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1. Introduction

Let G be a Lie group, and let I" be a lattice in G. Denote by X the homogeneous space
G/T and by p the G-invariant probability measure on X. For an unbounded subset F' of
G and a non-empty open subset U of X define the sets E(F,U) and E(F,U) as follows:

EFU)={zrecX :gv¢UVgeF}
- E(F,U) :={x € X : 3 compact Q C G such that gr ¢ U Vg € F \ Q}
- U EBF.QU

compact QCG

(1.1)

of points in X whose F-trajectory always (resp., eventually) stays away from U. If F'
is a subgroup or a subsemigroup of G acting ergodically on (X, ), then the trajectory
Fz of z is dense for p-almost all x € X, in particular M(E(F, U)) = 0 whenever U has
non-empty interior.

The present paper studies the following natural question, asked several years ago by
Mirzakhani (private communication): if F(F,U) has measure zero, does it necessarily
have less than full Hausdorff dimension? In fact it is reasonable to conjecture that the
answer is always ‘yes’; in other words, that the following ‘Dimension Drop Conjecture’
holds: if FF C G is a subsemigroup and U is an open subset of X, then either E(F,U)
has positive measure, or its dimension is less than the dimension of X. The same can
be stated about E(F,U).

If X is compact, or, more generally, if the complement of U is compact, then the di-
mension drop conjecture follows from the uniqueness of the measure of maximal entropy,
see e.g. [30, Theorem 9.7] and [28, Proposition 7.5]. In that case an explicit estimate for
the codimension of E(F,U) was recently obtained in [23]. When X is not compact, the
situation is more complicated due to a possibility of the ‘escape of mass’ The conjecture
is known in the following cases:

o I consists of quasiunipotemt elements, that is, for each g € F all eigenvalues of Ad g
have absolute value 1. This follows from Ratner’s Measure Classification Theorem
and the work of Dani and Margulis, see [36, Lemma 21.2] and [9, Proposition 2.1].

o G is a simple Lie group of real rank 1 [11].

Another example is contained in a recent paper by Guan and Shi [17]: extending a method
developed earlier in [19], they proved that for an arbitrary one-parameter subgroup
action on a finite-volume homogeneous space the set of points with divergent trajectories
(that is, trajectories eventually leaving any compact subset of the space) has Hausdorff
dimension strictly less than full. See also [2,31] for a related work.

In this paper we establish a special case of the aforementioned conjecture for a specific,
and important for applications, non-compact homogeneous space of a higher rank Lie
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group, and for a special choice of diagonalizable elements of G. More specifically, we fix
m,n € N, let

G =SLy4n(R), T'=SLy4n(Z), X =G/T, (1.2)
and set
FT:={g; :t >0}, where g; := diag(e™,... e e ™ ... e ™). (1.3)

We will also choose a > 0 and consider a subsemigroup F,” of F'* generated by g,, that
is, let

Ff = {diag(e™",... e e e M)t €L}, (1.4)

An important role in the proof will be played by the unstable horospherical subgroup
with respect to F'™, namely

H:={hs:s€ M,,}, where hy = [16" ISJ . (1.5)
Here and hereafter M,, ,, stands for the space of m x n matrices with real entries. It will
be repeatedly used in the proof that the conjugation map hs — gihsg_; corresponds to
a dilation of s by e(m+m)t,

For the rest of this paper we let G, ', X = G/T', F; and H be as in (1.2)-(1.5). We
are going to denote by ||-|| the Euclidean norm on M,, ,,, and will choose a right-invariant
Riemannian structure on G which agrees with the one induced by ||-|| on M,, ,, = Lie(H).
If P is a subgroup of G, we will denote by BF (r) the open ball of radius r centered at the
identity element with respect to the metric on P coming from the Riemannian structure
induced from G. Also, to simplify notation, B(r) will stand for the Euclidean ball in
M., » centered at 0 with radius r, so that

BH(T) ={hs:s€Mpy, ||s| <r}={hs:s€B(r)}.

We will denote by ‘dist’ the corresponding Riemannian metric on G and will use the
same notation for the induced metric on X.

We need to introduce the following notation: for an open subset U of X and r > 0
denote by o,.U the inner r-core of U, defined as

o,.U :={z € X : dist(z,U°) > r}.

This is an open subset of U, whose measure is close to u(U) for small enough values of
r. The latter implies that the quantity

1
= < N > - .
o0 = s {0 <0 < 1 plo sl = 3001 (16)
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is positive if U # @. Also, for a closed subset S of X denote by 0,5 the r-neighborhood
of S, that is,

0pS = {z € X : dist(z, S) < r}.

Note that we always have 0,5 C (UT(SC))C. In particular, for z € X we have 9,{z} =
B(z,r), the open ball in X of radius r centered at z.

We denote by dim E the Hausdorff dimension of the set E, and by codim E its Haus-
dorff codimension, i.e. the difference between the dimension of the ambient set and the
Hausdorff dimension of E. The next theorem, which is the main result of the paper,
establishes the Dimension Drop Conjecture for the case (1.2)—(1.4), and, moreover, does
it in a quantitative way, giving an explicit estimate for the codimension of E (FF,U) asa
function of U and a. In what follows, the notation A > B, where A and B are quantities
depending on certain parameters, will mean A > C'B, with C being a constant dependent
only on m and n.

Theorem 1.1. There exist positive constants c,r1 such that for any a > 0 and for any
open subset U of X one has

codim E(FF,U) > LUB, (1.7)
0g r(U,a)
where
r(U,a) := min (u(U), 0y, ce” 1) . (1.8)

In particular, if U is non-empty we always have dim E(F;‘7 U) < dim X.

Similarly to previous papers on the subject, Theorem 1.1 is deduced by considering
the intersection of E(F,",U) with the orbits Hx of the group H.

Theorem 1.2. There exist positive constants c,r1 such that for any a > 0, any ¢ € X,
and for any open subset U of X one has

W)

codim ({h € H : hx € E(Ff,U)}) > s
log r(U,a)

where r(U, a) is as in (1.8).
As a special case of the two theorems above, in the next corollary the Hausdorff

dimension of the set of points whose g,-trajectory misses a small enough neighborhood
of a smooth submanifold of X is estimated.
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Corollary 1.3. If S C X is a k-dimensional embedded smooth submanifold, then there
exist eg,cs,Cs > 0 such that for any a > 0 and any positive ¢ < min(eg, cse™?) one has

dim X —k

: . 518 Tas
codim ({h € H : hx € E(F,,0.5)}) > Cs Tog(1/5) "

(1.9)

In addition, if k = 0 and S = {z}, the constants cs and Cs can be chosen independent
of z; that is there exist r,,c. > 0 such that for any a >0, any z € X and any 0 < € <
min (rz, c*e_“) one has

;L(B(Z,E)) .

codim ({h €H:hre E(Fj,B(zﬁ)}) > log(1/e)

(1.10)

Similar estimates hold for the codimension of E(F;‘, 0,5) and E(F;‘, B(z,r)) in X.

Remark 1.4. It is clear from (1.8) that Theorems 1.1 and 1.2, as well as Corollary 1.3,
produce analogous results for the action of the one-parameter semigroup F*: namely,
by letting a tend to zero one sees that the codimensions of E(F*,U) in X and {h € H :

hxz € E(F+,U)} in H are bounded from below by g min“(g{[)])ﬂy -y times a constant

dependent only on m,n.

Finally let us describe an application of Theorem 1.2 to simultaneous Diophantine
approximation. Given ¢ < 1, say that s € My, ,, is c-Dirichlet improvable if for all
sufficiently large N € N

there exists p € Z™ and q € Z™ . {0} such that L.11)
|sq — Plloc < eNT™ and 0 < ||qjoc < N. ’

Here and in the proof of Theorem 1.5 || - ||, stands for the supremum norm on R™, R™
and R™*". We let DI,, ,,(c) be the set of ¢-Dirichlet improvable s € M, ,,. It is easy
to see that s € DI, ,,(c) if and only if (1.11) holds for all sufficiently large N > 0, and
that Dirichlet’s theorem (see e.g. [33]) implies that DL, ,(1) = M,, . Davenport and
Schmidt [10] proved that the Lebesgue measure of DI, ,,(c) is zero for any ¢ < 1. On the
other hand, they also showed that (J,_,
m x n matrices, which is known [32] to have full Hausdorff dimension; in other words,
dim DI(¢) — mn as ¢ — 1.
In recent years much attention has been directed to the set

DL, »(c) contains the set of badly approximable

Sing,, , := (| DLnx(c)

c<1

of singular matrices. In [19] its Hausdorff dimension was estimated from above by

mn (1 — m;m)’ and then in [7] this estimate was shown to be sharp for any m,n with
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max(m,n) > 1, verifying a conjecture made in [19]. The case m = 1 was settled previ-
ously in [5]. Moreover, it is shown there that for any integer n > 2 and any ¢ > 0 for
small enough c it holds that

2 2

. n _
+ " < dim (DILn(c)) < — + /2 E

n
n+1

(see [5, Theorem 1.3 and Corollary 6.10] for a more precise estimate).
As a corollary from our main result, we deduce that for any ¢ < 1 the codimension of
DI,, . (c) is positive:

Theorem 1.5. dim (DL, ,(c)) < mn for any ¢ < 1.

The structure of the paper is as follows. Roughly speaking, the proof has two main
ingredients. One deals with orbits staying inside a fixed compact subset of X, which are
handled in §2 with the help of the exponential mixing of the g;-action on X as in [23].
The other one (§§3-4) takes care of orbits venturing far away into the cusp of X; there
we use the method of integral inequalities for height functions on X pioneered in [13]
and thoroughly explored in [19]. The two ingredients are combined in §5 in the form of
a covering result (Proposition 5.2). Then in §6 the results of the preceding sections are
used to derive two separate dimension bounds (Theorem 6.1), which are then used in §7
to prove Theorem 1.2. After that we show how the latter implies Theorem 1.1, and use
Theorems 1.1 and 1.2 to deduce Corollary 1.3 and Theorem 1.5.

We remark that the methods of this paper are applicable in much wider generality: in
particular, with some modification of the argument the Dimension Drop Conjecture can
be established for arbitrary Ad-diagonalizable flows on quotients of connected semisimple
Lie groups without compact factors by irreducible lattices. This is going to be addressed
in a forthcoming work [24]. In the last section of the paper we list some other general-
izations and open questions.

Acknowledgments. The first-named author is grateful to Maryam Mirzakhani and Alex
Eskin for a motivating question which kick-started this project. Thanks are also due to
the anonymous referee for useful comments.

2. A covering result for orbits staying in compact subsets of X

For N € N for any subset S of X, any x € X and any ¢ > 0 let us define the following
set:

AN (t,r,S)={s € B(r): guhsxr € S Vie {1,...,N}}. (2.1)

For our dimension estimates it will be useful to have a bound on the number of cubes of
sufficiently small side-length needed to cover the sets of the above form. In this section
we will consider the case of S being compact, which was thoroughly studied in [23]. We
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are going to apply [23, Theorem 4.1], which was proved in the generality of X = G/T
being an arbitrary homogeneous space, and H being a subgroup of G with the Effective
Equidistribution Property (EEP) with respect to FT. The latter property was shown
there to hold in the case (1.2)—(1.3), or, more generally, as long as H is the expanding
horospherical subgroup relative to F'", and the F*-action on X is exponentially mixing.
See also [20,22] for some earlier motivating work on the subject.

Here we need to introduce the notion of the injectivity radius of points and subsets
of X. Given z € X, let us denote by ro(x) the injectivity radius of x, defined as

sup {7” > 0:the map G — X, g+ gz is injective on BG(’I“)} .
If K C X is bounded, we will denote by

ro(K) := xlgf(ro(x)

the injectivity radius of K.

The following theorem is an immediate corollary of [23, Theorem 4.1] applied to
P=H,L=dimP =mn and U = §°.

Theorem 2.1. There exist constants

0<ry < ,bp>2, 0>1, 0< K1 <4, Kp>1, Ko, A>0

1
16/ mn

such that for any compact subset S of X, any 0 < r < min (r0(61/250), 1"2), any x € 0,5,
any N € N, and any t € R satisfying

1
t > by +blog . (2.2)
the set AY (t, 16&’%, S) can be covered with at most
Koe (mA4n)Nt (1—K1M(O}S )+W

balls in M, of diameter re~(Mm+mINt,

We are going to apply the above theorem to cover sets of type (2.1) with cubes of
diameter substantially bigger than re~(m+™Nt Namely we will work with cubes of side
length fe~ (MmNt where 0 € [4r, ﬁ]

Theorem 2.2. Let 7o, by, b, Ko, K1, Ko and X\ be as in Theorem 2.1. Then for any
compact subset S of X, any r > 0 such that
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r < min (ro(815),72), (2.3)

any t satisfying (2.2), any 6 € [47‘, 2\/—} any x € 0,5 and any N € N, the set
AN (t, m, S) can be covered with at most

4r\™" mn(m+n c Kae N
(?) Koe (m+n)Nt (1 — KU},(O’QWQS') + jmn >

cubes in M, ,, of side length §e=(m+mINt,

Proof. Let S be a compact subset in X, let r, ¢t and N be such that conditions (2.2)
and (2.3) are satisfied, and let 6 € [47", 2\/7} Let Cy be a covering of B(m)
with cubes of side-length fe~("*+™Nt in A7, . whose interiors are disjoint and whose
sides are parallel to the coordinate axes. Next, consider a covering Cj, of Ugec, R with
interior-disjoint cubes of side-length re (m+”)N tin My, ,,, also with sides parallel to the
coordinate axes. Here and hereafter we will denote by Leb the Lebesgue measure on
M-

Let x € X. We need the following lemma.

Lemma 2.3. For any cube R in Cy which has mon-empty intersection with the set
AN (¢, 32\/W’S there exist at least ( ~ )™ cubes in Cyy which lie in the interior of

R. Moreover, all such cubes are subset of AY (t, m,@m(yﬁ?).

Proof. Observe that any cube in Cj, that contains a point of 0, (m+ny~t R must lie in
the interior of R. Therefore, the number of cubes in C}; that lie in the interior of R is at
least

Leb (0,0 omimneR) (6 — 2r)mme=mnimtn)Nt ( 0 )m"

pmne—mn(m+n)Nt - pmne—mn(m+n)Nt Z

Now let B be one of those cubes. The side-length of R is

1
06—(m+n)Nt < ae—bo(m—i-n)N op b(m+n)N < —2(m+n) .
(2.2) (b0>2)2\/
r
4 4 —2n
< Sam (W) AV < 5

hence its diameter is at most 32’% Since R has non-empty intersection with B ( 32&%)7

we have B C R C B(16 \/7) Moreover, since by our assumption
RNAY (t o ) # @, we can find s € R such that g;thsx € S foralli € {1,...,N}.

7 32¢y/mn’
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To prove that B C AY (t,m,amf)s), we need to take any s’ € B and any
i €{l,...,N} and show that

githsrx S 8\/@95 (2.4)

Clearly
giths® = (giths —sg—it)giths, (2.5)
and, since both s and s’ are in R, it follows that
Is" = sl < V/mne= (TN,

hence githy—sg—it € B (y/mn#) C BY(y/mnf). Thus, since gith,x € S, from (2.5) we
obtain (2.4), which finishes the proof of the lemma. 0O

Now note that every ball of diameter re—(m+n)Nt iy M., », can be covered with at most
2" cubes of side-length re~(m*+™Nt in Cn. Hence, by Lemma 2.3 and by Theorem 2.1
applied to S replaced with 0 /m9S C 0125, for any x € 0,8 C 0:(0 smnpS) the set

AN (t, m, S) can be covered with at most

2r\ """ Kye 2T
(g) gmn Koemn(ern)Nt (1 _ KlM(UT‘(U\/WGSC)) + imn )

A mn K. E_At N
mn(m+n)Nt ¢ 2
< (?) Koe ( ) (1 — KlM(UQ\/WOS ) + pmn )

cubes in M, ,, of side-length fe~(m+T™)Nt_ This finishes the proof. 0O

3. Height functions and non-escape of mass

In the next two sections we describe trajectories which venture outside of large com-
pact subsets of X. The method we are using, based on integral inequalities for height
functions, also known as Margulis functions (see [14] for a detailed survey), was intro-
duced in a breakthrough paper of Eskin, Margulis and Mozes [13], and later adapted
n [19]. Our argument basically follows the scheme developed in the latter paper, with
minor modifications. See also [17,31,35] for other recent related results obtained with the
technique of Margulis functions.

Let z € X be a lattice in R™*". Following [13], say that a subspace L of R™*" is
z-rational if L N« is a lattice in L, and for any z-rational subspace L, denote by d, (L)
the volume of L/(LNz). Equivalently, let us denote by ||-|| the extension of the Euclidean
norm on R”™*" to A(R™*"); then
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dy (L) = ||lvg A -+ Avy||, where {v1,...,v;} is a Z-basis for L N . (3.1)

For any i = 1,...,m+n and any € X we let F;(x) denote the set of i-dimensional
z-rational subspaces of R™+™,
Now for 1 < i < m + n define

ai(z) = sup{ L eFi(m)}.

1
dy(L)
Clearly i, 4n(2) = 1, and for convenience we also set ag(z) = 1 for all x € X. Also, note
that aq(z) is precisely the reciprocal of the norm of the shortest vector in . Functions
Q1. Qmin—1 can be thought of as height functions on X in the following sense:

Lemma 3.1. A sequence of points x; diverges in X (leaves every compact subset) if and
only if im;_,o () = 0o for some (equivalently, for all) i =1,...,m+n — 1.

Proof. We refer the reader to [4] for basic facts in geometry of numbers. By Mahler’s
Compactness Criterion, a sequence of lattices z; diverges in X if and only if
lim;_,o, a1 (z;) = oo. Thus to prove the lemma it suffices to show that, for any se-
quence (x;) C X, limj oo aq(z;) = oo if and only if lim; o a;(z;) = oo for all
i=1,....m+n—1.

We first prove the reverse implication. Assume that for some x € X, ¢ > 0, and
1 <i<m+n—1, we have a;(x) > % Then, by definition there must exist a i-dimensional
a-rational subspace L such that d, (L) < e. It is easy to see that, by applying Minkowski’s
Convex Body Lemma to LNz, one can find a vector of length < ¢!/ in z, which implies
that aq(z) > %

To prove the forward implication, assume that z € X, and denote the shortest vec-

tor in x by v;. Note that by definition «;(z) = m Extend {v1} to get a reduced
basis {v1, ..., Um4n} of z. By Minkowski’s Second Theorem, the product [[;" [Jvx| is

bounded from both sides by uniform constants. Also, by definition of reduced lattice,
we have [|vir1|| > |lvs|| for 1 < i < m + n. Hence, whenever |lv;|| is sufficiently small,
for any 1 <4 < m 4+ n the product H2:1 |lvg|| can be made arbitrarily small. Moreover,
by Hadamard’s inequality for any ¢ € N we have |Jvy A -+ Av;] < szl ||vg]|- Hence,
we conclude that whenever |v|| is sufficiently small (equivalently, a;(z) is sufficiently
large), for any 1 <i < m+n, ||[vg A---Av;|| can be made arbitrarily small, which implies
that a;(z) can be made arbitrarily large. This finishes the proof. 0O

As in [19], we will approximate the Lebesgue measure on a neighborhood of identity
in H by the Gaussian distribution on M,, . Namely, we will let p,2 denote the Gaussian
probability measure on My, , where each component is i.i.d. with mean 0 and variance

o?.

In the following theorem, which is a simplified version of [19, Corollary 3.6], we push
forward the probability measure p; from M,, , to the orbit Hx, where z € X, and then
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translate it by g;. Let us use the following notation: for z € X, ¢t > 0 and a measurable
function f on X define

La(f) = / F(gihsz) dpa(s).
M ,n

Theorem 3.2. There exists cg > 1 depending only on m,n with the following property:
foranyt>1, any x € X, and for any i € {1,...,m+n — 1} one has

Ios (01"%) <o <e-t/2ai<a:>“2 et v %(m)l/?au(w)l/?) .

(3.2)

ax
0<j<min(m+n—i,i)

To make the paper self-contained, we include all the details of the proof. The first
step, an analogue of [19, Proposition 3.1], is to obtain an estimate similar to (3.2), but
replace the height functions «; with m, where L € F;(x) is fixed, and instead of the
Gaussian measure p; use the probability measure dk on the maximal compact subgroup
K =8S0(m+n) of G. Note that in the argument below all the implicit constants depend

only on m, n.

Proposition 3.3. For any t > 1, any i € {1,...,m + n — 1}, and any decomposable
v=v; A Av; € N'(R™T™) we have:

/ lgekol| V2 dk << =2 o] V2.
K

Proof. Notice that K acts transitively on the set of decomposable v € /\i(Rm+7‘) with
a fixed norm. Therefore [, ||gikv||=*/? dk is a function of [|v]|, and from its homogeneity
it follows that

/ lgkol| =12 dk = C(0)lJo]| 7>
K

for some function C' : Ry — R,. Now choose x1,...,z; to be independent standard
Gaussian R™""-valued random variables. Then we have

. /””’“”ﬁA"'Awi)ll‘mdk = COE(|lzy A A7),
K

where the right hand side is finite in view of [19, Lemma 3.2]. On the other hand, using
the K-invariance of z1,...,x; we get
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E /llgtkmA~-~sz«>||*1/2dk =E|lge(a1 A~ A )| 72
K

Thus to prove the proposition, it suffices to show that
E(|lge(zi A A $¢)||71/2) < e 2.

Let VT C R™*" denote the m-dimensional subspace spanned by e1,..., e, and let V'~
be the complementary subspace, so that

lgewll = €™ [[oll, lgewl| = e=™[|wl]

for v € V* and w € V™. In particular, for any v € N (V) we have ||gv|| = e™||v]|. Let
7 A'(R™+7) = AY(VF) be the natural (orthogonal) projection. Clearly, we have:

7D (@ A Awg) = 7D (@) A ArD (@),

1 . . . . . .
where each of 7{ )(a:j) is a standard Gaussian random variable in m dimensions.

We first assume that ¢ < m. Then we have:
lge(@in--Azi)|| = 7P ge(an- Az = gm (w1 A Azy) | = e |alD (i A+ Ay)
hence

—int

E(lge(zi A Ay)|72) < e T E(|lnl) (@1 A Awg)]|TH?) < e 8,

where in the last inequality we are again using [19, Lemma 3.2], i.e. the finiteness of
E(||x1 A --- A x;]|7*/2). This finishes the proof for i < m. The case m < i < n can be
handled by duality, following the lines of the proof of [19, Proposition 3.1]. O

Let us introduce the following notation: if h € G, we will denote by ||h||oo the norm

of h viewed as an operator on A(R™*"). We note that ||h|lec = ||h7!||co for any h € H,

since h = h, and h~! = h_, are conjugate by Ig” _0[ . That is,

sl ZH vl < Nlhsvll < [[hsllocllvll - for any s € M, and v € A(R™ ™). (3.3)
Note that ||hs||eo grows polynomially in s: more precisely,
1hslloo < [fs]™mCmm). (3.4)
We will also use a norm estimate similar to (3.3) but for the g;-action:

e || < |lgsv]| < €™ |jv|| for any t > 1 and v € A(R™T™). (3.5)
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The next lemma, which is a special case ‘8 = 1/2’ of [19, Lemma 3.5], shows that
Proposition 3.3 will remain valid if integration over K is replaced with integration over
a bounded subset of M, ;.

Lemma 3.4. There exists a neighborhood W of 0 in My, ,, such that for any so € My, n,
t>1,ie{l,...,m+n—1}, and decomposable v € \'(R™ ™) we have

[ Mol 72 ds < g 122 [ kol 172
so+W e

Proof of Theorem 3.2. Fix x € X and i € {1,...,m+n — 1}. Let Ly € F;(x) be such
that

1
a;(x) = . 3.6
)= T 30
Note that in view of (3.3) and (3.5) we have
1 1
ai(gihz) < ———— < ™t
ilgehe) < o Ty <€ iy .
L .
< ™ | s < ™| | oot ().
< bl s < € (o)

We shall consider two cases.

Case 1. The subspace Lg is an outlier, that is, d,(Lg) is much smaller than d,(L) for
any L € F;(z) different from Ly. Namely,

d.(L) > e*™d,(Ly) VL€ Fi(x)~ {Lo}.
Then for any L € F;(x) \ {Lo} and h € H in view of (3.3) and (3.5) we have
dz(hLo) < |[Allscda(Lo) < ™™™ [|h]|oods (L) < e*™™||h]|3,dx (R L),

hence

dy(gehLo) < €""dy(hLo) < e~ ||h|%,do(hL) < |13 ds (geh L)

h 2
Therefore «;(gihz) < [l and

~ dx(g:hLo)

L (0 < [ billcdaloihiLo) ™ dpr(s). (3.

M n
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Take W C M, ,, as in Lemma 3.4. Clearly, for any s’ € M, ,,

/Hhs||oodw(9thsLo)_l/2dpl(s)

s'+W
_ lIs)? -
< (L Ioe™®) [ et as (39
hoW
L2 o)) ~1/2
(3_4) e 2 dx(gthsL) d87

hoW

where the implied constant is independent of s’. Summing over a lattice A in M,, ,,
sufficiently fine so that M, , = W + A, we conclude that

| Idldatoihalo) 2o < Y [ allcdalgiheLo) ™ dpa(s)
M s'€Ag Ty

9/ 2 ’
(<<) o= u.zu +Oo(IIs"ll) / dz(gthsLO)_1/2dp1(s)
3.9

s'eN s W

s’

2 ’
(by Lemma 3.4) < Z ||| 2/ 2~ 2 +O0(I1s ”)/dm(gtkLo)_l/z dk
s'eN e

< /d%(gtkLO)*l/2 dk.
K

Thus, (3.8) and Proposition 3.3 give
Lo (a}”) < e’t/2dr(Lo)*1/2 (:) eft/Qai(x)l/Q.
Case 2. There exists L € F;(z) different from Ly such that

dy(L) < €™ d,(Lg). (3.10)

Let j be the dimension of L/(L N Ly) = (L + Lg)/Lo; then the dimension of L + Lg
is equal to 7 + 7. Note that we have

dy(L)dy(Lo) > dy(L N Lo)dy (L + Lo), (3.11)

see [13, Lemma 5.6]. Then for any h € H we can write

™™ |Aloo 2™ || o
ai(gthz) < €™ h||oai(z) =
(g¢hz) (3.7 IAllooci () 3.6) dz(Lo) (3.10) d.(L)d(Lo)
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< 62mnt||h||oo < 62m'mt||h|| By (.’E)Ck ({IJ)
(3.11) \/dx(LﬂLo)dx(L+L0) = oo i+j i—j .

Hence

Lol <emt max - fass@ais @) [ 02 ),

0<j<max(m-+n—i,i)
Mrn,n
It follows from (3.4) that

/ a2 dpi(s) < 1,
M n

hence combining the above two cases establishes (3.2) with some uniform ¢g. O

An immediate application of Theorem 3.2 is obtained via the ‘convexity trick’ in-
troduced in [13] and formalized in [19]: from (3.2) and [19, Proposition 4.1] with

B; = 1/2 for each i it follows that for any ¢ > 1 there exist positive constants
wo = wo(t), ..., Wmtn = Wmtn(t) and Cp such that the linear combination
m-+n
G = Z wia;'/? (3.12)
=0
satisfies

I, (&) < QCoe_t/Q&(x) +Cy

for all x € X. However, for our purposes it will be necessary to get precise expressions
for the constants wy, . . .,wWm+n and Cy. This forces us to go through the argument from
[13] and [19] adapted for this special case. Namely, take

e—(77Ln+1/2)t

g = E(t) = m, (313)

for i € {0,...,m + n} define p(i) := i(m +n — i), and let

e—(mn-{-%)i(m—&-n—i)t

(4) = P —
wit) =¢ (m +n — 1)imen—0)
This gives rise to the height function of the form (3.12) which we are going to use in the
later sections. Since it depends on the (fixed) parameter ¢, with some abuse of notation
we will denote it by

m+n min __(mn4+1/2)i(m+n—i)t

~t_ _ 1/2 _ € 1/2
a= > wilt)' = o v e (3.14)
=0 1=0
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A key role in our proof will be played by subsets X consisting of points x with large
(resp., not so large) values of &!(z). Namely, for M > 0 let us define

Xy ={zeX:a'(z) >M}and XL, :={z e X :a'(x) < M}. (3.15)

Since @' is proper, the sets X% ,, are compact, and Xt> u are ‘cusp neighborhoods’ with
compact complements.

Observe that for any ¢, 7 such that 0 < j < min{i,m + n — i} we have
2p(i) —p(i+7) —p(i—3) = 2i(m+n—i)=(i+j)(m+n—i—j)—(i—j)(m+n—i+j) = 2j%

Then for each i € {1,...,m + n — 1} the inequality (3.2) implies

Loy (wiagm) < COEp(i) <€_t/2ai(l‘)1/2 4 gmnt max \/ai+j($)1/204i—j(95)1/2>

0<j<min(m-+n—i,i)

. _ -2 . . . .
— 0P De 20, (2) 2 4 coed e max \/Ep(z+3)ai+j(x)l/Qgp(zfg)ai_j(l-)l/Q
0<j<min(m+n—1,i)

—t/2 1/2 mnt
< cowie 0y (2)"? + coce . max \/wiﬂaiﬂ(m)lmwi,jai,j(x)l/z.
0<j<min(m+n—i,i)

1/2

Since both w;ja;4j(2)'/? and w;_ja;—;(x)'/? are not greater than &*(x), we obtain

L (@)

m+n—1 m+n—1
Iy <2 + Z wi@i1/2> <2+ Z Lo (wiail/2>
=1

= (3.16)
2 + coe 2@t () 4+ (m +n — 1)coe(t)e™tat (z).

Thereby we have arrived at
Proposition 3.5. Let &t be defined by (3.14), and let co be as in Theorem 3.2. Then:

(a) For anyt>1 any x € X one has

I.(@h) <24 2coet?at (z). (3.17)
(b) For anyt>1 and any x € X;et/z/% we have:
I (&%) < dcoe™2at (). (3.18)

Proof. (3.17) is obtained from (3.16) via the substitution (3.13). Part (b) is immediate
from (a) since a‘(z) > % is equivalent to 2 < 2cpe~t/2a!(x). O
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Remark 3.6. Note that it follows from (3.1) and the definition of functions «; that for
any i =0,...,m+n, h € Gand z € X one has

1 _
T () < ) < [h oo (a).

1/

Since &' is a linear combination of functions «;’, it satisfies similar inequalities. Specif-

ically, in what follows we are going to take h from the ball B(2) of radius 2 in G. Let us
define

_ 1/2
Cy := sup max (”h”oo’Hh 1”00) / ;
heB(2)

then it is clear that for any h € B(2) and any € X we have:

Clat(z) < al(hx) < Cual(x). (3.19)

[0}

4. Covering results for the orbits visiting non-compact part of X

In the following proposition, which is the main result of this section, we will fix x € X,
k,N € N and t, M > 0, and will work with the set

AY (kt,1,0: X5 ) = {s € B(1) : ginthsw € e XL pp Vie{l,...,N}}

4.1
= {s€ B(1): @ (gur-1)thsz) > CoM Vie{l,...,N}}, (1)

where C,, is as in Remark 3.6.

Proposition 4.1. There exists C; > 1 such that for any 2 < k € N, any t > 2, any

N eN, any x € X, and for any M > C,e 2

we have
~t k_—+ N ~t
/ &' (gNkthsz) ds < ((k —1)Cfe 2) max (&' (z),1).
AN (kt,l,g,X;CaM)

Proof. Let us fix z,k,t, N and M as in the statement of the proposition; the sets defined
in the course of the proof will depend on these parameters. Define

g = {(31, coysk) € B Gt gihs,, - gihs, ) > M} .

Then we can write
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/ / G (gihay - gtha ) dps (5) -~ dpy (51)
7Z

caltm
[ [ L Gt gtha@) T, s dp(sica) - dpr (1)

(M7n,,n)k71
St [ [ a g (s (),
3.18

(Mo, ) =1
(4.2)

where ¢g is as in Theorem 3.2. Note that the use of Proposition 3.5 in the last step is

mnt

justified since O M > ™3™ > et/2/cy. Next, by using (3.17) (k — 1) times we get:

/ / & (gehay_, -+~ geho, @) dpr (sp—r) - - dpi (1)
(Myp,m )1

< (2c0¢2)" 20 (@) + 2((2c0e F)F 2 4 - 4 1)
< (200)" 7% () + 2(k — 2)(200)" 77 < 4(k — 1)(2¢0)* " max (4 (2), 1).

So by combining (4.2) and (4.3) we have:

/- .- / dt(gthsk < gihs, @) dpi(sg) - dp1(s1) < 8(k—1)(260)k_16_% max (o?t(ac)7 1).
Z .1
calm

Now define the function ¢ : B(l)k — My, by

k
O(81,...,8) = Z e~ (mIm=Dtg. (4.4)
j=1

Note that

gthsk e gthsl = gkthtﬁ(sl,.‘.,sk)- (45)
We will need the following observation:

Lemma 4.2. For any M >0, ¢~ (¢(Zn)) C Zez1y

Proof. Let (s1,...,s;) € B(1)" be such that ¢(sy,...,s,) € ¢(Za). Then there exists
(s1,...,8,) € Zy such that ¢(s1,...,s6) = ¢(s],...,s)). Hence, using (4.5) we get

gth‘s;c e gthsl = gths;€ e gths’17

which implies
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gthsk_l te gthsl = hs;cfskgths;cil e gths’1~
Note that hy _,, € B (2). Therefore, by (3.19) we have

a'(gihs_, - gihs, @) = Cta (gihgy | -+ gihsy ) > O M.

Sk—1

Hence, (81, .,5k) € Z¢-1,,, which finishes the proof of the lemma. O

Using the above lemma we obtain
/ / 1¢(ZM)(¢(517---aSk))&t(gkthd)(sl,“.,sk)x)dpl(sk)"'dpl(sl)
B(1)*

< [ [ aaha i doss) - dons) (16)
zZ

calm

< 8(k — 1)(2¢0)* e~ % max(a'(x), 1).
To convert the above multiple integral to a single integral, we will use the following

Lemma 4.3. There exists 0 < E < 1 such that for any positive measurable function f on
My, and any

,0<6<1 (4.7)

we have

// flex +y)dpris2(x)dpi(y) > = / [(2) dpiie2(1462)(2)-
(1)

o~}

B(1)?

Proof. Let € and ¢ be as in (4.7). For convenience denote o := v/1 + 2. Consider the
change of variables

T
(Z,’U) = <E£L’ + Y, ; - 50’3/) 9
or, equivalently

o(v+eoz) z —eov
_ _ zz€ov 48
11e202 0 YT 11202 (48)

It is easy to verify that
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and

|I$H2 I211% + [loll?

2
e = BN

(4.10)
Denote
D= {(2,0) € (Mmn)?: |2l <1, |Jo]| < 1/4, zivi5 >0 Vie{1,...,m}, j€{l,...,n}}.
It readily follows from (4.8) that
(z,v) €D = |z <1land]y| <1 (4.11)

Therefore for any f one has

w2
/ flex +y) dpris2(x)dpr(y) (@roymn / flez +y)e (5 )dxdy
1)2 1)2

qu +v )2
> 2(1+e202) (z d
(4.9), (4.10), (4.11) (27T(1+6202 //f c zav

> Plye2q? ([0 1 \/1771}%) : / f(2) dp1ie202(2)

B(1)
1 mn
> 0, —— . z)d -2(2). O
(5:7),033/32 <[ 4\/%] ) B(/l) f(2)dp1ye2o2(2)

Define o;(t) := \/Z;;ll e~2(mtn)jt for any i € N. Since e~(m+™* < L because of the
assumption ¢ > 2, for any ¢ € N we have 0;(t) < 1. Hence, by using Lemma 4.3 (k — 1)
times with € = e=("+™ and § = o (t),...,0%_1(t) respectively we get

k—1

(1]

1¢(ZM) (s)dt (gkthsx) dp1+gk(t)2 (8)
B(1)

i / Lo(2an) ()8 (grths) dp1ter (1401 (12) (5)

B(1)

< / / Lozany (@(s1, -5 86)) @ (Grthg(sy,....s0)) dp1(sk) - - - dpi(s1)
B(1)*

< 8(k —1)(2c0)" e~ % max (a'(x),1).

Hence,
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8(k —1)(2c0)*""

/ Ly(z0) (8)8 (grths®) dpitoy (1)2(s) < =T ™% max (a'(x),1).

B(1)

21

(4.12)

Also, since 1 + o1 (t)? € [1,2], dp; is absolutely continuous with respect to dpP14oy (1)
with a uniform (over B(1)) bound on the Radon-Nikodym derivative. Thus, we can find

¢1 > 1 such that (4.12) takes the form:

N 8ci(k — 1)(2¢0)—1 5
[ 1ot 61 (aher) dons) < b —D@e0)™ 5 s (a'(2),1).

B(1)

Now consider the set
AL (tk, 1,9, X% 5) = {s € B(1) : &"(gr—1ythsz) > M} .
It is easy to see that if s € AL (tk, 1,9, X% ), then
s=¢(s,0,...,0) and (s,0,...,0) € Zypy,
where 0 is the zero matrix. Hence, (4.13) implies

< 801(]6‘ — 1)(200)k71

/ a'(grihsr) dpa(s) < " e % max (a'(x),1).

A (kt,1,9: X% )

Next, given M > 0 and i € N, let us define:

ZE\M = {(31, Sy 8i) € (Z\lTlm)z :

dt(g(k—l)thsjgkthsj,l .o 'thhsliﬂ) >MVje {1, . ,Z}}

Note that

Zya = A (tk, 1,9, X% ).

mnt

Since M > ez , in view of (3.5) for any y € X one has

& g—1y) > M = &(grey) > 1.

Then for any 2 <4 € N, we obtain the following:

(4.13)

(4.14)

(4.15)

(4.16)
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/ / & (grths, - - grths, ) dp1(si) - - - dp1(s1)

’
ZM,i

:/ / / &' (grihs, -+ geths, ) dp1(si) - - dp1(s1)

i
ZI\I,ifl Agkth3i71 4-49,“}151z(tkalalyth;M)

8 )(2 k=1, -
/ / A V@O 5 (6 (guehon - guehon ), 1) dpr(si1) -+ dpr(s1)

AI?]

86 k 1 26 7£
(4_1(’) 1( =h— 1 0 2 / / gkthél 1” 'gkthslﬂf) dpl(Sz'—1) : "dp1(81)-
ZM1 1
(4.17)
Thus, by using (4.17) repeatedly we get for any N € N
/ / a'(grthsy - - geths, @) dp1(sn) - - - dpa(s1)
Z;\/I,N
8cy(k 260)E" NN vy .
= ( 1 ~k)(1 o) ) € 2 / &' (grehs, =) dp1(s1) (4.18)
Zhra
_ 2 k—1\ v .
S (SCI(k ’_]];)(1 CO) ) e*NTmaX (dt(.’ﬂ),l).
(4.14), (4.15) =i
Now, similarly to (4.4), define the function ¢ : B(1)™ — M., n, by
N .
U(s1,...,5N5) = Z e*(ern)(]*l)ktSj’
j=1
so that
Grthsy =+ grths, = gNKtIay(sy,... sn)- (4.19)

The following lemma is a modification of Lemma 4.2 applicable to the sets Z 5\/[ NE
Lemma 4.4. For any M > 0, 1 (¢(ZJ/\4,N)) CZ¢ N

Proof. Let (sq,...,sy) € B(1)™ be such that ¢(s1,...,sy) € Y(Z¢, pn)- Then for
some (s7,...,8y) € Z¢, pr.n We have:

7/}(517"'751\/):1/)(8/17""59\/)'

Hence, by using (4.19) we get:
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gkthsN ce gkthsl = gkthSQ\, cee gkths’l .

Thus, it is easy to see that for any 1 <i < N

Grtls + Gthsy = Mg sin o msn) bi(shyronshy) (thsy - Grihisy ) (4.20)
where for any (w;41,...,wN) € B(l)N_i we put
N
Yi(wig1,...,wN) = Z e (mAmG=ikty),
j=it+1

Note that since ¢ > 2, one has ;(wit1,...,wy) € B(1) for any (wit1,...,wn) €
B(1)V ™. Hence, in view of (4.20), for any 1 <i < N we have

gkthsN e gkth51 S BH(Z)gkths; e gkths/lv

which, since (s, ..., s) € Z¢_ s n, implies (s1,...,sn) € Zj y- This finishes the proof
of the lemma. 0O

Now by combining (4.18) and Lemma 4.4 we get:

/ / 1w(z'caM,N)(¢(817~--7SN))dt(Qthth(sl,.“,sN)l“)dpl(SN)"'dpl(sl)

BN

s <8c1(k ~ 1)(200)k_1)N % max (64(2) 1).

=k—1

(4.21)

Then, as before, one can use Lemma 4.3 (N — 1) times with ¢ = e~ ("+™kt and § =
o1(kt),...,on—1(kt) respectively and obtain:

= [ Lutz 618 Gt o 25
B(1)
=gN-1 1w(Z6QM1N)(s)dt(gthhsx)dp1+52(1+aN,1(kt)2)(s)
B(1)
S/ / Lz ) (51,5 5N))E (GN kR (s .ocsn) @) dpr (sn) -+ - dpa (1)
B(1)N
o (Bal= D) TN Ly )
= Zh1 e~z max(a‘(x),

(4.22)
Thus, we get
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/ Lyze, o) (8)& (gNkehs®) dprioy (k2 ()
B(1)

N
(8ei(k —1)(2c0)* 1)
< ShN—1 e’

max (&'(z),1).
Now observe that, in view of (4.1), if s € AY (kt,1,9: X%, ), then
s =1(s,0,...,0) and (s,0,...,0) € Zg, 1 N-
Thus, (4.22) can be written as
/ dt(gthhs$) dp1+aN(kt)2 (s)

AY (kt 10X Lo, ) (4.23)

-

max (a'(z),1).

Nt
2

Again, since 1+ oy (kt)? € [1,2], ds is absolutely continuous with respect to dp14 gy (k)2
with a uniform (over B(1)) bound on the Radon-Nikodym derivative. Thus, we can find
¢y > 1 such that (4.23) takes the form

8ei(k —1)(2¢0) )Y
/ a'(gnrihser) ds < 22 (S :kN)ElCO) ) e 7 max (&' (z),1).

AN (kt,l,gtxgcaM)

Now define Cy := 16¢gcica/=. Then by the above inequality we have:
AN
/ &' (gnrthsx) ds < ((k — 1)0{“6_5) max (dt(x), 1).
AN (kt,1,g,,xf>caM)
This ends the proof of the proposition. O
As a corollary we get the following covering result:

Corollary 4.5. There exists Cy > 1 such that for any 6 € (0, \/%}, any 2 < k €N, any
t>2 any M > C3e™ any N € N, and any x € X, the set

AN (kt,1/2, X% ) = {s € B(1/2) : & (gixehsz) > M Vi€ {1,...,N}}

can be covered with at most

CO‘ k (mn(m-‘rn)k—%)t N max (dt(x)v 1)
(k= 1)Cte ) e
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cubes of side-length Qe (MTINkt gp AL

Proof. Let x,0, M, N,t and k be as above, and take C as in Proposition 4.1. Applying
the latter with M replaced with C;2Me™ "3, we have:
AN
a'(gnpthsz) ds < ((k: - 1)0{“6_5) max(&‘(z),1). (4.24)

N t
AR (kt’l’gtx>c;1M6—mnt/2)

In view of (3.5) we have Xt>C;1M C tht>C’;1Me—m"t/2’ hence
oM Leb<AiV (kt,LX;C;lM)) < / & (ganehsr) ds
AN (kt,l,X;c&1M>
(4.25)
< a'(gnrehsx)ds.
Thus, using (4.24) and (4.25) we obtain
_e\V max(al(z),1)
N t )
Leb(Aw (k;t, 1,X>C;1M) ) <, ((k: ~1)Cke z) . (4.26)
Take a covering of B(1/2) with interior-disjoint cubes of side-length e (m+mINk jp

M., n whose sides are parallel to the coordinate axes. Now let R be one of the cubes
in this cover which has non-empty intersection with A% (kt, 1/2, X t> M). Note that since
RN B(1/2) # @, we must have

RcCB (% - \/mnﬂe(er”)th) c  B(1). (4.27)
o< 2L

Ve
Now let s € RN ALY (kt,1/2,X%,,). Then
&' (ginthsx) > M for all 1 <4 < N.

On the other hand, for any s’ € B and any 1 < ¢ < N one has

Gikths @ = (Girths —sg—ixt) ginthsx € BT (v/mnb)gixihsa

(4.28)
- BH(l)glkthel' C B(l)gzkthgx

Hence, in view of (4.27) and (4.28) we conclude that

RcC AN (kt,1,XL,,). (4.29)
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Thus, by (4.26) and (4.29), the set A% (kt,1/2, X! ,,) can be covered with at most

Leb(A;V (kt, 1,X;M)) c.
(067(m+n)th)mn - gmn

N max (a'(z),1)
M

((k - 1)Cfe(m"(m+ﬂ)k7%)t>

cubes of side-length e~ (m+MNkt in A7, . This finishes the proof. 0O
5. The main covering result
For any t > 0, let us define the compact subset Q; of X as follows:
Qt = X< emnt- (5.1)
In the following lemma we obtain a lower bound for the injectivity radius of the set 01 Q.

Lemma 5.1. There exist 0 < Cy <1 and p > m + n independent of t such that for any
t>0:

r0(01Q¢) > Coe 7",
Proof. Let t > 0. Note that in view of (3.19) we have
81Qt C X%Ciemnt; (52)

then, using (3.14) we can write

8 2mnt
(m + 1 = 1)2mn=D) Ca®

IA

e—2(mn+%)(m+n—1)t
XtSC4enw,nt CcClzeX: al(x)

)

= {l‘ : 1 > 046(2(m"+é)(m+n1)+2mn)t}
ar(x) —

where Cy = Recall that all(w) is equal to the norm of the shortest

1
C8 (m4n—1)2(m+n—1)"
vector in the lattice x; therefore by [23, Lemma 7.2], rg (Xt<c4 emm) is at least Cye~P?,
where

p=(m+n)?*—-1)-(2(mn+1/2)(m+n—1)+2mn) >m+n

and 0 < Cy < 1 is only dependent on m and n. Thus we have 7(9;Q;) > Cze P, which
finishes the proof. 0O

The following proposition is our most important covering result.
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Proposition 5.2. There exist constants

p>m+n,0<ry < b >2,0>1, 0<Cy <1, Cy,C3,K1,K3,A>0

1
16y/mn
such that for any open subset U of X and all integers N and k > 2 the following holds:
for allt> 2 and all 0 < r < 1 satisfying

bo—kt

e 5 <r <min(Cye P!, 1), (5.3)

all 0 ¢ [4r, ﬁ] and for all x € 8, (Q,NU®), the set AN (kt, WU) can be

covered with at most

Ko™t | —1 A\
&emn(m-‘rn)]\fkt (1 — Koy ymmgU) + 2€ 4o Cge_fl>

92mn rmn 0
cubes of side-length fe=(MTINkt 4 AL

Proof. The strategy of the proof consists of combining Theorem 2.2 with Corollary 4.5.
Recall that the former estimates the number of cubes needed to cover the set of points
whose trajectories visit a given compact set .S, while the latter does the same for tra-
jectories visiting the set X, which is the complement of a large compact subset of X.
Our goal now is to have a similar result for points whose trajectories visit the set U*,
which is not compact and may have a tiny complement. This is done by an inductive
procedure which is inspired by the methods introduced in [19].

Take ¢t > 2 and let C5 and p be as in Lemma 5.1. Let 0 <r < 1and 2 < k € N be
such that (5.3) is satisfied, where by, b, 5 are as in Theorem 2.2.

Now let z € 8, (Q,NU®), N € N, and 0 ¢ [4r, ﬁ} Recall that

N r c) r . c
A, (kt’—32\/W’U> {S€B<732W> D gepthst € U VZG{l,...,N}}.

Our goal is to cover AY (kt, m, UC) with cubes of side-length e~ (m+mINkt iy My .

For any s € AY (k‘t, W, UC), let us define:

Jo={je{l,....,N}: gjrhsz € Qf},

and for any J C {1,..., N}, set:

- N r cl . _
Z(J) = {sGAm (kt,?)zm,U).JsJ}.

Note that
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r
AN (kt,,UC> = U
32y/mn Jc{1,..,N}
Now, set
Di:=1- KUL(O'QWQU) +
and

Dy = (k —1)CFe "2,

where K7, K5, A are as in Theorem 2.2 and C is as in Corollary 4.5.

K2e—)\kt

rmn

(5.4)

(5.5)

(5.6)

Let J be a subset of {1,..., N}. We can decompose J and I := {1,...,N} ~ J into
subintervals of maximal size Ji,...,J, C J and I,...,I, C I (here and hereafter by a
subinterval we mean a set of the form N N [a, b] where 0 < a < b) so that

leil‘]] and[zlq_lll
j=1 i=1

Hence, we get a partition of {1,..., N} as follows:
q d
{L aN}:l_l‘]jI—Il_ljz
j=1 i=1

Now we inductively prove the following

Claim 5.3. For any integer L < N, if

then the set Z(J) can be covered with at most:

gmn

2 d/Y +1 ’
( Ca ) . ((29mn)mnKO)dJ,L+1 emn(ern)thDlz:f:l |Ii|_dJ,LD

Eﬁ=1 |Jj|
2

(5.7)

(5.8)

cubes of side-length @e=(m+mLkt i My, n, where Kq is as in Theorem 2.2, and djp,

d’y , are defined as follows:

djp=#{ie{l,...,L}: i<L,ie€Jandi+1¢€ I},
bp=#ie{l,....L}: i<L,iclandi+1eJ}.
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Note that equivalently one can define

¢ itL¢J
djr = ]
¢{—1 ifLeJ

as the number of intervals in J N {1,..., L} with right endpoints < L, and, likewise,

, Vi ifLd1
PET -1 ifLel

as the number of intervals in I N{1,..., L} with right endpoints < L.

Proof of Claim 5.3. We argue by induction on £+ ¢/. When ¢ + ¢’ = 1, we have dj =
deL = 0, and there are two cases: either £ = 1 and {1,...,L} = J1, or £/ = 1 and
{1,...,L} = I;. In the first case

Z(J)C{SGAiV <kt, : GikthsT € QF We{l,...,L}}

r (&
32\/mn’U >

7Q§> c AL (kt, 1 /2,Xt>cgemm) :

r

32/mn

where the last step is due to the bound (5.3) on r. Therefore, Corollary 4.5 applied with
M = C3e™™ and N = L shows that this set can be covered with at most

c AL <kt,

Ca k _(mn(m+n k—l)t L &t(,ib)
gmn ((k — 1)Crelmnlmtmk=s ) C3emnt
= 1 L C4em”t
< o k — 1)Cke(mn(mtn)k—3)t Caemnt
(52) 0™ (( )Che ) 2
2
- Q?nan ((k - 1)Cfe(mn(m+n)k_%)t>[/

cubes of side-length fe—(m+m)LEt iy M., . Clearly this number is bounded from above
by (5.8), which takes the form

2 L
C (29mn>mnKO€mn(m+n)th ((k _ 1)Of€_t/2) )

o
Gmn
In the second case

Z(J) C {seA;\’ (kt, : Gikthsx € Q We{l,...,L}}

r C
32«/mn’U )

AL (kt,—— U° .
C z( ’32\/7’%76] mQt)



30 D. Kleinbock, S. Mirzadeh / Advances in Mathematics 425 (2023) 109058

By Lemma 5.1, for any U C X we have

ro(01(U°N Q1)) = 10(01Q:) = Coe 7.

So it is easy to see that since condition (5.3) is satisfied, condition (2.2) with ¢ replaced
by kt and condition (2.3) with S replaced by U¢N Q; are satisfied as well. Hence we can
apply Theorem 2.2 with S replaced by U¢ N Q;, N replaced by L, and t replaced with
kt. This produces a covering of ALY (kt, svms UC) by

4r\™" Kae ™ ’
(9) Koemn(m+n)Lt (1 _ KLLL(O'Q\/mg(U U Qf)) + jmn )
2 9 mn mn(m+n)Lkt 7[{26_)\)5 :
< gmn (2 mn) Kpe (1 - Kl//“(o'%/mn@(U)) + rmn >

cubes of side-length fe~(m+™)Lkt finishing the proof of the base of the induction.

In the inductive step, let L' > L be the next integer for which an equation similar to
(5.7) is satisfied. We have two cases. Either

{1,...., Ly ={1,..., LYy U Iy (5.9)
or
(1,..., L'y ={1,..., L} U Jo1. (5.10)
We start with the case (5.9). Note that in this case we have
djp =dyr+1landd;, =d;;. (5.11)
Also, it is easy to see that every cube of side-length fe~ "+ Lkt iy M., », can be covered

with at most 2™ (m+1)kt cuhes of side-length fe— (™) (L+Dkt Therefore, by using

the induction hypothesis and in view of (5.8), we can cover Z(J) with at most

mn C? o+t mn ds,L+1  mn(m+n Y I;|—d i1 151
2 (Oman> ((27mn)™"Ko)™"" e () (L4Dkt paoic Wil=dns poo=s 1

(5.12)
cubes of side-length fe—(m+m)(L+Dkt Now let B be one of the cubes of side-length
e~ (m+n)(LADEL i the aforementioned cover such that BN Z(J) # @. Clearly

—(m+n)(L+1)kt

20
1
z 32mn (5.13)

mn
B can be covered by ( > cubes of side-length !

32mn
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Let B, be one of such cubes that has non-empty intersection with Z(J), and let s €
B,.NZ(J). Since s € Z(J), it follows that g(r1)xhsz € U°NQ;. Therefore, if we denote
the center of B, by sg, we have

r

32/mn

Moreover, for any s’ € B, and any positive integer 1 < ¢ < L' — (L 4+ 1) we have:

g(L-i—l)k:thsoz € BH ( > (UC n Qt) C &(UC N Qt) (514)

I(L+14i)kths T = Git (L1 kths'—so - (L+1)kt) (I(L+ 1)kt Poso T) (5.15)

= gikthe(m+n)(L+1)kt(5/750)(g(L+1)kthso$)~

It is easy to see that the map s — e(™+tM(E+DF (& _ 50y maps B, into B (W)
Hence, by (5.15)

{s" € By : gs14ippthex € UNQ Yie{l,--- L' = (L+1)}}

—(m+4n)(L+1)kt gL —(L+1) r c
Ce AQ(L+1)kthsol’ (kt, 32\/77%, U°n Qt> + Sp-

So, in view of the above inclusion and (5.14), we can go through the same procedure and
apply Theorem 2.2 with ¢ replaced with kt, S replaced with U° N Q¢, N replaced with
|[lery1|—1= L' —(L+1), and = replaced with g(r41yx:hs, 2, and conclude that B,.NZ(J)
can be covered with at most

4r\™" Ly s y]—1
(?) Koemn(m+n)(\le/+1\—1)ktD1 o 41

cubes of side-length fe~(m+ML'kt Therefore, in view of (5.13), the set BN Z(.J) can be
covered with at most

gmn ( f ) (%) Koemn(ern)(\Igurl\71)ktD\115/+1‘*1

32mn

mn _ 1 -1
= K, (28mn) 6mn(m+n)(\Il/+1| 1)ktD‘1 o 41l

cubes of side-length e~ (m+n)L'kt This, combined with (5.12) which is an upper bound
for the number of cubes of side-length ge~(m+™)(E+Dkt iy £ needed to cover Z(J),

implies that Z(J) can be covered with at most

mn _ 1, -1
Ko (28mn) emn(m+n)(|1[/+1| 1)ktD‘1 o4l .

emn

2 d,7 +1 ’
gmn ( Ca > e ((29mn)mnK0)dJ>L+1 emn(m-i-n)(L—ﬁ-l)ktDlZf:l ‘Ii‘_dJ,L’ DQZ§:1 1751
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02 d’ ol , o L , . ‘
(5?1) <0man> ((29mn)mnKO)dJ,L +1 emn(m+7L)thDIZ:1=1 [Iil—=d; 1, D221:1 1751

cubes of side-length ge—(mFTn)L’kt This ends the proof of the claim in this case.

Next assume that (5.10) holds. Note that in this case
dJ,L/ :dJ,L and df],L’ :df],L+1 (516)

Take a covering of Z(J) with cubes of side-length @e~(m+™kLt in M, . suppose B’ is
one of the cubes in the cover such that B'N Z(J) # @, and let s be the center of B’.
Then, since /mn# < 1, it is easy to see that:

greths,x € BE(v/mnf)(U° N Qy)CHhQ;. (5.17)

On the other hand, for any s € B’ and any positive integer 1 < i < L' — L we have:

9(L+ikthsT = Gint (gLrths—s, 9—Lkt) (9Lkths, T) (5.18)

= gikthe(mwz)th(s,Sl)(ngthslx).
Note that the map s — e+ Lkt (s — 1) maps B’ into B(1/2). Thus, by (5.18)

{s€ B :gurpnhse € Qf Vie{l,--- L'~ L}}
C e (mEmIRt AL'=L (34 179 Q) + 5

grkths @

:e_(m+n)thAL,7L (kt,1/27X>Ccsyemnt) +81.

grLrths,®

So in view of the above inclusion and (5.17), we can apply Corollary 4.5 with M =
C3e™ griihs, © in place of z, and |Jy41| = L' — L in place of N. This way, we get that
the set B’ N Z(J) can be covered with at most

Ca

gmn

n(mAn)k(|Jeyq )t 10X (dt<ngths1x)a 1)

Joril  m
D‘ + .e
2 M

C2
< eman D|2 el emn(m—&-n)k(\JHlDt
(5.2),(5.17)

cubes of side-length Ge—(mTFL't  From this, combined with the induction hypothesis,
we conclude that Z(J) can be covered with at most

2 2 d{],L+1
Cy D|2Jz+1|emn(m+n)(|Jz+1\)kt < s > .

emn an

4 £
9 dy oo+l +n)Lkt ySiey [lil=dsn  2=1 5]
((2 mn)m"Ko) emn(m+n) D=t . D57

gmn

d; . +1
C2 \ "t dy 41 ' L) —d g
( _ : < (e ((29mn)mnKo) J,L! 6m'rL(Tth'rL)L k:tDlz:l=1| il—ds, L Dg:]—ll 1
5.16
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cubes of side-length e~ (m+n) L'kt finishing the proof of the claim. O

Now by letting L = N, we conclude that Z(J) can be covered with at most

C2 dly n+1 , _
( a > ((29mn)mnK0)dJ,L +1 emn(m+n)thD|11| dj N D\QJ\

97”"

cubes of side-length e~ (m+Nkt iy pp

s

Clearly

dyy <djn+1.

33

(5.19)

(5.20)

Also, note that since dj y < max(|I],|J]|), the exponents |I| —d;n,|J| — dsn in (5.19)

T

are non-negative integers. So, in view of (5.4) and (5.19), the set AY (kt, sy V¢

can be covered with at most:

02 d/J,NJrl _
Z < a ) ((29mn)mnKO)dJ,N+1 emn(m+7z)thD|11| djN _D\QJ\

JC{L,....N} o
mn(m+n) Nkt ng o2 9 mn drN+1 S|I|=ds N ]
< e Z o ((2°mn)™" K,) Dy D,
(5:20) JC{1,...,N}
OO mn(m+n I|—dj, J OO drm
- 92mne ()it Z Dll | ]’ND|2 E gmn
Jc{1,...,N}

2d,
_ Co  mn(man) Nkt Z pN-l=dsn plJl=dsn | oDy \ Y
- 92mne 1 2 gmn

cubes of side-length fe~(m+MINkt in M, . where Cp := C4(29mn)"" Ky > 1.
To simplify the last expression we will use an auxiliary

Lemma 5.4. For any ni,ne,ng > 0 it holds that

N—|J|—d J|—d 2d N
Z n, 171 "’anz ! N3N < (ng 4+ ng + ng)
JC{T N}

Proof. Define the map ¢ : {1,..., N} — {ny,ns,n3}" by

d)(‘]) = (xlv"'axN)a

where for any i € {1,..., N}, z; is defined as follows:
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ny ifieland (i—1e€lori=1);
xi:=qng ifieJand (i+1€Jori=N);

n3 otherwise.

It is easy to see that ¢ is one to one; moreover for any J C {1,..., N}, the number
of i € {1,...,N} such that z; = ny is |I| —dyn = N — |J| — dyn, and the number
of i € {1,...,N} such that z; = ng is |J| — dyn. Therefore for any J C {1,...,N},
¢(J) corresponds to one of the terms of the form niv_lJl_dJ‘NnLJl_d"’Nngd"'N in the
multinomial expansion of (n;+nga+n3)". Since ¢ is injective and there exists a one to one
correspondence between {n1,n2,n3}" and the terms in the expansion of (n; +mng+n3)™
we conclude that

)

N—|J|—d J|—d 2d
2 : n! [J] J,Nn|2 | J,Nn3 AN o (nl + Jrng)N
Jc{1,..,N}

and the proof is finished. O

CoD>

gmn

Applying the above lemma with ny = Dy, no = Dy, and n3 = we conclude

that AY (kt, v U C) can be covered with at most

N
C CoD
_Oem”(m-i-n)th (Dl + Dy + 0 12>

927nn pmn
C Kae Mt o
. r):(, ) m%emn(m-&-n)th <1 _ KIN(UQ\/WGU) + i«eT + (k _ 1)01 e” 2
N
(k- DCoCF .
+ gmn e
C Koe Mt k—1 t N
< 027371 emn(m+n)Nkt (1 — Ky p(03,/mnU) + 2;””" + grm Cs e‘z)

cubes of side-length fe~(m+MINKt iy N - where C3 := 2C,Cp. The proof of Proposi-
tion 5.2 is now complete. O

6. An intermediate dimension bound

Recall that we are given a > 0 and a non-empty open U C X, and our goal is
to estimate the Hausdorff dimension of E(F,",U) from above. The following technical
theorem shows how to express E(F,",U) as the union of two sets, taking into account
the behavior of trajectories with respect to the family {Q:} constructed in the previous
section, and estimate their dimension separately.
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Theorem 6.1. Let {Q:}i>0 of X be as in (5.1). Then:

(1) There exists C1 > 1 such that for allt > 2 and for all 2 < k € N, the set

S(k,t,x) :={h € H : gnrthx € Qi VN € N} (6.1)
satisfies
_ 1 1 log ((k—1)CY)
> - — . .
codim S(k,t,x) > (m+ )k (2 ; (6.2)

(2) There existp > m+mn, 0 < rg < m, 0<Cy <1 andby,b,Ki,Ky,C35,\ >0
such that for allt € aN with t > 2, all2 < k € N, all v satisfying

bo—kt

e v <r <min(Cee P 1), (6.3)

all 0 € [47"7 ﬁ}, all x € X, and for all open subsets U of X we have
codim ({h € H \ S(k,t,z) : ha € E(F;,U)})

Koe Mt k=1 vk —t/4
> KHM(U2¢EEGU)" S — g C3e /

- kt(m +n)

(6.4)

Informally speaking, S(k,t,z) is the set of h € H such that along some arithmetic
sequence (of times which are multiples of kt) the orbit of hx visits complements of
large compact subsets of G. The dimension of S(k,t,z) and the dimension of the set
{he H~ S(k,t,z): hx € BE(F,}},U)} are estimated separately.

Proof of Theorem 6.1. Take {Q;}:~0 as in (5.1), and let U be an open subset of X.

Proof of (1): Let ¢t > 2, and take 2 < k € N and =z € X. Our goal is to find an upper

bound for the Hausdorff dimension of the set S(k,t,x) defined in (6.1); equivalently,
dim S(k,t,x) = dim{s € My, : gnkthst € Qf VN € N}.

In view of the countable stability of Hausdorff dimension it suffices to estimate the
dimension of

{s € B(1/2) : gnrthsz € Qf YN € N},

which, due to (5.1), coincides with (e AN (kt, 1/2,Xt>cgemm>.
Applying Corollary 4.5 with M = C3e?™nt we get for any # € X and for any
1.
O<9§wﬁ'
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dim (] AY (kt,1/2,Xt>C(3€mm>
NeN

Cqo mn(m+n - max(&*(z),1)
< lim log Sa (k — 1)NOFN e(mn(mtn) k=)t max(a (z).1)
N—o0 _log fe—(m+n)Nkt
log(k — 1)Cke(mn(mtn)k—z)t
B kt(m +n)
1 1 1 _
=mn— —— [ — — og(k 1)_1og01
(m+n) \2k kt t
1 1 log (CF(k—1))
=—mn-— | = -
kE(m+4n) \2 t

where C1 is as in Corollary 4.5.

Proof of (2): Let a > 0,2 < k € N, z € X, and let ¢ = fa for some ¢ € N. Our goal is to
find an upper bound for the Hausdorff dimension of the set

{he H~ S(k,t,x):hx € E(F},U)}.
Recall that
S(k,t,x)* ={h € H : gypthx € Q; for some N € N}.

Therefore

{he H~ S(k,tx): hae E(F U}

:{hEH:thE(Fj’,U)ﬂ ( U 9—thQt>}

NeN

C {h €H:hxe U g_th(QmE(Fj,U))}.

NeN

Now suppose that ¢t > 2, and let N € N and r > 0 be such that (6.3) is satisfied, where
bo, b, Ca, 19 are as in Lemma 5.2. Similar to the proof of part (1) and in view of countable
stability of Hausdorff dimension it suffices to find an upper bound for the dimension of
the set

E;V :=<seB M Shgl'eg_th(Qme(FJr U))

for any z € X. Now let x € X and s € E}y , .. Then

Gikt Nkt hs® = Gikt (GNkths9— Nkt )INKET

= gikthe(r,,L+r,L)ths(gthCC) eU® VieN,
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and at the same time e(mt?)Nktg c B (m) It follows that

; r
E;V:v T - e_(m+n)th (ﬂ AlgNku <kt7 99 /) UC>> ° (65)
N 32/mn

It is easy to see that if Eg\m,r is non-empty, then gnypix € (932\;h (Q:NU®). Now take

K, Ko, Cp, C3, A as in Lemma 5.2. By Lemma 5.2 applied to = replaced with gy,
and using the fact that the Hausdorff dimension is preserved by homotheties, we have
for any 6 € {4:7‘7 2\/%]

dim E’ < di —(m+n)Nkt Al Lt r Ue
1m N,xz,r (()—r)) 1m <6 ZEI!I INKtT ?32 /—mna

. r
:dlm (ﬂ A;me <I€t, 7UC>>
N 32/mn

lOg <92’CT’V(1)7L emn(m+n)th (1 - Kl/'L(UQ\/anU) + Kz;;;:kt + 15;3 Cg €_%) )

=
141>nn;lo — log fe—(m+n)ikt
— Akt "
- —log (1 — K11(02mmo (U)) + B255— + b= C3e—£>
= (m +n)kt
Koe— Akt Bl ket
< mn — Kl#(ffzme(U)) - 2/,'-6;1171, — gmn C36 1

(m+n)kt

This finishes the proof. 0O
7. Theorem 6.1 = Theorem 1.2 = Theorem 1.1 = applications

We begin with a remark that
E(Fij) = U g*ajE(th_vU)v
JEN

hence if an upper estimate for dim E(F,,U) is proved, the same estimate holds for
E(F;,U) because of the countable stability of Hausdorff dimension and its invariance
under diffeomorphisms. The same argument applies to

{he H:hxeEF,U)}= U g—ajih € H : hgqjx € E(F;‘,U)}gaj.
JEN

Therefore it is enough to prove Theorems 1.1 and 1.2 with E(F,",U) in place of
E(Ef,U).

We now show how the two parts of Theorem 6.1 are put together.
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Proof of Theorem 1.2. Let € X and a > 0. Recall that we are given the constants
p,12,b, K1, Ko, C1,Co,Co, A and a family of compact sets {@Q;}+~0 such that statements
(1) and (2) of Theorem 6.1 hold. To apply the theorem we need to choose k € N and
t € aN. Here is how to do it. First define

ko= [max (m4j_’ —, 2p(m;l + 2),4bp>—‘ (7.1)

(note that k > 4 since p > m + n), and then choose ¢; := max (K1,4log ((k — 1)CY)).
We remark that ¢; > 4log3 > 4, since C; > 1 and k > 4. Statement (1) of Theorem 6.1
readily implies that

codim S(k, ¢, z) > m (7.2)

whenever ¢t > t;. Now let
¢ := Cy, (7.3)

r3 := min (CQe_bO/b, cm"+28£K}2,
p ( K, >24p 2ot (#)24;;77177, 7"2) (7.4)
8(k —1)C¥ ’ "R 2y/mn ’
ry = TW, (7.5)
and set

ri=rU,a)**" and t:=a [%p log g-‘ , (7.6)

where (U, a) is defined by (1.8). Note that in view of (1.8), (7.5) and (7.6) one has

r <rs. (7.7)
Also, it follows from (7.6) that
ce Pt < p < e 2(tma), (7.8)
Moreover,
c 1 c
t > —log— —log — > ty,
(76) 20 T T (77 20 T T3 (74)

and
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c
t > —log- 1 — =12 . 7.9
(7.6) 2p 8y (1.8), (7 6) 2p 08 ce—2tapmn amn (7.9)

We now claim that the inequalities (6.3) are satisfied. Indeed, the second inequality
r < min(Caye P, ry) follows immediately because

o 7 <r3by (7.7), and r3 < ry by (7.4);
o 7 < Coe2P(t=) by (7.3) and (7.8), and t > 4a by (7.9).

Furthermore, we have

bg—kt bTO ebO/b 9 Gbo/bT’g

’r7
(71) (78) €2 (7 (7.4)

so the claim follows. We therefore can apply (6.4) to any 0 € [47", 5 \/7} We put
by definition. To show that it not

0 := min(fy, ﬁ), which is not greater than 2\/1m—n
less than 4r, write

1 1 1
0 > min | r24mn 7- dpmn
(1.8),(7.7) ( ' 2y/m ) (7.4), (

r r r
= > > > Ar.

1 1 -
pl= s mmn (77) pylT T r3t/2 (7

Thus we can conclude that

codim ({h € H \ S(k,t,z) : ha € E(F;,U)})

— Ak
Kl#(UQ\/MeU) Kinemn gmnc e /4 (7.10)
kt(m +n) ’

Observe that since 6 < 6y, u(JQ\/WQU) is not less than p(U)/2 by definition of 8y, see
(1.6). We now claim that the numerator in the right hand side of (7.10) is not less than
K1p(U)/4. Indeed, we can write

k—1 . k—1 1
Ck: -3 — Ck —6pty 335
gmn 3 et gmn 3 (6 ) (7 R) gmn

. 24pmn mn 1
_ k _1 k L 24p ] T T
(7.3) ( )Cs <c3) [ "

1
< (k=1 (2)™ 1 pw) < Zuw)
(1.8), (7.4, (7.6), (7.7)

and
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K2€7)\kt - K2e—)\-72p(""/\"+2)t B K2(€*2pt)mn+2 - K2(£>m”+2
r T3 24pmn
=Ko T < Ko g - l(U)7
™2 1%y, (7.4),(7.6), (T.7) cmn+2
Ky 24pmn _ K1
Ky —— - p(U)7P™" < —u(U).
8K, G = 5 #U)

Thus (7.10) implies

. Kip(U) Kipu(U)
d he H~ Skt ,z):hee E(F,U)}) > 2
codim ({h € H ~ Sk, t,2) - he € B(FS UM 2 e =2 2 e 2o

hence, using (7.2), we get

. 1 pK1u(U)
. + > 7
codim ({h € H : hz € E(F/,U)}) > Th(m n)mln (1, log £ )

Finally, we claim that the minimum in the right hand side of the above inequality is
equal to MTST“(QU). Indeed,

r < ce P <cemPh < cePEL — 10gg 2 Kip = — o <1
(6.3) " o8
Therefore
. pKiu(U)
d heH:h E(ESU =
co un({ = r e E(F], )})_4k(m+n)-10g§
S pky ) w(U)

(=z<1) 4k(m +n) logl
_ K, ()
(7.6) 96kmn(m +n) log r(l},a)

This finishes the proof. 0O

Proof of Theorem 1.1. Denote by H the weak stable horospherical subgroup with re-
spect to F'T defined by

H:= { {‘Z 89,} 18 € Mym, 8 € My, 8" € My, det(s") det(s”) = 1} )

Let U be an open subset of X. Choose 1 > 0 sufficiently small so that for any 0 < r <n
the following conditions are satisfied:
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:LL(JT/ZU) > :U'(U)/Q,
(7.11)

1
o, U0 = §9U7

where 6y is as in (1.6). We choose 7’ > 0 and 0 < r < 7 sufficiently small such that the
following properties are satisfied:

(1) Every g € BE(r') can be written as g = h’h, where b/ € Bﬁ(r/4) and h € BH (r/4).
(2)

gtBH(r)g_t - Bg(27‘) forany 0 <r <mpandt>0 (7.12)

(this can be done since for any ¢ > 0 the restriction of the map g — grgg_; to H is
non-expanding).

For z € X denote
E,.:={g¢€ BY(r") : gz € E(F;, U)}.

Clearly E(F,;,U) can be covered by countably many sets of type {gz : g € E,,}. Thus,
in view of the countable stability of Hausdorff dimension, in order to prove the theorem
it suffices to show that for any = € X,

w(U)
log r(l},a)

codim E . >

where (U, a) is as in (1.8) and ¢,y are as in Theorem 1.2.
Now let g € BE(r') and suppose g = h'h, where b/ € B (r/4) and h € BH(r/4), then
for any y € X and any ¢t > 0 we can write

dist(gigx,y) < dist(g:h'hz, gih) + dist(gihz, y)
= dist(g:h g—1g:hw, gihx) + dist(gha,y) < r/2+ dist(giha, y).
(712)

Hence g € E, ,» implies that hz belongs to E(Fj,a,./gU), and by using Wegmann’s
Product Theorem [37] we conclude that:

dim B, ,» < dim ({h € B (r/4) : ha € E(F;,0,,5U)} x Bﬁ(r/4))

< dim({h € B(r/4) : hx € B(FS,0,,5U)}) + dim A (7.13)
<dim({h € H : ha € E(F;},0,/5U)}) + dim H

Note that by (7.11) we have:
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r(oy/2U,a) = min (u(ar/gU), Gar/zU, ce*“,rl)

0y (7.14)

1
> min (u(U)/Q, 7,66(1,7“1) > 3 r(U, a).
Therefore, by Theorem 1.2 applied U replaced by o, /oU and in view of (7.14) and (7.13)

we get

codim E, v > codim ({h € H : hx € E(F,\,0,,5U)})

w(or2U) S %M(U) S 1 w(U)

> > > Z.
log T(UT;?U’Q) log T([ia) r(U,a) <r1 <1/2 4 log T((}’a)

This ends the proof of the theorem. 0O

Proof of Corollary 1.3. Let S be a k-dimensional smooth embedded submanifold of X,
which we can assume to be compact. Then it is easy to see that one can find g, 51, 30 > 0
such that

M(ags) > J{1€dimX—k:
and
Oo.s > s2e

for any 0 < € < 9. Hence, in view of (1.8),

dim X -k

7(0:5,a) > min (7’1, 1€ , M€, 067“) ,

where r1, ¢ are as in Theorem 1.1. Therefore, if we denote

%dlm X7k7

o = min( 1 ;{2) and py = max (dimX —k, 1),

we will have r(0..5, a) > »peP° as long as 3peP° < min (r1,ce”®). By Theorem 1.1 applied
with U = 0.8 for € as above we have

1(8.9) y sepedim X—k
1 = 1)’
log (r(ags,a)) IOg (%061’0 )

which implies (1.9) for a suitable choice of eg,cg, and Cg. The ‘in addition’ part is

codim E(F,,0.5) >

proved along similar lines and is left to the reader. O

Proof of Theorem 1.5. Recall that X can be identified with the space of unimodular
lattices in R™*". Tt was essentially observed by Davenport and Schmidt in [10] (see
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also [6,21,27,29] for other instances of the so-called Dani Correspondence) that the c-
Dirichlet improvability of s € M,,, can be restated in terms of a certain property of
the F'T-trajectory of the lattice hsZ™*". Specifically, suppose that (1.11) holds for some
N >1and 0 < ¢ < 1, and take ¢ such that

e (cQ ™) = e (7.15)

then both sides of (7.15) are equal to c¢m+7, and hence, in view of (1.3), s € DI, »(c)
implies that for all large enough ¢ > 0 the lattice ghsZ™™ has a non-zero vector of
supremum norm < ¢m+= . This in turn implies that h,Z™t" € E(FT,U,), where

Uc:{xEX:||v||oo>c# for all v e z . {0}}.

The latter is an open subset of X which, for example, contains a small enough neigh-
borhood of the standard lattice Z™1™. An application of Theorem 1.2 shows that the
codimension of DI,, ,(c) in M,, , is positive. O

We remark that, as explained in [26, Remark 6], a combination of the methods from the
present paper with measure estimates obtained in [26] can produce an effective estimate
for the codimension of DI, ,(c). We refer the reader to [3] for some recent results on
the set of Dirichlet improvable vectors, and to [25] for an extension of the problem of
improving Dirichlet’s theorem to the set-up of arbitrary norms on R™+",

8. Concluding remarks
8.1. More precise estimates for dim E(F*,U)

Studying trajectories missing a given open subset has been a notable theme in ergodic
theory. Such a set-up is often referred to as ‘open dynamics’ or ‘systems with holes’; see
e.g. [15,16] and references therein. In particular, [15, Theorem 1.2] considers a conformal
repeller supporting a Gibbs measure and gives an asymptotic formula for the set of
points missing a ball of radius €, showing the codimension to be asymptotically (as
¢ — 0) proportional to the measure of the ball. A similar formula was obtained by
Hensley [18] in the setting of continued fractions. See also [8] for a modern treatment of
the subject.

In view of these results one can expect that in our set-up the codimension of E(FT,U)
should also be asymptotically (as u(U) — 0) proportional to the measure of U. In other
words, conjecturally there should not be any logarithmic term in the right side of (1.7).
However it is not clear how to improve our upper bound, as well as how to obtain a
complimentary lower bound for dim E(F*,U) using the exponential mixing of the action
or any other method. The only known result supporting this conjecture in a partially
hyperbolic setting is a theorem of Simmons [34] which establishes the asymptotics for
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the codimension of F(F*,U) in the set-up (1.2)—(1.3) and with U being a complement
of a large compact subset of X.

8.2. Large deviations in homogeneous spaces

Let X = G/T be an arbitrary finite volume homogeneous space, let p be a G-invariant
probability measure on X, and let F't = {g;};>0 be a one-parameter subsemigroup of
G acting ergodically on (X, u). Given an open subset U of X and 0 < 6 < 1, let us say
that a point x € X d-escapes U on average with respect to F'T if x belongs to

T
1
Es(Ft,U) =< x € X :lim sup —/1Uc(gtx)dt >4,
T—o0 T
0
that is, to the set of points in X whose orbit spends at least -proportion of time in U*°.
Note that for any 0 < 6 < 1 we have

E(FT,U) C Es(F™,U), (8.1)

which means that the sets Es(F*,U) are larger compared to E(F*,U); hence their
dimension is greater than or equal to dimension of E(F*,U). Birkhoff’s Ergodic theorem
implies

T
1
lim T / 1ye(grx)dt = p(U°) for almost all x € X.

T—o0
0

Hence, the set E5(FT,U) has full measure for any 0 < 6 < p(U¢), and has zero mea-
sure whenever u(U°) < 0 < 1. This motivates estimating the Hausdorff dimension of
Es(F+,U) for u(U°¢) < < 1.

Now let '™ be Ad-diagonalizable, and let H be a subgroup of G with the Effective
Equidistribution Property (EEP) with respect to F'. In a forthcoming work, by obtain-
ing an explicit upper bound for dim Es(F*,U), we plan to prove that for any non-empty
open subset U of X there exists oy € [u(U°), 1) such that for any dy < § < 1 we have
dim Es(F+,U) < dim X. This, in view of (8.1), strengthens the main result of [23]. A
similar result was proved in [19] in the set-up (1.2)—(1.3) for trajectories divergent on
average; see also [1,31] for extensions.

8.8. Dimension drop conjecture for arbitrary homogeneous spaces and arbitrary flows
As we saw in this paper, height functions on the space of lattices provide a powerful

tool for studying orbits which spend a large proportion of time in the cusp neighborhoods.
The construction of such functions for arbitrary homogeneous spaces was given by Eskin
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and Margulis in [12], see also [14] for a survey. This can be used to control geodesic
excursions into cusps in any homogeneous space. For example, Guan and Shi in [17] used
a generalized version of the Eskin-Margulis function to extend the methods employed in
[19] to arbitrary homogeneous spaces and show that the set of points with divergent on
average trajectories has less than full Hausdorff dimension. By taking a similar approach,
and by combining the methods of this paper with those of [12] and [17], one can solve the
Dimension Drop Conjecture in much wider generality. This is the subject of the follow-up
paper [24].
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