0, —2.0, —2.5. For 
illustration purposes, for each panel the figures were merged into a single one. Individual 
figures for each decoded image can be seen in the notebooks included in the Supporting 
Information. For these individual figures, the x- and y-axis represent the width and height 
in pixels.

Set of Carboxysomes per cell

A similar study to the one performed above for the individual carboxysomes was performed 

here for the set of carboxysomes per cell. Images for the set of carboxysomes decoded from
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the latent space are shown in Fig. 7a. Figure 7b shows that changing LI while fixing L2, 

and vice versa, both reduce the number of carboxysomes per set, but depending on which 

variable is varied, the remaining car boxy somes can be separated into two or merged into a 

single one.

Figure 7: Decoded images of set of carboxy somes obtained by sampling the latent space 
for the control and induced samples, (a) Evolution of decoded images as a function of LI 
(x-axis) and L2 (y-axis). LI and L2 vary in [—1.5,1.5] in increments of 0.5; Decoded images 
at specific values of LI and L2: (b) LI = —2, —1,0,1,1.5 and L2 = 0; (c) LI = 1.7 and 
L2 = 1.4,1.5,1.6,1.7,1.9, 2. In (b) and (c) the x- and y-axis denote width and height in 
pixels

The LI histogram for the control and induced samples is shown overlaid in Fig. 8a. For 

the control sample the LI histogram is practically constant with time. However, for the 

induced sample the histogram significantly shifts beginning at 8 hours post-induction, and 

the distribution of carboxysome widens and moves to larger values of LI (see red arrow at
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72 hours). The L2 histograms for both the control and induced samples are shown in Fig. 

8b. At 48 hours, the L2 histogram for the control sample shows new peaks, albeit small, for 

L2 >= 2. For the induced sample a large peak at L2 >= 2 appears as early as at the 4 hour 

(indicated also by a red arrow), and then additionally peaks located at L2 >= 1 increase 

with time; the latter are actually caused by a displacement of the whole histogram towards 

larger values of L2 (see red arrow at 72 hours).

„ „ 4 8 24 48 72

(a)

L2

Figure 8: Overlaid histograms for the stacks of the set of carboxysomes sub-images, Table 1, 
for both the control (blue) and induced samples (red), (a) histogram for LI; ((b) histogram 
for L2. The arrows indicated the presence of peaks in the histogram (see text for a discus­
sion). The numbers 4, 8, 24, 48, 72 above each figure denote the time in hours.

Figure 9 shows the LI — L2 joint distribution for the control and induced samples. For 

the control samples, a small incidence of events are categorized with L2>= 2 values, which 

produced a ‘’hat" on the distribution that is consistent throughout all time points. For 

the induced samples, the “hat” also appears for values L2 >= 1 as early as at 8 hours post 

induction, and the proportion of events is dramatically increased at later time points. There’s
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also an additional shifting of the distribution towards larger values of L2, consistent with 

the trend observed in the L2 histogram (shown in Fig.8b. Ultimately, after 24 hours post­

induction, the joint distribution is split into two regions, the aforementioned “hat” region, 

where L2 >= 1, and a “skewed-like” region, where L2 < 1.

Figure 9: Contour plots showing the kernel density estimate (KDE) of the L1-L2 joint 
distribution for the (a) control and (b) induced samples of the set of carboxysomes data. 
The numbers 4, 8, 24, 48, 72 above each figure denote the time in hours post induction.

The Fig. 10 shows the decoded images from the “hat” and “skewed-like” regions of the 

LI — L2 joint distribution of the induced samples. Images were decoded by passing through 

these two regions either laterally, that is varying LI while fixing L2, or vertically, varying L2 

while fixing LI. Figure 10a,b show the lateral pass for two different values of L2, whereas 

Fig. 10c,d show the vertical pass for two different values of LI. For the set of carboxysomes 

per cell, it’s somewhat more difficult to assign a physical explanation to the variables LI 

and L2 than it was for the individual carboxysomes, where LI was correlated to shape and 

L2 was inversely correlated to size. Nonetheless, in Fig. 10 it is seen that changes in LI are 

correlated with the movement of carboxysomes towards the poles, whereas changes in L2 

are correlated with carboxysome aggregation. In both cases, the number of carboxysomes 

per set decreases with time. While such trends are clear in Fig.10 (and by extension in
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Fig.9, since the images in Fig.10 were decoded by selecting regions of Fig.9), it’s significantly 

more difficult to understand how more aggregation or more movement towards the poles 

might affect the histograms and L2 and LI shown in Fig.8. In any case, the observation 

that carboxysomes merge into one is significantly more prevalent in the induced sample than 

in the control. Indeed, merging is what causes the “skewed-like” region in the LI — L2 

distribution of the induced sample (see Fig.9b).

Figure 10: Decoded images from the latent space along the following selected regions 
in the LI — L2 joint distributions (a) LI = —2, —1,0,1,1,5,2.5, L2 = 0; (b) LI = 
-2,-1,0,1,1, 5, 2.5, L2 = 1; (c)Ll = 0, L2 = 1.4,1.5,1.6,1.7,1.9, 2.0; (d) LI = -1.5, 
L2 = 1.4,1.5,1.6,1.7,1.9, 2.0. For illustration purposes, for each panel, individual images 
were merged into a unique image. The individual images have width and height given in 
pixels.
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In a previous work20 it was found that induction produced one carboxysome aggregate 

that located at the pole of the cell. The results in the previous sections were obtained by 

training the rVAE to a stack of sub-images that had one channel only, i.e. a channel for 

a single carboxysome or a channel for the set of carboxysomes per cell. Although those 

analysis showed that the number of carboxysomes per cell decreases due to aggregation, it 

was not possible to determine the location of the carboxysome aggregate in the cell. For this 

purpose, the rVAE has to be trained on multi-channel stacks of images, where one channel 

contains the cell background (Chla) and the other channel contains the carboxysomes within 

the cell (mNG). In this manner, spatial correlations between the set of carboxysomes and 

the cell can be determined. Thus, we proceeded to create a stack of sub-images that had 

the same dimensions as those shown in Table 1 under the entry "Set of carboxysomes", 

except now each sub-image had the two channels aforementioned. The rVAE was trained 

to this multi-channel stack of sub-images and the L1 — L2 joint distribution that resulted 

is shown in Fig.11. It is seen that the distribution for the control samples changes only at 

the 48 and 72 hour time points, and even so not significantly. However, the distribution for 

induced samples at 4 hours already show two slightly separate classes (regions), and this 

distinction increases further as time progresses. We decoded the images across these two 

classes by fixing L1 = 0 and varying L2 from —3 to 2. The resultant images are shown in 

Fig.12: clearly, the number of carboxysomes per cell not only diminishes with time, but also 

the resultant aggregate locates to the pole of the cell, in agreement with the observations in

Ref. 20
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Figure 11: Contour plots showing the kernel density estimate (KDE) of the L1-L2 joint 
distribution for the (a) control and (b) induced samples of the for the multi-channel sub­
images containing the masks for the set of carboxysomes and the host cell, (a) control and 
(b) induced samples. The numbers 4,8, 24, 48, 72 above each figure denote the time in hours.

Figure 12: Decoded images from the latent space along the following selected regions in 
the LI — L2 joint distributions, Fig.11: Decoded images from the latent space along specific 
regions in the L1 — L2 joint distributions of Fig.11. The LI and L2 values from each figure was 
decoded are given on top of each image as [LI, L2]. For [LI, L2] = [0,-3] the carboxysome 
appears very light. Training the rVAE to more epochs did not improve this fact. The x- and 
y-axis of each image represent the width and height in pixels, respectively.
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CONCLUSIONS

Herein, we demonstrate that rVAEs can be utilized for high-throughput analysis of car­

boxysome puncta to gain quantitative data regarding the remodeling of bacterial microcom­

partments. Prior observations of carboxysomes across multiple cyanobacteria species has 

suggested that these bacterial microcompartments may be adjusted in abundance, size, com­

position, and/or positioning to tune their properties for different environments. For instance, 

carboxysome ft-carboxysome operons (main and satellite) display differential expression un­

der different illumination intensities and CO2 availability.14,15,18,28,29 Yet, it remains unclear 

if these changes in features are dynamically regulated in existing carboxysomes, or if they 

are only encoded in newly-assembled microcompartments. This uncertainty persists in part 

due to insufficient molecular tools and limitations in the inherent resolution limits of light 

microscopy, which confound analysis of carboxysome populations over time. In this context, 

fluorescence microscopy imaging of the alterations in carboxysome features in response to 

an environmental or artificial stimuli can provide valuable insights on structural dynam­

ics. However, the amount of data produced by modern microscopy approaches is such that 

manual evaluation has insufficient throughput and sensitivity; only a qualitative analysis is 

feasible to evaluate subtle changes in population-level properties. Quantitative analysis can 

shed more light into the carboxysome biogenesis and dynamic processes, and for this pur­

pose, deep learning techniques are especially suitable. Here we demonstrate that a type of 

deep learning technique known as a Rotationally Invariant Variational Autoencoder is capa­

ble of revealing structural changes from fluorescence microscopy datasets, including changes 

in the shape and size of carboxysomes and the number of carboxysomes inside of the cell. 

These high-throughput analyses are capable of detecting significant changes at time points 

as early as 4 or 8 hours post-induction of a carboxysome shell degrading circuit, whereas 

manual evaluation was only able to subjectively report changes 24 hours after the genetic 

intervention.20 This work reveals that variational autoencoders can play a very important 

role in detailing the dynamic processes (e.g., remodelling, biogenesis) of carboxysomes and,

21



by extension, bacterial microcompartments in general.
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