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Abstract

Carboxysomes are a class of bacterial microcompartments that form proteinaceous
organelles within the cytoplasm of cyanobacteria and play a central role in photosyn-
thetic metabolism by defining a cellular microenvironment permissive to C'Os fixation.
Critical aspects of the assembly of the carboxysomes remain relatively unknown, es-
pecially with regard to the dynamics of this microcompartment. Progress in under-
standing of carboxysome dynamics is impeded in part because analysis of the sub-
tle changes in carboxysome morphology with microscopy remains a low-throughput
and subjective process. Here we use deep learning techniques, specifically a Rota-
tionally Invariant Variational Autoencoder (rVAE), to analyze fluorescence microscopy
images of cyanobacteria bearing a carboxysome reporter and quantitatively evaluate
how carboxysome shell remodelling impacts subtle trends in the morphology of the
microcompartment over time. Towards this goal, we use a recently developed tool to
control endogenous protein levels, including carboxysomal components, in the model
cyanobacterium Synechococcous elongatus PCC 7942. By utilizing this system, pro-
teins that compose the carboxysome can be tuned in real-time as a method to examine
carboxysome dynamics. We find that rVAEs are able to assist in the quantitative eval-
uation of changes in carboxysome numbers, shape, and size over time. We propose
that r'VAEs may be a useful tool to accelerate the analysis of carboxysome assembly
and dynamics in response to genetic or environmental perturbation, and may be more
generally useful to probe regulatory processes involving a broader array of bacterial

microcompartments.

Introduction

Cyanobacteria are prokaryotic autotrophs that are under investigation as an alternative
chassis for the solar-driven conversion of CO, into useful bioproducts.'™ Like other mem-
bers of the green photosynthetic lineage, carbon fixation is accomplished in cyanobacte-

ria through the enzymatic activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Ru-



bisco).® Among the model cyanobacterial species, Synechococcus elongatus PCC 7942 (here-
after S. elongatus) has a well-developed genetic toolkit and has been the subject of extensive
research on circadian rhythms, carbon metabolism, metabolic engineering, and carboxysome
biogenesis.

The carboxysome is a proteinaceous bacterial microcompartment that exists within the
cytosol of cyanobacteria, encapsulates a phase-separated pool of Rubisco, and creates a
micro-environment favorable to the carboxylation reaction.!®! Despite the carboxysome’s
central role in cyanobacterial metabolism, a complete picture of its biogenesis and remodeling
remains elusive, though over the years several key studies have provided insights.%%1% One
open question within the field regards the degree to which the carboxysome is in dynamic
exchange with cytosolic components, and if this microcompartment can be reconfigured
once assembled. While it is well-documented that carboxysome size, number, distribution,

14-18 4t ig unclear if the

and shell composition are modulated under different environments,
observed restructuring is only true for newly-synthesized carboxysomes, or if pre-existing
carboxyomes are sufficiently dynamic to be remodeled in response to changing conditions.
For example, some evidence suggests that once carboxysomes are formed, they are static
until they are ultimately degraded as a unit.'® Several tools and reporter constructs have
been developed in order to track the dynamics of carboxysome positioning and morphological

6,12,13,19.20 vet the variability of carboxysome features in natural pop-

features in living cells,
ulations and resolution limits of fluorescence microscopy complicate quantitative evaluation
of changes in carboxysome size, composition, and intracellular positioning.

Towards a better understanding of carboxysome biogenesis, we sought to develop a quan-
titative method for investigating the temporal dynamics of carboxysome remodelling. In
recent work,?® we used a method for protein down regulation based on the Lon protease
from Mesoplasma florum (mf-lon), allowing rapid inducible degradation of proteins of inter-

est. This approach offers the advantage that carboxysome components can be specifically

targeted in a manner that causes dynamic rearrangement of carboxysome morphology begin-



ning at an experimentally defined time point. We previously targeted the carboxysome shell
protein CcmO: carboxysomes deficient in CemO form a distinct phenotype related to their
inability to close completely.6 Using fluorescence microscopy, we previously showed that mf-
lon degraded CcmO and led to carboxysome remodelling within 24-72 hours of activation.
Here we describe a workflow that leverages the use of deep learning techniques to segment
and analyze the fluorescence microscopy images and quantitatively evaluate trends in car-
boxysome degradation. The workflow is schematically represented in Fig. 1): it segments
the images using Cellposell and analyzes the resultant objects (individual carboxysomes, the
set of carboxysomes per cell, and the cell themselves) using a Rotationally Invariant Varia-
tional Autoencoder, rVAE. We find that application of these deep learning techniques allows
for high-throughput analysis of cyanobacterial microscopy data and that significant changes
in carboxysome morphology can be confidently detected within hours of the initiation of
carboxysome remodelling.

Segmentation rVAE Predictions

Individual carboxysomes

first segmented using Cellpose.2l The resultant objects are individual carboxysomes, set of
carboxysomes per cells, and cells. Changes with time in the shape and size of individual
carbyxsomes, and size and position of the carboxysomes in a set, are then analyzed using a
rVAE.



Methods

Microbial culturing conditions

S. elongatus cultures were grown in baffled flasks (Corning) with BG-11 medium (Sigma)
supplemented with 1 g/L, HEPES, pH 8.3, in a Multitron II shaking incubator (Infors HT).
Cultures were grown under continuous light with GroLux bulbs (Sylvania) at 125 g mol
photons m=2s7!, 2 % CO,, 32 °C, and 130 rpm shaking. Carboxysomes were degraded by
inserting a protein degradation tag (PDT) at the C-terminus of the shell protein CemO,
which is essential for carboxysome closure, and expression of a non-native Lon protease from
Mesoplasma florum.?° For visualization of changes in carboxysome morphology, a second
copy of the small subunit of Rubisco, rbeS, was tagged with a C-terminal fusion of mNeon-
Green (mNG). For the induced samples, cultures were induced with 30 uM theophylline.
More detailed culturing, genetic assembly, and transformation information was previously

described.?"

Microscopy

All experiments were performed on live cells in exponential growth. Images were collected
with a Zeiss Axio Observer D1 inverted microscope with a Zeiss Plan Apochromat 100x
lens. Epifluorescence images were collected of both chlorophyll a autofluorescence (Ao, =

545, Aem = 605) and mNG (Aey = 500, Ao, = 535).

Segmentation

A total of 90 images, each with dimensions (1460,1936) pixels, were segmented with Cell-
pose?! and analyzed with an rVAE. The set of 90 images is divided into control and induced
sample groups, which contain 42 and 39 images, respectively. Both groups contain a time

series with images collected at 4, 8, 24, 48, and 72 hours post induction.



1 and for each image, masks for the car-

Segmentation was performed with Cellpose,?
boxysomes and the cells were created. We used a diameter setting of 7 and 20 for generating
the masks for carboxysomes and the cells, respectively.

From these masks, two types of sub-image stacks were obtained. One stack contains only
individual carboxysomes, whereas the other contains the set of carboxysomes per cell. The
latter was generated by using the cell channel mask, within which we selected the set of
carboxysomes in each cell. The resultant images were padded to have a size of 115 x 115
pixels. The dimension of each stack for the control and induced groups are given in Table 1.

As it can be seen in Table 1, there are significantly less sub-images in the stacks for the
set of carboxysomes than in the stack for individual ones. This is due to the position of the
focal plane, which is inclined in some of the samples and causes some group of cells to be
visualized different than others. This affects the segmentation, and the end result is that
there are fewer cell masks than expected. Because these masks are used as the molds within

which we selected the set of carboxysomes sub-images, the stacks for the set of carboxsyomes

have less sub-images than the stacks for the individual ones.

rVAE analysis

The rVAE was implemented within the AtomAI Package® and, for stacks of images with
1 (3) channels, trained for 1000 (400) epochs using 3 fully connected layers for both the
encoder and decoder. Each layer had 128 neurons and was activated by the tanh() function,
whose weights were optimized using the Adam optimizer with a learning rate of 0.0001.
The computational cost of training a rVAE was low. Training was performed in Google
Collaboratory (Colab) using 1 GPU, and the computational time depended on size of the
stack and the number of iterations chosen. For example, training the rVAE for 100 epochs
on 327800 images of 40x40 pixels takes about 2 hours and 30 minutes in Colab. Most of the
computational time, however, was spent on preparing the images for training. This included

preparing the stacks for segmentation, performing segmentation, saving the stacks in Google



Table 1: Dimensions of the sub-images stacks for the control and induced sam-
ples. When the stack of images contain both the Chla and mNG channels, the
tensor that characterizes the stack has one more dimension. For example, for
a stack that contains one channel only, either Chla or mING, the tensor might
have the following dimension (4388, 115, 115, 1). The first number represents
the number of images in the stack; the second and the third represent the width
and height of each image; the fourth number can be seen as representing the
‘color’ of each image. This color can be Chla or mNG , however when the stack
contains both channels, it has the following dimension (4388, 115, 115, 2).

Time (hrs) control induced

1 (40619, 40, 40) | (42101, 40, 40)

. 8 (53053, 40, 40) | (2756, 40, 40)
i;i;gi;iines 24 (49713, 40, 40) | (41867, 40, 40)
48 (23255, 40, 40) | (20408, 40, 40)

72 (40378, 40, 40) | (13650, 40, 40)

1 (4388, 115, 115) | (4159, 115, 115)

et of 8 (7492, 115, 115) | (528, 115, 115)
carboxysomes 24 (7665, 115, 115) | (10325, 115, 115)
48 (2977, 115, 115) | (4875, 115, 115)

72 (6594, 115, 115) | (3981, 115, 115)

Drive, and reloading them. We have included in the Supporting the notebooks used to train
the rVAE. They also contain links to the data used for training, which is directly downloaded

from Google Drive.

Results and discussion

Elucidating complex biological interactions via microscopy, particularly those which change
over time, is a challenging process. Subtle differences in protein localization, phenotypic
variation within control samples, and observational subjectivity often preclude strong con-
clusions from being made based solely on observation.

In order to visualize dynamic changes in carboxysome morphology, we tagged the small
subunit of Rubisco (RbcS) with a fluorescent protein, mNeonGreen (mNG, see Methods,

Section ). Rubisco is strongly concentrated to the carboxysome lumen in cyanobacteria,



therefore reporter fusions will localize as puncta organized in a characteristic pattern down
the midzone of S. elongatus cells. We genomically integrated a second copy of the rbcS gene
fused to mNG and expressed under the native Rubisco promoter. In order to have exper-
imental control over a well-defined feature related to carboxysome morphology, we utilized
the recently-described system for inducible down-regulation of the trimeric carboxysome
shell protein, CemO.2° Briefly, this approach relies upon tagging the endogenous ccrmO gene
with a C-terminal protein translation quality control sequence that is orthogonally recog-
nized by the Mesoplasma florum protease, mf-lon. By placing mf-lon expression under a
riboswitch control element that is responsive to theophylline,?® the targeted protein can be
rapidly degraded in S. elongatus within minutes to hours of experiment-controlled expres-
sion of the exogenous protease. Because CemO is an important shell protein required for the
formation of a completely enclosed microcompartment surface,?* loss of this protein leads
to a well-established phenotype of enlarged, incompletely enclosed, and polar aggregates of
Rubisco. ¢

We acquired epifluorescence images of both the cell chlorophyll a autofluorescence (Chla)
and the carboxysomes (mNG) over the course of 72 hours with an uninduced control set (0
mM theophylline) and cells induced to express mf-lon with 30 M theophylline. Prior
to image analysis, segmentation was performed for the cell and carboxysome channels using
Cellpose,?! a recently developed algorithm specifically trained for cellular segmentation. Fig-
ures 2a,b show examples of segmentation for the channels containing cells and carboxysomes,
respectively. A detailed explanation of the segmentation procedure and the image dataset
is given in section Methods. From the segmented images, we cropped sub-images contain-
ing either individual carboxysomes or all the carboxysomes in a cyanobacterium. Examples
of cropped sub-images are shown in Figs. 2c,d. We repeated this procedure for each seg-
mented image, generating stacks of sub-images for the control and induced samples. Table
1 summarizes the sub-images stacks and their dimensions.

To improve analysis of microscopy data, we utilized a rotationally invariant Variational



Autoencoder (rVAE), which is comprised of an encoder and a decoder network. The encoder
compresses images into a low-dimensional representation, known as the latent space. The
vectors in this space contain the most relevant information of each image. The decoder
reconstructs images starting from the latent space. During encoding, it’s often desirable to
disentangle relevant information from mere rotations and translations. Because we wish to
understand how degradation affects the structure of the carboxysome, rotations and trans-
lations are irrelevant. A rVAE, unlike a “vanilla" VAE,?® can disentangle rotations and
translation during encoding,?® and this is the reason why we used an rVAE in our analysis.
Specifically, we used the rVAE implementation in Kalinin et al.?” and AtomAI.?? This rVAE
encodes the images into unstructured latent variables (of which we used only two, denoted
as L1 and L2) and the latent variables that encoded the rotational angle (Lg) and the x-/y-
translations (La, and Lay,). In the sections below, we present results for L1 and L2 only.
The results for Ly, La, and La, are included in both the Jupyter notebooks that were used

to run the analysis, as well as in the Supporting Information.



Figure 2: Segmentation of a fluorescence microscopy image shows: (a) the cyanobacteria
cells; (b) the carboxysomes within all the cells; (¢) an individual carboxysome; (d) the set
of carboxysomes within a cyanobacterium.

Individual Carboxysomes

Images of individual carboxysomes decoded from the latent space are shown in Fig. 3a, where

LI and L2 vary along the x and y axis, respectively. For a more intuitive understanding of

10



what LI and L2 represent, we decoded the images by varying L/ and fixing L2, and vice
versa. We found that 1,2 was inversely correlated with carboxysome size, (Fig. 3b) whereas
LI represents the shape of the carboxysome, with high circularity in the L/ > 0 range and
an elongated phenotype when L/ < 0 (Fig. 3c). The carboxysome shapes and sizes shown
here correspond with a distillation of the myriad of carboxysome morphologies observed in

both wildtype cells and those cells in which the CcmO has been degraded.2

Figure 3: Decoded images of individual carboxysomes obtained by sampling the latent space
for the control and induced samples, (a) Evolution of decoded images as a function of L/
(x-axis) and L2 (y-axis). LI and L2 vary between [—1.5,1.5] in increments of 0.5; Decoded
images at specific values of the latent variables: (b) L1 = 0 and L2 = 0,1,2,3,4; (c)
LI = —15,—1,0,1,2 and L2 = 2. In (b) and (c) the axis denote the width and height of

each image in pixels.

The LI histogram for the control and induced samples are shown overlaid in Fig. 4a. For

the control samples, a small change with time is observed, whereas for the induced samples

11



the change is significant and characterized by the appearance of a “shoulder”" at LI > 1.0
which grows steadily with time (see red arrow from § hours on). The L2 histograms for the
control and induced samples are shown in Fig. 4b. For the control samples, variation is
again small with time, whereas for the induced samples a decreasing with time of the large
peak at L2 = 0 and the appearance of a new peak in the region L2 = [2, —I] are observed

(see red arrows at 48 and 72 hours of induction).

4 8 24 48 72

L2

Figure 4: Overlaid histograms for the stacks of individual carboxysomes sub-images, Table 1,
for both the control (blue) and induced samples (red), (a) histogram for LI; ((b) histogram
for L2. The arrows indicate changes in the histogram that appear due to induction (see text
for a discussion). The numbers 4, 8, 24, 48, 72 above each figure denote the time in hours.

The results above indicated that induced degradation of CcmO changes LI and L2 with
time. To visualize what those changes meant in terms of carboxysomeal structural dynamics,
we used the L1-L2 joint distribution. This distribution is shown in Fig. 5 for the control
and induced samples. It is seen that at 72 hours the number of carboxysomes increases in

the region defined by LI > | and L2 = [-2,-1]. Therefore, decoding images from those

12



regions will visualize the structural changes caused by degradation.

Figure 5: Contour plots showing the kernel density estimate (KDE) of the L/-L2 joint
distribution for the (a) control and (b) induced samples of the individual carboxysomes set.
The KDE is a smoothed out version of a histogram, and it enables computing a probability
density function. The numbers 4,8,24,48,72 above each figure denote the time in hours
post induction.

The carboxysome images decoded in the regions L/ > | and L2 = [-2,-1] are shown
in Fig. 6, where LI increases from bottom to top and L2 decreases from left to right
(the specific values for L/ and L2 are given in the caption of Fig. 6). The carboxysome
morphology becomes rounder when L/ increases and larger as L2 decreases. Taken together,
these data highlight the change in carboxysome morphology as the result of proteolysis by
m,f-lon, with the carboxysomes getting larger and more round over time as Rubisco continues
to aggregate in the absence of an intact shell. These observations are consistent with previous

work. 2°
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Figure 6: Images of individual carboxysomes decoded by sampling the latent space of the
induced sample at specific values of LI and L2: (a) LI = 1.6; L2 = —0.5, —1.0, —2.0, —2.5
(b) LI = 1.0, L2 = —0.5, —1.0, —2.0, —2.5 (¢) LI = 0.0; L2 = —0.5, —1.0, —2.0, —2.5. For
illustration purposes, for each panel the figures were merged into a single one. Individual
figures for each decoded image can be seen in the notebooks included in the Supporting
Information. For these individual figures, the x- and y-axis represent the width and height
in pixels.

Set of Carboxysomes per cell

A similar study to the one performed above for the individual carboxysomes was performed

here for the set of carboxysomes per cell. Images for the set of carboxysomes decoded from
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the latent space are shown in Fig. 7a. Figure 7b shows that changing L/ while fixing L2,
and vice versa, both reduce the number of carboxysomes per set, but depending on which
variable is varied, the remaining carboxysomes can be separated into two or merged into a

single one.

Figure 7. Decoded images of set of carboxysomes obtained by sampling the latent space
for the control and induced samples, (a) Evolution of decoded images as a function of L/
(x-axis) and L2 (y-axis). L/ and L2 vary in [—1.5,1.5] in increments of 0.5; Decoded images
at specific values of L/ and L2: (b) LI = —2,—1,0,1,1.5 and L2 = 0; (c) LI = 1.7 and
L2 = 14,1.5,1.6,1.7,1.9,2. In (b) and (c) the x- and y-axis denote width and height in
pixels

The LI histogram for the control and induced samples is shown overlaid in Fig. 8a. For
the control sample the L/ histogram is practically constant with time. However, for the
induced sample the histogram significantly shifts beginning at § hours post-induction, and

the distribution of carboxysome widens and moves to larger values of L/ (see red arrow at
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72 hours). The L2 histograms for both the control and induced samples are shown in Fig.
8b. At 48 hours, the L2 histogram for the control sample shows new peaks, albeit small, for
L2 >= 2. For the induced sample a large peak at L2 >= 2 appears as early as at the 4 hour
(indicated also by a red arrow), and then additionally peaks located at L2 >= | increase
with time; the latter are actually caused by a displacement of the whole histogram towards
larger values of L2 (see red arrow at 72 hours).

”» 4 8 24 48 72

(a)

L2

Figure 8: Overlaid histograms for the stacks of the set of carboxysomes sub-images, Table 1,
for both the control (blue) and induced samples (red), (a) histogram for LI; ((b) histogram
for L2. The arrows indicated the presence of peaks in the histogram (see text for a discus-
sion). The numbers 4, 8, 24, 48, 72 above each figure denote the time in hours.

Figure 9 shows the LI — L2 joint distribution for the control and induced samples. For
the control samples, a small incidence of events are categorized with L2>= 2 values, which
produced a “hat" on the distribution that is consistent throughout all time points. For
the induced samples, the “hat” also appears for values L2 >= 1 as early as at § hours post

induction, and the proportion of events is dramatically increased at later time points. There’s
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also an additional shifting of the distribution towards larger values of L2, consistent with
the trend observed in the L2 histogram (shown in Fig.8b. Ultimately, after 24 hours post-
induction, the joint distribution is split into two regions, the aforementioned “hat” region,

where L2 >= 1, and a “skewed-like” region, where L2 < 1.

Figure 9: Contour plots showing the kernel density estimate (KDE) of the L/-L2 joint
distribution for the (a) control and (b) induced samples of the set of carboxysomes data.
The numbers 4, 8, 24, 48, 72 above each figure denote the time in hours post induction.

The Fig. 10 shows the decoded images from the “hat” and “skewed-like” regions of the
LI — L2 joint distribution of the induced samples. Images were decoded by passing through
these two regions either laterally, that is varying L/ while fixing L2, or vertically, varying L2
while fixing L/ Figure 10a,b show the lateral pass for two different values of L2, whereas
Fig. 10c,d show the vertical pass for two different values of L/. For the set of carboxysomes
per cell, it’'s somewhat more difficult to assign a physical explanation to the variables L/
and L2 than it was for the individual carboxysomes, where L/ was correlated to shape and
L2 was inversely correlated to size. Nonetheless, in Fig. 10 it is seen that changes in L/ are
correlated with the movement of carboxysomes towards the poles, whereas changes in L2
are correlated with carboxysome aggregation. In both cases, the number of carboxysomes

per set decreases with time. While such trends are clear in Fig.10 (and by extension in
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Fig.9, since the images in Fig.10 were decoded by selecting regions of Fig.9), it’s significantly
more difficult to understand how more aggregation or more movement towards the poles
might affect the histograms and L2 and LI shown in Fig.8. In any case, the observation
that carboxysomes merge into one is significantly more prevalent in the induced sample than
in the control. Indeed, merging is what causes the “skewed-like” region in the LI — L2

distribution of the induced sample (see Fig.9b).

Figure 10: Decoded images from the latent space along the following selected regions
in the LI — L2 joint distributions (a) LI = —2,—1,0,1,1,5,2.5, L2 = 0; (b) LI =
-2,-1,0,1,1,5,25, L2 = 1; (¢)L1 = 0, L2 = 1.4,1.5,1.6,1.7,1.9,2.0; (d) LI = -1.5,
L2 = 1.4,1.5,1.6,1.7,1.9, 2.0. For illustration purposes, for each panel, individual images
were merged into a unique image. The individual images have width and height given in
pixels.
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In a previous work? it was found that induction produced one carboxysome aggregate
that located at the pole of the cell. The results in the previous sections were obtained by
training the rVAE to a stack of sub-images that had one channel only, i.e. a channel for
a single carboxysome or a channel for the set of carboxysomes per cell. Although those
analysis showed that the number of carboxysomes per cell decreases due to aggregation, it
was not possible to determine the location of the carboxysome aggregate in the cell. For this
purpose, the rVAE has to be trained on multi-channel stacks of images, where one channel
contains the cell background (Chla) and the other channel contains the carboxysomes within
the cell (mNG). In this manner, spatial correlations between the set of carboxysomes and
the cell can be determined. Thus, we proceeded to create a stack of sub-images that had
the same dimensions as those shown in Table 1 under the entry "Set of carboxysomes",
except now each sub-image had the two channels aforementioned. The rVAE was trained
to this multi-channel stack of sub-images and the L1 — L2 joint distribution that resulted
is shown in Fig.11. It is seen that the distribution for the control samples changes only at
the 48 and 72 hour time points, and even so not significantly. However, the distribution for
induced samples at 4 hours already show two slightly separate classes (regions), and this
distinction increases further as time progresses. We decoded the images across these two
clagses by fixing L1 = 0 and varying L2 from —3 to 2. The resultant images are shown in
Fig.12: clearly, the number of carboxysomes per cell not only diminishes with time, but also

the resultant aggregate locates to the pole of the cell, in agreement with the observations in

Ref.?°
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Figure 11: Contour plots showing the kernel density estimate (KDE) of the L/-L2 joint
distribution for the (a) control and (b) induced samples of the for the multi-channel sub-
images containing the masks for the set of carboxysomes and the host cell, (a) control and
(b) induced samples. The numbers 4,8, 24, 48, 72 above each figure denote the time in hours.

Figure 12: Decoded images from the latent space along the following selected regions in
the LI — L2 joint distributions, Fig.11: Decoded images from the latent space along specific
regions in the L/ — L2 joint distributions of Fig.11. The LI and L2 values from each figure was
decoded are given on top of each image as [LI, L2] For [LI, L2] = [0,-3] the carboxysome
appears very light. Training the rVAE to more epochs did not improve this fact. The x- and
y-axis of each image represent the width and height in pixels, respectively.
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CONCLUSIONS

Herein, we demonstrate that rVAEs can be utilized for high-throughput analysis of car-
boxysome puncta to gain quantitative data regarding the remodeling of bacterial microcom-
partments. Prior observations of carboxysomes across multiple cyanobacteria species has
suggested that these bacterial microcompartments may be adjusted in abundance, size, com-
position, and/or positioning to tune their properties for different environments. For instance,
carboxysome [-carboxysome operons (main and satellite) display differential expression un-

14,15,18,28,29 Yot it remains unclear

der different illumination intensities and C'O2 availability.
if these changes in features are dynamically regulated in existing carboxysomes, or if they
are only encoded in newly-assembled microcompartments. This uncertainty persists in part
due to insufficient molecular tools and limitations in the inherent resolution limits of light
microscopy, which confound analysis of carboxysome populations over time. In this context,
fluorescence microscopy imaging of the alterations in carboxysome features in response to
an environmental or artificial stimuli can provide valuable insights on structural dynam-
ics. However, the amount of data produced by modern microscopy approaches is such that
manual evaluation has insufficient throughput and sensitivity; only a qualitative analysis is
feasible to evaluate subtle changes in population-level properties. Quantitative analysis can
shed more light into the carboxysome biogenesis and dynamic processes, and for this pur-
pose, deep learning techniques are especially suitable. Here we demonstrate that a type of
deep learning technique known as a Rotationally Invariant Variational Autoencoder is capa-
ble of revealing structural changes from fluorescence microscopy datasets, including changes
in the shape and size of carboxysomes and the number of carboxysomes inside of the cell.
These high-throughput analyses are capable of detecting significant changes at time points
as early as 4 or 8 hours post-induction of a carboxysome shell degrading circuit, whereas
manual evaluation was only able to subjectively report changes 24 hours after the genetic
intervention.?® This work reveals that variational autoencoders can play a very important

role in detailing the dynamic processes (e.g., remodelling, biogenesis) of carboxysomes and,
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by extension, bacterial microcompartments in general.
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