INHOMOGENEOUS DIOPHANTINE APPROXIMATION
FOR GENERIC HOMOGENEOUS FUNCTIONS

DMITRY KLEINBOCK AND MISHEL SKENDERI

ABSTRACT. The present paper is a sequel to [Monatsh. Math. 194 (2021), 523-554] in which results of
that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approxima-

tion. Given any integers n > 2 and £ > 1, any € = (£1,...,&) € RY, and any homogeneous function
=01, fe) : R = RY that satisfies a certain nonsingularity assumption, we obtain a biconditional
criterion on the approximating function ¥ = (¢1,...,%¢) : R>g — (Rs0)* for a generic element f o g in

the SLy (R)-orbit of f to be (respectively, not to be) t-approximable at § = (£1,...,&n): that is, for there
to exist infinitely many (respectively, only finitely many) v € Z" such that |£; — (f; 0 g) (v)| < ¥;(]|v]])
for each j € {1,...,£}. In this setting, we also obtain a sufficient condition for uniform approximation.
We also consider some examples of f that do not satisfy our nonsingularity assumptions and prove similar
results for these examples. Moreover, one can replace SLy(R) above by any closed subgroup of ASL,(R)
that satisfies certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the
aforementioned previous paper.
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1. INTRODUCTION

Let f be an indefinite nondegenerate quadratic form in n > 3 real variables that is not a real multiple of
a quadratic form with rational coefficients. The Oppenheim—Davenport Conjecture, resolved affirmatively
by Margulis , states that every real number is an accumulation point of f(Z"):

(1.1) For any £ € R and any € € Ry, there exist infinitely many v € Z" for which |f(v) — ¢| < e.

The rich history of the Oppenheim—Davenport conjecture and its seminal resolution by Margulis, among
various other related topics, are extensively discussed in Margulis’s survey . The influence of Margulis’s
theorem and related problems continues unabated to this day. As of a few years ago, there has been a great
increase of activity in proving effective variants of Margulis’s theorem for generic quadratic forms and other
homogeneous polynomials: for instance, one often considers the SL, (R)-orbit (under the natural action) of
a real homogeneous polynomial in n real variables; one then has a natural notion of measure class (and thus
measure-theoretic genericity) for this orbit. Let us briefly recall some recent results that exemplify this circle
of problems. Throughout this paper, we write N := Z>: that is to say, we do not consider 0 € Z to be a
natural number.
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For any 8 € R>; and any (p,q) € N? with p+¢=n >3, let F,, , 5 : R” — R be given by

b n

(1.2) Frap() = | 3 leil” | = [ D |l

j=1 k=p+1

Generalizing earlier results of Ghosh—Gorodnik—Nevo [§] and Athreya—Margulis [1], Kelmer—Yu [13] proved
the following theorem.

Theorem 1.1 ([13| Corollary 2]). Let 8 € 2N, let n € Z~g, and let p,q € N be such that p + ¢ = n. Let
s€ (0,n—pB) CR. Let £ € R. Let || - || be an arbitrary norm on R™. Then for Haar-almost every g € SLy,(R)
the following holds: for each sufficiently large T' € R~ there exists v € Z™ with

O0<[vl<T and [=€+ Fpqp(gv)| <T7"

The proofs in [8] made use of representation theory and effective mean ergodic theorems, while those in [1]
and then |13] employed comparatively elementary means (namely, first and second moment formulae for the
Siegel transform in the geometry of numbers). For other results of a similar nature, see |2.[5}/7},9-11L{15L/18].
The authors previously studied problems of this sort in [14]; the work in |14] was, however, limited to
homogeneous approximation, which corresponds to the special case £ = 0 in the context of . The
purpose of the present paper is to establish inhomogeneous analogues of the results of [14]. In order both
to recall the results of [14] and to present the results of the present paper, we proceed to establish some
notation and definitions; much of the notation and many of the definitions that follow were first established
in [14] and are recalled here for the convenience of the reader.

Now and hereafter, we shall denote by n an arbitrary element of Z>5 and by £ an arbitrary element of
N. Elements of R” and of R’ shall always be regarded as column vectors, even though they may be written
as row vectors for notational convenience. If k € N and E C R¥, we define Eo := E \ {Ogx}. We say that
v = (v1,...,v,) € Z" is primitive if ged(vy,...,v,) = 1. We let Zj, denote the set of all primitive points
of Z™. We shall always denote the usual Lebesgue measure on any Euclidean space by m. Throughout this
paper, we shall use the Vinogradov notation < and use < to denote that both “<” and “>" hold; we shall
attach subscripts to the symbols < and < to indicate the parameters, if any, on which the implicit constants
depend.

Definition 1.2 (|14, Definition 1.1]). We define a non-strict partial order < on R’ as follows. For any
x = (z1,...,7) € R and any y = (y1,...,y) € RY, we write x < y if and only if xz; < y; for each
jed{l,... ¢}

Definition 1.3 (|14 Definitions 1.2, 3.3, 3.6, and 3.7]). Let

f:(f1,~o~afe)¢Rn_>Re and wz(wlwu»W)1R20—>(R>0)E
be given, let v be an arbitrary norm on R™, and let P be a discrete closed subset of R™.

e We abuse notation and write |f| to denote the function (|fi],...,|f) : R* — R’
e We define Z(f) := f~ " (Oge) ~ {Opn}.
o We define Ay, = {x e R" : [f(x)| x ¢(v(x))}.
e For any T € Ry and any € € (]R>0)€7 we define
Bievr ={x€eR":|f(x)| g €and v(x) <T}.

e We say that f is (¢, v, P)-approximable if Ay y ,, NP has infinite cardinality.

e We say that f is uniformly (v, v, P)-approximable if By ,(ry,,,r NP # @ for each sufficiently large
T € Ryg.

e We say that f is homogeneous if it is Borel measurable and there exists some d = d(f) =
(di,...,ds) € (Rsg)? such that for each ¢ € Rsg, each j € {1,...,¢}, and each x € R we have
fi(tx) = t% f;(x). We refer to d = d(f) as the degree of f

e We say that v is regular if it is Borel measurable and there exist real numbers a = a(¢) € R5; and
b =b(¢)) € Rsg such that for each z € Ry one has bi)(z) < ¢(az).

e We say that 1 is nonincreasing if each component function of v is nonincreasing in the usual sense.

LThis terminology is slightly abusive because d = d(f) is unique if and only if each component of f is nonzero.
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Definition 1.4. For any function f : R® — R’ and any ¢ € R’, define ef :R" — R’ to be the function
given by ¢ f(x) := =€ + f(x).

Definition 1.5. For any s € R5 and any € € R>g, let ¢, . : R>g = Rs be any regular and nonincreasing
function such that for every sufficiently large ¢ € R~1 we have o5 .(t) =t~ (logt)® .

Using our newly introduced terminology, we may now restate Theorem as follows. (Note that statement
(i) is a straightforward corollary of statement (ii).)

Theorem 1.1’ (|13, Corollary 2]). Let 8 € 2N, let n € Z~g, and let p,q € N be such that p+ ¢ = n. Let
s€(0,n—pB) CR. Let { € R. Let || - || be an arbitrary norm on R™. Set f := F), , 3. Then the following hold.

(i) The function (¢f)o g is (sDS,O, -1, Z;())—approximable for Haar-almost every g € SLy,(R).
(ii) The function (¢ f) o g is uniformly (gos’o, -1, Z;‘éo)—approximable for Haar-almost every g € SL, (R).

We now proceed to state certain results that will be formulated and proved in greater generality in §3]

Before we state the first result, let us recall an elementary notion from differential topology.

Definition 1.6. Let M and N be ¢! manifolds that are Hausdorff, second-countable, and without boundary.
Let U be an open subset of M. Let f : M — N be a function, and suppose that f is continuously differentiable
on U. Let z € U be given. We say that x is a regular point of f if the map D, f : T, M — Ty, N is surjective.

Theorem 1.7. Let ¢ = (¢1,...,%¢) : R>o — (R>O)Z be regular and nonincreasing. Let f = (f1,..., fe) :
R"™ — R* be homogeneous of degreed = d(f) = (dy, ..., ds) € (Rso)’. Suppose further that f is continuously
differentiable on Rl , that Z(f) # @, and that

(1.3) each element of Z(f) is a regular point of f.

¢ d;. Then the following hold.

Let v be an arbitrary norm on R™. Let £ € R®. Set d := > =1

0o ¢
(i) If/ g (d+1) H 1;(t) | dt is finite (respectively, infinite), then (¢ f)og is (1/), v, Z;O> -approximable
1 ,
j=1

for Haar-almost no (respectively, almost every) g € SL, (R).
-1
o L
(ii) Suppose that d < n and that the infinite series Z gk(n=d) H Y; (2’“) converges. Then (¢f)og

k=1 j=1

is uniformly <w, v, Z;O)—approximable for Haar-almost every g € SL,,(R).

Remark 1.8. Notice that no component of f in the above theorem is required to be a polynomial. Notice
also that neither the integral criterion in (i) nor the summatory condition in (ii) features any dependence on
£ e R

Remark 1.9. It will follow from a more general result in §3|that the preceding theorem remains true if one
replaces

e cach instance of Zl, by Zg,;

e each instance of Z1,;, by Z" and each instance of SL,, (R) by ASL,(R) . Here, ASL(R) := SL, (R)xR",
the group of affine bijections R™ — R" that preserve both volume and orientation.

Remark 1.10. Let 8, p, ¢, n =p+ ¢, and Fp 453 : R" — R be as in . Suppose further that 1 < 8 < n.
Since § > 1, the function Fj 4 g is continuously differentiable on R™. Since p > 1 and ¢ > 1, we have
Z (Fp,q.8) # @. It is also easy to verify that each element of R;O is a regular point of F}, ; 3. The hypotheses
of Theorem are thus satisfied when ¢ =1, d = dy = 8, and f = Fj 4 3. This shows that statement (ii)
of Theorem implies Theorem [1.1'| (equivalently, Theorem . Moreover, we can prove a generalization
of Theorem as follows. Let £ € R be arbitrary, let v be an arbitrary norm on R", and set f = F, 4 3 to
simplify notation. The following then hold.

e The function (¢f) o g is (gpn,g,o,m Zgr)—approximable for Haar-almost every g € SL,(R). This
generalizes (i) of Theorem to include the case of the critical exponent s =n — 3.
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o The function (¢ f) o g is uniformly (<pn, B.erV,s Zgr)—approximable for every ¢ € Ry, and Haar-almost
every g € SL,(R). This generalizes (ii) of Theorem In fact, one can generalize (ii) of Theorem
even further by suitably modifying the definition of ¢, _g3 . to include an arbitrary finite number
of iterated logarithms.

Remark 1.11. Our general framework also allows for vector-valued examples of f. For instance, let f; =
Fpq8:R" = R be as in Remark and let fy : R™ — R be an R-linear transformation. (These functions
may remind the reader of the setting in the papers [3,[6,[12].) Then f := (f1, f2) : R® — R? satisfies the
hypotheses of Theorem if and only if the intersection Z(f1) N Z(f2) is nonempty and transverse. One
thereby obtains a criterion for the asymptotic approximability of and a sufficient condition for the uniform
approximability of almost every element in the SL,, (R)-orbit of ¢ f, for any £ € R?. (The corresponding conull
subsets of SL,,(R) depend on £ € R?.)

We are also able to obtain results akin to Theorem in certain special cases wherein the nonsingularity
condition does not hold. In Theorem and in all the aforementioned examples, the integral and
summatory conditions obtained were all independent of £ € R’. As the following two examples illustrate,
this independence need no longer hold when the nonsingularity condition fails to hold.

Theorem 1.12. Let v : R>g — Ry be regular and nonincreasing. Let w € Rso be arbitrary. Let
f:R™ = R be given by f(x) := ([[_, |zi])” . Let v be an arbitrary norm on R". Let & € R>q. Then the
following hold.

(i) If

00 1/w
W) (logt)" 2 dt ifE=0

/ W (logt)" 2 dt ifE>0

is finite (respectively, infinite), then (¢ f)og is (1#7 v, Z;o) -approximable for Haar-almost no (respectively,
almost every) g € SL,,(R).
(ii) If the infinite series

o0

Z[k” Ly (24) 1/“] ife =0

3 [t (29)] 7 ife€>0
k=1
converges, then (¢ f) o g is uniformly (1/), v, Z;O)—approximable for Haar-almost every g € SL,,(R).

Theorem 1.13. Let ¢ : R>g — Ry be regular and nonincreasing. Let p € {1,...,n — 1} and z =
(#1,-..,2p) € (Rs0)” be given. Let f : R" — R be given by

. an) =
Set z:=>"P . 27! Let v be an arbitrary norm on R". Let £ € R>g. Then the following hold.

112

(i) If

#i:1<i<p}.

YD At ife=0
100

/ )P At ifE >0
1

is finite (respectively, infinite), then (¢ f)og is (z/), v, Z;O) -approximable for Haar-almost no (respectively,
almost every) g € SL,,(R).
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(ii) If the infinite series

S 2k (24)7] T ife=o
k=1
Z [Q(nfp)k d) (2k)i| -1 1f§ >0
k=1

converges, then (¢ f) o g is uniformly (1/}, v, Z;O)-approximable for Haar-almost every g € SL,,(R).

Remark 1.14. The assertions in Remark [T.9] apply to Theorems and as well. As in Remark [T.10}
one may easily deduce corollaries of the preceding two theorems for 9 of the form ¢, .

Theorems and are immediate special cases of Theorems and the latter three
theorems are consequences (albeit not immediate ones) of Theorems and (Likewise, the assertions
in Remark are immediate consequences of Theorem |3.3]) Results similar to the aforementioned ones
were established by the authors in [14] for the special case & = Oge: see |14, Theorems 3.4 and 3.8].

Remark 1.15. From the preceding two theorems, we see that the failure of f : R™ — R to satisfy the
nonsingularity condition of Theorem is necessary, but not sufficient, to ensure dependence on &.
This is an interesting phenomenon that is worthy of further investigation. It would also be interesting to
understand whether there exist reasonably well-behaved f : R® — R’ that exhibit dependence on £ finer
than the rather crude “zero or nonzero” dependence.

2. GENERAL RESULTS

We proceed by laying the groundwork necessary to state and prove our general results. We follow the
presentation given by the authors in [14].

Let ASL,(R) := SL,(R) x R™. We assume that ASL,(R) and each subgroup thereof act on R™ in the

usual manner: for any (h,z) € ASL,(R) and any x € R", we have (h,z)x = z + hx. In what follows, we
shall assume that

(2.1) G is a closed subgroup of ASL, (R) and P is a discrete closed subset of R™.
Define I' = T'(G, P) to be the subgroup of G given by
(2.2) I'={geG:gP="P}

Now and hereafter, we assume that I' is a lattice in G. (For each example of (G, P) that we shall consider, the
group I' will indeed be a lattice in G.) Set X := G/T'. We let ug denote the Haar measure on the unimodular
group G that is normalized so that vol (G/T") = 1. We then let px denote the unique G-invariant Radon
probability measure on X.

We may identify X and {gP : g € G} via the bijection gI' +— ¢P; we then equip {gP : g € G} with
the quotient topology of X by declaring the aforementioned bijection to be a homeomorphism. Given any
function f : R™ — Rxg, we define its P-Siegel transform fp : X — [0, 00] by

Frr) =F (gP) = flgv).
vePpP

We note that if f is Borel measurable, then fp is ux-measurable. The Siegel and Rogers type axioms that
are recalled below were introduced by the authors in [14]; they were named after the groundbreaking results
of Siegel [22] and Rogers [19}20].

Definition 2.1 (|14, Definition 2.1]). Let G and P be as in (2.1).

(i) We say that G is of P-Siegel type if there exists a constant ¢ = ¢p € Rs¢ such that for any bounded and
compactly supported Borel measurable function f : R” — R>o we have

/ fp dux =c fdm.
X RTI,
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(ii) Let r € R>1 be given. We say that G is of (P, r)-Rogers type if there exists a constant D = Dp, € R5g
such that for any bounded Borel E C R™ with m(FE) > 0 we have

15" - (/ 1p" dMX) Ix
X

There are various interesting examples of pairs (G, P) that satisfy both conditions (i) (Siegel) and (ii)
(Rogers) of Deﬁnition For the convenience of the reader, we now record some examples that were already
discussed in [14]: see [14] Theorems 2.5, 2.6, and 2.8] and the references therein for details. Below, ¢ denotes
the Euler-Riemann zeta function.

Theorem 2.2 ([14, Theorems 2.5, 2.6, and 2.8]).
(i) The group ASL,,(R) is of Z™-Siegel type with c¢z» = 1 and of (Z",2)-Rogers type.
(ii) Suppose n > 3. Then the group SLy(R) is of Z,-Siegel type with czn = 1/((n), of Z,-Siegel type

<D-m(E)Y".

T

pr>

(iii) The group SLo(R) is of Zf)r—Siegel type with czz = 1/¢(2), of ZiO—Siegel type with 2, = 1, and of
(Zgr, 2) -Rogers type. For every p € [1,2) C R, the group SLa(R) is of (Zio,p)—Rogers type.

(iv) Suppose n € 2(Z>2). Then the group Sp,,(R) is of Z,-Siegel type with czn = 1/((n), of Z,,-Siegel

with czn, =1, of (Z" 2) -Rogers type, and of (Z;ZO, 2)-Rogers type.

type with ez, =1, of (Zgr, 2) -Rogers type, and of (Z1,,2)-Rogers type.

Using the recent work of Ghosh—Kelmer—Yu [10], one can improve upon Theorem ii) in an arithmetically
interesting fashion. For any ¢ € N, let Zgr(q) denote the set of all v € Z, that are congruent modulo ¢ to
the first standard basis vector e; := (1,0,...,0) € Z"™ C R": more precisely, we have v € Z7 (q) if and only
if veZy and v—e; € gZ". For any q € N, let ¢, denote the modified Euler-Riemann zeta function given

by C,(s) == > k" (Note that Z7 (1) = ZJ,, and {; = ¢.) The following then holds.
keN:ged(k,q)=1

Theorem 2.3 ([10, Theorem 1.4]). Suppose n > 3. Let ¢ € N be arbitrary. Then the group SL,(R) is of

1
Zy,(q)-Siegel type with Czn(q) = m and of (Zgr(q), 2) -Rogers type.
q

Proof. Set P := Zp,(q). Let f : R" — R>q be a bounded and compactly supported Borel measurable

function. It follows from [10, Theorem 1.4, (1.9)] and [10, Lemma 2.2] that

7P _ ) 1 N m
(2:3) /Xf WX =W € Je T T /Rnf dm-

This proves the first assertion.
Using [10, Theorem 1.4, (1.10)], [10, Lemma 2.2], and the Cauchy—Schwarz inequality, we obtain

") [ ) 1 ( ) 2 e
24 o U7 o < gy (L fom) + e 19
We then infer from and that

[ ([ 7 aun) < 2o

The second assertion now follows easily. O

Remark 2.4. The same proof applies to show that for any ¢ € N, the group SLy(R) is of Zgr(q)—Siegel type

with ¢zz2 (q) = : see [10, Remark 1.11].

1

9% (q(2)
Remark 2.5. Let G and P be as in (2.1). Note that if G is of P-Siegel type, then G is of (P, 1)-Rogers
type; this is an immediate consequence of Minkowski’s inequality for L*(X). If r € R>; is arbitrary and G is
of (P, 1)-Rogers type and of (P, r)-Rogers type, then G is of (P, s)-Rogers type for every s € [1,7] C R: see
[14, Corollary 2.4]. For any of the pairs (G, P) that appear in Theorems [2.2|and it is an interesting open
problem to determine the supremum of the set of all » € R>q such that G is of (P,r)-Rogers type; note
that this supremum is greater than or equal to 2 for each pair (G, P) that appears in the aforementioned
theorems.
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The Siegel and Rogers axioms are expedient because they can be used in tandem with the Borel-Cantelli
Lemma (for the purpose of uniform approximation) and to prove analogues of W.M. Schmidt’s famous
counting result |21, Theorems 1 and 2] (for the purpose of asymptotic approximation). We now recall a
result from [14] that records the relevant consequences of the Siegel and Rogers axioms.

Theorem 2.6 (|14, Theorem 2.9]). Let G and P be as in (2.1). Suppose G is of P-Siegel type with ¢ = cp.
Let E be a Borel subset of R™.

(i) Ifm(FE) < oo, then ux ({A € X : #(ANE) <oo}) =1.

For the remaining statements of this theorem, suppose in addition to the preceding hypotheses that we are
given r € Ry for which G is of (P, r)-Rogers type.
(ii) Suppose m(E) = co. Let || - || be a norm on R™. Then for jix-almost every A € X, we have
ANE): <t
05 f #XEMNE) x| <0}
% em((x € B x| < 1))
In particular, ux ({A € X : #(ANE) =o00}) = 1.

(i) Let {Fx}ren be a collection of Borel subsets of R™ with 0 < m(F})) < oo for each k € N. Suppose

Z m(Fk)lfr < 0. Then the following holds: for pux-almost every A € X there exists ky € N such

k=1
that A N F), # @ whenever k > ky.

Remark 2.7 (|14, Remark 2.12]). Let G and P be as in (2.1]). Notice that the hypotheses of Theorem [2.6{iii)
can never be satisfied when r € R4 is replaced by 1. We now give an example to show that Theorem ii)

need not be true when r € Ry is replaced by 1. Let G := R™. Then G is a closed subgroup of ASL,(R)

that is of Z"-Siegel type with ¢zn = 1; thus, G is of (Z™,1)-Rogers type. Let € € (0,1) C R be given, and
1—-¢ 1
define U, := R"! x 5 57 ;E C R™ ! x (0,1) € R™. Since n > 2, we have m (U.) = co. Now note

that ux {A € X : #(ANU,)=00})=1—-e< 1.

In the authors’ previous paper [14], the assumption on the function f : R — R whose values near zero
were being approximated was subhomogeneity; we recall here the definition of this property.

Definition 2.8. Let f : R® — R’. We say that f is subhomogeneous if it is Borel measurable and there
exists § = §(f) € R such that for each ¢t € (0,1) C R and each x € R™ we have | f(tx)| < t°] f(x)|.

In this paper, we wish to prove analogues of [14}, Theorems 3.4 and 3.8] in which the subhomogeneous function
[ :R™ — R therein is replaced by a function of the form ¢F, where F : R — R’ is some sufficiently well-
behaved Borel measurable function and € € RY. The technical starting point for doing so is noting that the
subhomogeneity assumption on f in [14] was needed only in order to invoke the conclusions of two important
lemmata from [14]; we now recall the statements of these lemmata for the convenience of the reader.

Lemma 2.9 (|14, Lemmata 3.1 and 3.5]). Let f : R" — R’ be subhomogeneous, and let § = df € Ryg asin
Definition 2.8, Let n and v be arbitrary norms on R"™. The following then hold.
(i) Let s € Rso. Then m(Ay sy,) < 0o if and only if m(Ayy..) < 0o.
(ii) Let t € (0,1), T € Rsg, and € € (Rso). Then tBfe v C By e it
(iii) There exists C* = C,,, € R>y such that for each C' € Rxc+, each T' € R, and each € € (R>0)é7
we have Bye 1 C C Bf c-seyr and Byenr C C By o-sep1-

In essence, the above lemma shows that the subhomogeneity of f is sufficient to ensure that the volumes
of the sets A¢ .y, and Bye, r are well-behaved under change-of-norms and under scaling of any of the
arguments ¢, &, T by arbitrary elements of R~ . Let us also recall another lemma from [14] to which we shall
need to refer.

Lemma 2.10 (|14, Lemma 3.2]). Let ¢ = (¢1,...,%¢) : R>g — (R>0)Z be regular and nonincreasing. Then
the following holds: for any ¢ € R>( there exists s € Rs such that for each x € [0,¢] and each y € R, one

has P(y — z) < s9(y).
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We now formulate definitions that axiomatize (i) of Lemma[2.9 and certain desirable properties furnished
by (ii) and (iii) of the same lemma.

Definition 2.11. Let f : R* — R’ be Borel measurable, and let ¢ : R>g — (]R>0)z be regular and
nonincreasing. We say that the pair (f,v) is asymptotically acceptable if the following holds: for any
s € Ry and any norms v1,v5 on R”, we have

(2.6) m(Afp,) <oo ifand only if m(Af gypu,) < 0.
Definition 2.12. Let f: R® — R and 1 : R>g — (R>0)l each be Borel measurable. We say that the pair
(f, ) is uniformly acceptable if the following holds: for any s, sa, S3, 54 € Rs and any norms vy, ve on R™,
we have

B S V2,8
S limsup m( f7 3¢(T)’ 2, 4T)

B
2.7) 0 < L ing ™ Brisst(@)va,507)
T=oo M (Bfsyp(T)n,5e)  Tooo M (Bf sy (1) mn,50T)

< 00.

Informally speaking, the pair (f, ) is asymptotically (respectively, uniformly) acceptable if the measure of
sets of the form Ay, (respectively, By, (1),,,7) does not change drastically when one multiplies ¢ (respec-
tively, b and the occurrence of T' that is not the argument of ¢) by some arbitrary constant (respectively,
constants) and changes the norm v.

Remark 2.13. Note that if f : R® — R’ is subhomogeneous and 9 : R>q — (Rs0)" is regular and
nonincreasing, then Lemma implies that the pair (f,) is both asymptotically and uniformly acceptable.
Therefore, the framework of [14] can be subsumed into that of the present paper.

Let us now state and prove a lemma that will simplify various proofs in §3|that concern the verification
of asymptotic and uniform acceptability.

Lemma 2.14. Let f : R" — R’ and ¢ : R>g — (R>0)e each be Borel measurable.

(i) Suppose that v is regular and nonincreasing. Suppose that there exists a norm v on R™ such that
for any s € Ry we have

m(Afyp,) <oo ifand only if m(Afsy.) < 0.
Then the pair (f,1) is asymptotically acceptable.
(ii) Suppose that there exists a norm v on R™ such that for any si, s, S3, 84 € Rso we have
m (B m (By .
0 < hm 1nf ( f783’¢)(T),l/754T) S llm sup ( f7831/)(T)7Va54T)
Too0 m (B s, (1) wysar) — Too M (B p(T)v,saT)

Then the pair (f,) is uniformly acceptable.

< 00.

Proof. Let n be an arbitrary norm on R".
(i) Let a = a(yp) € R>1 and b = b(¢)) € Rsg be as in Definition Let v be a norm on R™ as in the
hypotheses of (i). Fix k € N for which a % v < 1 < a* v. For every x € R™, we have
Y(n(x) < (™ v(x) < b (v(x)).
For every x € R”, we similarly have
b (v(x)) < (n(x)).
It follows that for each s € Ry, we have
m (Apprspw) < m(Apspn) Sm (Apy-rep) -
This implies the desired result.

(ii) We do not assume that 1 is regular, and we do not assume that ¢ is nonincreasing. Let v be a norm
on R™ as in the hypotheses of (ii). Fix C € R for which C™'v < n < Cv. Let 51,50, T € Ry be
arbitrary. We clearly have

m (nyslﬂl(T)’VvC*lSzT) =m (Bfﬁslw(T)ﬂ%SzT) <m (Bf,sld’(T);V,CSzT) :
The desired result now follows.
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We now proceed to establish our main theorems.

Theorem 2.15. Let G and P be as in (2.1). Suppose G is of P-Siegel type. Let ¢ = c¢p be as in Definition
i). Let f : R" — R’ be Borel measurable. Let ¢ : R>q — (R>0)Z be regular and nonincreasing. Suppose
that the pair (f,) is asymptotically acceptable. Let n and v be arbitrary norms on R™.

(i) Supposem (Af ) < co. Then for almost every g € G the function fog is not (v, v, P)-approximable.

(ii) Suppose m (Ayy.,) = 00, and suppose that we are given r € Ry, for which G is of (P, r)-Rogers
type. Then for almost every g € G the function f o g is (¢, v, P)-approximable.

Proof. Let a = a(¢) € Ry and b = b(¢)) € R+ be as in Definition Let us denote elements of ASL,, (R)
by (h,z), where h € SL,,(R) and z € R"; that is, (h,z) : R® — R" is the affine map given by x — z + hx.
For any h € SLy,(R), let ||| denote the operator norm of h that is given by

(2.8) [Ih]] := sup {v(hx) : x € R" and v(x) < 1}.

We first prove (i). Suppose m (Af,p,) < co. In view of (2.6), it follows that for every M € N we have
m (Af my,v) < 0o. Theorem [2.6(i) then implies that for every M € N we have

px {Ae X #(ANAfay,) =00}) =0.
Hence, the set
= J {veG: #PNAsrys) = o0}
MeN
satisfies ui(S1) = 0. Now let g = (h,z) be any element of G for which

(2.9) fogis (¢, v, P)-approximable.

Let D := max {||A]], ||h*1H}, and let E := v(z). Let k € N be such that a® > D. Since 9 is regular and
nonincreasing, it follows from Lemma [2.10] that there exists F' € R~ for which the following is true: for each
x € [0, E] and each y € (E, o), we have 9)(y — z) < Fy(y). Let N be any element of N with N > b=*FF. A
simple argument then yields the inclusion

(2.10) g({x € Apogy, : v(x) >2DE}) C Af Ny
In light of (2.9)) and (2.10)), it follows that # (¢P N Af ny,) = 00. We conclude that g belongs to the pg-null
set S7. This completes the proof of (i).

The proof of (ii) proceeds along similar lines. Suppose m (Ay ) = oo, and suppose that we are given
r € Ry for which G is of (P, r)-Rogers type. It then follows from ([2.6)) and Theorem ii) that the set

= U {g cG: #(gPﬁAﬂw/M,y) < OO}
MeN

is pe-null. Now let g be any element of G for which f o g is not (¢, v, P)-approximable. Arguing as in the
proof of (i), we conclude that g € Sy, which finishes the proof of (ii). a

Remark 2.16. Using (2.5) and arguing as in the proof of [14, Theorem 3.4], it is possible to enhance the
qualitative conclusion of Theorem ii) in a quantitative fashion. Since we are primarily interested in
qualitative results, we decided to forego quantitative arguments.

To state the next theorem, we need the following definition.

Definition 2.17.
o Let to = (tx)ycy be any strictly increasing sequence of elements of R with klim ty = oo. Let
— 00

P be a discrete closed subset of R™. We then say that f is te-uniformly (1, v, P)-approximable if
By y(t),vt. NP # 2 for each sufficiently large k € N.
o Let ty = (t1),cy be any strictly increasing sequence of elements of R with hm ty = oo. We say

that te is quasi-geometric if, in addition to the preceding, the set {tx11/ts : k E N} is bounded from
above.
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Theorem 2.18. Let G and P be as in . Suppose G is of P-Siegel type, and suppose that we are
given r € Ry for which G is of (P,r)-Rogers type. Let f : R" — R’ and ¢ : R>g — (Rso)" each be
Borel measurable. Suppose that the pair (f,) is uniformly acceptable. Let ue = (ug)ren be any strictly
increasing sequence of elements of R~ with kl;rrgo u = 00. Suppose that there exists some norm 1 on R" for
which

oo

. 1—r
(2.11) inf ) m (Brymu) <00

Let v be an arbitrary norm on R™. The following then hold.
(i) For almost every g € G the function f o g is ue-uniformly (v, v, P)-approximable.

(ii) Suppose further that 1 is regular and nonincreasing and that the sequence u, is quasi-geometric.
Then for almost every g € G the function f o g is uniformly (v, v, P)-approximable.

Proof. We argue as in the proof of |14, Theorem 3.8], appealing to the uniform acceptability of the pair
(f,v) (instead of appealing to Lemma .

(i) As in the proof of Theorem [2.15] we denote elements of ASL,(R) by (h,z). For any h € SL,(R), let
||h|| denote the operator norm of h given by (2.8). Define 7 : ASL,,(R) — SL,(R) and p : ASL,(R) —
R™ by 7 : (h,z) +— h and p : (h,z) — z. Notice that each of these maps is continuous. Let K be a
nonempty compact subset of G with X = K !, and define

Dk :=sup{||h]| : h e 7(K)} < o0 and Ex :=sup{v(z) :z € p(K)} < oo.
Fix L € N such that for each k € Z>1 we have u, > 2Eg. It follows from (2.7) and (2.11) that
]\i]an m (nyw(uk)%uk/QDK)lfr < oc0. We then apply Theorem [2.6((iii) to obtain the following: for
€
k=N
almost every g € G there exists My € Z>, such that for each k € Z with k > M, there exists some
Vg.k € P with
u
(2.12) v (9vgr) < 575 and 1 (gVe)| < (ur)
2Dk

For any such pig-generic g that belongs to K and any integer k > Mg, we have v (v 1) < ug; this may
be proved by appealing to the first inequality in and arguing as in the proof of [14, Theorem
3.8(i)]. We thus conclude that for ug-almost every g € K the function fog is ue-uniformly (¢, v, P)-
approximable. Since G is o-compact, the desired result follows.

(ii) Let a = a(¢) € Ry and b = b(¢)) € R be as in Definition Fix j € N for which
sup {upr1/ux : k € N} < a?.
(This is possible because u, is quasi-geometric.) Appealing once again to (2.7) and (2.11)), we infer

oo
. 1-r . . . .
]%]Ié% k_EN(m (Bf7bjw(uk)7n7uk) < o0. Statement (i) of this theorem implies that for almost every

g € G the function f o g is ue-uniformly (bjzj),y, P)—approximable. Now let h : R® — R be any
function that is ue-uniformly (671, v, P)-approximable. Fix M € N such that for each k € Z> s the
set Bp biy(up),v,u, (P is nonempty. Let T' € (uprq2, +00) be arbitrary. Then there exists i € Z>nr12
for which u; < T < u;41. Note that there exists v € P with v(v) < u; and |h(v)] < ¥9(u;). We
then have v(v) < u; < T and

h(V)| S V() < Vb7 (alui) =9 (aui) < ¢ (uivr) < O(D).

This completes the proof.
O

Remark 2.19. The infimum in (2.11)) is included because > o, m (Bf,'L/J(uk),n,uk)l " may diverge for the
trivial reason that there exist finitely many & € N for which m (B Foab(un) ) =0.

1 Uk
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3. APPLICATIONS OF GENERAL RESULTS

We begin with the following elementary observation.

Lemma 3.1. Let (M, gy) be an oriented 61 Riemannian manifold that is Hausdorff, second-countable, and
without boundary. Let o denote the Borel measure on M induced by the natural Riemannian volume form
on M. Let h: M — R? be a €' map, and suppose that h™" (Og¢) # @. Let z € h™" (Og:), and suppose that
z is a regular point of h. Then there exist C = C, € R+, an open subset V =V, of R* with Og: € V, and
an open subset W = W, of M with z € W such that for any Borel subset E of R® with E C V, we have

C'm(E) <o(Wnh Y(E)) <Cm(E).
In particular, m|y and the restriction to V of the pushforward of o|w by h|w are equivalent Borel measures.

Proof. For the sake of clarity, we note that m denotes Lebesgue measure on Rf. Set k := dim M. Note that
k > ¢. By the Constant Rank Theorem [4, Theorem 7.1] there exist ¢ € Ry¢ and maps ¢ : (—¢,e)* — M
and ® : R® — R’ such that:

the set ¢ ((—¢,¢)¥) is an open subset of M, and ¢ is a ¢! diffeomorphism onto ¢ ((—¢,)");
the set ® (R) is an open subset of R?, and @ is a ¢’ diffeomorphism onto ® (R);

¢ (Opr) = z; and

®oho¢=mpcecr, Wwhere m : R* — R is given by (z1,...,2%) = (21,..., 7).

k
Set W =W, :=¢ ((—;, %) ) C M. Then W is an open subset of M for which

zeWCW= ¢<[ ;,;}) ((—e,8)F) € M.
Note that ® (Ope) = Oge. Set V =1V, := &1 (( g, %) ) Then V is an open subset of R¢ for which

oReevcv:@—l([_;,;r)c@—l ((-e.0)) <R,

Let E be an arbitrary Borel subset of R® with E C V. Then
k
won e =6 ((-5.5)" nm @)
Since each of V and W is compact, each of h and 7, is of class €', and each of ¢ and ® is a €' diffeomorphism

from its domain onto its image, it follows that

oW A E) =g ((-5:5) 0 7 (@) ) = m(@() =, ()

Let us now use the preceding lemma to derive a global statement.

Theorem 3.2. Let (M, gys) be an oriented ' Riemannian manifold that is compact, Hausdorff, second-
countable, and without boundary. Let o denote the Borel measure on M induced by the natural Riemannian
volume form on M. Let h : M — R’ be a €' map; suppose that h™' (Og¢) # @ and that every element of
h~' (Oge) is a regular point of h. Then there exists an open subset V of R’ with Oge € V such that for any
Borel subset E of RY with E C V, we have

O'(h_l(E)) xM7gM7h m(E)

Proof. Set Z := h™! (Oge) # @. For every z € Z, let C, € Ry, V, C R® with Oge € V,, and W, C M
with z € W, be as in Lemma Since Z is compact, there exist finitely many z1,...,zy € Z such that
N N N

ZCW:= U W,,.Set U := ﬂ V., and C':= ZC’ZW Let V be an open subset of R’ such that Oge € V C U

i=1 i=1 i=1
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and h=1(V) C W. (We defer the proof of the existence of V until the end of this theorem’s proof.) If E is
any Borel subset of R* with £ C V, then

C7'm(E) < min {o(W.

N
NETYE) :1<i< N} <o(h™ <> o(W.,nh7Y(E)) < Cm(E).
=1
We now prove the existence of such a set V; suppose by way of contradiction that such a set did not
exist. This would imply that for every open subset U’ of R’ with Oge € U’ C U there exists y € (M ~ W)
for which h(y) € U’. Let || - || denote the Euclidean norm on Rf. Then for each r € N there exists some
€ (M ~ W) for which h(x,) € U and [|h(x,)|| < r~!. Since M is compact, the sequence (X,), oy has
a convergent subsequence whose limit we denote by x € M. Since W is an open subset of M, we have
€ (M ~ W); this implies x ¢ Z, so that h(x) # Oge. On the other hand, the sequence (h(x,)), oy clearly
converges to Oge. The continuity of h then implies h(x) = Oge. This is a contradiction. |

Standing Assumptions. Let us state here the conventions that will be in force throughout the remainder
of this paper.

e We shall let G, P, and I' = I'(G, P) be as in and . As usual, we shall assume that I" is a
lattice in G.

e We shall assume that G is of P-Siegel type and that we are given r € Ry for which G is of
(P, r)-Rogers type.

e We shall let v denote an arbitrary norm on R”.

We now state and prove Theorem [3.3] of which Theorem is an immediate consequence.

Theorem 3.3. Let ¢ = (¢1,...,%¢) : Rsg — (R>0)é be regular and nonincreasing. Let f = (f1,..., fe) :
R™ — R* be homogeneous of degreed = d(f) = (dy, ..., dy) € (R>0)E. Suppose further that f is continuously
differentiable on Rl that Z(f) # @, and that each element of Z(f) is a regular point of f. Let § € R?. Set

d:= Ele d;. Then the following hold.

(i) If/loo = (d+1) ﬁ t;(t) | dt is finite (respectively, infinite), then (¢ f)o g is (1, v, P)-approximable
for Haar-almost njo: zrespectively, almost every) g € G. )

(ii) Suppose that d < n and that the infinite series i ok(n—d) ﬁ Y, (2’“) converges. Then (¢f)og
is uniformly (1, v, P)-approximable for Haar—a;;ul)st every gJ :EIG .

Proof. We begin by attending to some preliminary matters.

Let o, denote the unique SO(n)-invariant Radon probability measure on S"~! C R™. Let || - | denote the
Euclidean norm on R". Define h : S"~! — R’ to be the restriction of f to S"~!. Note that h™! (0g:) =
Z(f)nS" ! # @. Now let x € h™! (Oge) . For each j € {1,...,¢}, the homogeneity of f; implies that V f;(x)
is tangent to S, It follows that x is a regular point of f : R — R’ if and only if x is a regular point of
h: S*~1 — R, We thereby conclude that every element of h~! (Og¢) is a regular point of h. Theorem
may thus be applied to h: S*~! — R’. Let V' C R be an open neighborhood of Og¢ as in the conclusion of
Theorem 3.2

Let us now introduce a pair of mutually inverse bijections that we shall use in this proof:

(3.1) Roox S" ' = RZY,  givenby  (t,u)—tu
and
(3.2) Ry — Rxo % S given by X <||x||, |X|) .
x

Finally, for each t € R+, define
gi = diag (t*dl, . ,tid@) € GL(R).
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(i) Let s € Ryo. We shall show that the pair (¢ f, 1) is asymptotically acceptable by first showing that

o Y
(3.3) m (Agf.sp,) <oo if and only if / gD T ws) | dt < oo
1 i=1

Using the bijections in (3.1) and (3.2) and the homogeneity of f, it follows that for each ¢ € Ry
and each u € S"~1 we have

(3.4) tu€ A g oy if and only if g, (€ — sp(t)) < h(u) < g:(€ + s(t)).
Using the boundedness of ¢, we now fix M € R5 such that for each ¢t € R>); we have
{we R*: g(E—sv(t) S W= ge(E+sy(t)} C V.
Theorem [3.2 then implies that for each ¢ € Ry we have

L

(3.5) on ({ueS™ i gi(€—sv(t) S h(u) < gi(€+sv(t)}) <ney t° (25)° H ¥; (t)

j=1
It then follows from and that
m ({x € A pop - ¢ X[ > M})

- /M 1 g (fu € S 2 gy (€ — su(t)) < h(w) < g0 (€ + s6:(1)) 1) dt

00 L
Znos (28)° / D Ty (1) | dt.
M j=1

Since % is bounded, this proves (3.3). Lemma i) then implies that the pair (¢ f, 1) is asymptot-
ically acceptable. The desired result now follows from Theorem

(ii) Let us prove that the pair (¢ f,) is uniformly acceptable. Let s1,s2 € R be given. Arguing as in
part (i), we infer that there exists M € R-5 such that for each T' € R with T' > M/s2, we have

m ({x € Bg s, p(m. 1,507 © X[ = M})

soT
= / "o, ({uesS" g (€ —s10(D) < f(u) < g (E+s19(T))}) dt

M
£

52T
=n,0,f / tn_l t_d (281)6 H ’(ﬂj (T) dt
M

j=1

SQT 3
=00 / =D T (1) | at
j=1

M

J

[t = 3] (T

¢
=n,d,so,M Tn_d H%(T)
j=1

It follows that

Tnfd e_ (T Tnfd Z,_ (T
0 < liminf Hj_l v (1) < lim sup Hj_l ¥i (@)
T=00 (B f s, p(T), |1 l52T) ~ T—oo M (B s1u(T),|-)52T)
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Lemma i) now implies that the pair (¢f,%) is uniformly acceptable. It is clear from the
preceding work that

1-r
e

1—p [e%S) 4
]bréfN m (Bef)w(Qk’),H_H’Qk) < oo if and only if Z gk(n—d) H V; (2’“) < 0.
k=N k=1 j=1

The desired result now follows from Theorem 2.18]
O

We shall now consider examples of f : R — R that do not satisfy the nonsingularity hypotheses of
Theorem Since the measure estimates furnished by Theorem are no longer available in this setting,
we shall instead use some ad hoc measure calculations that were performed in the authors’ previous paper: see
[14, Corollaries 4.2 and 4.3]. In what follows, for each i € Zx>(, we write log" to denote the function Rs¢ — R
given by t — (log t)i; in particular, log® denotes the constant function that is equal to 1 everywhere on Rsg.
Our first example expands upon |14 Corollary 4.2]; in that corollary, we considered the function f : R” — R
given by

(3.6) J ) =[] i

and essentially proved the following result.

Lemma 3.4 (|14, Corollary 4.2(i)]). Let f : R® — R be as in (3.6), let 1 : R>g — R~ be bounded and
Borel measurable, and let n denote the maximum norm on R™. Then there exists R = R (E, n) € R>; such

that for every Borel measurable function 1 : R>g — Rso with ¢ < 3 on R>o and any real numbers S and
T with R < S < T, we have

T n—2 n
i=0

We remark that, strictly speaking, an application of |14 Corollary 4.2(i)] would require the function ¢ to be
nonincreasing (see |14, Remark 4.4(iii)]) and would provide a value of R dependent on . That being said,
an inspection of said corollary’s proof shows that only the boundedness and Borel measurability of i are
required and not its monotonicity; this inspection furthermore shows that one may choose

R=R(¢,n) =1+ (sup{s(t):te RZO})l/n.

We now consider a generalized version of the function in (3.6, given by raising that function to an
arbitrary power w € R+ .

Theorem 3.5. Let ¢ : R>g — Ry be regular and nonincreasing. Let w € Ry be arbitrary. Let f : R" —+ R
be given by f(x) == ([1/—; |z:])" . Let & € R>q. Then the following hold.
(i) If
[es} t 1/w
% log" 2 (t)dt ifE=0

1C)O
/ @ log" ™2 (t) dt if€>0
1

is finite (respectively, infinite), then (¢ f)og is (¢, v, P)-approximable for Haar-almost no (respectively,
almost every) g € G.

(ii) If the infinite series

> [t 29 T re=o

k=1
[e'S)

3[R (9] ife>0
k=1
converges, then (¢ f) o g is uniformly (v, v, P)-approximable for Haar-almost every g € G.
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Proof. If tlim (t) > 0, then note that we can easily construct a function ¢ : R>o — Ry that is regular,
—00 =
nonincreasing, satisfies tlim (t) = 0, and for which the following hold: when ¥ is replaced by ¢ in Theorem
— 00

the integral in (i) diverges and the infinite series in (ii) converges. The conclusions of (i) and (ii) will

then follow for ¢; we then infer that the conclusions of (i) and (ii) follow for ¢ as well. We therefore assume

without loss of generality that tlim ¥(t) = 0. In concert with the regularity and monotonicity of 1, this
—00

implies that there exists some A = A(¢)) € R such that for every sufficiently large ¢ € R>1, we have

(3.8) 1 < —log (¥(t)) < Mog(t).

Let us first discuss the case £ = 0, which was the subject of |14, Corollary 4.2]. Let us assume that w = 1,
since the general case £ = 0 reduces to this particular sub-case. Even though the integral and summatory
conditions in that corollary and those in the £ = 0 case of this theorem look different from one another, they
are actually equivalent. Indeed, implies that the integral

e ()

< ah(t
in |14, Corollary 4.2(ii)] converges if and only if the integral / ﬁlog"_2 (t)dt converges. Likewise,
1

the infinite series in |14, Corollary 4.2(iii)], converges if and only if the infinite series Z (k"1 (2k)]1_r
k=1
converges. The £ = 0 case of this theorem then follows from the preceding work and |14, Corollary 4.2].

Suppose now that £ > 0. Let n denote the maximum norm on R™.

(i) Let s € R~ be given. Define ¢ : Rsg — Rsg by 9¥(t) := (£ + 31/))1/‘”. Let R = R(¢,n) be as in
Lemma Fix M € R for which M > R and s¥)(M) < £/2. Then for each t € Ry, we have
s(t) < £/2. Define ¢ : R>g — R by

0 if t € [0, M)
Y(t) == {(5 —sp(t)V¥ ifte[M,00)’

Let h: R™ — R be given by h(x) := []]_, |z;| . Note that

(3.9) (A}MEJ] N Ahvﬂvﬂ) N 77_1 (RZM) - Ag.ﬂswﬂl N ’I]_l (RZM)
and
(310) m((AEf’Sw,,, n 77_1 (R>M)> N ( (Afhwﬂ AN Ahxﬂﬂ?) N ’17_1 (R>M)>> = 0.
Now fix any real numbers S and 7' with M < S < T. Using Lemma [3.4] it follows that
(3.11)
T (£+Sw(t))1/w n—2 1 ) tn
m(A, - N{xeR":S<nkx)<T})=2"n = 7 Zflogl — || dt
hy,m t 2! 1/w
s i=0 (& +s9(1))
and
(3.12)
T(e—sp(r) 21, &
m(Ah@mﬂ{xER”:Sgn(x)ST}):2”n/ % Zf'logl —5 ||
s i—0 v (& —sp(t))
It is easy to see that
*ap(t
(3.13) m (A, f,spm) =00 if and only if / @ log" ™2 (t) dt = .
1

This follows from (3.9)) and (3.10)), subtracting the right-hand side of (3.12]) from that of (3.11]), using
(3-8) and the dominance of log" 2, and then performing two first-order Taylor approximations. Note

that the integral criterion in (3.13)) is independent of s € Rso. Lemma i) then implies that the
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pair (¢f,1)) is asymptotically acceptable. The desired result now follows from the foregoing work
and Theorem 215

(ii) Let s1,82 € Ry be given. Set J := 1+ 9(0). Arguing as in part (i), we infer that there exists
M € R<5 such that for each T' € R with T' > M/s5, we have

SQT
m ({X € Bgf,sﬂb(T),'r],ng : U(X) > M}) =n,J,M,s1,s2 / w(T) til 1Ogn_2(t) de
M
= (T) [log" ™" (soT') —log" ™ (M)]
=5, $(T) log" ! (T).
It follows that
T) log" X(T T) log" H(T
0 < liminf (T) log™ (T) < lim sup (T log™ (T)
T—oo m Bif»slw(T))n)82T> T—o0 m(Bgfvslw(T)/’%SZT)

Lemma [2.14{(ii) then implies that the pair (¢f,®)) is uniformly acceptable. It is clear from the
foregoing work that

< 00.

inf Som (B.pw@ymar) | <oo if and only if ;; [k (26)] 7 < oo

An application of Theorem then yields the desired result.
|

Remark 3.6. It is easy to see that one may modify the preceding proof to obtain a similar result when
¢ eRand f:R" — R is a function of the form f(x) := ([T, xi)ql/q2 , where q; and ¢ are arbitrary odd
natural numbers.

Our next and final example expands upon [14, Corollary 4.3] and is of interest because of its relation to
the Khintchine-Groshev Theorem.

Theorem 3.7. Let ¢ : R>g — Ry be regular and nonincreasing. Let p € {1,...,n — 1} and z =
(#1,...,2p) € (R50)” be given. Let f : R" — R be given by

“:1<i<p}.

flxy,.. . x,) = max {|z;
Set z:= ", (z)"'. Let € € R>¢. Then the following hold.
(i) If
oo
/ Y)Yt ife=0
1

/ Y)Y At ife>0
1

is finite (respectively, infinite), then (¢ f)og is (¥, v, P)-approximable for Haar-almost no (respectively,
almost every) g € G.

(ii) If the infinite series
o0

> {Q(H,p)% (2’“)1 o if¢=0
k=1
i {2(71717)19 w (2k):| 1=r Hc&- >0
k=1

converges, then (¢ f) o g is uniformly (v, v, P)-approximable for Haar-almost every g € G.
The proof of this theorem makes use of the following lemma.

Lemma 3.8 (|14, Corollary 4.3(i)]). Let p € {1,...,n — 1} and z = (z1,...,2,) € (Rso)” be given. Let
f:R™ = R be given by

flay, .. xy) = max {|a; [ : 1 <i < p}.
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Set z :=>"_, (zi)fl . Let 1 : R>o — Rso be bounded and Borel measurable. Let n denote the maximum
norm on R™. Then there exists some R = R (@, Z) € R>, such that for every Borel measurable function
P Rso = Ry with ¢ < E on R>( and any real numbers S and T' with R < S < T, we have

T
m(ApypnN{x€R": §<n(x) <T}) =2"(n fp)/s B(t)? 7= P+D .

The relationship between Lemma [3.8 and [14, Corollary 4.3(i)] is analogous to that between Lemma [3.4] and
[14) Corollary 4.2(i)], and similar remarks to those made earlier apply here. In particular, inspecting the
proof of |14 Corollary 4.3(i)] shows that one may choose

R=R(¢,z) =1+ max (sup {¥(t) : t € R>o})

in Lemma The £ = 0 case of Theorem is already known: see [14, Corollary 4.3]. The proof of the
& > 0 case of this theorem is similar to, and simpler than, that of the & > 0 case of Theorem [3.5} it is
therefore omitted.

1/Zi

Remark 3.9. Let us mention that all the results in (in particular, Theorems and and
Remarks and follow from those here in 3] and the fact that G = SL,(R) and G = ASL,(R)
satisfy various forms of the Siegel-type and Rogers-type axioms: see |14, Theorems 2.5, 2.6, and 2.8] and the
references therein for details.

Remark 3.10. We note here that one may easily deduce analogues of the statements made in Remark
for Theorems and for the ¢ = 1 case of Theorem We also note that the £ = 1 case of Theorem
applies to the functions discussed in Remark

Remark 3.11. In light of the preceding results, we note that the discussion in Remark applies in the
current, more general, setting.

Acknowledgements. The co-author Skenderi would like to thank Jayadev Athreya and Jon Chaika for
various discussions. The authors would also like to thank the anonymous referee for a detailed report whose
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