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Abstract. We investigate the rigidity of global minimizers u ≥ 0 of the Alt-

Phillips functional involving negative power potentialsˆ
Ω

(
|∇u|2 + u−γχ{u>0}

)
dx, γ ∈ (0, 2),

when the exponent γ is close to the extremes of the admissible values.

In particular we show that global minimizers in Rn are one-dimensional if

γ is close to 2 and n ≤ 7, or if γ is close to 0 and n ≤ 4.

To David, a teacher and a friend.

1. Introduction

In this work we investigate minimizers of an energy functional of the type

J(u,Ω) =

ˆ
Ω

|∇u|2 +W (u) dx,

for a special class of homogenous potentials W : R → [0,∞). We are interested
in the classification of global minimizers in low dimensions, a question which is
intimately connected to the regularity of the free boundaries associated to these
minimizers.

This problem has been extensively studied in the literature for some particular
potentials W . An important example is the double-well potential

W (t) = (1− t2)2,

and the corresponding Allen-Cahn equation which appears in the theory of phase-
transitions and minimal surfaces, see [1, 6, 18, 20].

On the other hand, free boundary problems occur when the potential W is not
of class C2 near one of its minimum points, and minimizers can develop constant
patches. Two such potentials were investigated in greater detail. The first one is
the Lipschitz potential

W (t) = t+,

which corresponds to the classical obstacle problem, and we refer the reader to
the book of Petrosyan, Shahgholian and Uraltseva [19] for an introduction to this
subject. The second one is the discontinuous potential

W (t) = χ{t>0},

with its associated Alt-Caffarelli energy, which is known as the Bernoulli free bound-
ary problem or the two-phase problem (see [2, 3]). We refer to the book of Caffarelli
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and Salsa [8] for an account of the basic free boundary theory in this setting. These
two examples are part of a continuous family of Alt-Phillips potentials

W (t) = (t+)β , β ∈ [0, 2).

Nonnegative minimizers u ≥ 0 of J for these power potentials, together with their
free boundaries

F (u) := ∂{u > 0},
were studied by Alt and Phillips in [4].

Recently in [14, 15], we investigated properties of non-negative minimizers and
their free boundaries for Alt-Phillips potentials of negative powers

W (t) = t−γχ{t>0}, γ ∈ (0, 2).

These potentials are relevant in liquid models with large cohesive internal forces in
regions of low density. The upper bound γ < 2 is necessary for the finiteness of the
energy. As γ → 2, the energy concentrates more and more near the free boundary,
and heuristically, the free boundary should minimize the surface area in the limit.

In [14, 15] we showed that minimizers u ≥ 0 of the Alt-Phillips functional in-
volving negative power potentials

(1.1) Eγ(u,Ω) :=
ˆ
Ω

(
|∇u|2 + u−γχ{u>0}

)
dx, γ ∈ (0, 2), Ω ⊂ Rn,

have optimal Cα Hölder continuity. The behavior of u near the free boundary

F (u) := ∂{u > 0}
is characterized by an expansion of the type

u = cαd
α + o(d2−α), α :=

2

2 + γ
, α ∈ (

1

2
, 1),

where d denotes the distance to F (u) and cαd
α represents the explicit 1D homoge-

nous solution. Furthermore, using a monotonicity formula and dimension reduc-
tion, we showed that F (u) is a hypersurface of class C1,δ up to a closed singular
set of dimension at most n − k(γ), where k(γ) ≥ 3 is the first dimension in which
a non-trivial α-homogenous minimizer exists. We also established the Gamma-
convergence of a suitable multiple of the Eγ to the perimeter of the positivity set
PerΩ({u > 0}) as γ → 2.

The classification of α-homogenous minimizers in low dimensions, i.e. finding
a non-trivial lower bound for k(γ), seems to be a difficult question. In this paper
we establish such a bound in the case when γ is sufficiently close to 2 or to 0.
This is achieved by compactness, and the fact that the limiting problems are better
understood. In particular, if γ is close to 2 then we inherit the properties of minimal
surfaces and find k(γ) ≥ 8, and when γ is close to 0 then we inherit the properties
of the Alt-Caffarelli minimizers and obtain k(γ) ≥ 5. For the regularity theory
of minimal surfaces, we refer the reader to Giusti’s book [16]. The regularity of
minimizers of the Alt-Caffarelli functional:

E0(u) :=
ˆ
Ω

(|∇u|2 + χ{u>0}) dx,

was established in dimension n = 2 by Alt and Caffarelli [2], in dimension n = 3
by Caffarelli, Jerison, and Kenig [7], and finally in dimension n = 4 by Jerison and
Savin [17]. In view of the singular minimizing solution exhibited by De Silva and
Jerison in [12], regularity fails in dimension n ≥ 7, hence 5 ≤ k(0) ≤ 7.
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As a consequence we have the following full regularity result for F (u).

Theorem 1.1. Let u ≥ 0 be a minimizer of (1.1). Then F (u) is of class C1,δ if

either n ≤ 7 and γ ∈ (2− η, 2), or n ≤ 4 and γ ∈ (0, η),

where δ, η > 0 are small constants.

The proof of Theorem 1.1 is straightforward when γ is close to 0, however it
is much more involved when γ is close to 2. The reason is that the estimates for
the minimizers do not remain uniform as γ → 2, even though the one-dimensional
model solutions cα[(xn)

+]α do converge to a multiple of [(xn)
+]1/2. This can be

seen from a simple example where we solve the problem in the exterior domain
Ω = Rn \B1 with boundary data u = 1 on ∂B1. Then the minimizer is radial, and
it turns out that

F (u) = ∂B1+µ with µ→ 0 as γ → 2,

which shows that ∥u∥Cα → ∞ as γ → 2.
In [15], we developed uniform estimates in γ as γ → 2, but to achieve this we

had to rescale the potential term in the functional Eγ in a suitable way (see (2.4)
in Section 2). We further established the Gamma-convergence of these rescaled
functionals to the Dirichlet-perimeter functional

F(u) :=

ˆ
Ω

|∇u|2dx+ PerΩ({u = 0}),

which was studied by Athanasopoulous, Caffarelli, Kenig, Salsa in [5]. The results
in [15] imply the flatness of the free boundary for global minimizers of Eγ up to
dimension n = 7, if γ is close to 2.

In this paper, we achieve the desired classification of global minimizers after
establishing uniform improvement of flatness estimates, which we make precise
below (see Theorem 2.5 in Section 2).

Uniform estimates in other contexts were obtained for example by Caffarelli and
Valdinoci for the s-minimal surface equation as s → 1 [11], and by Caffarelli and
Silvestre for integro-differential equations as the order σ → 2 [10].

The paper is organized as follows. In Section 2, we set notation, recall previous
results, and state our main theorems. In the following section, Section 3, we provide
uniform estimates for solutions to the linearized problem associated to our free
boundary problem. Section 4 is devoted to the proof of the uniform improvement
of flatness, which is the key tool in our strategy. In Section 5, we characterize
global minimizers of F in low dimensions and deduce the flatness property of global
minimizers of Eγ , for γ → 2, yielding the proof of Theorem 2.3 on the basis of the
uniform improvement of flatness. We also prove compactness for γ → 0, completing
the proof of Theorem 2.3.

2. Main results

We collect here our main results. We start by introducing some notation and
recalling previous results.

Let Ω be a bounded domain in Rn with Lipschitz boundary. We consider the
functional

(2.1) Eγ(u) :=
ˆ
Ω

(
|∇u|2 + u−γχ{u>0}

)
dx, γ ∈ (0, 2),
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which acts on functions

u : Ω → R, u ∈ H1(Ω), u ≥ 0.

The Euler-Lagrange equation associated to the minimization problem reads

∆u = −γ
2
u−γ−1,

and we let u0 denote its one-dimensional solution

(2.2) u0(t) := cα(t
+)α, α =

2

2 + γ
, cα :=

(
γ + 2

2

) 2
γ+2

.

More precisely, we proved in [14] that minimizers of Eγ are viscosity solutions to
the following degenerate one-phase free boundary problem:

(2.3)

{
∆u = −γ

2u
−(γ+1) in {u > 0} ∩ Ω,

u(x0 + tν) = cαt
α + o(t2−α) on F (u) := ∂{u > 0} ∩ Ω,

with t ≥ 0, ν the unit normal to F (u) at x0 pointing towards {u > 0}, and α, cα, γ
as above.

We recall the notion of viscosity solution to (2.3). As usual, we say that a
continuous function u touches a continuous function ϕ by above (resp. below) at a
point x0 if

u ≥ ϕ (resp. u ≤ ϕ) in a neighborhood of x0, u(x0) = ϕ(x0).

Typically, if the inequality is strict (except at x0), we say that u touches ϕ strictly
by above (resp. below). In our context, with ϕ ≥ 0, when we say that u touches ϕ
strictly by above at x0, we mean that u ≥ ϕ in a neighborhood B of x0 and u > ϕ
(except at x0) in B ∩ {ϕ > 0} (and similarly by below we require the inequality to

be strict in a neighborhood of x0 intersected {u > 0}).
We now consider the class C+ of continuous functions ϕ vanishing on the bound-

ary of a ball B := BR(z0) and positive in B, such that ϕ(x) = ϕ(|x− z0|) in B and
ϕ is extended to be zero outside B. We denote by d(x) := dist(x, ∂B) for x in B
and 0 otherwise. Similarly we can define the class C−, with ϕ being zero in the ball
and positive outside, and d(x) := dist(x, ∂B) for x ∈ Bc and 0 otherwise.

Definition 2.1. We say that a non-negative continuous function u satisfies (2.3)
in the viscosity sense, if

1) in the set where u > 0, u is C∞ and satisfies the equation in a classical sense;
2) if x0 ∈ F (u) := ∂{u > 0} ∩ Ω, then u cannot touch ψ ∈ C+ (resp. C−) by

above (resp. below) at x0, with

ψ(x) := cαd(x)
α + µd(x)2−α,

α, cα as in (2.2) and µ > 0 (resp µ < 0).

Now, let Jγ be a rescaling of Eγ defined as

(2.4) Jγ(u,Ω) :=

ˆ
Ω

|∇u|2 +Wγ(u) dx,

where

(2.5) Wγ(u) := cγu
−γχ{u>0}, with cγ :=

1

16
· (2− γ)2, γ ∈ (0, 2),
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and let us introduce the Dirichlet-perimeter functional F investigated by Athana-
sopoulous, Caffarelli, Kenig, Salsa in [5]. It acts on the space of admissible pairs
(u,E) consisting of functions u ≥ 0 and measurable sets E ⊂ Ω which have the
property that u = 0 a.e. on E,

A(Ω) := {(u,E)| u ∈ H1(Ω), E Caccioppoli set, u ≥ 0 in Ω, u = 0 a.e. in E}.

The functional F is given by the Dirichlet-perimeter energy

FΩ(u,E) =

ˆ
Ω

|∇u|2dx+ PΩ(E),

where PΩ(E) represents the perimeter of E in Ω

PΩ(E) =

ˆ
Ω

|∇χE |

= sup

ˆ
Ω

χE div g dx with g ∈ C∞
0 (Ω), |g| ≤ 1.

In [15] we established the Gamma-convergence of Jγ to F , as γ → 2. Precisely,
we proved the following theorem.

Theorem 2.2. Let Ω be a bounded domain with Lipschitz boundary, γk → 2−, and
uk a sequence of functions with uniform bounded energies

∥uk∥L2(Ω) + Jγk
(uk,Ω) ≤M,

for some M > 0. Then, after passing to a subsequence, we can find (u,E) ∈ A(Ω)
such that

uk → u in L2(Ω), χ{uk>0} → χEc in L1(Ω).

Moreover, if uk are minimizers of Jγk
then the limit (u,E) is a minimizer of F .

The convergence of uk to u and respectively of the free boundaries ∂{uk > 0} to ∂E
is uniform on compact sets (in the Hausdorff distance sense).

Here, we exploit this fact to obtain our main theorem in the subtle case when
γ → 2. The following is our main result, from which Theorem 1.1 follows as
discussed in the Introduction.

Theorem 2.3. Let u be a global minimizer of Eγ , and assume that

either n ≤ 7 and γ ∈ (2− η, 2), or n ≤ 4 and γ ∈ (0, η),

for some η = η(n) > 0 small. Then up to rotations u = u0(xn).

The key ingredient in the proof of Theorem 2.3 is a uniform (independent of
γ) “improvement of flatness” result for viscosity solutions. We start by giving the
definition of ϵ-flatness, ϵ > 0.

Definition 2.4. We say that

u ∈ S(r, ϵ)
if 0 ∈ ∂{u > 0} and for any ball Bt(y) ⊂ Br centered on the free boundary
y ∈ ∂{u > 0}, u is ϵ-flat in Bt(y) i.e. there exists a unit direction ν depending on
t, y, such that

u0(x · ν − ϵt) ≤ u(y + x) ≤ u0(x · ν + ϵt) if |x| ≤ t.

Our uniform improvement of flatness theorem then reads as follows.
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Theorem 2.5. Let u be a viscosity solution to (2.3) in B1. There exists ϵ0(n) > 0
such that if 0 < ϵ ≤ ϵ0 then

u ∈ S(1, ϵ) =⇒ u ∈ S(ρ, ϵ
2
),

for some ρ(n) > 0.

The proof of this theorem relies on a compactness argument which linearizes
the problem into a fixed-boundary degenerate linear problem with a “Neumann”
boundary condition, whose property we analyze in the next section.

3. Uniform estimates for the linearized equation

Here, we discuss the linearized problem associated to our free boundary problem.
We refer to some of our previous results in [13], where we studied the regularity of
the free boundary for a class of degenerate problems.

For s ∈ (−1, 1) we consider solutions of

(3.1) ∆v + s
vn
xn

= 0 in B+
1 ,

which satisfy the “Neumann” boundary condition

(3.2) ∂x1−s
n

v = 0 on {xn = 0},

in the viscosity sense. This means that v cannot be touched by below (above)
locally by the family of comparison functions

p(x′) + tx1−s
n with t > 0 ( or t < 0) and p(x′) quadratic,

at points on {xn = 0}. There is a unique solution to the Dirichlet problem which
assigns continuous data on ∂B1 ∩ {xn ≥ 0}, and in the case of sufficiently regular
data the solution is the minimizer of the energyˆ

B+
1

|∇v|2 xsndxn.

Problem (3.1) in Rn+ is the extension problem of Caffarelli-Silvestre [9], with

the Dirichlet to Neumann operator representing ∆
1−s
2 v on {xn = 0}. This is well-

known problem, yet here we are interested in its local version, which appears in
connection with a variety of degenerate free boundary problems. In [13], we studied
a version of (3.1) for more general linear operators that do not necessarily have a
variational structure. We make some remarks on the range of s in equation (3.1).
When s ∈ (−1, 1), both the Dirichlet and the Neumann boundary conditions can
be imposed on xn = 0. However, when s ≥ 1, only the Neumann condition can
be imposed and it simply requires the function to be bounded. When s ≤ −1, the
Dirichlet condition is meaningful, but the Neumann condition in the sense defined
above cannot be imposed.

Now, we start by obtaining uniform (independent on s) C1,α estimates for solu-
tions to this Neumann problem.

Proposition 3.1 (Uniform C1,α estimates). Let s ∈ (−1, 0], and let v be a solution
to the Neumann problem (3.1)-(3.2). Then

(3.3) |v − v(0)− a′ · x′| ≤ C|x|1+α∥v∥L∞ , for some a′ ∈ Rn−1,

with C,α > 0 depending only on n (but not on s).
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Proof. In [13] we obtained the estimate above for constants C and α that depend
on s. The proof in [13] does not fully apply here as the constants in the main
Harnack estimate (Lemma 7.4) deteriorate as s→ −1.

We recall briefly the key steps from [13] which imply the Proposition in the case
when we restrict s to a compact interval of (−1, 0], and then we explain how to
modify the argument when s is close to −1.

In Proposition 7.5 of [13] we showed that the difference of two viscosity solutions
is a viscosity solution. Then the conclusion follows by iterating a Harnack estimate
of the type

(3.4) oscB+
ρ
v ≤ (1− η) oscB+

1
v, ρ, η > 0,

for discrete differences in the x′ direction. The Harnack estimate (3.4) was achieved
by writing the interior estimate in a ball B1/4(en/2) and then extending it to the
flat boundary with the aid of explicit barriers of the type

−|x′|2 + 1

1 + s
x2n ± ϵx1−s

n .

These barriers degenerate as s→ −1, and so do the constants η and ρ.
Below we show by a different argument that the estimate (3.4) holds with con-

stants ρ and η that depend only on the dimension n when s is near to −1.
Let us assume

0 ≤ v ≤ 1 in B+
1 ,

and we claim that

(3.5) either v ≥ η or v ≤ 1− η in B+
ρ ,

for small constants η and ρ to be specified below.
The limit

lim
xn→0+

vnx
s
n = 0

exists in the classical sense, hence v is also a weak solution i.e.ˆ
B+

1

∇v · ∇w xsndx = 0,

for any C1 function w which vanishes near ∂B1. By taking w = φ2v with φ a cutoff
function which is 1 in B1/2 and 0 near ∂B1, we find the Caccioppoli inequalityˆ

B+
1/2

|∇v|2xsndx ≤ C

ˆ
B+

1

v2xsndx

with C independent of s. We iterate this m = m(n) times by taking derivatives in
the x′ direction, and obtain

(3.6)

ˆ
B+

2−m

|Dm
x′v|2xsndx ≤ C(m)

ˆ
B+

1

v2xsndx.

Let a > 0 be given by

a1+s :=
1

2
,

so that ˆ a

0

xsndxn =
1

2

ˆ 1

0

xsndxn.
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Notice that a → 0 as s → −1, which means that the weight xsn concentrates its
mass near xn = 0 when s is close to −1. Since v ≤ 1, (3.6) implies that there exists
t ∈ (0, a] such that ˆ

B+

2−m∩{xn=t}
|Dm

x′v|2dx′ ≤ C(m).

We choose m sufficiently large so that the Sobolev embedding gives

|∇x′v| ≤ C on B+
2−(m+1) ∩ {xn = t}.

Assume that at ten, the value of v is closer to 1 than to 0, i.e

v(ten) ≥
1

2
.

Then, the Lipschitz bound in x′ implies

(3.7) v(x′, t) ≥ c0 − C0|x′|2,
for constants c0 small, and C0 large that depend only on n.

In the cylinder

C1 := B′
1/2 × [0, t]

we use as lower barrier

q1(x) :=
c0
2

+ C0

(
−|x′|2 + 1

1 + s
x2n + x1−s

n

)
.

Notice that q1 satisfies the equation (3.1) and is a strict subsolution for the Neumann
condition on {xn = 0}. Moreover, on xn = t, we use that t ≤ a to find

1

1 + s
x2n + x1−s

n ≤ 1

1 + s
a2 + a1−s → 0 as s→ −1,

hence q1 ≤ v by (3.7). The inequality above shows that q1 ≤ 0 ≤ v on the lateral
boundary of C1 and by the maximum principle we find

v ≥ q1 in C1.
In the cylinder

C2 := B′
1/2 × [t,

1

2
]

we use as lower barrier

q2(x) := c0 + C0

(
−|x′|2 + 1

1 + s
(x2n − x1−s

n )

)
.

Notice that as s→ −1,

(3.8)
1

1 + s
(x2n − x1−s

n ) → x2n log xn,

uniformly in [0, 1], hence q2 ≤ 0 ≤ v on ∂C2 \ {xn = t}. On the remaining part of
the boundary q2 ≤ v by (3.7). In conclusion

v ≥ q2 in C2.
The claim (3.5) is proved since q1 and q2 are both greater than η := c0/3 in a
sufficiently small ball B+

ρ of fixed radius.
We can iterate the claim (3.5) and obtain that solutions to (3.1)-(3.2) which are

normalized so that

∥v∥L∞(B+
1 ) = 1,
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satisfy
|v(x)− v(0)| ≤ C|x|β ,

for some fixed β > 0, and for all s sufficiently close to −1. Using scaling and interior
estimates, we find

∥v∥Cβ(B+
1/2

) ≤ C.

This estimate can be iterated for discrete differences in the x′ direction, and we
obtain

(3.9) ∥Dm
x′v∥Cβ(B+

1/2
) ≤ C(m).

After subtracting a linear function in the x′ variable we may assume further that

|v(x′, 0)| ≤ C|x′|2,
for some C large. Now we bound v in the remaining xn direction by trapping it
between the barriers (see (3.8))

±C
(
|x′|2 − 1

1 + s
(x2n − x1−s

n )

)
.

We obtain the desired conclusion

|v| ≤ C|x|3/2,
since

1

1 + s
|x2n − x1−s

n | ≤ |xn|1−s| log xn|.

□

Next we show that the limiting equation to (3.1)-(3.2) as s→ −1 is

(3.10) ∆v − vn
xn

= 0 in B+
1 ,

with boundary data on {xn = 0} which is harmonic

(3.11) ∆x′v(x′, 0) = 0.

Lemma 3.2. Let vm be a sequence of solutions to (3.1)-(3.2) for sm → −1, with
∥vm∥L∞(B+

1 ) ≤ 1. Then there exists a subsequence which converges uniformly on

compact sets to a solution of (3.10)-(3.11).
Conversely, any continuous solution of (3.10)-(3.11) is the limit of a sequence

of solutions vm to (3.1)-(3.2) with sm → −1.

Corollary 3.3. A continuous solution to (3.10)-(3.11) satisfies the C1,α estimate
(3.3) in Proposition 3.1.

Proof of Lemma 3.2. By (3.9) we find that, after passing to a subsequence, we can
extract a subsequence sm → −1 such that

vm → v uniformly in B1 ∩ {xn ≥ 0},
with v a Hölder continuous function. Clearly v satisfies (3.10).

We show that v satisfies (3.11) in the viscosity sense. Assume by contradiction
that on xn = 0 we can touch v strictly by below in B′

δ, say at 0, with a quadratic
polynomial p(x′) with

∆x′p = t > 0.
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Then, we choose M sufficiently large such that

v > p(x′)−Mx2n +
t

4
x2n| log xn| on ∂Bδ ∩ {xn ≥ 0}.

The uniform convergence of the vm’s to v and (3.8) imply that vm can be touched
by below in Bδ ∩ {xn ≥ 0} by

p(x′)−Mx2n +
t

4(1 + sm)
(x1−sm

n − x2n) + const.

It is straightforward to check that this function is a strict subsolution to (3.1)-(3.2)
for all large m, and we reached a contradiction.

For the second part, let ϕ be a continuous function on ∂B1 and let vs be the
solution to the Neumann problem (3.1)-(3.2) with prescribed data ϕ on ∂B1. Then,

it suffices to show that as s→ −1, vs converges uniformly in B+
1 to the solution of

(3.10)-(3.11) with boundary data ϕ.
The convergence in the interior region B1 ∩ {xn ≥ 0} was proved above. On the

boundary ∂B1 ∩ {xn ≥ 0} this follows from standard barrier arguments. Indeed,
at the points on ∂B1 ∩ {xn = 0} the linear functions in x′ variables act as barriers
for all vs, while at the remaining points on ∂B1 ∩{xn > 0} the limiting equation is
nondegenerate. □

4. Proof of Theorem 2.5

In this section we provide the proof of our main uniform improvement of flatness
Theorem 2.5.

After a change of variables we rewrite the equation in (2.3) in the form

∆w =
hs(∇w)

w
.

Precisely, we denote

(4.1) w := c
− 1

α
α u

1
α ,

so that u = cαw
α. The equation for w is

cααw
α−2

(
w∆w + (α− 1)|∇w|2

)
= −γ

2
c−(γ+1)
α w−α(γ+1),

and using (2.2) we find

∆w = (1− α)
|∇w|2 − 1

w
.

We write this as

(4.2) ∆w =:
hs(∇w)

w
= s

h(∇w)
w

with

h(∇w) = 1

2
(1− |∇w|2), s := 2(α− 1) ∈ (−1, 0).

Here h is the radial quadratic function which vanishes on ∂B1, is negative in B1

and positive outside B1 and

(4.3) ∇h(ω) = −ω, if ω ∈ ∂B1.

Notice that (4.2) remains invariant under the rescaling

w̃(x) =
w(rx)

r
.



UNIFORM DENSITY ESTIMATES 11

In view of the viscosity definition for u, we find that w satisfies (4.2) with the
following free boundary condition on ∂{w > 0}:

Definition 4.1. We say that w : Ω → R+ satisfies (4.2) in the viscosity sense, if
w is C∞ and satisfies the equation in the set {w > 0} ∩ Ω and, if x0 ∈ F (w) :=
∂{w > 0} ∩ Ω, then w cannot touch ψ ∈ C+ (resp. C−) by above (resp. below) at
x0, with

ψ(x) := d(x) + µd(x)1−s,

α as in (2.2) and µ > 0 (resp. µ < 0).

Similarly, we keep the same notation as in Definition 2.4 for the corresponding
solutions w to (4.2). Precisely,

Definition 4.2. We say that

w ∈ S(r, ϵ)
if 0 ∈ ∂{w > 0} and for any ball Bt(y) ⊂ Br centered on the free boundary
y ∈ ∂{w > 0}, w is ϵ-flat in Bt(y) i.e. there exists a unit direction ν depending on
t, y, such that

(x · ν − ϵt)+ ≤ w(y + x) ≤ (x · ν + ϵt)+ if |x| ≤ t.

We state the main result of this section from which Theorem 2.5 easily follows.

Proposition 4.3. Assume that w is a viscosity solution of (4.2) in B1, and

w ∈ S(1, ϵ),

for some 0 < ϵ ≤ ϵ0(n) small. Then, there exists ρ > 0 depending on n such that

(x · ν − ϵ

2
ρ)+ ≤ w ≤ (x · ν + ϵ

2
ρ)+ in Bρ,

for some unit direction ν, |ν| = 1.

We remark that the Proposition 4.3 can be applied for all balls Bt(y) ⊂ B1

centered on the free boundary. Then the conclusion implies that

w ∈ S(ρ, ϵ
2
),

which is precisely the statement of Theorem 2.5.
In Proposition 6.1 of [13] we proved Proposition 4.3 for constants ϵ0 and ρ that

depend on s. Below we show that this dependence can be dropped.
After a rotation we may assume that

(4.4) (xn − ϵ)+ ≤ w ≤ (xn + ϵ)+ in B1.

As in [13], we consider the rescaled function

(4.5) w̃ =
w − xn

ϵ
,

and show that is well approximated by a viscosity solution of the linearized equation

(4.6)

∆φ+ s
φn

xn
= 0, in B+

1 ,

∂x1−s
n

φ = 0 on {xn = 0}.

First, we need a preliminary lemma.
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Lemma 4.4. Assume that

0 < x+n ≤ w ≤ (xn + a)+ in Br(x0),

for some a > 0. Then

either (xn + ca)+ ≤ w or w ≤ (xn + (1− c)a)+ in Br/2(x0),

for some constant c > 0 independent of γ.

Proof. It is convenient to prove this result working directly with the solution u
prior to applying the change of variables (4.1). Then, our assumption reads:

0 < u0(xn) ≤ u ≤ u0(xn + a) in Br(x0).

After a dilation we may assume that x0 = en and r ≤ 1/2. Assume for simplicity
that

u(en) ≥ u0(1 +
a

2
).

Then g := u− u0 ≥ 0 satisfies

|∆g| ≤ Cg in Br(en).

and by Harnack inequality we find

g ≥ cg(en) ≥ c(u0(1 +
a

2
)− u0(1)) in Br/2(en).

The conclusion follows since

c(u0(1 +
a

2
)− u0(1)) ≥ u0(xn + c′a)− u0(xn) ∀xn ∈

[
1

2
,
3

2

]
,

provided that c′ is chosen sufficiently small. □

Proof of Proposition 4.3. Assume that for a sequence of ϵk → 0, sk ∈ (−1, 0) and

(4.7) wk ∈ S(1, ϵk)
which satisfy (4.2)-(4.4) the conclusion does not hold for some ρ small, depending
only on n, to be made precise later.

By passing to a subsequence we may assume that

sk → s̄ ∈ [−1, 0].

Claim 1: Up to a subsequence, the graphs of

w̃k :=
wk − xn

ϵk

defined in {wk > 0}, converge uniformly on compact sets to the graph of a Hölder
limiting function w̄ defined in B1 ∩ {xn ≥ 0}, and

|w̄| ≤ 1 w̄(0) = 0.

Towards this, we notice that (4.7) implies that the oscillation of wk decays geomet-
rically in dyadic balls of radius rm = 2−m which are centered on the free boundary,
m ≥ 1. Indeed, if for example we focus at the origin, the unit directions νkm of the
linear functions which approximate wk in the balls Brm satisfy

|νkm − νkm−1| ≤ Cϵ =⇒ |νkm − en| ≤ Cmϵk.

Then the inequalities

(x · νkm − ϵkrm)+ ≤ wk ≤ (x · νkm + ϵkrm)+ in Brm ,
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imply

(xn − (Cm+ 1)ϵkrm)+ ≤ wk ≤ (xn + (Cm+ 1)ϵkrm)+ in Brm ,

which gives

osc w̃k ≤ C ′mrm in Brm ∩ {wk > 0}.
On the other hand, for dyadic balls included in {wk > 0}, we can apply Lemma 4.4
and conclude that the oscillation of w̃k decays geometrically as well. By combining
these estimates we find that w̃k has a uniform Hölder modulus of continuity when
restricted to compact sets of B1, and the claim follows from Arzela-Ascoli theorem.

Claim 2: w̄ solves (4.6) in the viscosity sense, with s = s̄.
If s̄ = −1 then the boundary condition is understood as in (3.11).

The function w̃k solves the equation

∆wk =
1

ϵk

sk · h(en + ϵk∇w̃k)

xn + ϵkw̃k
:= g(ϵk, sk, xn, w̃k,∇w̃k)

and

g(ϵk, sk, xn, z, p) → s̄
∇h(en) · p

xn
= −s̄ pn

xn
as k → ∞.

This shows that w̄ solves the linear equation

(4.8) ∆w̄ + s̄
w̄n

xn
= 0 in B+

1 ,

in the viscosity sense.
It remains to show that w̄ satisfies the boundary condition of (4.6) on {xn = 0}.
Towards this aim we construct explicit barriers. Let p(x′) be a given quadratic

polynomial and let d denote the distance to the graph

xn = −ϵp(x′).
We restrict our computations to the region

B1 ∩ {xn ≥ −ϵp(x′)},
and we have

d = xn + ϵp(x′) +O(ϵ2),

∆d = ϵκ+O(ϵ2), κ = ∆x′p.

We let

(4.9) Φ := d+ ϵf(d),

for some one-dimensional Lipschitz function f to be specified below, with f(0) = 0,
and compute

∆Φ = ϵf ′′(d) + (1 + ϵf ′(d))∆d

= ϵ (f ′′(d) + κ+O(ϵ)) ,

and

hs(∇Φ)

Φ
=
s

2
· −2ϵf ′(d) + ϵ2(f ′(d)2)

d+ ϵf(d)

= −ϵ s f
′(d)

d

(
1 + ϵO(|f ′|+ |f

d
|)
)
.
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The corresponding function Φ̃ (see (4.5)) has the form

(4.10) Φ̃ = p(x′) + f(xn) +O(ϵ).

We distinguish 2 cases, s̄ ∈ (−1, 0] and s̄ = −1.

Case 1: s̄ ∈ (−1, 0].
Assume by contradiction that, say for simplicity, w̄ is touched strictly by below

at 0 by

q(x) := −a|x′|2 + tx1−s̄
n ,

for some constants a, t > 0. Then we pick p(x′) = −a
2 |x

′|2 and in (4.9) we make
the choice

fk(d) =
t

4
d1−sk +

t

4
d1−2sk +Md2,

for some large M > 0.
Then Φk is a strict viscosity subsolution since the free boundary condition in

Definition 4.1 is clearly satisfied by the choice of fk, and the computations above
imply that

∆Φk − hsk(∇Φk)

Φk
=

= ϵk

(
t

4
|sk|(1− 2sk +O(ϵk))d

−1−2sk + 2M(1 + sk)− (n− 1)a+O(ϵk)

)
> 0,

for all large k’s.
From (4.10) we get the uniform convergence

Φ̃k → −a
2
|x′|2 + t

4
d1−s̄ +

t

4
d1−2s̄ +Md2,

and the limit function, in a small neighborhood of 0, touches q and therefore w̄
strictly by below at the origin. This means that a translation of the graph of Φk in
{Φk > 0} touches the graph of wk in {wk > 0} at an interior point and we reached
a contradiction.

Case 2: s̄ = −1.
Assume that we can touch w̄ on {xn = 0} by a quadratic polynomial p(x′)

strictly by below at 0, with a quadratic polynomial p(x′) with

∆x′p = t > 0.

Then, we can touch w̄ strictly by below at 0 in B+
δ with

q(x) = p(x′) +
t

4
x2n| log xn| −Mx2n,

for some M sufficiently large. This follows from the fact that q is a subsolution of
the equation (4.8) with s̄ = −1.

We choose

fk(d) =
t

4
· 1

1 + sk
(d1−sk − d2)−Md2

and the corresponding function Φk is a viscosity subsolution since

∆Φk − hsk(∇Φk)

Φk
=

= ϵk

(
− t

2
− 2M(1 + sk) + t+O(ϵk)d

−1−2sk

)
> 0,
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for all large k’s. Notice that Φ̃k → q uniformly in B+
1 and we reach a contradiction

as in Step 1. With this Claim 2 is proved.

Next we apply Proposition 3.1 and Corollary 3.3 to w̄ and conclude that

|w̄ − a′ · x′| ≤ ρ

8
in B

+

ρ ,

for some ρ > 0 universal depending only on n. This implies(
xn + ϵk(a

′ · x′ − ρ

4
)
)+

≤ wk ≤
(
xn + ϵk(a

′ · x′ + ρ

4
)
)+

in B
+

ρ ,

holds for large k’s. Then the conclusion is satisfied for wk with νk = en+ϵka
′

|en+ϵka′| and

we reached a contradiction. □

5. Proof of Theorem 2.3

In this final section we provide the proof of our main result, Theorem 2.3. For
the case when γ → 2, it will follow from the characterization of global minimizers
of the Dirichlet-perimeter functional F introduced in Section 2, combined with the
compactness Theorem 2.2, and the uniform improvement of flatness result in the
previous section.

Here, we need to characterize the global minimizers of F and deduce the flatness
of global minimizers of Eγ . We start with an important tool, that is a monotonicity
formula for the Dirichlet-perimeter functional F .

Proposition 5.1 (Monotonicity Formula). Let (u,E) be a minimizing pair for F
in Ω. Then

Φ(r) = r1−nFBr (u,E)− 1

2
r−n

ˆ
∂Br

u2dσ

is monotone increasing in r as long as Br ⊂ Ω.
Moreover, Φ is constant if and only if (u,E) is a cone i.e u is homogenous of

degree 1/2 and E is homogenous of degree 0.

Proof. We compute for a.e. r

Φ′(r) = r1−n

(ˆ
∂Br

|∇θu|2 +
1

4

u2

r2
dσ − n− 1

r
FBr (u,E)

+

ˆ
∂Br

(uν − 1

2

u

r
)2dσ +

ˆ
∂E∩∂Br

(sin θ)−1dHn−2

)
where θ is the angle between the normal ν to ∂E and the radial direction x/|x|.

Let (ũ, Ẽ) be the extension of the boundary data of (u,E) on ∂Br to Rn, with

ũ homogenous of degree 1/2, and Ẽ homogeneous of degree 0.

Denote by Φ̃ the corresponding expression for the pair (ũ, Ẽ). The homogeneity

of the pair implies that Φ̃ is constant in its argument and the computation above
shows that

Φ̃′(r) = r1−n

(ˆ
∂Br

|∇θũ|2 +
1

4

ũ2

r2
dσ − n− 1

r
FBr

(ũ, Ẽ) +Hn−2(∂Ẽ ∩ ∂Br)

)
.

Now the conclusion

Φ′(r) ≥ Φ̃′(r) = 0
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follows since (u,E) and (ũ, Ẽ) coincide on ∂Br and

FBr (ũ, Ẽ) ≥ FBr (u,E)

by minimality of (u,E). □

We can now easily deduce the following result.

Proposition 5.2. If (u,E) is a cone, then u ≡ 0 and E is a minimizing cone for
the perimeter.

Proof. In Theorem 4.1 of [5] it was shown that u is Lipschitz in the interior of the
domain for a minimizing pair (u,E). Since u is homogenous of degree 1/2, this
means that u = 0 and E is a minimal cone for the perimeter. □

Next, we can characterize global minimizers to F in low dimensions, on the basis
of the classical regularity theory for minimal surfaces (see for example [16]).

Proposition 5.3. Assume n ≤ 7 and (u,E) is a global minimizer for F with
0 ∈ ∂E. Then u ≡ 0 and E is a half-space.

Proof. If n ≤ 7 then, by Proposition 5.2 and Simons theorem for minimal surfaces,
there is only one cone up to rotations i.e. u ≡ 0 and E is a half-space. This means
that the tangent cone at infinity and the tangent cone at 0 for the pair (u,E) have
the same Φ value. This means that Φ is constant and (u,E) is a cone. □

We deduce the following flatness property for the free boundaries of global min-
imizers of Jγ , as γ → 2.

Proposition 5.4. Assume n ≤ 7. Given ϵ > 0, there exist R large and δ > 0 small
depending on ϵ and n, such that if u is a minimizer of Jγ in BR, and 0 ∈ ∂{u > 0},
γ ≥ 2− δ, then, up to rotations,

{xn ≥ ϵ} ∩B1 ⊂ {u > 0} ∩B1 ⊂ {xn ≥ −ϵ}.

Proof. This follows easily by compactness from Theorem 2.2. Indeed, for a sequence
of γm → 2− and minimizers um defined in Bm for Eγm

, we can extract a subsequence
so that the free boundaries ∂{um > 0} converges uniformly on compact sets to ∂E
for some global minimizing pair (u,E) of F . Proposition 4.3 implies that um
satisfies the conclusion for all large m’s. □

Finally, we also obtain the flatness of global minimizers of Eγ , as γ → 2.

Lemma 5.5. Assume n ≤ 7, and that u is a global minimizer of Eγ , γ ≥ 2 − δ,
with δ as in Proposition 5.4. Then,

(1− Cϵ)u0(d(x)) ≤ u(x) ≤ (1 + Cϵ)u0(d(x)),

with C depending only on n, and d(x) := dist(x, F (u)).

Proposition 5.4 and Lemma 5.5 imply that global minimizers u of Eγ , for γ → 2,
satisfy the flatness assumption u ∈ S(r, Cϵ) for all r’s. Then the conclusion of
Theorem 2.3 follows by applying Theorem 2.3 indefinitely. We are left with the
proof of Lemma 5.5.

Before proving Lemma 5.5, we need the following preliminary result. Notice
that, the multiples of the one dimensional solution

au0(xn), a > 0,
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are supersolutions for the Euler-Lagrange equation when a ≥ 1 and subsolutions
when a ≤ 1. Next we show that if a solution u is trapped between two such
multiples, then the bounds can be improved in a linear fashion in the interior.

Lemma 5.6. Assume that γ ∈ [1, 2) and u satisfies

∆u =W ′(u) in B1/2(en),

and

a− ≤ u

u0(xn)
≤ a+,

for some

0 < a− ≤ 1 ≤ a+.

Then

(1− c)a− + c ≤ u

u0(xn)
≤ (1− c)a+ + c in B1/4(en),

for some constant c > 0 depending only on n.

We require for γ to be bounded away from 0 in order to have an inequality

|W ′(u0)| ≥ c in B1/2(en),

with c universal.

Proof. Let v := a u0(xn) and notice that in B1/2(en)

∆v = aW ′(u0) = aγ+2W ′(v) =W ′(v) +
aγ+2 − 1

aγ+1
W ′(u0)

≤W ′(v)− c(a− 1),

with c independent of γ. Then, using the uniform Lipschitz bound of W ′ we find
that w = v − u ≥ 0 satisfies

∆w ≤ Cw − c(a− 1) in B1/2(en).

Now we can use comparison with explicit quadratic polynomials of the type

µ(1− C|x− x0|2), x0 ∈ B1/4(en)

and obtain

w ≥ c′(a− 1) ≥ c′′(a− 1)u0 in B1/4(en),

which gives the upper bound.
The lower bound follows in a similar fashion. □

Proof of Lemma 5.5. We show that

(5.1) u(x) ≤ amu0(d(x))

for successive constants am that decrease to 1 + C ′ϵ.
In [13] we showed that (5.1) holds for some a0 large depending on γ. Suppose that

(5.1) is satisfied for some constant am, and since the statement remains invariant
under the rescaling of the equation, we may assume that B1(en) ⊂ {u > 0} is
tangent to the free boundary at 0. By Proposition 5.4 we know that ∂{u > 0}∩B4

is trapped in the strip {|xn| ≤ 4ϵ}. Then, (5.1) gives

u(x) ≤ amu0(xn + 4ϵ) ≤ am(1 + Cϵ)u0(xn) in B1/2(en),



18 D. DE SILVA AND O. SAVIN

with C independent of γ. We apply Lemma 5.6 to obtain

u(en) ≤ am+1u0(en), am+1 := am(1 + Cϵ)(1− c) + c,

and, after rescaling, we find that the constant am can be replaced by am+1, and
the claim easily follows.

The lower bound can be proved in a similar way. □

We are now left with the proof of Theorem 2.3, in the case γ → 0. The only
missing ingredient is the following compactness result showing that the limit of
minimizers of Eγ with exponents tending to 0 is a minimizer for E0 as well. Recall
that E0 is the Alt-Caffarelli functional:

E0(u) :=
ˆ
Ω

(|∇u|2 + χ{u>0}) dx,

for which regularity in low dimension was established in [2, 7, 17].

Proposition 5.7 (Compactness for γ → 0). Assume that

γk → 0, uk → ū in L2(Ω),

and uk are minimizers of Eγk
. Then ū is a minimizer for E0 in Ω.

A version of this proposition for a fixed exponent γ was proved in [13]. It relies
on a construction which interpolates between two functions which are L2 close in
an annulus, without increasing too much the Eγ energy.

Lemma 5.8. Let uk, vk be sequences in H1(B1) and δ > 0 small. Assume that
uk − vk → 0 in L2(B1−δ/2 \ B̄1−δ), as k → ∞, and that uk, vk have uniformly (in

k) bounded energy in B1−δ/2. Then, there exists wk ∈ H1(B1) with

wk :=

{
vk in B1−δ

uk in B1 \ B̄1−δ/2

such that

Eγ(wk, B1) ≤ Eγ(uk, B1−δ/2) + Eγ(vk, B1 \ B̄1−δ) + o(1),

with o(1) → 0 as k → ∞.

An inspection of the proof in [13] shows that the result is valid for a sequence of
exponents γk that remain bounded away from 2. The reason is that the dependence
of the constants on γ is uniform as long as γ is restricted to a compact set of [0, 2).

We sketch the proof of Proposition 5.7 in this more general setting of variable
exponents.

Proof of Proposition 5.7. Assume for simplicity that Ω = B1, and let v̄ be a com-
petitor for ū in B1 with v̄ = ū in B1 \ B̄1−δ for δ > 0 small, and with

E0(v̄, B1) + ∥v∥L∞(B1) <∞.

First we construct a sequence of truncations

vk := (v̄ − tk)
+ with tk → 0

such that

(5.2) Eγk
(vk, B1) → E0(v̄, B1).
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Notice that for any η > 0, there exists t ∈ [0, η] such that

(5.3)

ˆ
B1

((v̄ − t)+)−
1
2 <∞,

which follows from ˆ η

0

ˆ
B1

[(v̄ − t)+]−
1
2 dxdt ≤ Cη1/2.

By Lebesgue dominated convergence theorem, (5.3) implies

Eγ((v̄ − t)+, B1) → E0((v̄ − t)+, B1) as γ → 0,

and the claim (5.2) follows since

E0((v̄ − t)+, B1) → E0(v̄, B1) as t→ 0.

The lower semicontinuity property for subdomains D ⊂ B1,

lim inf Eγk
(vk, D) ≥ E0(v̄, D),

implies that the convergence in (5.2) holDS1 also for subdomains D ⊂ B1.
We use Lemma 5.8, and call wk the interpolation of vk and uk such that

wk = vk in B1−δ, wk = uk in B1 \ B̄1−δ/2.

The hypotheses of Lemma 5.8 apply since

uk − vk → 0 in L2(B1 \B1−δ),

and Eγk
(uk, B1−δ/2) is uniformly bounded by Lemma 3.4 in [13]. Then, by the

minimality of uk and Lemma 5.8, we get

Eγk
(uk, B1) ≤ Eγk

(wk, B1) ≤ Eγk
(vk, B1−δ/2) + Eγk

(uk, B1 \ B̄1−δ) + o(1),

with o(1) → 0 as k → ∞. Subtract Eγk
(uk, B1 \ B̄1−δ) from both sides, and obtain

Eγk
(uk, B1−δ) ≤ Eγk

(vk, B1−δ/2) + o(1).

The lower semi-continuity of E , and the convergence of the energies for the vk’s
gives

E0(ū, B1−δ) ≤ E0(v̄, B1−δ/2).

We obtain the conclusion by letting δ → 0. □
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