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Abstract. The present paper is a sequel to [Monatsh. Math. 194 (2021), 523{554] in which results of

that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approxima-
tion. Given any integers n � 2 and ` � 1, any ��� = (�1; : : : ; �`) 2 R`, and any homogeneous function

f = (f1; : : : ; f`) : Rn ! R` that satis�es a certain nonsingularity assumption, we obtain a biconditional

criterion on the approximating function  = ( 1; : : : ;  `) : R≥0 ! (R>0)` for a generic element f � g in

the SLn(R)-orbit of f to be (respectively, not to be)  -approximable at ��� = (�1; : : : ; �n): that is, for there

to exist in�nitely many (respectively, only �nitely many) v 2 Zn such that j�j − (fj � g) (v)j �  j(kvk)
for each j 2 f1; : : : ; `g. In this setting, we also obtain a su�cient condition for uniform approximation.

We also consider some examples of f that do not satisfy our nonsingularity assumptions and prove similar

results for these examples. Moreover, one can replace SLn(R) above by any closed subgroup of ASLn(R)
that satis�es certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the

aforementioned previous paper.
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1. Introduction

Let f be an inde�nite nondegenerate quadratic form in n � 3 real variables that is not a real multiple of
a quadratic form with rational coe�cients. The Oppenheim{Davenport Conjecture, resolved a�rmatively
by Margulis [16], states that every real number is an accumulation point of f(Zn):

(1.1) For any � 2 R and any " 2 R>0; there exist in�nitely many v 2 Zn for which jf(v)− �j � ":

The rich history of the Oppenheim{Davenport conjecture and its seminal resolution by Margulis, among
various other related topics, are extensively discussed in Margulis's survey [17]. The in
uence of Margulis's
theorem and related problems continues unabated to this day. As of a few years ago, there has been a great
increase of activity in proving e�ective variants of Margulis's theorem for generic quadratic forms and other
homogeneous polynomials: for instance, one often considers the SLn(R)-orbit (under the natural action) of
a real homogeneous polynomial in n real variables; one then has a natural notion of measure class (and thus
measure-theoretic genericity) for this orbit. Let us brie
y recall some recent results that exemplify this circle
of problems. Throughout this paper, we write N := Z�1: that is to say, we do not consider 0 2 Z to be a
natural number.
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For any � 2 R�1 and any (p; q) 2 N2 with p+ q = n � 3; let Fp;q;� : Rn ! R be given by

(1.2) Fp;q;�(x) :=

0@ pX
j=1

jxj j�
1A−

0@ nX
k=p+1

jxkj�
1A :

Generalizing earlier results of Ghosh{Gorodnik{Nevo [8] and Athreya{Margulis [1], Kelmer{Yu [13] proved
the following theorem.

Theorem 1.1 ([13, Corollary 2]). Let � 2 2N, let n 2 Z>� , and let p; q 2 N be such that p + q = n: Let
s 2 (0; n− �) � R: Let � 2 R: Let k � k be an arbitrary norm on Rn: Then for Haar-almost every g 2 SLn(R)
the following holds: for each su�ciently large T 2 R>0 there exists v 2 Zn with

0 < kvk � T and j−� + Fp;q;�(gv)j � T−s:

The proofs in [8] made use of representation theory and e�ective mean ergodic theorems, while those in [1]
and then [13] employed comparatively elementary means (namely, �rst and second moment formulae for the
Siegel transform in the geometry of numbers). For other results of a similar nature, see [2, 5, 7, 9{11,15, 18].
The authors previously studied problems of this sort in [14]; the work in [14] was, however, limited to
homogeneous approximation, which corresponds to the special case � = 0 in the context of (1.1). The
purpose of the present paper is to establish inhomogeneous analogues of the results of [14]. In order both
to recall the results of [14] and to present the results of the present paper, we proceed to establish some
notation and de�nitions; much of the notation and many of the de�nitions that follow were �rst established
in [14] and are recalled here for the convenience of the reader.

Now and hereafter, we shall denote by n an arbitrary element of Z�2 and by ` an arbitrary element of
N. Elements of Rn and of R` shall always be regarded as column vectors, even though they may be written
as row vectors for notational convenience. If k 2 N and E � Rk; we de�ne E6=0 := E r f0Rkg : We say that
v = (v1; : : : ; vn) 2 Zn is primitive if gcd(v1; : : : ; vn) = 1: We let Znpr denote the set of all primitive points
of Zn: We shall always denote the usual Lebesgue measure on any Euclidean space by m. Throughout this
paper, we shall use the Vinogradov notation � and use � to denote that both \�" and \�" hold; we shall
attach subscripts to the symbols� and � to indicate the parameters, if any, on which the implicit constants
depend.

De�nition 1.2 ([14, De�nition 1.1]). We de�ne a non-strict partial order 4 on R` as follows. For any
x = (x1; : : : ; x`) 2 R` and any y = (y1; : : : ; y`) 2 R`; we write x 4 y if and only if xj � yj for each
j 2 f1; : : : ; `g.

De�nition 1.3 ([14, De�nitions 1.2, 3.3, 3.6, and 3.7]). Let

f = (f1; : : : ; f`) : Rn ! R` and  = ( 1; : : : ;  `) : R�0 ! (R>0)
`

be given, let � be an arbitrary norm on Rn, and let P be a discrete closed subset of Rn:
� We abuse notation and write jf j to denote the function (jf1j; : : : ; jf`j) : Rn ! R`:
� We de�ne Z(f) := f−1 (0R`) r f0Rng.
� We de�ne Af; ;� :=

�
x 2 Rn : jf(x)j 4  

(
�(x)

�	
:

� For any T 2 R>0 and any """ 2 (R>0)
`
; we de�ne

Bf;""";�;T := fx 2 Rn : jf(x)j 4 """ and �(x) � Tg :
� We say that f is ( ; �;P)-approximable if Af; ;� \ P has in�nite cardinality.
� We say that f is uniformly ( ; �;P)-approximable if Bf; (T );�;T \ P 6= ? for each su�ciently large
T 2 R>0.

� We say that f is homogeneous if it is Borel measurable and there exists some d = d(f) =
(d1; : : : ; d`) 2 (R>0)` such that for each t 2 R�0, each j 2 f1; : : : ; `g; and each x 2 Rn we have

fj(tx) = tdjfj(x): We refer to d = d(f) as the degree of f:1

� We say that  is regular if it is Borel measurable and there exist real numbers a = a( ) 2 R>1 and
b = b( ) 2 R>0 such that for each z 2 R>0 one has b (z) 4  (az):

� We say that  is nonincreasing if each component function of  is nonincreasing in the usual sense.

1This terminology is slightly abusive because d = d(f) is unique if and only if each component of f is nonzero.
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De�nition 1.4. For any function f : Rn ! R` and any ��� 2 R`; de�ne ���f : Rn ! R` to be the function
given by ���f(x) := −��� + f(x):

De�nition 1.5. For any s 2 R>0 and any " 2 R�0; let 's;" : R�0 ! R>0 be any regular and nonincreasing
function such that for every su�ciently large t 2 R>1 we have 's;"(t) = t−s (log t)

"
:

Using our newly introduced terminology, we may now restate Theorem 1.1 as follows. (Note that statement
(i) is a straightforward corollary of statement (ii).)

Theorem 1.10 ([13, Corollary 2]). Let � 2 2N, let n 2 Z>� , and let p; q 2 N be such that p + q = n: Let
s 2 (0; n−�) � R: Let � 2 R: Let k � k be an arbitrary norm on Rn: Set f := Fp;q;� : Then the following hold.

(i) The function (�f) � g is
�
's;0; k � k;Zn6=0

�
-approximable for Haar-almost every g 2 SLn(R).

(ii) The function (�f)�g is uniformly
�
's;0; k � k;Zn6=0

�
-approximable for Haar-almost every g 2 SLn(R).

We now proceed to state certain results that will be formulated and proved in greater generality in x3.
Before we state the �rst result, let us recall an elementary notion from di�erential topology.

De�nition 1.6. Let M and N be C 1 manifolds that are Hausdor�, second-countable, and without boundary.
Let U be an open subset of M: Let f : M ! N be a function, and suppose that f is continuously di�erentiable
on U: Let x 2 U be given. We say that x is a regular point of f if the map Dxf : TxM ! Tf(x)N is surjective.

Theorem 1.7. Let  = ( 1; : : : ;  `) : R�0 ! (R>0)
`

be regular and nonincreasing. Let f = (f1; : : : ; f`) :

Rn ! R` be homogeneous of degree d = d(f) = (d1; : : : ; d`) 2 (R>0)`. Suppose further that f is continuously
di�erentiable on Rn6=0, that Z(f) 6= ?, and that

(1.3) each element of Z(f) is a regular point of f:

Let � be an arbitrary norm on Rn. Let ��� 2 R`: Set d :=
P`
j=1 dj : Then the following hold.

(i) If

Z 1
1

tn−(d+1)

0@Ỳ
j=1

 j(t)

1Adt is �nite (respectively, in�nite), then (���f)�g is
�
 ; �;Zn6=0

�
-approximable

for Haar-almost no (respectively, almost every) g 2 SLn(R).

(ii) Suppose that d < n and that the in�nite series

1X
k=1

242k(n−d)
Ỳ
j=1

 j
(
2k
�35−1

converges. Then (���f) � g

is uniformly
�
 ; �;Zn6=0

�
-approximable for Haar-almost every g 2 SLn(R).

Remark 1.8. Notice that no component of f in the above theorem is required to be a polynomial. Notice
also that neither the integral criterion in (i) nor the summatory condition in (ii) features any dependence on
��� 2 R`:

Remark 1.9. It will follow from a more general result in x3 that the preceding theorem remains true if one
replaces

� each instance of Zn6=0 by Znpr;

� each instance of Zn6=0 by Zn and each instance of SLn(R) by ASLn(R) . Here, ASL(R) := SLn(R)nRn;
the group of a�ne bijections Rn ! Rn that preserve both volume and orientation.

Remark 1.10. Let �, p, q, n = p+ q, and Fp;q;� : Rn ! R be as in (1.2). Suppose further that 1 < � < n:
Since � > 1, the function Fp;q;� is continuously di�erentiable on Rn: Since p � 1 and q � 1, we have
Z (Fp;q;�) 6= ?: It is also easy to verify that each element of Rn6=0 is a regular point of Fp;q;� : The hypotheses

of Theorem 1.7 are thus satis�ed when ` = 1, d = d1 = �, and f = Fp;q;� . This shows that statement (ii)
of Theorem 1.7 implies Theorem 1.10 (equivalently, Theorem 1.1). Moreover, we can prove a generalization
of Theorem 1.10 as follows. Let � 2 R be arbitrary, let � be an arbitrary norm on Rn; and set f = Fp;q;� to
simplify notation. The following then hold.

� The function (�f) � g is
(
'n−�;0; �;Znpr

�
-approximable for Haar-almost every g 2 SLn(R). This

generalizes (i) of Theorem 1.10 to include the case of the critical exponent s = n− �:
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� The function (�f) � g is uniformly
(
'n−�;"; �;Znpr

�
-approximable for every " 2 R>1 and Haar-almost

every g 2 SLn(R). This generalizes (ii) of Theorem 1.10. In fact, one can generalize (ii) of Theorem
1.10 even further by suitably modifying the de�nition of 'n−�;" to include an arbitrary �nite number
of iterated logarithms.

Remark 1.11. Our general framework also allows for vector-valued examples of f: For instance, let f1 =
Fp;q;� : Rn ! R be as in Remark 1.10, and let f2 : Rn ! R be an R-linear transformation. (These functions
may remind the reader of the setting in the papers [3, 6, 12].) Then f := (f1; f2) : Rn ! R2 satis�es the
hypotheses of Theorem 1.7 if and only if the intersection Z(f1) \ Z(f2) is nonempty and transverse. One
thereby obtains a criterion for the asymptotic approximability of and a su�cient condition for the uniform
approximability of almost every element in the SLn(R)-orbit of ���f; for any ��� 2 R2: (The corresponding conull
subsets of SLn(R) depend on ��� 2 R2:)

We are also able to obtain results akin to Theorem 1.7 in certain special cases wherein the nonsingularity
condition (1.3) does not hold. In Theorem 1.7 and in all the aforementioned examples, the integral and
summatory conditions obtained were all independent of ��� 2 R`: As the following two examples illustrate,
this independence need no longer hold when the nonsingularity condition (1.3) fails to hold.

Theorem 1.12. Let  : R�0 ! R>0 be regular and nonincreasing. Let ! 2 R>0 be arbitrary. Let
f : Rn ! R be given by f(x) := (

Qn
i=1 jxij)

!
: Let � be an arbitrary norm on Rn: Let � 2 R�0: Then the

following hold.

(i) If 8>><>>:
Z 1

1

 (t)1=!

t
(log t)

n−2
dt if � = 0Z 1

1

 (t)

t
(log t)

n−2
dt if � > 0

is �nite (respectively, in�nite), then (�f)�g is
�
 ; �;Zn6=0

�
-approximable for Haar-almost no (respectively,

almost every) g 2 SLn(R).

(ii) If the in�nite series 8>>>><>>>>:
1X
k=1

h
kn−1 

(
2k
�1=!i−1

if � = 0

1X
k=1

�
kn−1 

(
2k
��−1

if � > 0

converges, then (�f) � g is uniformly
�
 ; �;Zn6=0

�
-approximable for Haar-almost every g 2 SLn(R).

Theorem 1.13. Let  : R�0 ! R>0 be regular and nonincreasing. Let p 2 f1; : : : ; n − 1g and z =
(z1; : : : ; zp) 2 (R>0)

p
be given. Let f : Rn ! R be given by

f(x1; : : : ; xn) := max fjxijzi : 1 � i � pg :

Set z :=
Pp
i=1 z

−1
i : Let � be an arbitrary norm on Rn: Let � 2 R�0: Then the following hold.

(i) If 8><>:
Z 1

1

 (t)ztn−(p+1) dt if � = 0Z 1
1

 (t) tn−(p+1) dt if � > 0

is �nite (respectively, in�nite), then (�f)�g is
�
 ; �;Zn6=0

�
-approximable for Haar-almost no (respectively,

almost every) g 2 SLn(R).
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(ii) If the in�nite series 8>>>><>>>>:
1X
k=1

h
2(n−p)k 

(
2k
�zi−1

if � = 0

1X
k=1

h
2(n−p)k  

(
2k
�i−1

if � > 0

converges, then (�f) � g is uniformly
�
 ; �;Zn6=0

�
-approximable for Haar-almost every g 2 SLn(R).

Remark 1.14. The assertions in Remark 1.9 apply to Theorems 1.12 and 1.13 as well. As in Remark 1.10,
one may easily deduce corollaries of the preceding two theorems for  of the form 's;":

Theorems 1.7, 1.12, and 1.13 are immediate special cases of Theorems 3.3, 3.5, and 3.7; the latter three
theorems are consequences (albeit not immediate ones) of Theorems 2.15 and 2.18. (Likewise, the assertions
in Remark 1.9 are immediate consequences of Theorem 3.3.) Results similar to the aforementioned ones
were established by the authors in [14] for the special case ��� = 0R` : see [14, Theorems 3.4 and 3.8].

Remark 1.15. From the preceding two theorems, we see that the failure of f : Rn ! R to satisfy the
nonsingularity condition (1.3) of Theorem 1.7 is necessary, but not su�cient, to ensure dependence on �:
This is an interesting phenomenon that is worthy of further investigation. It would also be interesting to
understand whether there exist reasonably well-behaved f : Rn ! R` that exhibit dependence on ��� �ner
than the rather crude \zero or nonzero" dependence.

2. General results

We proceed by laying the groundwork necessary to state and prove our general results. We follow the
presentation given by the authors in [14].

Let ASLn(R) := SLn(R) n Rn: We assume that ASLn(R) and each subgroup thereof act on Rn in the
usual manner: for any hh; zi 2 ASLn(R) and any x 2 Rn; we have hh; zix = z + hx. In what follows, we
shall assume that

(2.1) G is a closed subgroup of ASLn(R) and P is a discrete closed subset of Rn:

De�ne Γ = Γ(G;P) to be the subgroup of G given by

(2.2) Γ := fg 2 G : gP = Pg:

Now and hereafter, we assume that Γ is a lattice in G. (For each example of (G;P) that we shall consider, the
group Γ will indeed be a lattice in G:) Set X := G=Γ: We let �G denote the Haar measure on the unimodular
group G that is normalized so that vol (G=Γ) = 1: We then let �X denote the unique G-invariant Radon
probability measure on X:

We may identify X and fgP : g 2 Gg via the bijection gΓ  ! gP; we then equip fgP : g 2 Gg with
the quotient topology of X by declaring the aforementioned bijection to be a homeomorphism. Given any

function f : Rn ! R�0; we de�ne its P-Siegel transform bf P : X ! [0;1] bybf P (gΓ) = bf P (gP) :=
X
v2P

f(gv):

We note that if f is Borel measurable, then bf P is �X -measurable. The Siegel and Rogers type axioms that
are recalled below were introduced by the authors in [14]; they were named after the groundbreaking results
of Siegel [22] and Rogers [19,20].

De�nition 2.1 ([14, De�nition 2.1]). Let G and P be as in (2.1).

(i) We say that G is of P-Siegel type if there exists a constant c = cP 2 R>0 such that for any bounded and
compactly supported Borel measurable function f : Rn ! R�0 we haveZ

X

bf P d�X = c

Z
Rn
f dm:
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(ii) Let r 2 R�1 be given. We say that G is of (P; r)-Rogers type if there exists a constant D = DP;r 2 R>0

such that for any bounded Borel E � Rn with m(E) > 0 we have



c1EP − �Z
X

c1EP d�X�1X




r

� D �m(E)1=r:

There are various interesting examples of pairs (G;P) that satisfy both conditions (i) (Siegel) and (ii)
(Rogers) of De�nition 2.1. For the convenience of the reader, we now record some examples that were already
discussed in [14]: see [14, Theorems 2.5, 2.6, and 2.8] and the references therein for details. Below, � denotes
the Euler{Riemann zeta function.

Theorem 2.2 ([14, Theorems 2.5, 2.6, and 2.8]).
(i) The group ASLn(R) is of Zn-Siegel type with cZn = 1 and of (Zn; 2)-Rogers type.
(ii) Suppose n � 3: Then the group SLn(R) is of Znpr-Siegel type with cZnpr = 1=�(n), of Zn6=0-Siegel type

with cZn6=0
= 1; of

(
Znpr; 2

�
-Rogers type, and of (Zn6=0; 2)-Rogers type.

(iii) The group SL2(R) is of Z2
pr-Siegel type with cZ2

pr
= 1=�(2), of Z2

6=0-Siegel type with cZ2
6=0

= 1, and of(
Z2

pr; 2
�
-Rogers type. For every p 2 [1; 2) � R; the group SL2(R) is of (Z2

6=0; p)-Rogers type.

(iv) Suppose n 2 2 (Z�2) : Then the group Spn(R) is of Znpr-Siegel type with cZnpr = 1=�(n), of Zn6=0-Siegel

type with cZn6=0
= 1; of

(
Znpr; 2

�
-Rogers type, and of (Zn6=0; 2)-Rogers type.

Using the recent work of Ghosh{Kelmer{Yu [10], one can improve upon Theorem 2.2(ii) in an arithmetically
interesting fashion. For any q 2 N; let Znpr(q) denote the set of all v 2 Znpr that are congruent modulo q to
the �rst standard basis vector e1 := (1; 0; : : : ; 0) 2 Zn � Rn: more precisely, we have v 2 Znpr(q) if and only
if v 2 Znpr and v − e1 2 qZn: For any q 2 N; let �q denote the modi�ed Euler{Riemann zeta function given

by �q(s) :=
X

k2N:gcd(k;q)=1

k−s: (Note that Znpr(1) = Znpr and �1 = �:) The following then holds.

Theorem 2.3 ([10, Theorem 1.4]). Suppose n � 3: Let q 2 N be arbitrary. Then the group SLn(R) is of

Znpr(q)-Siegel type with cZnpr(q)
=

1

qn �q(n)
and of

(
Znpr(q); 2

�
-Rogers type.

Proof. Set P := Znpr(q): Let f : Rn ! R�0 be a bounded and compactly supported Borel measurable
function. It follows from [10, Theorem 1.4, (1.9)] and [10, Lemma 2.2] that

(2.3)

Z
X

bf P d�X =
�(n)

qn �q(n)
� 1

�(n)

Z
Rn
f dm =

1

qn �q(n)

Z
Rn
f dm:

This proves the �rst assertion.
Using [10, Theorem 1.4, (1.10)], [10, Lemma 2.2], and the Cauchy{Schwarz inequality, we obtain

(2.4)
qn �q(n)

�(n)

Z
X

� bf P�2

d�X �
1

�(n) qn �q(n)

�Z
Rn
f dm

�2

+
2

�(n)
kfk22 :

We then infer from (2.3) and (2.4) thatZ
X

� bf P�2

d�X −
�Z

X

bf P d�X

�2

� 2

qn �q(n)
kfk22:

The second assertion now follows easily. �

Remark 2.4. The same proof applies to show that for any q 2 N; the group SL2(R) is of Z2
pr(q)-Siegel type

with cZ2
pr(q)

=
1

q2 �q(2)
: see [10, Remark 1.11].

Remark 2.5. Let G and P be as in (2.1). Note that if G is of P-Siegel type, then G is of (P; 1)-Rogers
type; this is an immediate consequence of Minkowski's inequality for L1(X): If r 2 R�1 is arbitrary and G is
of (P; 1)-Rogers type and of (P; r)-Rogers type, then G is of (P; s)-Rogers type for every s 2 [1; r] � R: see
[14, Corollary 2.4]. For any of the pairs (G;P) that appear in Theorems 2.2 and 2.3, it is an interesting open
problem to determine the supremum of the set of all r 2 R�1 such that G is of (P; r)-Rogers type; note
that this supremum is greater than or equal to 2 for each pair (G;P) that appears in the aforementioned
theorems.
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The Siegel and Rogers axioms are expedient because they can be used in tandem with the Borel{Cantelli
Lemma (for the purpose of uniform approximation) and to prove analogues of W. M. Schmidt's famous
counting result [21, Theorems 1 and 2] (for the purpose of asymptotic approximation). We now recall a
result from [14] that records the relevant consequences of the Siegel and Rogers axioms.

Theorem 2.6 ([14, Theorem 2.9]). Let G and P be as in (2.1). Suppose G is of P-Siegel type with c = cP .
Let E be a Borel subset of Rn:

(i) If m(E) <1; then �X (f� 2 X : # (� \ E) <1g) = 1:

For the remaining statements of this theorem, suppose in addition to the preceding hypotheses that we are
given r 2 R>1 for which G is of (P; r)-Rogers type.

(ii) Suppose m(E) =1. Let k � k be a norm on Rn. Then for �X -almost every � 2 X; we have

(2.5) lim
t!1

# fx 2 (� \ E) : kxk � tg
cm (fx 2 E : kxk � tg)

= 1:

In particular, �X (f� 2 X : # (� \ E) =1g) = 1:

(iii) Let fFkgk2N be a collection of Borel subsets of Rn with 0 < m(Fk) < 1 for each k 2 N. Suppose
1X
k=1

m(Fk)1−r < 1: Then the following holds: for �X -almost every � 2 X there exists kΛ 2 N such

that � \ Fk 6= ? whenever k � kΛ.

Remark 2.7 ([14, Remark 2.12]). Let G and P be as in (2.1). Notice that the hypotheses of Theorem 2.6(iii)
can never be satis�ed when r 2 R>1 is replaced by 1: We now give an example to show that Theorem 2.6(ii)
need not be true when r 2 R>1 is replaced by 1: Let G := Rn: Then G is a closed subgroup of ASLn(R)
that is of Zn-Siegel type with cZn = 1; thus, G is of (Zn; 1)-Rogers type. Let " 2 (0; 1) � R be given, and

de�ne U" := Rn−1 �
�

1− "
2

;
1 + "

2

�
� Rn−1 � (0; 1) � Rn: Since n � 2, we have m (U") = 1: Now note

that �X (f� 2 X : # (� \ U") =1g) = 1− " < 1:

In the authors' previous paper [14], the assumption on the function f : Rn ! R` whose values near zero
were being approximated was subhomogeneity ; we recall here the de�nition of this property.

De�nition 2.8. Let f : Rn ! R`: We say that f is subhomogeneous if it is Borel measurable and there
exists � = �(f) 2 R>0 such that for each t 2 (0; 1) � R and each x 2 Rn we have jf(tx)j 4 t�jf(x)j:

In this paper, we wish to prove analogues of [14, Theorems 3.4 and 3.8] in which the subhomogeneous function
f : Rn ! R` therein is replaced by a function of the form ���F; where F : Rn ! R` is some su�ciently well-
behaved Borel measurable function and ��� 2 R`. The technical starting point for doing so is noting that the
subhomogeneity assumption on f in [14] was needed only in order to invoke the conclusions of two important
lemmata from [14]; we now recall the statements of these lemmata for the convenience of the reader.

Lemma 2.9 ([14, Lemmata 3.1 and 3.5]). Let f : Rn ! R` be subhomogeneous, and let � = �f 2 R>0 as in
De�nition 2.8. Let � and � be arbitrary norms on Rn. The following then hold.

(i) Let s 2 R>0. Then m(Af;s ;�) <1 if and only if m(Af; ;�) <1.

(ii) Let t 2 (0; 1); T 2 R>0; and """ 2 (R>0)
`
: Then tBf;""";�;T � Bf;t�""";�;tT .

(iii) There exists C� = C��;� 2 R�1 such that for each C 2 R�C� ; each T 2 R>0; and each """ 2 (R>0)
`
;

we have Bf;""";�;T � C Bf;C−�""";�;T and Bf;""";�;T � C Bf;C−�""";�;T .

In essence, the above lemma shows that the subhomogeneity of f is su�cient to ensure that the volumes
of the sets Af; ;� and Bf;""";�;T are well-behaved under change-of-norms and under scaling of any of the
arguments  ;"""; T by arbitrary elements of R>0: Let us also recall another lemma from [14] to which we shall
need to refer.

Lemma 2.10 ([14, Lemma 3.2]). Let  = ( 1; : : : ;  `) : R�0 ! (R>0)
`

be regular and nonincreasing. Then
the following holds: for any c 2 R�0 there exists s 2 R>0 such that for each x 2 [0; c] and each y 2 R>c; one
has  (y − x) 4 s (y):
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We now formulate de�nitions that axiomatize (i) of Lemma 2.9 and certain desirable properties furnished
by (ii) and (iii) of the same lemma.

De�nition 2.11. Let f : Rn ! R` be Borel measurable, and let  : R�0 ! (R>0)
`

be regular and
nonincreasing. We say that the pair (f;  ) is asymptotically acceptable if the following holds: for any
s 2 R>0 and any norms �1; �2 on Rn; we have

(2.6) m (Af; ;�1) <1 if and only if m (Af;s ;�2) <1:

De�nition 2.12. Let f : Rn ! R` and  : R�0 ! (R>0)
`

each be Borel measurable. We say that the pair
(f;  ) is uniformly acceptable if the following holds: for any s1; s2; s3; s4 2 R>0 and any norms �1; �2 on Rn;
we have

(2.7) 0 < lim inf
T!1

m
(
Bf;s3 (T );�2;s4T

�
m
(
Bf;s1 (T );�1;s2T

� � lim sup
T!1

m
(
Bf;s3 (T );�2;s4T

�
m
(
Bf;s1 (T );�1;s2T

� <1:
Informally speaking, the pair (f;  ) is asymptotically (respectively, uniformly) acceptable if the measure of
sets of the form Af; ;� (respectively, Bf; (T );�;T ) does not change drastically when one multiplies  (respec-
tively,  and the occurrence of T that is not the argument of  ) by some arbitrary constant (respectively,
constants) and changes the norm �.

Remark 2.13. Note that if f : Rn ! R` is subhomogeneous and  : R�0 ! (R>0)
`

is regular and
nonincreasing, then Lemma 2.9 implies that the pair (f;  ) is both asymptotically and uniformly acceptable.
Therefore, the framework of [14] can be subsumed into that of the present paper.

Let us now state and prove a lemma that will simplify various proofs in x3 that concern the veri�cation
of asymptotic and uniform acceptability.

Lemma 2.14. Let f : Rn ! R` and  : R�0 ! (R>0)
`

each be Borel measurable.

(i) Suppose that  is regular and nonincreasing. Suppose that there exists a norm � on Rn such that
for any s 2 R>0 we have

m (Af; ;�) <1 if and only if m (Af;s ;�) <1:
Then the pair (f;  ) is asymptotically acceptable.

(ii) Suppose that there exists a norm � on Rn such that for any s1; s2; s3; s4 2 R>0 we have

0 < lim inf
T!1

m
(
Bf;s3 (T );�;s4T

�
m
(
Bf;s1 (T );�;s2T

� � lim sup
T!1

m
(
Bf;s3 (T );�;s4T

�
m
(
Bf;s1 (T );�;s2T

� <1:
Then the pair (f;  ) is uniformly acceptable.

Proof. Let � be an arbitrary norm on Rn:
(i) Let a = a( ) 2 R>1 and b = b( ) 2 R>0 be as in De�nition 1.3. Let � be a norm on Rn as in the

hypotheses of (i). Fix k 2 N for which a−k � � � � ak �: For every x 2 Rn; we have

 
(
�(x)

�
4  

(
a−k �(x)

�
4 b−k  

(
�(x)

�
:

For every x 2 Rn; we similarly have

bk  
(
�(x)

�
4  

(
�(x)

�
:

It follows that for each s 2 R>0; we have

m
(
Af;bks ;�

�
� m (Af;s ;�) � m

(
Af;b−ks ;�

�
:

This implies the desired result.

(ii) We do not assume that  is regular, and we do not assume that  is nonincreasing. Let � be a norm
on Rn as in the hypotheses of (ii). Fix C 2 R>1 for which C−1 � � � � C �: Let s1; s2; T 2 R>0 be
arbitrary. We clearly have

m
(
Bf;s1 (T );�;C−1s2T

�
� m

(
Bf;s1 (T );�;s2T

�
� m

(
Bf;s1 (T );�;Cs2T

�
:

The desired result now follows.

�
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We now proceed to establish our main theorems.

Theorem 2.15. Let G and P be as in (2.1). Suppose G is of P-Siegel type. Let c = cP be as in De�nition

2.1(i). Let f : Rn ! R` be Borel measurable. Let  : R�0 ! (R>0)
`

be regular and nonincreasing. Suppose
that the pair (f;  ) is asymptotically acceptable. Let � and � be arbitrary norms on Rn:

(i) Supposem (Af; ;�) <1: Then for almost every g 2 G the function f�g is not ( ; �;P)-approximable.

(ii) Suppose m (Af; ;�) = 1; and suppose that we are given r 2 R>1 for which G is of (P; r)-Rogers
type. Then for almost every g 2 G the function f � g is ( ; �;P)-approximable.

Proof. Let a = a( ) 2 R>1 and b = b( ) 2 R>0 be as in De�nition 1.3. Let us denote elements of ASLn(R)
by hh; zi, where h 2 SLn(R) and z 2 Rn; that is, hh; zi : Rn ! Rn is the a�ne map given by x 7! z + hx.
For any h 2 SLn(R), let khk denote the operator norm of h that is given by

(2.8) khk := sup f�(hx) : x 2 Rn and �(x) � 1g :

We �rst prove (i). Suppose m (Af; ;�) < 1: In view of (2.6), it follows that for every M 2 N we have
m (Af;M ;�) <1: Theorem 2.6(i) then implies that for every M 2 N we have

�X (f� 2 X : # (� \Af;M ;�) =1g) = 0:

Hence, the set

S1 :=
[
M2N

fg 2 G : # (gP \Af;M ;�) =1g

satis�es �G(S1) = 0. Now let g = hh; zi be any element of G for which

(2.9) f � g is ( ; �;P)-approximable:

Let D := max
�
khk;



h−1


	 ; and let E := �(z): Let k 2 N be such that ak > D: Since  is regular and

nonincreasing, it follows from Lemma 2.10 that there exists F 2 R>0 for which the following is true: for each
x 2 [0; E] and each y 2 (E;1); we have  (y − x) 4 F (y): Let N be any element of N with N > b−kF: A
simple argument then yields the inclusion

(2.10) g (fx 2 Af�g; ;� : �(x) > 2DEg) � Af;N ;� :

In light of (2.9) and (2.10), it follows that # (gP \Af;N ;�) =1: We conclude that g belongs to the �G-null
set S1. This completes the proof of (i).

The proof of (ii) proceeds along similar lines. Suppose m (Af; ;�) = 1; and suppose that we are given
r 2 R>1 for which G is of (P; r)-Rogers type. It then follows from (2.6) and Theorem 2.6(ii) that the set

S2 :=
[
M2N

�
g 2 G : #

(
gP \Af; =M;�

�
<1

	
is �G-null. Now let g be any element of G for which f � g is not ( ; �;P)-approximable. Arguing as in the
proof of (i), we conclude that g 2 S2, which �nishes the proof of (ii). �

Remark 2.16. Using (2.5) and arguing as in the proof of [14, Theorem 3.4], it is possible to enhance the
qualitative conclusion of Theorem 2.15(ii) in a quantitative fashion. Since we are primarily interested in
qualitative results, we decided to forego quantitative arguments.

To state the next theorem, we need the following de�nition.

De�nition 2.17.
� Let t� = (tk)k2N be any strictly increasing sequence of elements of R>0 with lim

k!1
tk = 1: Let

P be a discrete closed subset of Rn: We then say that f is t�-uniformly ( ; �;P)-approximable if
Bf; (tk);�;tk \ P 6= ? for each su�ciently large k 2 N.

� Let t� = (tk)k2N be any strictly increasing sequence of elements of R>0 with lim
k!1

tk = 1: We say

that t� is quasi-geometric if, in addition to the preceding, the set ftk+1=tk : k 2 Ng is bounded from
above.
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Theorem 2.18. Let G and P be as in (2.1). Suppose G is of P-Siegel type, and suppose that we are

given r 2 R>1 for which G is of (P; r)-Rogers type. Let f : Rn ! R` and  : R�0 ! (R>0)
`

each be
Borel measurable. Suppose that the pair (f;  ) is uniformly acceptable. Let u� = (uk)k2N be any strictly
increasing sequence of elements of R>1 with lim

k!1
uk =1: Suppose that there exists some norm � on Rn for

which

(2.11) inf
N2N

1X
k=N

m
(
Bf; (uk);�;uk

�1−r
<1:

Let � be an arbitrary norm on Rn. The following then hold.

(i) For almost every g 2 G the function f � g is u�-uniformly ( ; �;P)-approximable.

(ii) Suppose further that  is regular and nonincreasing and that the sequence u� is quasi-geometric.
Then for almost every g 2 G the function f � g is uniformly ( ; �;P)-approximable.

Proof. We argue as in the proof of [14, Theorem 3.8], appealing to the uniform acceptability of the pair
(f;  ) (instead of appealing to Lemma 2.9).

(i) As in the proof of Theorem 2.15, we denote elements of ASLn(R) by hh; zi: For any h 2 SLn(R), let
khk denote the operator norm of h given by (2.8). De�ne � : ASLn(R)! SLn(R) and � : ASLn(R)!
Rn by � : hh; zi 7! h and � : hh; zi 7! z: Notice that each of these maps is continuous. Let K be a
nonempty compact subset of G with K = K−1, and de�ne

DK := sup fkhk : h 2 �(K)g <1 and EK := sup f�(z) : z 2 �(K)g <1:

Fix L 2 N such that for each k 2 Z�L we have uk > 2EK : It follows from (2.7) and (2.11) that

inf
N2N

1X
k=N

m
(
Bf; (uk);�;uk=2DK

�1−r
<1: We then apply Theorem 2.6(iii) to obtain the following: for

almost every g 2 G there exists Mg 2 Z�L such that for each k 2 Z with k �Mg there exists some
vg;k 2 P with

(2.12) � (gvg;k) � uk
2DK

and jf (gvg;k)j 4  (uk) :

For any such �G-generic g that belongs to K and any integer k �Mg; we have � (vg;k) � uk; this may
be proved by appealing to the �rst inequality in (2.12) and arguing as in the proof of [14, Theorem
3.8(i)]. We thus conclude that for �G-almost every g 2 K the function f �g is u�-uniformly ( ; �;P)-
approximable. Since G is �-compact, the desired result follows.

(ii) Let a = a( ) 2 R>1 and b = b( ) 2 R>0 be as in De�nition 1.3. Fix j 2 N for which

sup fuk+1=uk : k 2 Ng < aj :

(This is possible because u� is quasi-geometric.) Appealing once again to (2.7) and (2.11), we infer

inf
N2N

1X
k=N

(m
(
Bf;bj (uk);�;uk

�1−r
< 1: Statement (i) of this theorem implies that for almost every

g 2 G the function f � g is u�-uniformly
(
bj ; �;P

�
-approximable. Now let h : Rn ! R` be any

function that is u�-uniformly
(
bj ; �;P

�
-approximable. Fix M 2 N such that for each k 2 Z�M the

set Bh;bj (uk);�;uk \P is nonempty. Let T 2 (uM+2;+1) be arbitrary. Then there exists i 2 Z�M+2

for which ui � T � ui+1: Note that there exists v 2 P with �(v) � ui and jh(v)j 4 bj (ui): We
then have �(v) � ui � T and

jh(v)j 4 bj (ui) 4 b
jb−j 

(
ajui

�
=  

(
ajui

�
4  (ui+1) 4  (T ):

This completes the proof.

�

Remark 2.19. The in�mum in (2.11) is included because
P1
k=1m

(
Bf; (uk);�;uk

�1−r
may diverge for the

trivial reason that there exist �nitely many k 2 N for which m
(
Bf; (uk);�;uk

�
= 0:
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3. Applications of general results

We begin with the following elementary observation.

Lemma 3.1. Let (M; gM ) be an oriented C 1 Riemannian manifold that is Hausdor�, second-countable, and
without boundary. Let � denote the Borel measure on M induced by the natural Riemannian volume form
on M . Let h : M ! R` be a C 1 map, and suppose that h−1 (0R`) 6= ?: Let z 2 h−1 (0R`), and suppose that
z is a regular point of h: Then there exist C = Cz 2 R>1, an open subset V = Vz of R` with 0R` 2 V , and
an open subset W = Wz of M with z 2W such that for any Borel subset E of R` with E � V; we have

C−1m(E) � �
(
W \ h−1(E)

�
� Cm(E):

In particular, mjV and the restriction to V of the pushforward of �jW by hjW are equivalent Borel measures.

Proof. For the sake of clarity, we note that m denotes Lebesgue measure on R`. Set k := dimM: Note that
k � `: By the Constant Rank Theorem [4, Theorem 7.1] there exist " 2 R>0 and maps � : (−"; ")k ! M
and � : R` ! R` such that:

� the set �
(
(−"; ")k

�
is an open subset of M , and � is a C 1 di�eomorphism onto �

(
(−"; ")k

�
;

� the set �
(
R`
�

is an open subset of R`, and � is a C 1 di�eomorphism onto �
(
R`
�
;

� � (0Rk) = z; and
� � � h � � = �`j(−";")k , where �` : Rk ! R` is given by (x1; : : : ; xk) 7! (x1; : : : ; x`).

Set W = Wz := �

��
−"

2
;
"

2

�k�
�M: Then W is an open subset of M for which

z 2W �W = �

�h
−"

2
;
"

2

ik�
� �

(
(−"; ")k

�
�M:

Note that � (0R`) = 0R` : Set V = Vz := �−1

��
−"

2
;
"

2

�`�
� R`: Then V is an open subset of R` for which

0R` 2 V � V = �−1

�h
−"

2
;
"

2

i`�
� �−1

�
(−"; ")`

�
� R`:

Let E be an arbitrary Borel subset of R` with E � V: Then

W \ h−1(E) = �

��
−"

2
;
"

2

�k
\ �−1

`

(
�(E)

��
:

Since each of V and W is compact, each of h and �` is of class C 1, and each of � and � is a C 1 di�eomorphism
from its domain onto its image, it follows that

�
(
W \ h−1(E)

�
�gM ; z m

��
−"

2
;
"

2

�k
\ �−1

`

(
�(E)

��
= "k−`m

(
�(E)

�
�z m(E):

�

Let us now use the preceding lemma to derive a global statement.

Theorem 3.2. Let (M; gM ) be an oriented C 1 Riemannian manifold that is compact, Hausdor�, second-
countable, and without boundary. Let � denote the Borel measure on M induced by the natural Riemannian
volume form on M . Let h : M ! R` be a C 1 map; suppose that h−1 (0R`) 6= ? and that every element of
h−1 (0R`) is a regular point of h: Then there exists an open subset V of R` with 0R` 2 V such that for any
Borel subset E of R` with E � V; we have

�
(
h−1(E)

�
�M;gM ;h m(E):

Proof. Set Z := h−1 (0R`) 6= ?: For every z 2 Z; let Cz 2 R>1; Vz � R` with 0R` 2 Vz; and Wz � M
with z 2 Wz be as in Lemma 3.1. Since Z is compact, there exist �nitely many z1; : : : ; zN 2 Z such that

Z �W :=

N[
i=1

Wzi : Set U :=

N\
i=1

Vzi and C :=

NX
i=1

Czi : Let V be an open subset of R` such that 0R` 2 V � U
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and h−1(V ) � W: (We defer the proof of the existence of V until the end of this theorem's proof.) If E is
any Borel subset of R` with E � V; then

C−1m(E) � min
�
�
(
Wzi \ h−1(E)

�
: 1 � i � N

	
� �

(
h−1(E)

�
�

NX
i=1

�
(
Wzi \ h−1(E)

�
� Cm(E):

We now prove the existence of such a set V ; suppose by way of contradiction that such a set did not
exist. This would imply that for every open subset U 0 of R` with 0R` 2 U 0 � U there exists y 2 (M rW )
for which h(y) 2 U 0. Let k � k denote the Euclidean norm on R`: Then for each r 2 N there exists some
xr 2 (M rW ) for which h(xr) 2 U and kh(xr)k < r−1. Since M is compact, the sequence (xr)r2N has
a convergent subsequence whose limit we denote by x 2 M: Since W is an open subset of M , we have
x 2 (M rW ); this implies x =2 Z, so that h(x) 6= 0R` : On the other hand, the sequence (h(xr))r2N clearly
converges to 0R` . The continuity of h then implies h(x) = 0R` : This is a contradiction. �

Standing Assumptions. Let us state here the conventions that will be in force throughout the remainder
of this paper.

� We shall let G, P, and Γ = Γ(G;P) be as in (2.1) and (2.2). As usual, we shall assume that Γ is a
lattice in G:

� We shall assume that G is of P-Siegel type and that we are given r 2 R>1 for which G is of
(P; r)-Rogers type.

� We shall let � denote an arbitrary norm on Rn:

We now state and prove Theorem 3.3, of which Theorem 1.7 is an immediate consequence.

Theorem 3.3. Let  = ( 1; : : : ;  `) : R�0 ! (R>0)
`

be regular and nonincreasing. Let f = (f1; : : : ; f`) :

Rn ! R` be homogeneous of degree d = d(f) = (d1; : : : ; d`) 2 (R>0)
`
: Suppose further that f is continuously

di�erentiable on Rn6=0, that Z(f) 6= ?, and that each element of Z(f) is a regular point of f: Let ��� 2 R`: Set

d :=
P`
j=1 dj : Then the following hold.

(i) If

Z 1
1

tn−(d+1)

0@Ỳ
j=1

 j(t)

1Adt is �nite (respectively, in�nite), then (���f)�g is ( ; �;P)-approximable

for Haar-almost no (respectively, almost every) g 2 G.

(ii) Suppose that d < n and that the in�nite series

1X
k=1

242k(n−d)
Ỳ
j=1

 j
(
2k
�351−r

converges. Then (���f)�g

is uniformly ( ; �;P)-approximable for Haar-almost every g 2 G.

Proof. We begin by attending to some preliminary matters.
Let �n denote the unique SO(n)-invariant Radon probability measure on Sn−1 � Rn: Let k � k denote the

Euclidean norm on Rn: De�ne h : Sn−1 ! R` to be the restriction of f to Sn−1: Note that h−1 (0R`) =
Z(f)\Sn−1 6= ?: Now let x 2 h−1 (0R`) : For each j 2 f1; : : : ; `g; the homogeneity of fj implies that rfj(x)
is tangent to Sn−1. It follows that x is a regular point of f : Rn ! R` if and only if x is a regular point of
h : Sn−1 ! R`: We thereby conclude that every element of h−1 (0R`) is a regular point of h. Theorem 3.2
may thus be applied to h : Sn−1 ! R`: Let V � R` be an open neighborhood of 0R` as in the conclusion of
Theorem 3.2.

Let us now introduce a pair of mutually inverse bijections that we shall use in this proof:

R>0 � Sn−1 ! Rn6=0 given by (t;u) 7! tu(3.1)

and

Rn6=0 ! R>0 � Sn−1 given by x 7!
�
kxk; x

kxk

�
:(3.2)

Finally, for each t 2 R>0; de�ne

gt := diag
(
t−d1 ; : : : ; t−d`

�
2 GL`(R):
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(i) Let s 2 R>0: We shall show that the pair (���f;  ) is asymptotically acceptable by �rst showing that

(3.3) m
(
A
���f;s ;k�k

�
<1 if and only if

Z 1
1

tn−(d+1)

0@Ỳ
j=1

 j(t)

1A dt <1:

Using the bijections in (3.1) and (3.2) and the homogeneity of f , it follows that for each t 2 R>0

and each u 2 Sn−1 we have

(3.4) tu 2 A
���f;s ;k�k if and only if gt

(
��� − s (t)

�
4 h(u) 4 gt

(
��� + s (t)

�
:

Using the boundedness of  , we now �x M 2 R>2 such that for each t 2 R�M we have�
w 2 R` : gt

(
��� − s (t)

�
4 w 4 gt

(
��� + s (t)

�	
� V:

Theorem 3.2 then implies that for each t 2 R�M we have

(3.5) �n
(�

u 2 Sn−1 : gt
(
��� − s (t)

�
4 h(u) 4 gt

(
��� + s (t)

�	�
�n;`;f t−d

0@(2s)
`
Ỳ
j=1

 j (t)

1A :

It then follows from (3.4) and (3.5) that

m
(
fx 2 A

���f;s ;k�k : kxk �Mg
�

�n
Z 1
M

tn−1 �n
(�

u 2 Sn−1 : gt
(
��� − s (t)

�
4 h(u) 4 gt

(
��� + s (t)

�	�
dt

�n;`;f (2s)
`
Z 1
M

tn−(d+1)

0@Ỳ
j=1

 j (t)

1A dt:

Since  is bounded, this proves (3.3). Lemma 2.14(i) then implies that the pair (���f;  ) is asymptot-
ically acceptable. The desired result now follows from Theorem 2.15.

(ii) Let us prove that the pair (���f;  ) is uniformly acceptable. Let s1; s2 2 R>0 be given. Arguing as in
part (i), we infer that there exists M 2 R>2 such that for each T 2 R with T > M=s2, we have

m
(�

x 2 B
���f;s1 (T );k�k;s2T : kxk �M

	�
�n

Z s2T

M

tn−1 �n
(�

u 2 Sn−1 : gt (��� − s1 (T )) 4 f(u) 4 gt (��� + s1 (T ))
	�

dt

�n;`;f
Z s2T

M

tn−1 t−d

0@(2s1)
`
Ỳ
j=1

 j(T )

1A dt

�`;s1
Z s2T

M

tn−(d+1)

0@Ỳ
j=1

 j(T )

1A dt

=
h
(s2T )

n−d −Mn−d
i0@Ỳ

j=1

 j(T )

1A
�n;d;s2;M Tn−d

Ỳ
j=1

 j(T ):

It follows that

0 < lim inf
T!1

Tn−d
Q`
j=1  j (T )

m
(
B
���f;s1 (T );k�k;s2T

� � lim sup
T!1

Tn−d
Q`
j=1  j (T )

m
(
B
���f;s1 (T );k�k;s2T

� <1:
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Lemma 2.14(ii) now implies that the pair (���f;  ) is uniformly acceptable. It is clear from the
preceding work that

inf
N2N

1X
k=N

m
�
B
���f; (2k);k�k;2k

�1−r
<1 if and only if

1X
k=1

242k(n−d)
Ỳ
j=1

 j
(
2k
�351−r

<1:

The desired result now follows from Theorem 2.18.

�

We shall now consider examples of f : Rn ! R that do not satisfy the nonsingularity hypotheses of
Theorem 3.3. Since the measure estimates furnished by Theorem 3.2 are no longer available in this setting,
we shall instead use some ad hoc measure calculations that were performed in the authors' previous paper: see
[14, Corollaries 4.2 and 4.3]. In what follows, for each i 2 Z�0, we write logi to denote the function R>0 ! R
given by t 7! (log t)

i
; in particular, log0 denotes the constant function that is equal to 1 everywhere on R>0:

Our �rst example expands upon [14, Corollary 4.2]; in that corollary, we considered the function f : Rn ! R
given by

(3.6) f(x) :=

nY
i=1

jxij

and essentially proved the following result.

Lemma 3.4 ([14, Corollary 4.2(i)]). Let f : Rn ! R be as in (3.6), let  : R�0 ! R>0 be bounded and

Borel measurable, and let � denote the maximum norm on Rn: Then there exists R = R
(
 ; n

�
2 R�1 such

that for every Borel measurable function  : R�0 ! R>0 with  �  on R�0 and any real numbers S and
T with R � S � T; we have

(3.7) m (Af; ;� \ fx 2 Rn : S � �(x) � Tg) = 2n n

Z T

S

 (t)

t

"
n−2X
i=0

1

i!
logi

�
tn

 (t)

�#
dt:

We remark that, strictly speaking, an application of [14, Corollary 4.2(i)] would require the function  to be
nonincreasing (see [14, Remark 4.4(iii)]) and would provide a value of R dependent on  : That being said,
an inspection of said corollary's proof shows that only the boundedness and Borel measurability of  are
required and not its monotonicity; this inspection furthermore shows that one may choose

R = R
(
 ; n

�
:= 1 +

(
sup

�
 (t) : t 2 R�0

	�1=n
:

We now consider a generalized version of the function in (3.6), given by raising that function to an
arbitrary power ! 2 R>0:

Theorem 3.5. Let  : R�0 ! R>0 be regular and nonincreasing. Let ! 2 R>0 be arbitrary. Let f : Rn ! R
be given by f(x) := (

Qn
i=1 jxij)

!
: Let � 2 R�0: Then the following hold.

(i) If 8>><>>:
Z 1

1

 (t)1=!

t
logn−2 (t) dt if � = 0Z 1

1

 (t)

t
logn−2 (t) dt if � > 0

is �nite (respectively, in�nite), then (�f)�g is ( ; �;P)-approximable for Haar-almost no (respectively,
almost every) g 2 G.

(ii) If the in�nite series 8>>>><>>>>:
1X
k=1

h
kn−1 

(
2k
�1=!i1−r

if � = 0

1X
k=1

�
kn−1 

(
2k
��1−r

if � > 0

converges, then (�f) � g is uniformly ( ; �;P)-approximable for Haar-almost every g 2 G.
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Proof. If lim
t!1

 (t) > 0, then note that we can easily construct a function ' : R�0 ! R>0 that is regular,

nonincreasing, satis�es lim
t!1

'(t) = 0, and for which the following hold: when  is replaced by ' in Theorem

3.5, the integral in (i) diverges and the in�nite series in (ii) converges. The conclusions of (i) and (ii) will
then follow for '; we then infer that the conclusions of (i) and (ii) follow for  as well. We therefore assume
without loss of generality that lim

t!1
 (t) = 0: In concert with the regularity and monotonicity of  , this

implies that there exists some � = �( ) 2 R>0 such that for every su�ciently large t 2 R�1, we have

(3.8) 1 � − log
(
 (t)

�
� � log(t):

Let us �rst discuss the case � = 0, which was the subject of [14, Corollary 4.2]. Let us assume that ! = 1,
since the general case � = 0 reduces to this particular sub-case. Even though the integral and summatory
conditions in that corollary and those in the � = 0 case of this theorem look di�erent from one another, they
are actually equivalent. Indeed, (3.8) implies that the integralZ 1

1

 (t)

t
logn−2

�
tn

 (t)

�
dt

in [14, Corollary 4.2(ii)] converges if and only if the integral

Z 1
1

 (t)

t
logn−2 (t) dt converges. Likewise,

the in�nite series in [14, Corollary 4.2(iii)], converges if and only if the in�nite series

1X
k=1

�
kn−1 

(
2k
��1−r

converges. The � = 0 case of this theorem then follows from the preceding work and [14, Corollary 4.2].

Suppose now that � > 0: Let � denote the maximum norm on Rn:

(i) Let s 2 R>0 be given. De�ne  : R�0 ! R>0 by  (t) := (� + s )
1=!

. Let R = R( ; n) be as in
Lemma 3.4. Fix M 2 R for which M > R and s (M) < �=2: Then for each t 2 R�M , we have
s (t) < �=2: De�ne  : R�0 ! R>0 by

 (t) :=

(
 (t) if t 2 [0;M)

(� − s (t))
1=!

if t 2 [M;1)
:

Let h : Rn ! R be given by h(x) :=
Qn
i=1 jxij : Note that

(3.9)
�
Ah; ;� rAh; ;�

�
\ �−1 (R�M ) � A

�f;s ;� \ �−1 (R�M )

and

(3.10) m

 �
A
�f;s ;� \ �−1 (R�M )

�
r
��

Ah; ;� rAh; ;�

�
\ �−1 (R�M )

�!
= 0:

Now �x any real numbers S and T with M � S � T: Using Lemma 3.4, it follows that
(3.11)

m
�
Ah; ;� \ fx 2 Rn : S � �(x) � Tg

�
= 2n n

Z T

S

(
� + s (t)

�1=!
t

"
n−2X
i=0

1

i!
logi

 
tn(

� + s (t)
�1=!

!#
dt

and
(3.12)

m
�
Ah; ;� \ fx 2 Rn : S � �(x) � Tg

�
= 2n n

Z T

S

(
� − s (t)

�1=!
t

"
n−2X
i=0

1

i!
logi

 
tn(

� − s (t)
�1=!

!#
dt:

It is easy to see that

(3.13) m
(
A
�f;s ;�

�
=1 if and only if

Z 1
1

 (t)

t
logn−2 (t) dt =1:

This follows from (3.9) and (3.10), subtracting the right-hand side of (3.12) from that of (3.11), using
(3.8) and the dominance of logn−2, and then performing two �rst-order Taylor approximations. Note
that the integral criterion in (3.13) is independent of s 2 R>0: Lemma 2.14(i) then implies that the
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pair (�f;  ) is asymptotically acceptable. The desired result now follows from the foregoing work
and Theorem 2.15.

(ii) Let s1; s2 2 R>0 be given. Set J := 1 +  (0): Arguing as in part (i), we infer that there exists
M 2 R>2 such that for each T 2 R with T > M=s2, we have

m
(�

x 2 B
�f;s1 (T );�;s2T : �(x) �M

	�
�n;J;M;s1;s2

Z s2T

M

 (T ) t−1 logn−2(t) dt

=  (T )
�
logn−1 (s2T )− logn−1(M)

�
�n;M;s2  (T ) logn−1(T ):

It follows that

0 < lim inf
T!1

 (T ) logn−1(T )

m
(
B
�f;s1 (T );�;s2T

� � lim sup
T!1

 (T ) logn−1(T )

m
(
B
�f;s1 (T );�;s2T

� <1:
Lemma 2.14(ii) then implies that the pair (�f;  ) is uniformly acceptable. It is clear from the
foregoing work that

inf
N2N

1X
k=N

m
(
B
�f; (2k);�;2k

�1−r
<1 if and only if

1X
k=1

�
kn−1 

(
2k
��1−r

<1:

An application of Theorem 2.18 then yields the desired result.

�

Remark 3.6. It is easy to see that one may modify the preceding proof to obtain a similar result when

� 2 R and f : Rn ! R is a function of the form f(x) := (
Qn
i=1 xi)

q1=q2 ; where q1 and q2 are arbitrary odd
natural numbers.

Our next and �nal example expands upon [14, Corollary 4.3] and is of interest because of its relation to
the Khintchine{Groshev Theorem.

Theorem 3.7. Let  : R�0 ! R>0 be regular and nonincreasing. Let p 2 f1; : : : ; n − 1g and z =
(z1; : : : ; zp) 2 (R>0)

p
be given. Let f : Rn ! R be given by

f(x1; : : : ; xn) := max fjxijzi : 1 � i � pg :

Set z :=
Pp
i=1 (zi)

−1
: Let � 2 R�0: Then the following hold.

(i) If 8><>:
Z 1

1

 (t)ztn−(p+1) dt if � = 0Z 1
1

 (t) tn−(p+1) dt if � > 0

is �nite (respectively, in�nite), then (�f)�g is ( ; �;P)-approximable for Haar-almost no (respectively,
almost every) g 2 G:

(ii) If the in�nite series 8>>>><>>>>:
1X
k=1

h
2(n−p)k 

(
2k
�zi1−r

if � = 0

1X
k=1

h
2(n−p)k  

(
2k
�i1−r

if � > 0

converges, then (�f) � g is uniformly ( ; �;P)-approximable for Haar-almost every g 2 G:

The proof of this theorem makes use of the following lemma.

Lemma 3.8 ([14, Corollary 4.3(i)]). Let p 2 f1; : : : ; n − 1g and z = (z1; : : : ; zp) 2 (R>0)
p

be given. Let
f : Rn ! R be given by

f(x1; : : : ; xn) := max fjxijzi : 1 � i � pg :
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Set z :=
Pp
i=1 (zi)

−1
: Let  : R�0 ! R>0 be bounded and Borel measurable. Let � denote the maximum

norm on Rn: Then there exists some R = R
(
 ; z

�
2 R�1 such that for every Borel measurable function

 : R�0 ! R>0 with  �  on R�0 and any real numbers S and T with R � S � T; we have

m (Af; ;� \ fx 2 Rn : S � �(x) � Tg) = 2n(n− p)
Z T

S

 (t)z tn−(p+1) dt:

The relationship between Lemma 3.8 and [14, Corollary 4.3(i)] is analogous to that between Lemma 3.4 and
[14, Corollary 4.2(i)], and similar remarks to those made earlier apply here. In particular, inspecting the
proof of [14, Corollary 4.3(i)] shows that one may choose

R = R
(
 ; z

�
:= 1 + max

1�i�p

(
sup

�
 (t) : t 2 R�0

	�1=zi
in Lemma 3.8. The � = 0 case of Theorem 3.7 is already known: see [14, Corollary 4.3]. The proof of the
� > 0 case of this theorem is similar to, and simpler than, that of the � > 0 case of Theorem 3.5: it is
therefore omitted.

Remark 3.9. Let us mention that all the results in x1 (in particular, Theorems 1.7, 1.12, and 1.13 and
Remarks 1.9 and 1.14) follow from those here in x3 and the fact that G = SLn(R) and G = ASLn(R)
satisfy various forms of the Siegel-type and Rogers-type axioms: see [14, Theorems 2.5, 2.6, and 2.8] and the
references therein for details.

Remark 3.10. We note here that one may easily deduce analogues of the statements made in Remark 1.10
for Theorems 3.5, 3.7, and for the ` = 1 case of Theorem 3.3. We also note that the ` = 1 case of Theorem
3.3 applies to the functions discussed in Remark 1.10.

Remark 3.11. In light of the preceding results, we note that the discussion in Remark 1.15 applies in the
current, more general, setting.
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various discussions. The authors would also like to thank the anonymous referee for a detailed report whose
suggestions improved the exposition in this paper.

References

[1] J. S. Athreya and G. A. Margulis, Values of random polynomials at integer points, J. Mod. Dyn. 12 (2018), 9{16, DOI
10.3934/jmd.2018002. MR3808207

[2] P. Bandi, A. Ghosh, and J. Han, A generic e�ective Oppenheim theorem for systems of forms, J. Number Theory 218

(2021), 311{333, DOI 10.1016/j.jnt.2020.07.002. MR4157702
[3] P. Bandi and A. Ghosh, On the density at integer points of a system comprising an inhomogeneous quadratic form and a

linear form, Math. Z. 299 (2021), no. 1-2, 781{796, DOI 10.1007/s00209-021-02716-8. MR4311618

[4] W. M. Boothby, An introduction to di�erentiable manifolds and Riemannian geometry, 2nd ed., Pure and Applied Math-
ematics, vol. 120, Academic Press, Inc., Orlando, FL, 1986. MR861409

[5] J. Bourgain, A quantitative Oppenheim theorem for generic diagonal quadratic forms, Israel J. Math. 215 (2016), no. 1,

503{512, DOI 10.1007/s11856-016-1385-7. MR3551907
[6] S. G. Dani, Simultaneous Diophantine approximation with quadratic and linear forms, J. Mod. Dyn. 2 (2008), no. 1,

129{138, DOI 10.3934/jmd.2008.2.129. MR2366232
[7] A. Eskin, G. A. Margulis, and S. Mozes, Quadratic forms of signature (2; 2) and eigenvalue spacings on rectangular 2-tori,

Ann. of Math. (2) 161 (2005), no. 2, 679{725, DOI 10.4007/annals.2005.161.679. MR2153398
[8] A. Ghosh, A. Gorodnik, and A. Nevo, Optimal density for values of generic polynomial maps, Amer. J. Math. 142 (2020),

no. 6, 1945{1979, DOI 10.1353/ajm.2020.0049. MR4176550

[9] A. Ghosh and D. Kelmer, A quantitative Oppenheim theorem for generic ternary quadratic forms, J. Mod. Dyn. 12 (2018),

1{8, DOI 10.3934/jmd.2018001. MR3808206
[10] A. Ghosh, D. Kelmer, and S. Yu, E�ective Density for Inhomogeneous Quadratic Forms I: Generic Forms and Fixed

Shifts, Int. Math. Res. Not. IMRN, posted on 2020, DOI 10.1093/imrn/rnaa206.
[11] , E�ective density for inhomogeneous quadratic forms II: �xed forms and generic shifts, posted on 2020, DOI

10.48550/ARXIV.2001.10990, available at arXiv:2001.10990[math.NT].

[12] A. Gorodnik, Oppenheim conjecture for pairs consisting of a linear form and a quadratic form, Trans. Amer. Math. Soc.
356 (2004), no. 11, 4447{4463, DOI 10.1090/S0002-9947-04-03473-7. MR2067128

[13] D. Kelmer and S. Yu, Values of random polynomials in shrinking targets, Trans. Amer. Math. Soc. 373 (2020), no. 12,

8677{8695, DOI 10.1090/tran/8204. MR4177272
[14] D. Kleinbock and M. Skenderi, Khintchine-type theorems for values of subhomogeneous functions at integer points,

Monatsh. Math. 194 (2021), 523-554, DOI 10.1007/s00605-020-01498-1.

arXiv:2001.10990 [math.NT]


18 DMITRY KLEINBOCK AND MISHEL SKENDERI

[15] E. Lindenstrauss and G. A. Margulis, E�ective estimates on inde�nite ternary forms, Israel J. Math. 203 (2014), no. 1,
445{499, DOI 10.1007/s11856-014-1110-3. MR3273448

[16] G. A. Margulis, Discrete subgroups and ergodic theory, Number theory, trace formulas and discrete groups (Oslo, 1987),

Academic Press, Boston, MA, 1989, pp. 377{398. MR993328
[17] , Oppenheim conjecture, Fields Medallists' lectures, World Sci. Ser. 20th Century Math., vol. 5, World Sci. Publ.,

River Edge, NJ, 1997, pp. 272{327, DOI 10.1142/9789812385215 0035. MR1622909
[18] G. A. Margulis and A. Mohammadi, Quantitative version of the Oppenheim conjecture for inhomogeneous quadratic forms,

Duke Math. J. 158 (2011), no. 1, 121{160, DOI 10.1215/00127094-1276319. MR2794370

[19] C. A. Rogers, Mean values over the space of lattices, Acta Math. 94 (1955), 249{287, DOI 10.1007/BF02392493. MR75243
[20] , The number of lattice points in a set, Proc. London Math. Soc. (3) 6 (1956), 305{320, DOI 10.1112/plms/s3-

6.2.305. MR79045

[21] W. M. Schmidt, A metrical theorem in geometry of numbers, Trans. Amer. Math. Soc. 95 (1960), 516{529, DOI
10.2307/1993571. MR117222

[22] C. L. Siegel, A mean value theorem in geometry of numbers, Ann. of Math. (2) 46 (1945), 340{347, DOI 10.2307/1969027.

MR12093



INHOMOGENEOUS DIOPHANTINE APPROXIMATION FOR GENERIC HOMOGENEOUS FUNCTIONS 19

Dmitry Kleinbock
Department of Mathematics

Brandeis University

Goldsmith Building 218
Waltham, MA 02454–9110

USA

kleinboc@brandeis.edu

https://orcid.org/0000-0002-9418-5020

Mishel Skenderi

Department of Mathematics

The University of Utah
155 South 1400 East JWB 233

Salt Lake City, UT 84112–0090
USA

mskenderi@math.utah.edu

https://orcid.org/0000-0001-8409-1613

mailto:kleinboc@brandeis.edu
https://orcid.org/0000-0002-9418-5020
mailto:mskenderi@math.utah.edu
https://orcid.org/0000-0001-8409-1613 

	1. Introduction
	2. General results
	3. Applications of general results
	Acknowledgements

	References

