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1. Introduction

Let G be a Lie group, and let Γ be a lattice in G. Denote by X the homogeneous space 
G/Γ and by μ the G-invariant probability measure on X. For an unbounded subset F of 
G and a non-empty open subset U of X define the sets E(F, U) and Ẽ(F, U) as follows:

E(F, U) := {x ∈ X : gx /∈ U ∀ g ∈ F}
⊂ Ẽ(F, U) := {x ∈ X : ∃ compact Q ⊂ G such that gx /∈ U ∀ g ∈ F � Q}

=
⋃

compact Q⊂G

E(F � Q, U)
(1.1)

of points in X whose F -trajectory always (resp., eventually) stays away from U . If F
is a subgroup or a subsemigroup of G acting ergodically on (X, μ), then the trajectory 
Fx of x is dense for μ-almost all x ∈ X, in particular μ

(
Ẽ(F, U)

)
= 0 whenever U has 

non-empty interior.
The present paper studies the following natural question, asked several years ago by 

Mirzakhani (private communication): if E(F, U) has measure zero, does it necessarily 
have less than full Hausdorff dimension? In fact it is reasonable to conjecture that the 
answer is always ‘yes’; in other words, that the following ‘Dimension Drop Conjecture’ 
holds: if F ⊂ G is a subsemigroup and U is an open subset of X, then either E(F, U)
has positive measure, or its dimension is less than the dimension of X. The same can 
be stated about Ẽ(F, U).

If X is compact, or, more generally, if the complement of U is compact, then the di-
mension drop conjecture follows from the uniqueness of the measure of maximal entropy, 
see e.g. [30, Theorem 9.7] and [28, Proposition 7.5]. In that case an explicit estimate for 
the codimension of E(F, U) was recently obtained in [23]. When X is not compact, the 
situation is more complicated due to a possibility of the ‘escape of mass’. The conjecture 
is known in the following cases:

• F consists of quasiunipotemt elements, that is, for each g ∈ F all eigenvalues of Ad g

have absolute value 1. This follows from Ratner’s Measure Classification Theorem 
and the work of Dani and Margulis, see [36, Lemma 21.2] and [9, Proposition 2.1].

• G is a simple Lie group of real rank 1 [11].

Another example is contained in a recent paper by Guan and Shi [17]: extending a method 
developed earlier in [19], they proved that for an arbitrary one-parameter subgroup 
action on a finite-volume homogeneous space the set of points with divergent trajectories 
(that is, trajectories eventually leaving any compact subset of the space) has Hausdorff 
dimension strictly less than full. See also [2,31] for a related work.

In this paper we establish a special case of the aforementioned conjecture for a specific, 
and important for applications, non-compact homogeneous space of a higher rank Lie 
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group, and for a special choice of diagonalizable elements of G. More specifically, we fix 
m, n ∈ N, let

G = SLm+n(R), Γ = SLm+n(Z), X = G/Γ, (1.2)

and set

F + := {gt : t ≥ 0}, where gt := diag(ent, . . . , ent, e−mt, . . . , e−mt). (1.3)

We will also choose a > 0 and consider a subsemigroup F +
a of F + generated by ga, that 

is, let

F +
a :=

{
diag(eant, . . . , eant, e−amt, . . . , e−amt) : t ∈ Z+

}
. (1.4)

An important role in the proof will be played by the unstable horospherical subgroup
with respect to F +, namely

H := {hs : s ∈ Mm,n} , where hs :=
[

Im s
0 In

]
. (1.5)

Here and hereafter Mm,n stands for the space of m × n matrices with real entries. It will 
be repeatedly used in the proof that the conjugation map hs �→ gthsg−t corresponds to 
a dilation of s by e(m+n)t.

For the rest of this paper we let G, Γ, X = G/Γ, F +
a and H be as in (1.2)–(1.5). We 

are going to denote by ‖ ·‖ the Euclidean norm on Mm,n, and will choose a right-invariant 
Riemannian structure on G which agrees with the one induced by ‖ ·‖ on Mm,n

∼= Lie(H). 
If P is a subgroup of G, we will denote by BP (r) the open ball of radius r centered at the 
identity element with respect to the metric on P coming from the Riemannian structure 
induced from G. Also, to simplify notation, B(r) will stand for the Euclidean ball in 
Mm,n centered at 0 with radius r, so that

BH(r) = {hs : s ∈ Mm,n, ‖s‖ < r} = {hs : s ∈ B(r)}.

We will denote by ‘dist’ the corresponding Riemannian metric on G and will use the 
same notation for the induced metric on X.

We need to introduce the following notation: for an open subset U of X and r > 0
denote by σrU the inner r-core of U , defined as

σrU := {x ∈ X : dist(x, U c) > r}.

This is an open subset of U , whose measure is close to μ(U) for small enough values of 
r. The latter implies that the quantity

θU := sup
{

0 < θ ≤ 1 : μ(σ2
√

mnθU) ≥ 1
μ(U)

}
(1.6)
2
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is positive if U �= ∅. Also, for a closed subset S of X denote by ∂rS the r-neighborhood
of S, that is,

∂rS := {x ∈ X : dist(x, S) < r}.

Note that we always have ∂rS ⊂
(
σr(Sc)

)c. In particular, for z ∈ X we have ∂r{z} =
B(z, r), the open ball in X of radius r centered at z.

We denote by dim E the Hausdorff dimension of the set E, and by codim E its Haus-
dorff codimension, i.e. the difference between the dimension of the ambient set and the 
Hausdorff dimension of E. The next theorem, which is the main result of the paper, 
establishes the Dimension Drop Conjecture for the case (1.2)–(1.4), and, moreover, does 
it in a quantitative way, giving an explicit estimate for the codimension of Ẽ(F +

a , U) as a 
function of U and a. In what follows, the notation A 
 B, where A and B are quantities 
depending on certain parameters, will mean A ≥ CB, with C being a constant dependent 
only on m and n.

Theorem 1.1. There exist positive constants c, r1 such that for any a > 0 and for any 
open subset U of X one has

codim Ẽ(F +
a , U) 
 μ(U)

log 1
r(U,a)

, (1.7)

where

r(U, a) := min
(
μ(U), θU , ce−a, r1

)
. (1.8)

In particular, if U is non-empty we always have dim Ẽ(F +
a , U) < dim X.

Similarly to previous papers on the subject, Theorem 1.1 is deduced by considering 
the intersection of Ẽ(F +

a , U) with the orbits Hx of the group H.

Theorem 1.2. There exist positive constants c, r1 such that for any a > 0, any x ∈ X, 
and for any open subset U of X one has

codim
(
{h ∈ H : hx ∈ Ẽ(F +

a , U)}
)


 μ(U)
log 1

r(U,a)
,

where r(U, a) is as in (1.8).

As a special case of the two theorems above, in the next corollary the Hausdorff 
dimension of the set of points whose ga-trajectory misses a small enough neighborhood 
of a smooth submanifold of X is estimated.
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Corollary 1.3. If S ⊂ X is a k-dimensional embedded smooth submanifold, then there 
exist εS , cS , CS > 0 such that for any a > 0 and any positive ε < min(εS , cSe−a) one has

codim
(
{h ∈ H : hx ∈ Ẽ(F +

a , ∂εS)}
)

≥ CS
εdim X−k

log(1/ε)
. (1.9)

In addition, if k = 0 and S = {z}, the constants cS and CS can be chosen independent 
of z; that is there exist rz, c∗ > 0 such that for any a > 0, any z ∈ X and any 0 < ε <
min

(
rz, c∗e−a

)
one has

codim
(
{h ∈ H : hx ∈ Ẽ

(
F +

a , B(z, ε)}
)



μ
(
B(z, ε)

)
log(1/ε) . (1.10)

Similar estimates hold for the codimension of Ẽ(F +
a , ∂rS) and Ẽ

(
F +

a , B(z, r)
)

in X.

Remark 1.4. It is clear from (1.8) that Theorems 1.1 and 1.2, as well as Corollary 1.3, 
produce analogous results for the action of the one-parameter semigroup F +: namely, 
by letting a tend to zero one sees that the codimensions of Ẽ(F +, U) in X and {h ∈ H :
hx ∈ Ẽ(F +, U)} in H are bounded from below by μ(U)

− log min(μ(U),θU ,r1) times a constant 
dependent only on m, n.

Finally let us describe an application of Theorem 1.2 to simultaneous Diophantine 
approximation. Given c ≤ 1, say that s ∈ Mm,n is c-Dirichlet improvable if for all 
sufficiently large N ∈ N

there exists p ∈ Zm and q ∈ Zn
� {0} such that

‖sq − p‖∞ < cN−n/m and 0 < ‖q‖∞ < N.
(1.11)

Here and in the proof of Theorem 1.5 ‖ · ‖∞ stands for the supremum norm on Rm, Rn

and Rm+n. We let DIm,n(c) be the set of c-Dirichlet improvable s ∈ Mm,n. It is easy 
to see that s ∈ DIm,n(c) if and only if (1.11) holds for all sufficiently large N > 0, and 
that Dirichlet’s theorem (see e.g. [33]) implies that DIm,n(1) = Mm,n. Davenport and 
Schmidt [10] proved that the Lebesgue measure of DIm,n(c) is zero for any c < 1. On the 
other hand, they also showed that 

⋃
c<1 DIm,n(c) contains the set of badly approximable 

m × n matrices, which is known [32] to have full Hausdorff dimension; in other words, 
dim DI(c) → mn as c → 1.

In recent years much attention has been directed to the set

Singm,n :=
⋂
c<1

DIm,n(c)

of singular matrices. In [19] its Hausdorff dimension was estimated from above by 

mn 
(

1 − 1
)

, and then in [7] this estimate was shown to be sharp for any m, n with 
m+n
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max(m, n) > 1, verifying a conjecture made in [19]. The case m = 1 was settled previ-
ously in [5]. Moreover, it is shown there that for any integer n ≥ 2 and any ε > 0 for 
small enough c it holds that

n2

n + 1 + cn+ε ≤ dim
(
DI1,n(c)

)
≤ n2

n + 1 + cn/2−ε

(see [5, Theorem 1.3 and Corollary 6.10] for a more precise estimate).
As a corollary from our main result, we deduce that for any c < 1 the codimension of 

DIm,n(c) is positive:

Theorem 1.5. dim
(
DIm,n(c)

)
< mn for any c < 1.

The structure of the paper is as follows. Roughly speaking, the proof has two main 
ingredients. One deals with orbits staying inside a fixed compact subset of X, which are 
handled in §2 with the help of the exponential mixing of the gt-action on X as in [23]. 
The other one (§§3–4) takes care of orbits venturing far away into the cusp of X; there 
we use the method of integral inequalities for height functions on X pioneered in [13]
and thoroughly explored in [19]. The two ingredients are combined in §5 in the form of 
a covering result (Proposition 5.2). Then in §6 the results of the preceding sections are 
used to derive two separate dimension bounds (Theorem 6.1), which are then used in §7
to prove Theorem 1.2. After that we show how the latter implies Theorem 1.1, and use 
Theorems 1.1 and 1.2 to deduce Corollary 1.3 and Theorem 1.5.

We remark that the methods of this paper are applicable in much wider generality: in 
particular, with some modification of the argument the Dimension Drop Conjecture can 
be established for arbitrary Ad-diagonalizable flows on quotients of connected semisimple 
Lie groups without compact factors by irreducible lattices. This is going to be addressed 
in a forthcoming work [24]. In the last section of the paper we list some other general-
izations and open questions.
Acknowledgments. The first-named author is grateful to Maryam Mirzakhani and Alex 
Eskin for a motivating question which kick-started this project. Thanks are also due to 
the anonymous referee for useful comments.

2. A covering result for orbits staying in compact subsets of X

For N ∈ N, for any subset S of X, any x ∈ X and any t > 0 let us define the following 
set:

AN
x (t, r, S) =

{
s ∈ B(r) : githsx ∈ S ∀ i ∈ {1, . . . , N}

}
. (2.1)

For our dimension estimates it will be useful to have a bound on the number of cubes of 
sufficiently small side-length needed to cover the sets of the above form. In this section 
we will consider the case of S being compact, which was thoroughly studied in [23]. We 
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are going to apply [23, Theorem 4.1], which was proved in the generality of X = G/Γ
being an arbitrary homogeneous space, and H being a subgroup of G with the Effective 
Equidistribution Property (EEP) with respect to F +. The latter property was shown 
there to hold in the case (1.2)–(1.3), or, more generally, as long as H is the expanding 
horospherical subgroup relative to F +, and the F +-action on X is exponentially mixing. 
See also [20,22] for some earlier motivating work on the subject.

Here we need to introduce the notion of the injectivity radius of points and subsets 
of X. Given x ∈ X, let us denote by r0(x) the injectivity radius of x, defined as

sup
{

r > 0 : the map G → X, g �→ gx is injective on BG(r)
}

.

If K ⊂ X is bounded, we will denote by

r0(K) := inf
x∈K

r0(x)

the injectivity radius of K.
The following theorem is an immediate corollary of [23, Theorem 4.1] applied to 

P = H, L = dim P = mn and U = Sc.

Theorem 2.1. There exist constants

0 < r2 <
1

16
√

mn
, b0 ≥ 2, b ≥ 1, 0 < K1 ≤ 4, K0 ≥ 1, K2, λ > 0

such that for any compact subset S of X, any 0 < r < min
(
r0(∂1/2Sc), r2

)
, any x ∈ ∂rS, 

any N ∈ N, and any t ∈ R satisfying

t > b0 + b log 1
r

, (2.2)

the set AN
x

(
t, r

16
√

mn
, S
)

can be covered with at most

K0emn(m+n)Nt

(
1 − K1μ

(
σrSc

)
+ K2e−λt

rmn

)N

balls in Mm,n of diameter re−(m+n)Nt.

We are going to apply the above theorem to cover sets of type (2.1) with cubes of 
diameter substantially bigger than re−(m+n)Nt. Namely we will work with cubes of side 
length θe−(m+n)Nt, where θ ∈

[
4r, 1

2
√

mn

]
.

Theorem 2.2. Let r2, b0, b, K0, K1, K2 and λ be as in Theorem 2.1. Then for any 
compact subset S of X, any r > 0 such that
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r < min
(
r0(∂1S), r2

)
, (2.3)

any t satisfying (2.2), any θ ∈
[
4r, 1

2
√

mn

]
, any x ∈ ∂rS and any N ∈ N, the set 

AN
x

(
t, r

32
√

mn
, S
)

can be covered with at most

(
4r

θ

)mn

K0emn(m+n)Nt

(
1 − K1μ

(
σ2

√
mnθSc

)
+ K2e−λt

rmn

)N

cubes in Mm,n of side length θe−(m+n)Nt.

Proof. Let S be a compact subset in X, let r, t and N be such that conditions (2.2)
and (2.3) are satisfied, and let θ ∈

[
4r, 1

2
√

mn

]
. Let CN be a covering of B

(
r

32
√

mn

)
with cubes of side-length θe−(m+n)Nt in Mm,n whose interiors are disjoint and whose 
sides are parallel to the coordinate axes. Next, consider a covering C′

N of ∪R∈CN
R with 

interior-disjoint cubes of side-length re−(m+n)Nt in Mm,n, also with sides parallel to the 
coordinate axes. Here and hereafter we will denote by Leb the Lebesgue measure on 
Mm,n.

Let x ∈ X. We need the following lemma.

Lemma 2.3. For any cube R in CN which has non-empty intersection with the set 
AN

x

(
t, r

32
√

mn
, S
)

there exist at least ( θ
2r )mn cubes in C′

N which lie in the interior of 

R. Moreover, all such cubes are subset of AN
x

(
t, r

16
√

mn
, ∂√

mnθS
)

.

Proof. Observe that any cube in C′
N that contains a point of σre−(m+n)NtR must lie in 

the interior of R. Therefore, the number of cubes in C′
N that lie in the interior of R is at 

least

Leb (σre−(m+n)NtR)
rmne−mn(m+n)Nt

= (θ − 2r)mne−mn(m+n)Nt

rmne−mn(m+n)Nt
≥
(

θ

2r

)mn

.

Now let B be one of those cubes. The side-length of R is

θe−(m+n)Nt <
(2.2)

θe−b0(m+n)N · rb(m+n)N ≤
(b0≥2)

1
2
√

mn
e−2(m+n) · r

≤ r

32mn
(4

√
me−2m)(4

√
ne−2n) ≤ r

32mn
,

hence its diameter is at most r
32

√
mn

. Since R has non-empty intersection with B
(

r
32

√
mn

)
, 

we have B ⊂ R ⊂ B
(

r
16

√
mn

)
. Moreover, since by our assumption

R∩AN
x

(
t, r√ , S

)
�= ∅, we can find s ∈ R such that githsx ∈ S for all i ∈ {1, . . . , N}. 
32 mn
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To prove that B ⊂ AN
x

(
t, r

16
√

mn
, ∂√

mnθS
)

, we need to take any s′ ∈ B and any 

i ∈ {1, . . . , N} and show that

giths′x ∈ ∂√
mnθS. (2.4)

Clearly

giths′x = (giths′−sg−it)githsx, (2.5)

and, since both s and s′ are in R, it follows that

‖s′ − s‖ ≤
√

mne−(m+n)Ntθ,

hence giths′−sg−it ∈ BH(
√

mnθ) ⊂ BG(
√

mnθ). Thus, since githsx ∈ S, from (2.5) we 
obtain (2.4), which finishes the proof of the lemma. �

Now note that every ball of diameter re−(m+n)Nt in Mm,n can be covered with at most 
2mn cubes of side-length re−(m+n)Nt in CN . Hence, by Lemma 2.3 and by Theorem 2.1
applied to S replaced with ∂√

mnθS ⊂ ∂1/2S, for any x ∈ ∂rS ⊂ ∂r(∂√
mnθS) the set 

AN
x

(
t, r

32
√

mn
, S
)

can be covered with at most

(
2r

θ

)mn

2mn · K0emn(m+n)Nt

(
1 − K1μ

(
σr(σ√

mnθSc)
)

+ K2e−λt

rmn

)N

≤
(

4r

θ

)mn

K0emn(m+n)Nt

(
1 − K1μ

(
σ2

√
mnθSc

)
+ K2e−λt

rmn

)N

cubes in Mm,n of side-length θe−(m+n)Nt. This finishes the proof. �
3. Height functions and non-escape of mass

In the next two sections we describe trajectories which venture outside of large com-
pact subsets of X. The method we are using, based on integral inequalities for height 
functions, also known as Margulis functions (see [14] for a detailed survey), was intro-
duced in a breakthrough paper of Eskin, Margulis and Mozes [13], and later adapted 
in [19]. Our argument basically follows the scheme developed in the latter paper, with 
minor modifications. See also [17,31,35] for other recent related results obtained with the 
technique of Margulis functions.

Let x ∈ X be a lattice in Rm+n. Following [13], say that a subspace L of Rm+n is 
x-rational if L ∩ x is a lattice in L, and for any x-rational subspace L, denote by dx(L)
the volume of L/(L ∩x). Equivalently, let us denote by ‖ ·‖ the extension of the Euclidean 
norm on Rm+n to 

∧
(Rm+n); then
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dx(L) = ‖v1 ∧ · · · ∧ vi‖, where {v1, . . . , vi} is a Z-basis for L ∩ x. (3.1)

For any i = 1, . . . , m + n and any x ∈ X we let Fi(x) denote the set of i-dimensional 
x-rational subspaces of Rm+n.

Now for 1 ≤ i ≤ m + n define

αi(x) := sup
{

1
dx(L) : L ∈ Fi(x)

}
.

Clearly αm+n(x) ≡ 1, and for convenience we also set α0(x) ≡ 1 for all x ∈ X. Also, note 
that α1(x) is precisely the reciprocal of the norm of the shortest vector in x. Functions 
α1, . . . , αm+n−1 can be thought of as height functions on X in the following sense:

Lemma 3.1. A sequence of points xj diverges in X (leaves every compact subset) if and 
only if limj→∞ αi(xj) = ∞ for some (equivalently, for all) i = 1, . . . , m + n − 1.

Proof. We refer the reader to [4] for basic facts in geometry of numbers. By Mahler’s 
Compactness Criterion, a sequence of lattices xj diverges in X if and only if 
limj→∞ α1(xj) = ∞. Thus to prove the lemma it suffices to show that, for any se-
quence (xj) ⊂ X, limj→∞ α1(xj) = ∞ if and only if limj→∞ αi(xj) = ∞ for all 
i = 1, . . . , m + n − 1.

We first prove the reverse implication. Assume that for some x ∈ X, ε > 0, and 
1 ≤ i ≤ m +n −1, we have αi(x) > 1

ε . Then, by definition there must exist a i-dimensional 
x-rational subspace L such that dx(L) < ε. It is easy to see that, by applying Minkowski’s 
Convex Body Lemma to L ∩x, one can find a vector of length � ε1/i in x, which implies 
that α1(x) 
 1

εi .
To prove the forward implication, assume that x ∈ X, and denote the shortest vec-

tor in x by v1. Note that by definition α1(x) = 1
‖v1‖ . Extend {v1} to get a reduced 

basis {v1, . . . , vm+n} of x. By Minkowski’s Second Theorem, the product 
∏m+n

k=1 ‖vk‖ is 
bounded from both sides by uniform constants. Also, by definition of reduced lattice, 
we have ‖vi+1‖ ≥ ‖vi‖ for 1 ≤ i < m + n. Hence, whenever ‖v1‖ is sufficiently small, 
for any 1 ≤ i < m + n the product 

∏i
k=1 ‖vk‖ can be made arbitrarily small. Moreover, 

by Hadamard’s inequality for any i ∈ N we have ‖v1 ∧ · · · ∧ vi‖ ≤
∏i

k=1 ‖vk‖. Hence, 
we conclude that whenever ‖v1‖ is sufficiently small (equivalently, α1(x) is sufficiently 
large), for any 1 ≤ i < m +n, ‖v1 ∧· · ·∧vi‖ can be made arbitrarily small, which implies 
that αi(x) can be made arbitrarily large. This finishes the proof. �

As in [19], we will approximate the Lebesgue measure on a neighborhood of identity 
in H by the Gaussian distribution on Mm,n. Namely, we will let ρσ2 denote the Gaussian 
probability measure on Mm,n where each component is i.i.d. with mean 0 and variance 
σ2.

In the following theorem, which is a simplified version of [19, Corollary 3.6], we push 
forward the probability measure ρ1 from Mm,n to the orbit Hx, where x ∈ X, and then 
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translate it by gt. Let us use the following notation: for x ∈ X, t > 0 and a measurable 
function f on X define

Ix,t(f) :=
ˆ

Mm,n

f(gthsx) dρ1(s).

Theorem 3.2. There exists c0 ≥ 1 depending only on m, n with the following property: 
for any t ≥ 1, any x ∈ X, and for any i ∈ {1, . . . , m + n − 1} one has

Ix,t

(
α

1/2
i

)
≤ c0

(
e−t/2αi(x)1/2 + emnt max

0<j≤min(m+n−i,i)

√
αi+j(x)1/2αi−j(x)1/2

)
.

(3.2)

To make the paper self-contained, we include all the details of the proof. The first 
step, an analogue of [19, Proposition 3.1], is to obtain an estimate similar to (3.2), but 
replace the height functions αi with 1

dx(L) , where L ∈ Fi(x) is fixed, and instead of the 
Gaussian measure ρ1 use the probability measure dk on the maximal compact subgroup 
K = SO(m +n) of G. Note that in the argument below all the implicit constants depend 
only on m, n.

Proposition 3.3. For any t ≥ 1, any i ∈ {1, . . . , m + n − 1}, and any decomposable 
v = v1 ∧ · · · ∧ vi ∈

∧i(Rm+n) we have:

ˆ

K

‖gtkv‖−1/2 dk � e−t/2‖v‖−1/2.

Proof. Notice that K acts transitively on the set of decomposable v ∈
∧i(Rm+n) with 

a fixed norm. Therefore 
´

K
‖gtkv‖−1/2 dk is a function of ‖v‖, and from its homogeneity 

it follows that
ˆ

K

‖gtkv‖−1/2 dk = C(t)‖v‖−1/2

for some function C : R+ → R+. Now choose x1, . . . , xi to be independent standard 
Gaussian Rm+n-valued random variables. Then we have

E

⎛⎝ˆ
K

‖gtk(x1 ∧ · · · ∧ xi)‖−1/2 dk

⎞⎠ = C(t)E(‖x1 ∧ · · · ∧ xi‖−1/2),

where the right hand side is finite in view of [19, Lemma 3.2]. On the other hand, using 
the K-invariance of x1, . . . , xi we get
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E

⎛⎝ˆ
K

‖gtk(x1 ∧ · · · ∧ xi)‖−1/2 dk

⎞⎠ = E‖gt(x1 ∧ · · · ∧ xi)‖−1/2.

Thus to prove the proposition, it suffices to show that

E
(
‖gt(x1 ∧ · · · ∧ xi)‖−1/2) � e−t/2.

Let V + ⊂ Rm+n denote the m-dimensional subspace spanned by e1, . . . , em and let V −

be the complementary subspace, so that

‖gtv‖ = ent‖v‖, ‖gtw‖ = e−mt‖w‖

for v ∈ V + and w ∈ V −. In particular, for any v ∈
∧i(V +) we have ‖gtv‖ = eint‖v‖. Let 

π
(i)
u :

∧i(Rm+n) →
∧i(V +) be the natural (orthogonal) projection. Clearly, we have:

π(i)
u (x1 ∧ · · · ∧ xi) = π(1)

u (x1) ∧ · · · ∧ π(1)
u (xi),

where each of π(1)
u (xj) is a standard Gaussian random variable in m dimensions.

We first assume that i ≤ m. Then we have:

‖gt(x1∧· · ·∧xi)‖ ≥ ‖π(i)
u gt(x1∧· · ·∧xi)‖ = ‖gtπ

(i)
u (x1∧· · ·∧xi)‖ = eint‖π(i)

u (x1∧· · ·∧xi)‖,

hence

E
(
‖gt(x1 ∧ · · · ∧ xi)‖−1/2) ≤ e

−int
2 E

(
‖π(i)

u (x1 ∧ · · · ∧ xi)‖−1/2) � e− t
2 ,

where in the last inequality we are again using [19, Lemma 3.2], i.e. the finiteness of 
E(‖x1 ∧ · · · ∧ xi‖−1/2). This finishes the proof for i ≤ m. The case m < i ≤ n can be 
handled by duality, following the lines of the proof of [19, Proposition 3.1]. �

Let us introduce the following notation: if h ∈ G, we will denote by ‖h‖∞ the norm 
of h viewed as an operator on 

∧
(Rm+n). We note that ‖h‖∞ = ‖h−1‖∞ for any h ∈ H, 

since h = hs and h−1 = h−s are conjugate by 
(

Im 0
0 −In

)
. That is,

‖hs‖−1
∞ ‖v‖ ≤ ‖hsv‖ ≤ ‖hs‖∞‖v‖ for any s ∈ Mm,n and v ∈

∧
(Rm+n). (3.3)

Note that ‖hs‖∞ grows polynomially in s: more precisely,

‖hs‖∞ � ‖s‖min(m,n). (3.4)

We will also use a norm estimate similar to (3.3) but for the gt-action:

e−mnt‖v‖ ≤ ‖gtv‖ ≤ emnt‖v‖ for any t ≥ 1 and v ∈
∧

(Rm+n). (3.5)
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The next lemma, which is a special case ‘β = 1/2’ of [19, Lemma 3.5], shows that 
Proposition 3.3 will remain valid if integration over K is replaced with integration over 
a bounded subset of Mm,n.

Lemma 3.4. There exists a neighborhood W of 0 in Mm,n such that for any s0 ∈ Mm,n, 
t ≥ 1, i ∈ {1, . . . , m + n − 1}, and decomposable v ∈

∧i(Rm+n) we have

ˆ

s0+W

‖gthsv‖−1/2 ds � ‖hs0‖1/2
∞

ˆ

K

‖gtkv‖−1/2 dk.

Proof of Theorem 3.2. Fix x ∈ X and i ∈ {1, . . . , m + n − 1}. Let L0 ∈ Fi(x) be such 
that

αi(x) = 1
dx(L0) . (3.6)

Note that in view of (3.3) and (3.5) we have

αi(gthx) ≤ 1
dx(gthL0) ≤ emnt 1

dx(hL0)

≤ emnt‖h‖∞
1

dx(L0) ≤ emnt‖h‖∞αi(x).
(3.7)

We shall consider two cases.

Case 1. The subspace L0 is an outlier, that is, dx(L0) is much smaller than dx(L) for 
any L ∈ Fi(x) different from L0. Namely,

dx(L) ≥ e2mntdx(L0) ∀ L ∈ Fi(x) � {L0}.

Then for any L ∈ Fi(x) � {L0} and h ∈ H in view of (3.3) and (3.5) we have

dx(hL0) ≤ ‖h‖∞dx(L0) ≤ e−2mnt‖h‖∞dx(L) ≤ e−2mnt‖h‖2
∞dx(hL),

hence

dx(gthL0) ≤ emntdx(hL0) ≤ e−mnt‖h‖2
∞dx(hL) ≤ ‖h‖2

∞dx(gthL).

Therefore αi(gthx) ≤ ‖h‖2
∞

dx(gthL0) and

Ix,t

(
α

1/2
i

)
≤
ˆ

‖hs‖∞dx(gthsL0)−1/2
dρ1(s). (3.8)
Mm,n
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Take W ⊂ Mm,n as in Lemma 3.4. Clearly, for any s′ ∈ Mm,n

ˆ

s′+W

‖hs‖∞dx(gthsL0)−1/2
dρ1(s)

�
(

max
s∈s′+W

‖hs‖∞e− ‖s‖2
2

) ˆ
h0W

dx(gthsL0)−1/2 ds

≤
(3.4)

e− ‖s′‖2
2 +O

(
‖s′‖

) ˆ
h0W

dx(gthsL)−1/2 ds,

(3.9)

where the implied constant is independent of s′. Summing over a lattice Λ in Mm,n

sufficiently fine so that Mm,n = W + Λ, we conclude that

ˆ

Mm,n

‖hs‖∞dx(gthsL0)−1/2 dρ1(s) ≤
∑
s′∈Λ

ˆ

s′+W

‖hs‖∞dx(gthsL0)−1/2 dρ1(s)

�
(3.9)

∑
s′∈Λ

e− ‖s′‖2
2 +O

(
‖s′‖

) ˆ
s′+W

dx(gthsL0)−1/2 dρ1(s)

(by Lemma 3.4) �
∑
s′∈Λ

‖hs′‖1/2
∞ e− ‖s′‖2

2 +O
(
‖s′‖

)̂
K

dx(gtkL0)−1/2 dk

�
ˆ

K

dx(gtkL0)−1/2 dk.

Thus, (3.8) and Proposition 3.3 give

Ix,t

(
α

1/2
i

)
� e−t/2dx(L0)−1/2 =

(3.6)
e−t/2αi(x)1/2.

Case 2. There exists L ∈ Fi(x) different from L0 such that

dx(L) < e2mntdx(L0). (3.10)

Let j be the dimension of L/(L ∩ L0) ∼= (L + L0)/L0; then the dimension of L + L0
is equal to i + j. Note that we have

dx(L)dx(L0) ≥ dx(L ∩ L0)dx(L + L0), (3.11)

see [13, Lemma 5.6]. Then for any h ∈ H we can write

αi(gthx) ≤ emnt‖h‖∞αi(x) =
(3.6)

emnt‖h‖∞
d (L ) <

(3.10)

e2mnt‖h‖∞√

(3.7) x 0 dx(L)dx(L0)
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≤
(3.11)

e2mnt‖h‖∞√
dx(L ∩ L0)dx(L + L0)

≤ e2mnt‖h‖∞

√
αi+j(x)αi−j(x).

Hence

Ix,t

(
α

1/2
i

)
≤ emnt max

0<j≤max(m+n−i,i)

(
αi+j(x)αi−j(x)

)1/4
ˆ

Mm,n

‖hs‖1/2
∞ dρ1(s).

It follows from (3.4) that
ˆ

Mm,n

‖hs‖1/2
∞ dρ1(s) � 1,

hence combining the above two cases establishes (3.2) with some uniform c0. �
An immediate application of Theorem 3.2 is obtained via the ‘convexity trick’ in-

troduced in [13] and formalized in [19]: from (3.2) and [19, Proposition 4.1] with 
βi = 1/2 for each i it follows that for any t ≥ 1 there exist positive constants 
ω0 = ω0(t), . . . , ωm+n = ωm+n(t) and C0 such that the linear combination

α̃ :=
m+n∑
i=0

ωiαi
1/2 (3.12)

satisfies

Ix,t(α̃) ≤ 2c0e−t/2α̃(x) + C0

for all x ∈ X. However, for our purposes it will be necessary to get precise expressions 
for the constants ω0, . . . , ωm+n and C0. This forces us to go through the argument from 
[13] and [19] adapted for this special case. Namely, take

ε = ε(t) = e−(mn+1/2)t

m + n − 1 , (3.13)

for i ∈ {0, . . . , m + n} define p(i) := i(m + n − i), and let

ωi(t) := εp(i) = e−(mn+ 1
2 )i(m+n−i)t

(m + n − 1)i(m+n−i) .

This gives rise to the height function of the form (3.12) which we are going to use in the 
later sections. Since it depends on the (fixed) parameter t, with some abuse of notation 
we will denote it by

α̃t :=
m+n∑

ωi(t)αi
1/2 =

m+n∑ e−(mn+1/2)i(m+n−i)t

(m + n − 1)i(m+n−i) αi
1/2. (3.14)
i=0 i=0
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A key role in our proof will be played by subsets X consisting of points x with large 
(resp., not so large) values of α̃t(x). Namely, for M > 0 let us define

Xt
>M := {x ∈ X : α̃t(x) > M} and Xt

≤M := {x ∈ X : α̃t(x) ≤ M}. (3.15)

Since α̃t is proper, the sets Xt
≤M are compact, and Xt

>M are ‘cusp neighborhoods’ with 
compact complements.

Observe that for any i, j such that 0 < j ≤ min{i, m + n − i} we have

2p(i)−p(i+j)−p(i−j) = 2i(m+n−i)−(i+j)(m+n−i−j)−(i−j)(m+n−i+j) = 2j2.

Then for each i ∈ {1, . . . , m + n − 1} the inequality (3.2) implies

Ix,t

(
ωiα

1/2
i

)
≤ c0εp(i)

(
e−t/2αi(x)1/2 + emnt max

0<j≤min(m+n−i,i)

√
αi+j(x)1/2αi−j(x)1/2

)
= c0εp(i)e−t/2αi(x)1/2 + c0εj2

emnt max
0<j≤min(m+n−i,i)

√
εp(i+j)αi+j(x)1/2εp(i−j)αi−j(x)1/2

≤ c0ωie
−t/2αi(x)1/2 + c0εemnt max

0<j≤min(m+n−i,i)

√
ωi+jαi+j(x)1/2ωi−jαi−j(x)1/2.

Since both ωi+jαi+j(x)1/2 and ωi−jαi−j(x)1/2 are not greater than α̃t(x), we obtain

Ix,t(α̃t) = Ix,t

(
2 +

m+n−1∑
i=1

ωiαi
1/2

)
≤ 2 +

m+n−1∑
i=1

Ix,t

(
ωiαi

1/2
)

= 2 + c0e−t/2α̃t(x) + (m + n − 1)c0ε(t)emntα̃t(x).

(3.16)

Thereby we have arrived at

Proposition 3.5. Let α̃t be defined by (3.14), and let c0 be as in Theorem 3.2. Then:

(a) For any t ≥ 1 any x ∈ X one has

Ix,t(α̃t) ≤ 2 + 2c0e−t/2α̃t(x). (3.17)

(b) For any t ≥ 1 and any x ∈ Xt
>et/2/c0

we have:

Ix,t(α̃t) ≤ 4c0e−t/2α̃t(x). (3.18)

Proof. (3.17) is obtained from (3.16) via the substitution (3.13). Part (b) is immediate 
from (a) since α̃t(x) ≥ et/2

is equivalent to 2 ≤ 2c0e−t/2α̃t(x). �
c0
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Remark 3.6. Note that it follows from (3.1) and the definition of functions αi that for 
any i = 0, . . . , m + n, h ∈ G and x ∈ X one has

1
‖h‖∞

αi(x) ≤ αi(hx) ≤ ‖h−1‖∞αi(x).

Since α̃t is a linear combination of functions α1/2
i , it satisfies similar inequalities. Specif-

ically, in what follows we are going to take h from the ball B(2) of radius 2 in G. Let us 
define

Cα := sup
h∈B(2)

max
(
‖h‖∞, ‖h−1‖∞

)1/2;

then it is clear that for any h ∈ B(2) and any x ∈ X we have:

C−1
α α̃t(x) ≤ α̃t(hx) ≤ Cαα̃t(x). (3.19)

4. Covering results for the orbits visiting non-compact part of X

In the following proposition, which is the main result of this section, we will fix x ∈ X, 
k, N ∈ N and t, M > 0, and will work with the set

AN
x

(
kt, 1, gtX

t
>CαM

)
=
{

s ∈ B(1) : gikthsx ∈ gtX
t
>CαM ∀ i ∈ {1, . . . , N}

}
=
{

s ∈ B(1) : α̃t(g(ik−1)thsx) > CαM ∀ i ∈ {1, . . . , N}
}

,
(4.1)

where Cα is as in Remark 3.6.

Proposition 4.1. There exists C1 ≥ 1 such that for any 2 ≤ k ∈ N, any t ≥ 2, any 
N ∈ N, any x ∈ X, and for any M ≥ Cαe

mnt
2 we have

ˆ

AN
x

(
kt,1,gtXt

>CαM

) α̃t(gNkthsx) ds ≤
(

(k − 1)Ck
1 e− t

2

)N

max
(
α̃t(x), 1

)
.

Proof. Let us fix x, k, t, N and M as in the statement of the proposition; the sets defined 
in the course of the proof will depend on these parameters. Define

ZM :=
{

(s1, . . . , sk) ∈ B(1)k : α̃t(gthsk−1 · · · gths1x) > M
}

.

Then we can write
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ˆ
· · ·

ˆ

Z
C

−1
α M

α̃t(gthsk
· · · gths1x) dρ1(sk) · · · dρ1(s1)

=
ˆ

· · ·
ˆ

(Mm,n)k−1

1Xt

>C
−1
α M

(gthsk−1 · · · gths1x) · Igthsk−1 ···gths1 x,t(α̃t) dρ1(sk−1) · · · dρ1(s1)

≤
(3.18)

4c0e− t
2

ˆ
· · ·

ˆ

(Mm,n)k−1

α̃t(gthsk−1 · · · gths1x) dρ1(sk−1) · · · dρ1(s1),

(4.2)
where c0 is as in Theorem 3.2. Note that the use of Proposition 3.5 in the last step is 
justified since C−1

α M ≥ e
mnt

2 ≥ et/2/c0. Next, by using (3.17) (k − 1) times we get:
ˆ

· · ·
ˆ

(Mm,n)k−1

α̃t(gthsk−1 · · · gths1x) dρ1(sk−1) · · · dρ1(s1)

≤ (2c0e− t
2 )k−2α̃t(x) + 2

(
(2c0e− t

2 )k−2 + · · · + 1
)

≤ (2c0)k−2α̃t(x) + 2(k − 2)(2c0)k−2 ≤ 4(k − 1)(2c0)k−2 max
(
α̃t(x), 1

)
.

(4.3)

So by combining (4.2) and (4.3) we have:
ˆ

· · ·
ˆ

Z
C

−1
α M

α̃t(gthsk
· · · gths1x) dρ1(sk) · · · dρ1(s1) ≤ 8(k−1)(2c0)k−1e− t

2 max
(
α̃t(x), 1

)
.

Now define the function φ : B(1)k → Mm,n by

φ(s1, . . . , sk) :=
k∑

j=1
e−(m+n)(j−1)tsj . (4.4)

Note that

gthsk
· · · gths1 = gkthφ(s1,...,sk). (4.5)

We will need the following observation:

Lemma 4.2. For any M > 0, φ−1(φ(ZM )
)

⊂ ZC−1
α M .

Proof. Let (s1, . . . , sk) ∈ B(1)k be such that φ(s1, . . . , sk) ∈ φ(ZM ). Then there exists 
(s′

1, . . . , s′
k) ∈ ZM such that φ(s1, . . . , sk) = φ(s′

1, . . . , s′
k). Hence, using (4.5) we get

gthsk
· · · gths1 = gths′

k
· · · gths′

1
,

which implies
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gthsk−1 · · · gths1 = hs′
k−sk

gths′
k−1

· · · gths′
1
.

Note that hs′
k−sk

∈ BH(2). Therefore, by (3.19) we have

α̃t(gthsk−1 · · · gths1x) ≥ C−1
α α̃t(gths′

k−1
· · · gths′

1
x) > C−1

α M.

Hence, (s1, . . . , sk) ∈ ZC−1
α M , which finishes the proof of the lemma. �

Using the above lemma we obtain
ˆ

· · ·
ˆ

B(1)k

1φ(ZM )
(
φ(s1, . . . , sk)

)
α̃t(gkthφ(s1,...,sk)x) dρ1(sk) · · · dρ1(s1)

≤
ˆ

· · ·
ˆ

Z
C

−1
α M

α̃t(gthsk
· · · gths1x) dρ1(sk) · · · dρ1(s1)

≤ 8(k − 1)(2c0)k−1e− t
2 max(α̃t(x), 1).

(4.6)

To convert the above multiple integral to a single integral, we will use the following

Lemma 4.3. There exists 0 < Ξ < 1 such that for any positive measurable function f on 
Mm,n and any

0 < ε ≤ 1
8 , 0 ≤ δ < 1 (4.7)

we have
¨

B(1)2

f(εx + y) dρ1+δ2(x)dρ1(y) ≥ Ξ ·
ˆ

B(1)

f(z) dρ1+ε2(1+δ2)(z).

Proof. Let ε and δ be as in (4.7). For convenience denote σ :=
√

1 + δ2. Consider the 
change of variables

(z, v) :=
(

εx + y,
x

σ
− εσy

)
,

or, equivalently

x = σ(v + εσz)
1 + ε2σ2 , y = z − εσv

1 + ε2σ2 . (4.8)

It is easy to verify that ∣∣∣∣∂(z, v)
∣∣∣∣ =

(
1 + ε2σ2)mn

(4.9)

∂(x, y) σ
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and

‖x‖2

σ2 + ‖y‖2 = ‖z‖2 + ‖v‖2

1 + ε2σ2 . (4.10)

Denote

D :=
{

(z, v) ∈ (Mm,n)2 : ‖z‖ ≤ 1, ‖v‖ ≤ 1/4, zijvij ≥ 0 ∀ i ∈ {1, . . . , m}, j ∈ {1, . . . , n}
}

.

It readily follows from (4.8) that

(z, v) ∈ D =⇒ ‖x‖ ≤ 1 and ‖y‖ ≤ 1. (4.11)

Therefore for any f one has
¨

B(1)2

f(εx + y) dρ1+δ2(x)dρ1(y) = 1
(2πσ)mn

¨

B(1)2

f(εx + y)e−
(

‖x‖2

2σ2 + ‖y‖2
2

)
dx dy

≥
(4.9), (4.10), (4.11)

1
(2π(1 + ε2σ2))mn

¨

D

f(z)e− ‖z‖2+‖v‖2

2(1+ε2σ2) dz dv

≥ ρ1+ε2σ2

([
0,

1
4
√

mn

]mn)
·
ˆ

B(1)

f(z) dρ1+ε2σ2(z)

≥
(4.7)

ρ33/32

([
0,

1
4
√

mn

]mn)
·
ˆ

B(1)

f(z) dρ1+ε2σ2(z). �

Define σi(t) :=
√∑i−1

j=1 e−2(m+n)jt for any i ∈ N. Since e−(m+n)t ≤ 1
8 because of the 

assumption t ≥ 2, for any i ∈ N we have σi(t) < 1. Hence, by using Lemma 4.3 (k − 1)
times with ε = e−(m+n)t and δ = σ1(t), . . . , σk−1(t) respectively we get

Ξk−1
ˆ

B(1)

1φ(ZM )(s)α̃t(gkthsx) dρ1+σk(t)2(s)

= Ξk−1
ˆ

B(1)

1φ(ZM )(s)α̃t(gkthsx) dρ1+ε2(1+σk−1(t)2)(s)

≤
ˆ

· · ·
ˆ

B(1)k

1φ(ZM )
(
φ(s1, . . . , sk)

)
α̃t(gkthφ(s1,...,sk)) dρ1(sk) · · · dρ1(s1)

≤
(4.6)

8(k − 1)(2c0)k−1e− t
2 max

(
α̃t(x), 1

)
.

Hence,
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ˆ

B(1)

1φ(ZM )(s)α̃t(gkthsx) dρ1+σk(t)2(s) ≤ 8(k − 1)(2c0)k−1

Ξk−1 e− t
2 max

(
α̃t(x), 1

)
. (4.12)

Also, since 1 + σk(t)2 ∈ [1, 2], dρ1 is absolutely continuous with respect to dρ1+σk(t)2

with a uniform (over B(1)) bound on the Radon-Nikodym derivative. Thus, we can find 
c1 ≥ 1 such that (4.12) takes the form:

ˆ

B(1)

1φ(ZM )(s)α̃t(gkthsx) dρ1(s) ≤ 8c1(k − 1)(2c0)k−1

Ξk−1 e− t
2 max

(
α̃t(x), 1

)
. (4.13)

Now consider the set

A1
x

(
tk, 1, gtX

t
>M

)
=
{

s ∈ B(1) : α̃t(g(k−1)thsx) > M
}

.

It is easy to see that if s ∈ A1
x

(
tk, 1, gtX

t
>M

)
, then

s = φ(s, 0, . . . , 0) and (s, 0, . . . , 0) ∈ ZM ,

where 0 is the zero matrix. Hence, (4.13) implies

ˆ

A1
x

(
kt,1,gtXt

>M

) α̃t(gkthsx) dρ1(s) ≤ 8c1(k − 1)(2c0)k−1

Ξk−1 e− t
2 max

(
α̃t(x), 1

)
. (4.14)

Next, given M > 0 and i ∈ N, let us define:

Z ′
M,i :=

{
(s1, . . . , si) ∈ (M1

m,n)i :

α̃t(g(k−1)thsj
gkthsj−1 · · · gkths1x) > M ∀ j ∈ {1, . . . , i}

}
.

Note that

Z ′
M,1 = A1

x

(
tk, 1, gtX

t
>M

)
. (4.15)

Since M ≥ e
mnt

2 , in view of (3.5) for any y ∈ X one has

α̃t(g(k−1)ty) > M =⇒ α̃t(gkty) > 1. (4.16)

Then for any 2 ≤ i ∈ N, we obtain the following:



22 D. Kleinbock, S. Mirzadeh / Advances in Mathematics 425 (2023) 109058
ˆ
· · ·
ˆ

Z′
M,i

α̃t(gkthsi
· · · gkths1x) dρ1(si) · · · dρ1(s1)

=
ˆ

· · ·
ˆ

Z′
M,i−1

ˆ

Agkthsi−1 ···gkths1 x

(
tk,1,1,gtXt

>M

) α̃t(gkthsi
· · · gkths1x) dρ1(si) · · · dρ1(s1)

≤
(4.14)

ˆ
· · ·

ˆ

Z′
M,i−1

8c1(k − 1)(2c0)k−1

Ξk−1 e− t
2 · max

(
α̃t(gkthsi−1 · · · gkths1 x), 1

)
dρ1(si−1) · · · dρ1(s1)

=
(4.16)

8c1(k − 1)(2c0)k−1

Ξk−1 e− t
2

ˆ
· · ·

ˆ

Z′
M,i−1

α̃t(gkthsi−1 · · · gkths1x) dρ1(si−1) · · · dρ1(s1).

(4.17)
Thus, by using (4.17) repeatedly we get for any N ∈ N

ˆ
· · ·
ˆ

Z′
M,N

α̃t(gkthsN
· · · gkths1x) dρ1(sN ) · · · dρ1(s1)

≤
(

8c1(k − 1)(2c0)k−1

Ξk−1

)(N−1)

e− (N−1)t
2

ˆ

Z′
M,1

α̃t(gkths1x) dρ1(s1)

≤
(4.14), (4.15)

(
8c1(k − 1)(2c0)k−1

Ξk−1

)N

e− Nt
2 max

(
α̃t(x), 1

)
.

(4.18)

Now, similarly to (4.4), define the function ψ : B(1)N → Mm,n by

ψ(s1, . . . , sN ) :=
N∑

j=1
e−(m+n)(j−1)ktsj ,

so that

gkthsN
· · · gkths1 = gNkthψ(s1,...,sN ). (4.19)

The following lemma is a modification of Lemma 4.2 applicable to the sets Z ′
M,N :

Lemma 4.4. For any M > 0, ψ−1(ψ(Z ′
M,N )

)
⊂ Z ′

CαM,N .

Proof. Let (s1, . . . , sN ) ∈ B(1)N be such that ψ(s1, . . . , sN ) ∈ ψ(Z ′
CαM,N ). Then for 

some (s′
1, . . . , s′

N ) ∈ Z ′
CαM,N we have:

ψ(s1, . . . , sN ) = ψ(s′
1, . . . , s′

N ).

Hence, by using (4.19) we get:
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gkthsN
. . . gkths1 = gkths′

N
. . . gkths′

1
.

Thus, it is easy to see that for any 1 ≤ i ≤ N

gkthsi
· · · gkths1 = hψi(−si+1,...,−sN )+ψi(s′

i+1,...,s′
N )
(
gkths′

i
· · · gkths′

1

)
, (4.20)

where for any (wi+1, . . . , wN ) ∈ B(1)N−i we put

ψi(wi+1, . . . , wN ) :=
N∑

j=i+1
e−(m+n)(j−i)ktwj .

Note that since t ≥ 2, one has ψi(wi+1, . . . , wN ) ∈ B(1) for any (wi+1, . . . , wN ) ∈
B(1)N−i. Hence, in view of (4.20), for any 1 ≤ i ≤ N we have

gkthsN
· · · gkths1 ∈ BH(2)gkths′

i
· · · gkths′

1
,

which, since (s′
1, . . . , s′

N ) ∈ Z ′
CαM,N , implies (s1, . . . , sN ) ∈ Z ′

M,N . This finishes the proof 
of the lemma. �

Now by combining (4.18) and Lemma 4.4 we get:
ˆ

· · ·
ˆ

B(1)N

1ψ(Z′
CαM,N )(ψ(s1, . . . , sN ))α̃t(gNkthψ(s1,...,sN )x) dρ1(sN ) · · · dρ1(s1)

≤
(

8c1(k − 1)(2c0)k−1

Ξk−1

)N

e− Nt
2 max

(
α̃t(x), 1

)
.

(4.21)

Then, as before, one can use Lemma 4.3 (N − 1) times with ε = e−(m+n)kt and δ =
σ1(kt), . . . , σN−1(kt) respectively and obtain:

ΞN−1
ˆ

B(1)

1ψ(Z′
CαM,N )(s)α̃t(gNkthsx)dρ1+σN (kt)2(s)

= ΞN−1
ˆ

B(1)

1ψ(Z′
CαM,N )(s)α̃t(gNkthsx)dρ1+ε2(1+σN−1(kt)2)(s)

≤
ˆ

· · ·
ˆ

B(1)N

1ψ(Z′
CαM,N )(ψ(s1, · · · , sN ))α̃t(gNkthψ(s1,...,sN )x) dρ1(sN ) · · · dρ1(s1)

≤
(4.21)

(
8c1(k − 1)(2c0)k−1

Ξk−1

)N

e− Nt
2 max(α̃t(x), 1).

(4.22)
Thus, we get
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ˆ

B(1)

1ψ(Z′
CαM )(s)α̃t(gNkthsx) dρ1+σN (kt)2(s)

≤
(
8c1(k − 1)(2c0)k−1)N

ΞkN−1 e− Nt
2 max

(
α̃t(x), 1

)
.

Now observe that, in view of (4.1), if s ∈ AN
x

(
kt, 1, gtX

t
>CαM

)
, then

s = ψ(s, 0, . . . , 0) and (s, 0, . . . , 0) ∈ Z ′
CαM,N .

Thus, (4.22) can be written as
ˆ

AN
x

(
kt,1,gtXt

>CαM

) α̃t(gNkthsx) dρ1+σN (kt)2(s)

≤
(
8c1(k − 1)(2c0)k−1)N

ΞkN−1 e− Nt
2 max

(
α̃t(x), 1

)
.

(4.23)

Again, since 1 + σN (kt)2 ∈ [1, 2], ds is absolutely continuous with respect to dρ1+σN (kt)2

with a uniform (over B(1)) bound on the Radon-Nikodym derivative. Thus, we can find 
c2 ≥ 1 such that (4.23) takes the form

ˆ

AN
x

(
kt,1,gtXt

>CαM

) α̃t(gNkthsx) ds ≤
c2
(
8c1(k − 1)(2c0)k−1)N

ΞkN−1 e− Nt
2 max

(
α̃t(x), 1

)
.

Now define C1 := 16c0c1c2/Ξ. Then by the above inequality we have:
ˆ

AN
x

(
kt,1,gtXt

>CαM

) α̃t(gNkthsx) ds ≤
(

(k − 1)Ck
1 e− t

2

)N

max
(
α̃t(x), 1

)
.

This ends the proof of the proposition. �
As a corollary we get the following covering result:

Corollary 4.5. There exists C1 ≥ 1 such that for any θ ∈ (0, 1√
mn

], any 2 ≤ k ∈ N, any 

t ≥ 2, any M ≥ C3
αemnt, any N ∈ N, and any x ∈ X, the set

AN
x

(
kt, 1/2, Xt

>M

)
=
{

s ∈ B(1/2) : α̃t(gikthsx) > M ∀ i ∈ {1, . . . , N}
}

can be covered with at most

Cα
(

(k − 1)Ck
1 e(mn(m+n)k− 1

2 )t
)N max

(
α̃t(x), 1

)

θmn M
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cubes of side-length θe−(m+n)Nkt in Mm,n.

Proof. Let x, θ, M, N, t and k be as above, and take C1 as in Proposition 4.1. Applying 
the latter with M replaced with C−2

α Me− mnt
2 , we have:

ˆ

AN
x

(
kt,1,gtXt

>C
−1
α Me−mnt/2

) α̃t(gNkthsx) ds ≤
(

(k − 1)Ck
1 e− t

2

)N

max(α̃t(x), 1). (4.24)

In view of (3.5) we have Xt
>C−1

α M
⊂ gtX

t
>C−1

α Me−mnt/2 , hence

C−1
α M · Leb

(
AN

x

(
kt, 1, Xt

>C−1
α M

))
≤

ˆ

AN
x

(
kt,1,Xt

>C
−1
α M

) α̃t(gNkthsx) ds

≤
ˆ

AN
x

(
kt,1,gtXt

>C
−1
α Me−mnt/2

) α̃t(gNkthsx)ds.

(4.25)

Thus, using (4.24) and (4.25) we obtain

Leb
(

AN
x

(
kt, 1, Xt

>C−1
α M

))
≤ Cα

(
(k − 1)Ck

1 e− t
2

)N

· max(α̃t(x), 1)
M

. (4.26)

Take a covering of B(1/2) with interior-disjoint cubes of side-length θe−(m+n)Nkt in 
Mm,n whose sides are parallel to the coordinate axes. Now let R be one of the cubes 
in this cover which has non-empty intersection with AN

x

(
kt, 1/2, Xt

>M

)
. Note that since 

R ∩ B(1/2) �= ∅, we must have

R ⊂ B

(
1
2 +

√
mnθe−(m+n)Nkt

)
⊂

θ≤ 1√
mn

B(1). (4.27)

Now let s ∈ R ∩ AN
x

(
kt, 1/2, Xt

>M

)
. Then

α̃t(gikthsx) > M for all 1 ≤ i ≤ N.

On the other hand, for any s′ ∈ B and any 1 ≤ i ≤ N one has

gikths′x = (gikths′−sg−ikt) gikthsx ∈ BH(
√

mnθ)gikthsx

⊂ BH(1)gikthsx ⊂ B(1)gikthsx.
(4.28)

Hence, in view of (4.27) and (4.28) we conclude that

R ⊂ AN
x

(
kt, 1, Xt

>M

)
. (4.29)
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Thus, by (4.26) and (4.29), the set AN
x

(
kt, 1/2, Xt

>M

)
can be covered with at most

Leb
(

AN
x

(
kt, 1, Xt

>M

) )(
θe−(m+n)Nkt

)mn ≤ Cα

θmn

(
(k − 1)Ck

1 e(mn(m+n)k− 1
2 )t
)N

·
max

(
α̃t(x), 1

)
M

cubes of side-length θe−(m+n)Nkt in Mm,n. This finishes the proof. �
5. The main covering result

For any t > 0, let us define the compact subset Qt of X as follows:

Qt := Xt
≤C3

αemnt . (5.1)

In the following lemma we obtain a lower bound for the injectivity radius of the set ∂1Qt.

Lemma 5.1. There exist 0 < C2 ≤ 1 and p ≥ m + n independent of t such that for any 
t > 0:

r0(∂1Qt) ≥ C2e−pt.

Proof. Let t > 0. Note that in view of (3.19) we have

∂1Qt ⊂ Xt
≤C4

αemnt ; (5.2)

then, using (3.14) we can write

Xt
≤C4

αemnt ⊂
{

x ∈ X : α1(x) ≤ e−2(mn+ 1
2 )(m+n−1)t

(m + n − 1)2(m+n−1) C8
αe2mnt

}

=
{

x : 1
α1(x) ≥ C4e−

(
2(mn+ 1

2 )(m+n−1)+2mn
)
t

}
,

where C4 = 1
C8

α(m+n−1)2(m+n−1) . Recall that 1
α1(x) is equal to the norm of the shortest 

vector in the lattice x; therefore by [23, Lemma 7.2], r0

(
Xt

≤C4
αemnt

)
is at least C2e−pt, 

where

p =
(
(m + n)2 − 1

)
·
(
2(mn + 1/2)(m + n − 1) + 2mn

)
≥ m + n

and 0 < C2 ≤ 1 is only dependent on m and n. Thus we have r0(∂1Qt) ≥ C2e−pt, which 
finishes the proof. �

The following proposition is our most important covering result.
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Proposition 5.2. There exist constants

p ≥ m + n, 0 < r2 <
1

16
√

mn
, b0 ≥ 2, b ≥ 1, 0 < C2 ≤ 1, C0, C3, K1, K2, λ > 0

such that for any open subset U of X and all integers N and k ≥ 2 the following holds: 
for all t ≥ 2 and all 0 < r < 1 satisfying

e
b0−kt

b ≤ r ≤ min(C2e−pt, r2), (5.3)

all θ ∈
[
4r, 1

2
√

mn

]
, and for all x ∈ ∂r (Qt ∩ U c), the set AN

x

(
kt, r

32
√

mn
, U c

)
can be 

covered with at most

C0

θ2mn
emn(m+n)Nkt

(
1 − K1μ(σ2

√
mnθU) + K2e−λkt

rmn
+ k − 1

θmn
Ck

3 e− t
4

)N

cubes of side-length θe−(m+n)Nkt in Mm,n.

Proof. The strategy of the proof consists of combining Theorem 2.2 with Corollary 4.5. 
Recall that the former estimates the number of cubes needed to cover the set of points 
whose trajectories visit a given compact set S, while the latter does the same for tra-
jectories visiting the set Xt

>M which is the complement of a large compact subset of X. 
Our goal now is to have a similar result for points whose trajectories visit the set U c, 
which is not compact and may have a tiny complement. This is done by an inductive 
procedure which is inspired by the methods introduced in [19].

Take t ≥ 2 and let C2 and p be as in Lemma 5.1. Let 0 < r < 1 and 2 ≤ k ∈ N be 
such that (5.3) is satisfied, where b0, b, r2 are as in Theorem 2.2.

Now let x ∈ ∂r (Qt ∩ U c), N ∈ N, and θ ∈
[
4r, 1

2
√

mn

]
. Recall that

AN
x

(
kt,

r

32
√

mn
, U c

)
=
{

s ∈ B

(
r

32
√

mn

)
: g
kthsx ∈ U c ∀ � ∈ {1, . . . , N}

}
.

Our goal is to cover AN
x

(
kt, r

32
√

mn
, U c

)
with cubes of side-length θe−(m+n)Nkt in Mm,n. 

For any s ∈ AN
x

(
kt, r

32
√

mn
, U c

)
, let us define:

Js :=
{

j ∈ {1, . . . , N} : gjkthsx ∈ Qc
t

}
,

and for any J ⊂ {1, . . . , N}, set:

Z(J) :=
{

s ∈ AN
x

(
kt,

r

32
√

mn
, U c

)
: Js = J

}
.

Note that
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AN
x

(
kt,

r

32
√

mn
, U c

)
=

⋃
J⊂{1,...,N}

Z(J) (5.4)

Now, set

D1 := 1 − K1μ(σ2
√

mnθU) + K2e−λkt

rmn
. (5.5)

and

D2 := (k − 1)Ck
1 e−t/2, (5.6)

where K1, K2, λ are as in Theorem 2.2 and C1 is as in Corollary 4.5.
Let J be a subset of {1, . . . , N}. We can decompose J and I := {1, . . . , N} � J into 

subintervals of maximal size J1, . . . , Jq ⊂ J and I1, . . . , Iq′ ⊂ I (here and hereafter by a 
subinterval we mean a set of the form N ∩ [a, b] where 0 < a < b) so that

J =
q�

j=1
Jj and I =

q′

�
i=1

Ii.

Hence, we get a partition of {1, . . . , N} as follows:

{1, . . . , N} =
q�

j=1
Jj �

q′

�
i=1

Ii.

Now we inductively prove the following

Claim 5.3. For any integer L ≤ N , if

{1, . . . , L} =

�

j=1
Jj �


′

�
i=1

Ii, (5.7)

then the set Z(J) can be covered with at most:

(
C2

α

θmn

)d′
J,L+1 (

(29mn)mnK0
)dJ,L+1

emn(m+n)LktD
∑�′

i=1 |Ii|−dJ,L

1 D
∑�

j=1 |Jj |
2 (5.8)

cubes of side-length θe−(m+n)Lkt in Mm,n, where K0 is as in Theorem 2.2, and dJ,L, 
d′

J,L are defined as follows:

dJ,L := #{i ∈ {1, . . . , L} : i < L, i ∈ J and i + 1 ∈ I},

d′
J,L := #{i ∈ {1, . . . , L} : i < L, i ∈ I and i + 1 ∈ J}.
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Note that equivalently one can define

dJ,L =
{

� if L /∈ J

� − 1 if L ∈ J

as the number of intervals in J ∩ {1, . . . , L} with right endpoints < L, and, likewise,

d′
J,L =

{
�′ if L /∈ I

�′ − 1 if L ∈ I

as the number of intervals in I ∩ {1, . . . , L} with right endpoints < L.

Proof of Claim 5.3. We argue by induction on � + �′. When � + �′ = 1, we have dJ,L =
d′

J,L = 0, and there are two cases: either � = 1 and {1, . . . , L} = J1, or �′ = 1 and 
{1, . . . , L} = I1. In the first case

Z(J) ⊂
{

s ∈ AN
x

(
kt,

r

32
√

mn
, U c

)
: gikthsx ∈ Qc

t ∀ i ∈ {1, . . . , L}
}

⊂ AL
x

(
kt,

r

32
√

mn
, Qc

t

)
⊂ AL

x

(
kt, 1/2, Xt

>C3
αemnt

)
,

where the last step is due to the bound (5.3) on r. Therefore, Corollary 4.5 applied with 
M = C3

αemnt and N = L shows that this set can be covered with at most

Cα

θmn

(
(k − 1)Ck

1 e(mn(m+n)k− 1
2 )t
)L α̃t(x)

C3
αemnt

≤
(5.2)

Cα

θmn

(
(k − 1)Ck

1 e(mn(m+n)k− 1
2 )t
)L C4

αemnt

C3
αemnt

= C2
α

θmn

(
(k − 1)Ck

1 e(mn(m+n)k− 1
2 )t
)L

cubes of side-length θe−(m+n)Lkt in Mm,n. Clearly this number is bounded from above 
by (5.8), which takes the form

C2
α

θmn
(29mn)mnK0emn(m+n)Lkt

(
(k − 1)Ck

1 e−t/2
)L

.

In the second case

Z(J) ⊂
{

s ∈ AN
x

(
kt,

r

32
√

mn
, U c

)
: gikthsx ∈ Qt ∀ i ∈ {1, . . . , L}

}
⊂ AL

x

(
kt,

r√ , U c ∩ Qt

)
.

32 mn
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By Lemma 5.1, for any U ⊂ X we have

r0
(
∂1(U c ∩ Qt)

)
≥ r0(∂1Qt) ≥ C2e−pt.

So it is easy to see that since condition (5.3) is satisfied, condition (2.2) with t replaced 
by kt and condition (2.3) with S replaced by U c ∩ Qt are satisfied as well. Hence we can 
apply Theorem 2.2 with S replaced by U c ∩ Qt, N replaced by L, and t replaced with 
kt. This produces a covering of AN

x

(
kt, r

32
√

mn
, U c

)
by

(
4r

θ

)mn

K0emn(m+n)Lt

(
1 − K1μ

(
σ2

√
mnθ(U ∪ Qc

t)
)

+ K2e−λt

rmn

)L

≤ C2
α

θmn
(29mn)mnK0emn(m+n)Lkt

(
1 − K1μ

(
σ2

√
mnθ(U)

)
+ K2e−λt

rmn

)L

cubes of side-length θe−(m+n)Lkt, finishing the proof of the base of the induction.

In the inductive step, let L′ > L be the next integer for which an equation similar to 
(5.7) is satisfied. We have two cases. Either

{1, . . . , L′} = {1, . . . , L} � I
′+1 (5.9)

or

{1, . . . , L′} = {1, . . . , L} � J
+1. (5.10)

We start with the case (5.9). Note that in this case we have

dJ,L′ = dJ,L + 1 and d′
J,L′ = d′

J,L. (5.11)

Also, it is easy to see that every cube of side-length θe−(m+n)Lkt in Mm,n can be covered 
with at most 2mnemn(m+n)kt cubes of side-length θe−(m+n)(L+1)kt. Therefore, by using 
the induction hypothesis and in view of (5.8), we can cover Z(J) with at most

2mn

(
C2

α

θmn

)d′
J,L+1 (

(29mn)mnK0
)dJ,L+1

emn(m+n)(L+1)kt · D
∑�′

i=1 |Ii|−dJ,L

1 D
∑�

j=1 |Jj |
2

(5.12)
cubes of side-length θe−(m+n)(L+1)kt. Now let B be one of the cubes of side-length 
θe−(m+n)(L+1)kt in the aforementioned cover such that B ∩ Z(J) �= ∅. Clearly

B can be covered by
(

2θ
r

)mn

cubes of side-length re−(m+n)(L+1)kt

. (5.13)

32mn 32mn
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Let Br be one of such cubes that has non-empty intersection with Z(J), and let s ∈
Br ∩Z(J). Since s ∈ Z(J), it follows that g(L+1)kthsx ∈ U c ∩Qt. Therefore, if we denote 
the center of Br by s0, we have

g(L+1)kths0x ∈ BH

(
r

32
√

mn

)
(U c ∩ Qt) ⊂ ∂r(U c ∩ Qt). (5.14)

Moreover, for any s′ ∈ Br and any positive integer 1 ≤ i ≤ L′ − (L + 1) we have:

g(L+1+i)kths′x = gikt(g(L+1)kths′−s0g−(L+1)kt)(g(L+1)kths0x)

= gikthe(m+n)(L+1)kt(s′−s0)(g(L+1)kths0x).
(5.15)

It is easy to see that the map s′ → e(m+n)(L+1)kt(s′ − s0) maps Br into B
(

r
32

√
mn

)
. 

Hence, by (5.15)

{
s′ ∈ Br : g(L+1+i)kths′x ∈ U c ∩ Qt ∀ i ∈ {1, · · · , L′ − (L + 1)}

}
⊂ e−(m+n)(L+1)ktA

L′−(L+1)
g(L+1)kths0 x

(
kt,

r

32
√

mn
, U c ∩ Qt

)
+ s0.

So, in view of the above inclusion and (5.14), we can go through the same procedure and 
apply Theorem 2.2 with t replaced with kt, S replaced with U c ∩ Qt, N replaced with 
|I
′+1| −1 = L′ − (L +1), and x replaced with g(L+1)kths0x, and conclude that Br ∩Z(J)
can be covered with at most(

4r

θ

)mn

K0emn(m+n)(|I�′+1|−1)ktD
|I�′+1|−1
1

cubes of side-length θe−(m+n)L′kt. Therefore, in view of (5.13), the set B ∩ Z(J) can be 
covered with at most

2mn

(
θ
r

32mn

)mn (4r

θ

)mn

K0emn(m+n)(|I�′+1|−1)ktD
|I�′+1|−1
1

= K0
(
28mn

)mn
emn(m+n)(|I�′+1|−1)ktD

|I�′+1|−1
1

cubes of side-length θe−(m+n)L′kt. This, combined with (5.12) which is an upper bound 
for the number of cubes of side-length θe−(m+n)(L+1)kt in Mm,n needed to cover Z(J), 
implies that Z(J) can be covered with at most

K0
(
28mn

)mn
emn(m+n)(|I�′+1|−1)ktD

|I�′+1|−1
1 ·

2mn

(
C2

α
mn

)d′
J,L+1 (

(29mn)mnK0
)dJ,L+1

emn(m+n)(L+1)ktD
∑�′

i=1 |Ii|−dJ,L′
1 D

∑�
j=1 |Jj |

2
θ
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=
(5.11)

(
C2

α

θmn

)d′
J,L′ +1 (

(29mn)mnK0
)dJ,L′ +1

emn(m+n)LktD
∑�′

i=1 |Ii|−dJ,L′
1 D

∑�
j=1 |Jj |

2

cubes of side-length θe−(m+n)L′kt. This ends the proof of the claim in this case.
Next assume that (5.10) holds. Note that in this case

dJ,L′ = dJ,L and d′
J,L′ = d′

J,L + 1. (5.16)

Take a covering of Z(J) with cubes of side-length θe−(m+n)kLt in Mm,n, suppose B′ is 
one of the cubes in the cover such that B′ ∩ Z(J) �= ∅, and let s1 be the center of B′. 
Then, since 

√
mnθ < 1, it is easy to see that:

gLkths1x ∈ BH(
√

mnθ)(U c ∩ Qt)⊂∂1Qt. (5.17)

On the other hand, for any s ∈ B′ and any positive integer 1 ≤ i ≤ L′ − L we have:

g(L+i)kthsx = gikt(gLkths−s1g−Lkt)(gLkths1x)

= gikthe(m+n)Lkt(s−s1)(gLkths1x).
(5.18)

Note that the map s → e(m+n)Lkt(s − s1) maps B′ into B(1/2). Thus, by (5.18){
s ∈ B′ : g(L+i)kthsx ∈ Qc

t ∀ i ∈ {1, · · · , L′ − L}
}

⊂ e−(m+n)LktAL′−L
gLkths1 x (kt, 1/2, Qc

t) + s1

= e−(m+n)LktAL′−L
gLkths1 x

(
kt, 1/2, X>C3

αemnt

)
+ s1.

So in view of the above inclusion and (5.17), we can apply Corollary 4.5 with M =
C3

αemnt, gLkths1x in place of x, and |J
+1| = L′ − L in place of N . This way, we get that 
the set B′ ∩ Z(J) can be covered with at most

Cα

θmn
D

|J�+1|
2 · emn(m+n)k(|J�+1|)t ·

max
(
α̃t(gLkths1x), 1

)
M

≤
(5.2), (5.17)

C2
α

θmn
D

|J�+1|
2 · emn(m+n)k(|J�+1|)t

cubes of side-length θe−(m+n)kL′t. From this, combined with the induction hypothesis, 
we conclude that Z(J) can be covered with at most

C2
α

θmn
D

|J�+1|
2 emn(m+n)(|J�+1|)kt

(
C2

α

θmn

)d′
J,L+1

·

(
(29mn)mnK0

)dJ,L′ +1
emn(m+n)LktD

∑�′
i=1 |Ii|−dJ,L

1 · D
∑�

j=1 |Jj |
2

=
(

C2
α

mn

)d′
J,L′ +1 (

(29mn)mnK0
)dJ,L′ +1

emn(m+n)L′ktD
∑�′

i=1 |Ii|−dJ,L

1 D
∑�+1

j=1 |Jj |
2
(5.16) θ
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cubes of side-length θe−(m+n)L′kt, finishing the proof of the claim. �
Now by letting L = N , we conclude that Z(J) can be covered with at most

(
C2

α

θmn

)d′
J,N +1 (

(29mn)mnK0
)dJ,L′ +1

emn(m+n)NktD
|I|−dJ,N

1 D
|J|
2 (5.19)

cubes of side-length θe−(m+n)Nkt in Mm,n.
Clearly

d′
J,N ≤ dJ,N + 1. (5.20)

Also, note that since dJ,N ≤ max(|I|, |J |), the exponents |I| − dJ,N , |J | − dJ,N in (5.19)
are non-negative integers. So, in view of (5.4) and (5.19), the set AN

x

(
kt, r

32
√

mn
, U c

)
can be covered with at most:

∑
J⊂{1,...,N}

(
C2

α

θmn

)d′
J,N +1 (

(29mn)mnK0
)dJ,N +1

emn(m+n)NktD
|I|−dJ,N

1 · D
|J|
2

≤
(5.20)

emn(m+n)Nkt
∑

J⊂{1,...,N}

(
C2

α

θmn

)dJ,N +2 (
(29mn)mnK0

)dJ,N +1
D

|I|−dJ,N

1 D
|J|
2

≤ C0

θ2mn
emn(m+n)Nkt

∑
J⊂{1,...,N}

D
|I|−dJ,N

1 D
|J|
2 ·

(
C0

θmn

)dJ,N

= C0

θ2mn
emn(m+n)Nkt

∑
J⊂{1,...,N}

D
N−|J|−dJ,N

1 D
|J|−dJ,N

2 ·
(√

C0D2

θmn

)2dJ,N

cubes of side-length θe−(m+n)Nkt in Mm,n, where C0 := C4
α(29mn)mnK0 ≥ 1.

To simplify the last expression we will use an auxiliary

Lemma 5.4. For any n1, n2, n3 > 0 it holds that

∑
J⊂{1,...,N}

n
N−|J|−dJ,N

1 n
|J|−dJ,N

2 n
2dJ,N

3 ≤ (n1 + n2 + n3)N
.

Proof. Define the map φ : {1, . . . , N} → {n1, n2, n3}N by

φ(J) = (x1, . . . , xN ),

where for any i ∈ {1, . . . , N}, xi is defined as follows:
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xi :=

⎧⎪⎪⎨⎪⎪⎩
n1 if i ∈ I and (i − 1 ∈ I or i = 1) ;
n2 if i ∈ J and (i + 1 ∈ J or i = N) ;
n3 otherwise.

It is easy to see that φ is one to one; moreover for any J ⊂ {1, . . . , N}, the number 
of i ∈ {1, . . . , N} such that xi = n1 is |I| − dJ,N = N − |J | − dJ,N , and the number 
of i ∈ {1, . . . , N} such that xi = n2 is |J | − dJ,N . Therefore for any J ⊂ {1, . . . , N}, 
φ(J) corresponds to one of the terms of the form n

N−|J|−dJ,N

1 n
|J|−dJ,N

2 n
2dJ,N

3 in the 
multinomial expansion of (n1+n2+n3)N . Since φ is injective and there exists a one to one 
correspondence between {n1, n2, n3}N and the terms in the expansion of (n1 +n2 +n3)N , 
we conclude that ∑

J⊂{1,...,N}
n

N−|J|−dJ,N

1 n
|J|−dJ,N

2 n
2dJ,N

3 ≤ (n1 + n2 + n3)N

and the proof is finished. �
Applying the above lemma with n1 = D1, n2 = D2, and n3 =

√
C0D2
θmn , we conclude 

that AN
x

(
kt, r

32
√

mn
, U c

)
can be covered with at most

C0

θ2mn
emn(m+n)Nkt

(
D1 + D2 +

√
C0D2

θmn

)N

=
(5.5), (5.6)

C0

θ2mn
emn(m+n)Nkt

(
1 − K1μ(σ2

√
mnθU) + K2e−λkt

rmn
+ (k − 1)Ck

1 e− t
2

+
√

(k − 1)C0Ck
1

θmn
e− t

4

)N

≤ C0

θ2mn
emn(m+n)Nkt

(
1 − K1μ(σ2

√
mnθU) + K2e−λkt

rmn
+ k − 1

θmn
Ck

3 e− t
4

)N

cubes of side-length θe−(m+n)Nkt in Mm,n, where C3 := 2C1C0. The proof of Proposi-
tion 5.2 is now complete. �
6. An intermediate dimension bound

Recall that we are given a > 0 and a non-empty open U ⊂ X, and our goal is 
to estimate the Hausdorff dimension of E(F +

a , U) from above. The following technical 
theorem shows how to express E(F +

a , U) as the union of two sets, taking into account 
the behavior of trajectories with respect to the family {Qt} constructed in the previous 
section, and estimate their dimension separately.
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Theorem 6.1. Let {Qt}t>0 of X be as in (5.1). Then:

(1) There exists C1 ≥ 1 such that for all t > 2 and for all 2 ≤ k ∈ N, the set

S(k, t, x) := {h ∈ H : gNkthx ∈ Qc
t ∀N ∈ N} (6.1)

satisfies

codim S(k, t, x) ≥ 1
(m + n)k

(
1
2 −

log
(
(k − 1)Ck

1
)

t

)
. (6.2)

(2) There exist p ≥ m + n, 0 < r2 < 1
16

√
mn

, 0 < C2 ≤ 1 and b0, b, K1, K2, C3, λ > 0
such that for all t ∈ aN with t > 2, all 2 ≤ k ∈ N, all r satisfying

e
b0−kt

b ≤ r ≤ min(C2e−pt, r2), (6.3)

all θ ∈
[
4r, 1

2
√

mn

]
, all x ∈ X, and for all open subsets U of X we have

codim
(
{h ∈ H � S(k, t, x) : hx ∈ E(F +

a , U)}
)

≥
K1μ

(
σ2

√
mnθU

)
− K2e−λkt

rmn − k−1
θmn Ck

3 e−t/4

kt(m + n) . (6.4)

Informally speaking, S(k, t, x) is the set of h ∈ H such that along some arithmetic 
sequence (of times which are multiples of kt) the orbit of hx visits complements of 
large compact subsets of G. The dimension of S(k, t, x) and the dimension of the set 
{h ∈ H � S(k, t, x) : hx ∈ E(F +

a , U)} are estimated separately.

Proof of Theorem 6.1. Take {Qt}t>0 as in (5.1), and let U be an open subset of X.

Proof of (1): Let t > 2, and take 2 ≤ k ∈ N and x ∈ X. Our goal is to find an upper 
bound for the Hausdorff dimension of the set S(k, t, x) defined in (6.1); equivalently,

dim S(k, t, x) = dim {s ∈ Mm,n : gNkthsx ∈ Qc
t ∀N ∈ N} .

In view of the countable stability of Hausdorff dimension it suffices to estimate the 
dimension of

{s ∈ B(1/2) : gNkthsx ∈ Qc
t ∀N ∈ N} ,

which, due to (5.1), coincides with 
⋂

N∈N AN
x

(
kt, 1/2, Xt

>C3
αemnt

)
.

Applying Corollary 4.5 with M = C3
αe2mnt, we get for any x ∈ X and for any 

0 < θ ≤ 1√ :

mn
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dim
⋂

N∈N

AN
x

(
kt, 1/2, Xt

>C3
αemnt

)

≤ lim
N→∞

log Cα

θmn (k − 1)N CkN
1 e(mn(m+n)Nk− N

2 )t · max(α̃t(x),1)
M

− log θe−(m+n)Nkt

= log(k − 1)Ck
1 e(mn(m+n)k− 1

2 )t

kt(m + n)

= mn − 1
(m + n) ·

(
1
2k

− log(k − 1)
kt

− log C1

t

)

= mn − 1
k(m + n) ·

(
1
2 −

log
(
Ck

1 (k − 1)
)

t

)
,

where C1 is as in Corollary 4.5.

Proof of (2): Let a > 0, 2 ≤ k ∈ N, x ∈ X, and let t = �a for some � ∈ N. Our goal is to 
find an upper bound for the Hausdorff dimension of the set

{h ∈ H � S(k, t, x) : hx ∈ E(F +
a , U)}.

Recall that

S(k, t, x)c = {h ∈ H : gNkthx ∈ Qt for some N ∈ N}.

Therefore

{h ∈ H � S(k, t, x) : hx ∈ E(F +
a , U)}

=
{

h ∈ H : hx ∈ E(F +
a , U)

⋂( ⋃
N∈N

g−NktQt

)}

⊂
{

h ∈ H : hx ∈
⋃

N∈N

g−Nkt

(
Qt ∩ E(F +

a , U)
)}

.

Now suppose that t ≥ 2, and let N ∈ N and r > 0 be such that (6.3) is satisfied, where 
b0, b, C2, r2 are as in Lemma 5.2. Similar to the proof of part (1) and in view of countable 
stability of Hausdorff dimension it suffices to find an upper bound for the dimension of 
the set

E′
N,x,r :=

{
s ∈ B

(
re−(m+n)Nkt

32
√

mn

)
: hsx ∈ g−Nkt

(
Qt ∩ E(F +

a , U)
)}

for any x ∈ X. Now let x ∈ X and s ∈ E′
N,x,r. Then

giktgNkthsx = gikt(gNkthsg−Nkt)gNktx

= g h (m+n)Nkt (g x) ∈ U c ∀ i ∈ N,
ikt e s Nkt
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and at the same time e(m+n)Nkts ∈ B
(

r
32

√
mn

)
. It follows that

E′
N,x,r ⊂ e−(m+n)Nkt

(⋂
i∈N

Ai
gNktx

(
kt,

r

32
√

mn
, U c

))
. (6.5)

It is easy to see that if E′
N,x,r is non-empty, then gNktx ∈ ∂ r

32
√

mn
(Qt ∩ U c). Now take 

K1, K2, C0, C3, λ as in Lemma 5.2. By Lemma 5.2 applied to x replaced with gNktx, 
and using the fact that the Hausdorff dimension is preserved by homotheties, we have 
for any θ ∈

[
4r, 1

2
√

mn

]
:

dim E′
N,x,r ≤

(6.5)
dim

(
e−(m+n)Nkt

(⋂
i∈N

Ai
gNktx

(
kt,

r

32
√

mn
, U c

)))

= dim
(⋂

i∈N

Ai
gNktx

(
kt,

r

32
√

mn
, U c

))

≤ lim
i→∞

log
(

C0
θ2mn emn(m+n)Nkt

(
1 − K1μ

(
σ2

√
mnθU

)
+ K2e−λkt

rmn + k−1
θmn Ck

3 e− t
4

)i
)

− log θe−(m+n)ikt

≤ mn −
− log

(
1 − K1μ

(
σ2

√
mnθ(U)

)
+ K2e−λkt

rmn + k−1
θmn Ck

3 e− t
4

)
(m + n)kt

≤ mn −
K1μ

(
σ2

√
mnθ(U)

)
− K2e−λkt

rmn − k−1
θmn Ck

3 e− t
4

(m + n)kt
.

This finishes the proof. �
7. Theorem 6.1 ⇒ Theorem 1.2 ⇒ Theorem 1.1 ⇒ applications

We begin with a remark that

Ẽ(F +
a , U) =

⋃
j∈N

g−ajE(F +
a , U),

hence if an upper estimate for dim E(F +
a , U) is proved, the same estimate holds for 

Ẽ(F +
a , U) because of the countable stability of Hausdorff dimension and its invariance 

under diffeomorphisms. The same argument applies to

{h ∈ H : hx ∈ Ẽ(F +
a , U)} =

⋃
j∈N

g−aj{h ∈ H : hgajx ∈ Ẽ(F +
a , U)}gaj .

Therefore it is enough to prove Theorems 1.1 and 1.2 with E(F +
a , U) in place of 

Ẽ(F +
a , U).

We now show how the two parts of Theorem 6.1 are put together.
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Proof of Theorem 1.2. Let x ∈ X and a > 0. Recall that we are given the constants 
p, r2, b, K1, K2, C1, C2, C2, λ and a family of compact sets {Qt}t>0 such that statements 
(1) and (2) of Theorem 6.1 hold. To apply the theorem we need to choose k ∈ N and 
t ∈ aN. Here is how to do it. First define

k :=
⌈

max
(

4p

m + n
,

2p(mn + 2)
λ

, 4bp

)⌉
(7.1)

(note that k ≥ 4 since p ≥ m + n), and then choose t1 := max
(
K1, 4 log

(
(k − 1)Ck

1
))

. 
We remark that t1 ≥ 4 log 3 > 4, since C1 ≥ 1 and k ≥ 4. Statement (1) of Theorem 6.1
readily implies that

codim S(k, t, x) ≥ 1
4k(m + n) (7.2)

whenever t ≥ t1. Now let

c := C2, (7.3)

r3 := min
(

c2e−b0/b, cmn+2 K1

8K2
,

c3
(

K1

8(k − 1)Ck
3

)24p

, ce−2pt1 ,
( 1

2
√

mn

)24pmn
, r2

) (7.4)

r1 := r
1

24pmn

3 , (7.5)

and set

r := r(U, a)24pmn and t := a

⌈
1

2ap
log c

r

⌉
, (7.6)

where r(U, a) is defined by (1.8). Note that in view of (1.8), (7.5) and (7.6) one has

r ≤ r3. (7.7)

Also, it follows from (7.6) that

ce−2pt ≤ r ≤ ce−2p(t−a). (7.8)

Moreover,

t ≥
(7.6)

1
2p

log c

r
≥

(7.7)

1
2p

log c

r3
≥

(7.4)
t1,

and
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t ≥
(7.6)

1
2p

log c

r
≥

(1.8), (7.6)

1
2p

log c

ce−24apmn
= 12amn. (7.9)

We now claim that the inequalities (6.3) are satisfied. Indeed, the second inequality 
r ≤ min(C2e−pt, r2) follows immediately because

• r ≤ r3 by (7.7), and r3 ≤ r2 by (7.4);
• r ≤ C2e−2p(t−a) by (7.3) and (7.8), and t ≥ 4a by (7.9).

Furthermore, we have

e
b0−kt

b ≤
(7.1)

e
b0
b −4pt ≤

(7.8)

eb0/b

c2 · r2 ≤
(7.7)

eb0/br3

c2 · r ≤
(7.4)

r,

so the claim follows. We therefore can apply (6.4) to any θ ∈
[
4r, 1

2
√

mn

]
. We put 

θ := min(θU , 1
2

√
mn

), which is not greater than 1
2

√
mn

by definition. To show that it not 
less than 4r, write

θ ≥
(1.8), (7.7)

min
(

r
1

24pmn ,
1

2
√

mn

)
=

(7.4), (7.7)
r

1
24pmn

= r

r1− 1
24pmn

≥
(7.7)

r

r3
1− 1

24pmn

≥ r

r31/2 ≥
(7.4)

4r.

Thus we can conclude that

codim
(
{h ∈ H � S(k, t, x) : hx ∈ E(F +

a , U)}
)

≥
K1μ

(
σ2

√
mnθU

)
− K2e−λkt

rmn − k−1
θmn Ck

3 e−t/4

kt(m + n) . (7.10)

Observe that since θ ≤ θU , μ
(
σ2

√
mnθU

)
is not less than μ(U)/2 by definition of θU , see 

(1.6). We now claim that the numerator in the right hand side of (7.10) is not less than 
K1μ(U)/4. Indeed, we can write

k − 1
θmn

Ck
3 e− t

4 = k − 1
θmn

Ck
3 (e−6pt)

1
24p ≤

(7.8)

k − 1
θmn

Ck
3

(
r3

c3

) 1
24p

=
(7.3)

(k − 1)Ck
3

( r

c3

) 1
24p ·

(
r

1
24pmn

θ

)mn

· r
1

24p

≤
(1.8), (7.4), (7.6), (7.7)

(k − 1)Ck
3

(r3

c3

) 1
24p · 1 · μ(U) ≤

(7.4)

K1

8 μ(U)

and
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K2e−λkt

rmn
≤

(7.1)

K2e−λ· 2p(mn+2)
λ t

rmn
= K2(e−2pt)mn+2

rmn
≤

(7.8)

K2
(

r
c

)mn+2

rmn

= K2
r

cmn+2 · r ≤
(1.8), (7.4), (7.6), (7.7)

K2 · r3

cmn+2 · μ(U)24pmn

≤
(7.4)

K2 · K1

8K2
· μ(U)24pmn ≤ K1

8 μ(U).

Thus (7.10) implies

codim
(
{h ∈ H � S(k, t, x) : hx ∈ E(F +

a , U)}
)

≥ K1μ(U)
4kt(m + n) ≥

(6.3)

K1μ(U)
4k(m + n) · 1

p log c
r

;

hence, using (7.2), we get

codim
(
{h ∈ H : hx ∈ E(F +

a , U)}
)

≥ 1
4k(m + n)min

(
1,

pK1μ(U)
log c

r

)
.

Finally, we claim that the minimum in the right hand side of the above inequality is 
equal to pK1μ(U)

log c
r

. Indeed,

r ≤
(6.3)

ce−pt ≤ ce−pt1 < ce−pK1 =⇒ log c

r
≥ K1p =⇒ pK1μ(U)

log c
r

< 1.

Therefore

codim
(
{h ∈ H : hx ∈ E(F +

a , U)}
)

≥ pK1μ(U)
4k(m + n) · log c

r

≥
(c=C2≤1)

pK1

4k(m + n) · μ(U)
log 1

r

=
(7.6)

K1

96kmn(m + n) · μ(U)
log 1

r(U,a)
.

This finishes the proof. �
Proof of Theorem 1.1. Denote by H̃ the weak stable horospherical subgroup with re-
spect to F + defined by

H̃ :=
{[

s′ 0
s s′′

]
: s ∈ Mn,m, s′ ∈ Mm,m, s′′ ∈ Mn,n, det(s′) det(s′′) = 1

}
.

Let U be an open subset of X. Choose η > 0 sufficiently small so that for any 0 < r < η

the following conditions are satisfied:
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μ
(
σr/2U

)
≥ μ

(
U
)
/2,

θσr/2U ≥ 1
2θU ,

(7.11)

where θU is as in (1.6). We choose r′ > 0 and 0 < r < η sufficiently small such that the 
following properties are satisfied:

(1) Every g ∈ BG(r′) can be written as g = h′h, where h′ ∈ BH̃(r/4) and h ∈ BH(r/4).
(2)

gtB
H̃(r)g−t ⊂ BH̃(2r) for any 0 < r < η and t ≥ 0 (7.12)

(this can be done since for any t ≥ 0 the restriction of the map g → gtgg−t to H̃ is 
non-expanding).

For x ∈ X denote

Ex,r′ :=
{

g ∈ BG(r′) : gx ∈ E(F +
a , U)

}
.

Clearly E(F +
a , U) can be covered by countably many sets of type {gx : g ∈ Ex,r′}. Thus, 

in view of the countable stability of Hausdorff dimension, in order to prove the theorem 
it suffices to show that for any x ∈ X,

codim Ex,r′ 
 μ(U)
log 1

r(U,a)
,

where r(U, a) is as in (1.8) and c, r1 are as in Theorem 1.2.
Now let g ∈ BG(r′) and suppose g = h′h, where h′ ∈ BH̃(r/4) and h ∈ BH(r/4), then 

for any y ∈ X and any t > 0 we can write

dist(gtgx, y) ≤ dist(gth
′hx, gthx) + dist(gthx, y)

= dist
(
gth

′g−tgthx, gthx
)

+ dist(gthx, y) ≤
(7.12)

r/2 + dist(gthx, y).

Hence g ∈ Ex,r′ implies that hx belongs to E(F +
a , σr/2U), and by using Wegmann’s 

Product Theorem [37] we conclude that:

dim Ex,r′ ≤ dim
(

{h ∈ BH(r/4) : hx ∈ E(F +
a , σr/2U)} × BH̃(r/4)

)
≤ dim

(
{h ∈ BH(r/4) : hx ∈ E(F +

a , σr/2U)}
)

+ dim H̃

≤ dim
(
{h ∈ H : hx ∈ E(F +

a , σr/2U)}
)

+ dim H̃

(7.13)

Note that by (7.11) we have:
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r(σr/2U, a) = min
(
μ(σr/2U), θσr/2U , ce−a, r1

)
≥ min

(
μ(U)/2,

θU

2 , ce−a, r1

)
≥ 1

2 · r(U, a).
(7.14)

Therefore, by Theorem 1.2 applied U replaced by σr/2U and in view of (7.14) and (7.13)
we get

codim Ex,r′ ≥ codim
(
{h ∈ H : hx ∈ E(F +

a , σr/2U)}
)



μ(σr/2U)

log 1
r(σr/2U,a)

≥
1
2μ(U)

log 2
r(U,a)

≥
r(U,a) ≤r1 ≤1/2

1
4 · μ(U)

log 1
r(U,a)

This ends the proof of the theorem. �
Proof of Corollary 1.3. Let S be a k-dimensional smooth embedded submanifold of X, 
which we can assume to be compact. Then it is easy to see that one can find ε0, κ1, κ2 > 0
such that

μ
(
∂εS

)
≥ κ1εdim X−k

and

θ∂εS ≥ κ2ε

for any 0 < ε < ε0. Hence, in view of (1.8),

r(∂εS, a) ≥ min
(
r1,κ1εdim X−k,κ2ε, ce−a

)
,

where r1, c are as in Theorem 1.1. Therefore, if we denote

κ0 := min
(
κ

dim X−k
1 ,κ2

)
and p0 = max

(
dim X − k, 1

)
,

we will have r(∂εS, a) ≥ κ0εp0 as long as κ0εp0 < min (r1, ce−a). By Theorem 1.1 applied 
with U = ∂εS for ε as above we have

codim E(F +
a , ∂εS) 
 μ(∂εS)

log
(

1
r(∂εS,a)

) ≥ κ2εdim X−k

log
(

1
κ0εp0

) ,

which implies (1.9) for a suitable choice of εS , cS , and CS . The ‘in addition’ part is 
proved along similar lines and is left to the reader. �
Proof of Theorem 1.5. Recall that X can be identified with the space of unimodular 
lattices in Rm+n. It was essentially observed by Davenport and Schmidt in [10] (see 
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also [6,21,27,29] for other instances of the so-called Dani Correspondence) that the c-
Dirichlet improvability of s ∈ Mm,n can be restated in terms of a certain property of 
the F +-trajectory of the lattice hsZm+n. Specifically, suppose that (1.11) holds for some 
N ≥ 1 and 0 < c < 1, and take t such that

emt(cQ−n/m) = e−ntQ; (7.15)

then both sides of (7.15) are equal to c
m

m+n , and hence, in view of (1.3), s ∈ DIm,n(c)
implies that for all large enough t > 0 the lattice gthsZm+n has a non-zero vector of 
supremum norm < c

m
m+n . This in turn implies that hsZm+n ∈ Ẽ(F +, Uc), where

Uc =
{

x ∈ X : ‖v‖∞ > c
m

m+n for all v ∈ x � {0}
}

.

The latter is an open subset of X which, for example, contains a small enough neigh-
borhood of the standard lattice Zm+n. An application of Theorem 1.2 shows that the 
codimension of DIm,n(c) in Mm,n is positive. �

We remark that, as explained in [26, Remark 6], a combination of the methods from the 
present paper with measure estimates obtained in [26] can produce an effective estimate 
for the codimension of DIm,n(c). We refer the reader to [3] for some recent results on 
the set of Dirichlet improvable vectors, and to [25] for an extension of the problem of 
improving Dirichlet’s theorem to the set-up of arbitrary norms on Rm+n.

8. Concluding remarks

8.1. More precise estimates for dim E(F +, U)

Studying trajectories missing a given open subset has been a notable theme in ergodic 
theory. Such a set-up is often referred to as ‘open dynamics’ or ‘systems with holes’, see 
e.g. [15,16] and references therein. In particular, [15, Theorem 1.2] considers a conformal 
repeller supporting a Gibbs measure and gives an asymptotic formula for the set of 
points missing a ball of radius ε, showing the codimension to be asymptotically (as 
ε → 0) proportional to the measure of the ball. A similar formula was obtained by 
Hensley [18] in the setting of continued fractions. See also [8] for a modern treatment of 
the subject.

In view of these results one can expect that in our set-up the codimension of E(F +, U)
should also be asymptotically (as μ(U) → 0) proportional to the measure of U . In other 
words, conjecturally there should not be any logarithmic term in the right side of (1.7). 
However it is not clear how to improve our upper bound, as well as how to obtain a 
complimentary lower bound for dim E(F +, U) using the exponential mixing of the action 
or any other method. The only known result supporting this conjecture in a partially 
hyperbolic setting is a theorem of Simmons [34] which establishes the asymptotics for 
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the codimension of E(F +, U) in the set-up (1.2)–(1.3) and with U being a complement 
of a large compact subset of X.

8.2. Large deviations in homogeneous spaces

Let X = G/Γ be an arbitrary finite volume homogeneous space, let μ be a G-invariant 
probability measure on X, and let F + = {gt}t≥0 be a one-parameter subsemigroup of 
G acting ergodically on (X, μ). Given an open subset U of X and 0 < δ ≤ 1, let us say 
that a point x ∈ X δ-escapes U on average with respect to F + if x belongs to

Eδ(F +, U) :=

⎧⎨⎩x ∈ X : lim sup
T →∞

1
T

T̂

0

1Uc(gtx) dt ≥ δ

⎫⎬⎭ ,

that is, to the set of points in X whose orbit spends at least δ-proportion of time in U c. 
Note that for any 0 < δ ≤ 1 we have

E(F +, U) ⊂ Eδ(F +, U), (8.1)

which means that the sets Eδ(F +, U) are larger compared to E(F +, U); hence their 
dimension is greater than or equal to dimension of E(F +, U). Birkhoff’s Ergodic theorem 
implies

lim
T →∞

1
T

T̂

0

1Uc(gtx)dt = μ(U c) for almost all x ∈ X.

Hence, the set Eδ(F +, U) has full measure for any 0 < δ ≤ μ(U c), and has zero mea-
sure whenever μ(U c) < δ ≤ 1. This motivates estimating the Hausdorff dimension of 
Eδ(F +, U) for μ(U c) < δ ≤ 1.

Now let F + be Ad-diagonalizable, and let H be a subgroup of G with the Effective 
Equidistribution Property (EEP) with respect to F +. In a forthcoming work, by obtain-
ing an explicit upper bound for dim Eδ(F +, U), we plan to prove that for any non-empty 
open subset U of X there exists δU ∈ [μ(U c), 1) such that for any δU < δ ≤ 1 we have 
dim Eδ(F +, U) < dim X. This, in view of (8.1), strengthens the main result of [23]. A 
similar result was proved in [19] in the set-up (1.2)–(1.3) for trajectories divergent on 
average; see also [1,31] for extensions.

8.3. Dimension drop conjecture for arbitrary homogeneous spaces and arbitrary flows

As we saw in this paper, height functions on the space of lattices provide a powerful 
tool for studying orbits which spend a large proportion of time in the cusp neighborhoods. 
The construction of such functions for arbitrary homogeneous spaces was given by Eskin 
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and Margulis in [12], see also [14] for a survey. This can be used to control geodesic 
excursions into cusps in any homogeneous space. For example, Guan and Shi in [17] used 
a generalized version of the Eskin-Margulis function to extend the methods employed in 
[19] to arbitrary homogeneous spaces and show that the set of points with divergent on 
average trajectories has less than full Hausdorff dimension. By taking a similar approach, 
and by combining the methods of this paper with those of [12] and [17], one can solve the 
Dimension Drop Conjecture in much wider generality. This is the subject of the follow-up 
paper [24].
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