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Abstract
We explicitly demonstrate that current numerical relativity techniques are able
to accurately evolve black hole binaries with mass ratios of the order of 1000:1.
This proof of principle is relevant for future third generation gravitational wave
detectors and space mission LISA, as by purely numerical methods we would
be able to accurately compute gravitational waves from the last stages of
black hole mergers, as directly predicted by general relativity. We perform
a sequence of simulations in the intermediate to small mass ratio regime,
m p

1/m
p
2 = 1/7,1/16,1/32,1/64,1/128,1/256,1/512,1/1024, with the small

hole starting from rest at a proper distanceD≈ 13M. We compare these headon
full numerical evolutions with the corresponding semianalytic point particle
perturbative results finding an impressive agreement for the total gravitational
radiated energy and linear momentum as well as for the waveform spectra.
We display numerical convergence of the results and identify the minimal
numerical resolutions required to accurately solve for these very low amp-
litude gravitational waves. This work represents a first step towards the con-
siderable challenge of applying numerical-relativity waveforms to interpreting
gravitational-wave observations by LISA and next-generation ground-based
gravitational-wave detectors.
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(Some figures may appear in colour only in the online journal)

∗

Author to whom any correspondence should be addressed.

1361-6382/23/09LT01+11$33.00 © 2023 IOP Publishing Ltd Printed in the UK 1



Class. Quantum Grav. 40 (2023) 09LT01

1. Introduction

There is currently great interest in the binary black hole small mass ratio regime. On one hand,
the direct detection of gravitational waves from binary black holes since GW150914 [1] and
the currently 90 new detections [2] by LIGO-Virgo show consistency with the detailed wave-
forms predictions of numerical relativity [3, 4] for comparable mass ratio binaries. Purely full
numerical banks of waveforms [5] have been proven to be able and very effective for estim-
ating binary black hole mergers parameters and directly applied to the (10+3) gravitational
waves signals detected in the O1/O2 LIGO-Virgo observational runs [6].

On the other hand, the steady progress towards the establishment of a LISA launch and oper-
ation in the next decade [7], and the development of third generation (3G) ground detectors
[8–10], highlights the necessity to expand the theoretical studies to much smaller mass ratios
than are currently in use, most of them valid in the comparable mass-ratio-regime [6]. Scen-
arios involving intermediate mass black holes merging with supermassive black holes in the
center of galaxies are targets for LISA [11] and stellar mass black holes merging with inter-
mediate mass black hole are targets of 3G detectors, also leading small mass ratios mergers.

While different astrophysical scenarios may consider all sort of binary black hole systems,
for the sake of definiteness, here we will refer to comparablemass ratios, q= m1/m2, as those
in the range 0.1< q⩽ 1, intermediate in the range 0.01< q⩽ 0.1, small in the range 0.001<
q⩽ 0.01, and below that in the near, 10−5 < q⩽ 10−3, middle, 10−7 < q⩽ 10−5, and far,
10−9 < q⩽ 10−7, extreme mass ratio regimes. Most of the numerical simulations focus on
the comparable masses cases, and perturbation theory realm is in that of the extreme mass
ratios. In this work we display techniques that bridge this gap, performing binary black hole
simulations in the intermediate to small mass ratio binaries regime.

The theoretical interest in the extreme mass ratio (particle limit) binaries precedes LIGO
and LISA conceptions. The pioneering work of Regge and Wheeler [12] and Zerilli [13] laid
down the formalism for first order perturbations around a single Schwarzschild black hole,
and later work by Teukolsky [14] considered the more general Kerr black hole background.
The consistency of this approach at higher perturbative orders, including not only radiation
reaction but self-force on the smaller hole (particle), was proven much later by Mino et al
[15] and then by Quinn andWald [16]. This approach proved hard to implement explicitly, but
steady progress has been made since the early headon collisions [17, 18] to the current generic
orbits (see [19] for a current status review).

Numerical Relativity remains the primary method on the forefront of computing gravita-
tional waves and its results can be used to fit Effective One Body (EOB), Phenom, Surrogate
phenomenological models [20–22]. One of the important challenges for numerical relativity is
the introduction of any new physical scale to be resolved accurately and, even if mesh refine-
ment methods are applied, this remains in general computationally demanding. A first proto-
typical study of a 100:1 mass-ratio binary black hole in [23] produced the last two orbits before
merger. The headon collision case was then numerically studied in [24] (and itsD-dimensional
generalization in [25]). In [26] it was studied a binary black hole numerical simulation with
spins and a mass ratio 18:1 and in [27] a 15:1 mass ratio case. A recent revisit to the small
mass ratio problem [28] produced 13 orbits before merger for a 128:1 mass-ratio binary with
moderate computational resources, leading then to the possibility of improving effective one
body models in the small mass ratio regime [29] and covering the 3G detectors mass-ratios
regime and LISA most conspicuous sources.
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Still, LISA could be sensitive to even smaller mass ratio binaries, two orders of magnitude
smaller, deep into the small mass-ratio regime [11]. This raises the question if numerical
relativity can still provide accurate predictions for the waveforms, trajectories, and final rem-
nant of the merger of such small mass ratio binary black holes. In this paper we explore the cur-
rent limits of the methods of numerical relativity, in particular the moving punctures approach
[3]. We will test our formalism in the regime of up to 1000:1 mass-ratio binaries. For this
first prototypical study we will consider headon collisions from rest and compare them to the
particle limit results (without the need to include self-force or radiation reaction computations).
Our main goal here is to establish if the moving punctures method can resolve such extremely
small levels of gravitational radiation (even lower amplitudes than in the orbital case) and if
the results show convergence with increasing numerical resolution towards the corresponding
expected (perturbative) values. This, in turn, can provide landmarks to reproduce as tests or to
use in fits by semianalytic/phenomenological models [29].

2. Numerical techniques

In [28] we have studied the late inspiral and merger of small mass ratio binary black holes,
reaching a 128:1 case performing 13 orbits before merger with the use ofO(10) computational
nodes. In order to perform this simulation we have used the LazEv code [30] with 8th order
spatial finite differences [31], 4th order Runge–Kutta time integration with a Courant factor
(dt/dx= 1/4). Crucially, we used a grid structure developed for the q= 1/15 simulations
in [32] and adapted for the 128:1 with three additional refinement levels (15 total) from the
boundaries of the simulation down to the horizon of the smaller hole.

We have performed several convergence and error studies of our numerical formalism. In
appendix A of [33], in appendix B of [34], and in [35], we performed convergence studies for
different mass ratios and spins of the binaries. In in [4] and [36] we compared the RIT wave-
forms with those produced completely independently by the SXS collaboration finding excel-
lent agreement, convergence towards each others results and matching of individual modes
up to l= 5. In [28, 37] we studied convergence for an orbiting binary with q= 1/15 for 10
orbits prior to merger as well as consistency between radiated and horizon quantities for up
to q= 1/128 orbiting black hole binaries, and validation versus EOB models [29]. In [38]
we have studied the accuracy of our simulations versus the Courant factor and concluded that
while we can use 1/2 for short runs, we can ensure long term evolutions with 1/4, and not much
gain was obtained by further reducing it to 1/8. For LIGO-Virgo applications, we have found
that 1/3 was good enough for most of the simulations [5, 39–41].

In the present work we will include several important variations. We design a sequence of
small mass ratio headon collisions from rest with decreasing mass ratios by factors of 2 and
correspondingly add a new refinement level of half grid size tight around the small hole, in the
Zeno’s approach of [28] and keeping the deepest refinement level just above the small hole
horizon. A second important difference here is in the use of the numerical gauge. In [37] we
have found that the η parameter in the shift βa (Gamma-driver) evolution equation

∂tβ
a =

3
4
Γ̃a− η(⃗r, t)βa, (1)

plays an important role in the accuracy of the results and the optimal use of the grid points
to resolve the binary black hole dynamics and its gravitational radiation. In particular, the use
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of the η(W) driven by the function of the evolved conformal factor W= e−2Φ in [28] was
seen to lead to numerical noise that can be avoided with the spatial coordinate r⃗ dependent
ηG(⃗r) choice, while preserving the properties of adapting to the spacetime around each such
dispaired black hole sizes

ηG =
A

m
+

B

m1

(

r⃗1(t)2

r⃗1(t)2 +σ2
2

)n

e−|⃗r−⃗r1(t)|
2/σ2

1 +
C

m2

(

r⃗2(t)2

r⃗2(t)2 +σ2
1

)n

e−|⃗r−⃗r2(t)|
2/σ2

2 , (2)

with A= 1, B = 1, C = 1; σ1 = 2m1, σ2 = 2m2, n= 2 used here. r⃗i(t) being the location of
the punctures and mi being the horizon masses of the holes, with m= m1 +m2.

In order to test the accuracy of our simulations against the results of first order perturba-
tion theory, and to study its numerical convergence, we perform a first prototypical study of
the direct plunge of a small black hole onto a large Schwarzschild black hole from rest at a
reference isotropic coordinate R0 = 10M, corresponding to a proper distance from the large
hole horizon of D/M=

´ 10
0.5(1+ 1/2x)2dx= 12.9707 (Here M is the total ADM mass of the

system).
This choice allows us to study the merger of the holes using quadrant symmetry by placing

the small black hole along the z-axis and hence reduce the numerical grid to one quarter of
its full coverage. The grid structure of our mesh refinements have a size of the largest box for
all simulations of ±400M. The number of points between 0 and 400 on the coarsest grid is
XXX in nXXX (i.e. n100 has 100 points). So, the grid spacing on the coarsest is 400/XXX.
The resolution in the wavezone is 100M/XXX (i.e. n100 hasM/1.00, n206 hasM/2.06). The
grid around the larger black hole (m2) is fixed at ±1.0M in size and is the 9th refinement
level. Therefore the grid spacing is 400/XXX/28. The grid around the small black hole (m1)
starts at refinement level 11 for q= 7 with size ±0.15625M and an additional grid is added
for each doubling of the mass ratio with half the size, down to 18 refinement levels for q1024
with size=±0.00125M. The minimal grid spacing is then 400/XXX/2(#refinement levels−1). For
q1024 with resolution of n206, we would have 400/206/217 = 0.000014814 or a resolution
of M/67502.

We are thus able to perform convergence studies at higher global resolutions than usual
with reasonable amounts of computational resources and running times (for instance, for our
resolution, n172, the q1024 using 18 grid refinement levels simulation took 83 days on 10 dual
Intel Xeon 6242 16-core CPUs at 2.8GHz nodes, using a total of 19 920 node-hours or 637 440
core-hours in our white lagoon CCRG cluster).

The whole sequence of configurations studied here are described in table 1 in terms
of its initial parameters. The measured horizon masses follow the expected analytic Brill–
Lindquist [42, 43] ratios q= m1/m2 = mp

1/m
p
2 (1+mp

2/2R0)/(1+mp
1/2R0), as a function of

the puncture masses mp
i parameters in the initial data.

The extraction of gravitational radiation from the numerical relativity simulations is per-
formed using the formulas (22) and (23) from [45] for the energy and linear momentum radi-
ated, respectively, in terms of the extracted Weyl scalar Ψ4 at the observer location Robs =
113M. While in the case of the particle limit, we evolve the Zerilli equation and the waveform
variableψℓm in the time domain as in [46] and extract the energy and linear momentum as given
in formulas (2) and (4) of [47]. To make a direct comparison of the numerical and perturbative
results we have not removed the initial spurious radiation from either of the waveforms nor
extrapolated them to infinite observer location.
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Table 1. Initial data parameters for the headon configurations with a smaller mass black
hole (labeled as 1), and a larger mass spinning black hole (labeled as 2). The punctures
are located at r⃗1 = (0,0,z1) and r⃗2 = (0,0,z2), have an initial simple proper distance
[44] of D, with momenta Pi = (0,0,0) and spin Si = (0,0,0), mass parameters mp

i /M,
total ADMmassMADM = 1.0, the configurations are denoted by qX, where X=mp

2/m
p
1 ,

while in the last column q= m1/m2 is in terms of the horizon masses.

Run z1/M z2/M D/M mp
1/M mp

2/M q

q7 −8.7500 1.2500 13.42 0.1250 0.8750 0.148 181
q16 −9.4118 0.5882 13.26 0.0588 0.9412 0.065 249
q32 −9.6970 0.3030 13.18 0.0303 0.9697 0.032 716
q64 −9.8462 0.1538 13.13 0.0154 0.9846 0.016 382
q128 −9.9225 0.0775 13.10 0.0078 0.9922 0.008 197
q256 −9.9611 0.0389 13.09 0.0039 0.9961 0.004 100
q512 −9.9805 0.0195 13.08 0.0019 0.9981 0.002 050
q1024 −9.9902 0.0098 13.08 0.0010 0.9990 0.001 025

3. Simulations’ results

An important goal of this study is to assess the accuracy of our numerical methods in the so
far unexplored regime of a thousand to one mass ratio black hole binaries. In order to evaluate
these estimates we first perform an internal error analysis by studying the numerical conver-
gence of gravitational radiation with resolution. Independently, the second goal is to perform
an external comparison of those radiative quantities with the results of first order perturbations
theory. Once we establish the accuracy of our results we can reliably start discussing poten-
tial correlations between the mode and mass ratio dependences of the non-linear (numerical
relativity) approach to the linear (perturbative) regime, like our first estimate qlinear ∼ 1/(8ℓ2)
below.

A technical innovationwe are going to use here with respect to the previous simulations [37]
is the use of a smoother gauge as given by equation (2) that removes the initial numerical noise.
This is going to play a crucial role here, given the much lower gravitational wave amplitude
levels emitted by the small mass ratio binaries studied in this paper. In particular, equation (2)
retains the adaptivity of the gauge to the different size of the black holes on the grid, but
more interestingly the asymptotic behavior of ηG → 1 seems to much improve the extraction
of gravitational radiation.

Figure 1 represents a first display of the results of our extensive studies based on the
highest resolution simulations of table 1 configurations. In order to perform a direct com-
parison we normalize the energy by the leading dependence on the mass ratio, m2

1/M, thus
(1+ q)2/q2Eℓm/M, and use their values at the extraction radius Robs = 113M. We first note
the good agreement of the computed (rescaled) radiated energy with the corresponding particle
limit as we approach smaller mass ratios for all the ℓ-modes displayed here. We then note that
the approach to the particle limits may depend on the value of ℓ, roughly in a sequence q∼
1/32, 1/64, 1/128, and 1/256 for ℓ= 2,3,4,5 respectively. A critical value of the mass ratio,
below which the particle limit seems to be a very good approximation (within 1%) to the full
numerical simulation seems to follow qlinear ∼ 1/(8ℓ2) to reach the linear regime.

Table 2 displays our convergence study for the total radiated energy (summed over ℓ= 2
through ℓ= 5) in the form of gravitational waves.We use all available runs (except those in par-
enthesis) at successive increasing global resolutions h (by factors of ≈1.2) from those labeled
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Figure 1. Rescaled radiated energy Erad/M, for each mode ℓ= 2,3,4,5 for the q7, q16,
q32, q64, q128, q256, q512, q1024 simulations and the particle limit (dotted lines).

Table 2. The energy radiated, Erad, summed over ℓ= 2,3,4,5 (and normalized by
M/m2

1) for each resolution of the qX simulations, starting at D ≈ 13M and extracted at
the radius Robs = 113M. All quantities are calculated from the gravitational waveforms.
Extrapolation to infinite resolution and order of convergence is derived.

Run/

resolution n084 n100 n120 n144 n172 n206 n∞ Order

q7 0.004 885 0.004 894 0.004 902 0.004 905 0.004 912 2.6

q16 0.006 461 0.006 513 0.006 514 0.006 521 0.006 523 8.3

q32 0.007 611 0.007 222 0.007 330 0.007 326 0.007 272 8.5

q64 (0.008 558) 0.008 002 0.007 688 0.007 809 0.007 885 5.5

q128 (0.008 159) (0.009 545) 0.007 895 0.008 010 0.008 044 0.008 059 6.6

q256 (0.011 276) (0.012 349) (0.008 778) 0.007 943 0.008 214 0.008 145 0.008 123 7.7

q512 (0.037 908) (0.022 107) (0.018 858) 0.007 693 0.008 324 0.008 207 0.008 182 9.5

q1024 (0.099 398) (0.054 224) (0.018 103) 0.007 582 0.008 416 0.008 262 0.008 229 9.5

qparticle 0.008 230 2 [46, 48]

n084 to n206 and then use those values to fit a convergence rate γ and its value extrapol-
ated to infinite resolution of the form A∞ +Bhγ . The results show a high convergence rate, as
expected for the 8th order spatial finite differences (with q7 being overesolved and n120 under-
esolving q512 and q1024), thus approaching the convergence regime, and extrapolated values
close to our highest resolution available serve an error measure. They also display very good
agreement with the perturbative results in the small q cases. In fact the sequence of the radi-
ated energy En∞rad extrapolated to infinite resolution versus q gives an approach to the particle
limit that can be fitted as an expansion, Efit

rad = 0.00823q2/(1+ q)2 − 0.0315q3/(1+ q)3 +
0.0455q4/(1+ q)4. From this expression we see that in order to be within 10% the particle
limit we should be about q< 1/32.

A detail of the convergence versus spatial resolution dx/M of the simulation is displayed in
figure 2 as the approach of the radiated energy to its extrapolated to infinite resolution given in
table 2. We have chosen to reach resolutions that at least beat the 10−4 values of the rescaled
quantities, i.e. a 0.1% relative error.

In a similar fashion we can study the radiation of linear momentum (in the headon collision
there is no angular momentum to be radiated). In this case the coupling of modes ℓ and ℓ+ 1
in equation (4) of [47] makes the computations more sensitive and we take the opportunity to
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Figure 2. Convergence study of the radiated energy to its extrapolated to infinite resolu-
tionE∞ values in table 2 for the q7, q16, q32, q64, q128, q256, q512, q1024 simulations.

Figure 3. Convergence study of the rescaled recoil velocity, V recoil for the q7, q16, q32,
q64, q128, q256, q512, q1024 simulations and the particle limit case. With a zoom-in
below.

display in figure 3 the dependence of the results on resolution (in terms of a recoil velocity
normalized by (1+ q)2/q2V and in km s−1). This is a more challenging computation since the
recoil comes out as a net difference of linear momentum radiated rather than the superposition
as in the total energy. Nevertheless the lower panel of figure 3 displays a notable precision with
respect to the particle limit and this allows us, for instance, to assess the minimal resolution
required to reliably compute linear momentum radiated. This computation of the recoil velo-
city thus provides us with a practical assessment of the minimal global resolution requirement
in future computations at very small binary mass ratios to study the convergence regime. We
will discuss this point further in the next section.

Our results are consistent with those of [24] for the 100:1 mass ratio and extrapolated to
infinite observer location. Since, we extract waveforms at Robs = 113M and release the smaller
hole from a finite distance R0 = 10M we expect lower values for Erad and Vr.
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Figure 4. Rescaled by (1+ q)/q waveformsΨ4 for the leading mode (ℓ,m) = (2,0) at
the observer location Robs = 113M for the q128, q256, q512, and q1024 simulations and
the particle limit case. Bottom panel shows the differences for each mass ratio with the
particle limit.

Figure 5. Comparative scaled spectra for for the q7, q16, q32, q64, q128, q256, q512,
q1024 simulations and the particle limit case.

A first display of the agreement between the highest available resolution runs and the
particle limit is displayed in figure 4. Those waveforms are rescaled by the leading dependence
with the mass ratio, (1+ q)/q, but otherwise not fitted or adjusted. The excellent superposition
of waveforms shows both, the approach to the particle limit above q128, and the high accuracy
of the simulations (note that the rescaling for q1024 implies a factor of nearly one thousand of
amplification).

Another detailed feature of the gravitational waves is given by the spectrum of radiation
(for each individual mode, in this case the leading (ℓ= 2,m= 0), in units of m2

1) as shown in
figure 5. This gives us the opportunity to study the approach to the linear perturbative regime.
We see that for q7, q16, the spectra lies below that of the particle limit (normalized by (1+
q)2/q2/M2 dEℓm/dω) and only at lower values of q the spectra of the simulations approach
that of the particle limit [43].
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Note that the rescaling of Eℓ and V recoil by ∼q−2 implies a precision of one in one million
for the q1024 case, and errors of the order of 1% from the particle limit ensures an accuracy
of the runs of 10−8 in this low radiation amplitude headon case.

4. Conclusions

Our proof of principle in this paper shows that numerical relativity and the moving punc-
ture formalism can effectively be used to compute small mass ratio binaries (even 1000:1, a
so far unexplored regime, and well into the small mass ratios territory [11]) and it can accur-
ately describe those very low amplitude gravitational waveforms. While the Zeno’s dichotomy
approach [28] of adding new mesh refinement levels to describe the smaller and smaller hole
proved to be appropriate to describe the sources (as monitored by the constancy of the hori-
zon masses and spins) and the ‘conservative’ portion of the gravitational field in the nonlinear
regime, the radiative fields, that are generated at inter-black holes scales and are extracted in
the asymptotic region at the observer location, scale down with the mass ratio q and eventu-
ally reach such low amplitude values that a higher global refinement of the grids is required
to properly resolve them. We have thus explored the approach to the convergence regime and
have seen that using the radiated energy as a reference, the simulations with resolution n084
are sufficient to approximate results for the up to q16 while the q64 requires at least n100,
q256 requires at least n120, and so on until we reached q1024, requiring at least n144. This
gives a rule-of-thumb for the minimal resolution hmin from a base resolution h0 = 0.84 to solve
accurately a mass ratio binary as small as q≈ 1

16 (h0/hmin)
8. We confirmed the results with

n172 resolution runs (globally doubling that of n084) as shown in table 2. At further higher
resolutions one may then consider dropping one of the innermost refinement levels to make
simulations more efficient.

We have found that the gauge ηG in (2) notably improves the numerical noise from our pre-
vious η(W) used in [23]. We also found that the η= 1 gauge works similarly well, suggesting
that the lower asymptotic values of η allow for a smooth and accurate transport of radiation
from the sources to the extraction regions [37, 49], and that the benefits of an adapted gauge
around the horizons is somewhat taken care of by the additional refinement levels required to
resolve the small hole. The choice of gauge and the appropriate minimal global resolutions
that warrant the convergence regime providing valuable quantitative results for the radiation,
orbital trajectories, and remnant of the very small mass ratio binary black hole mergers, will
help us establishing initial parameters for further orbital evolutions studies.

We have also established for what values of q, linear theory begins to work (or break down)
in a merger regime. We have been able to make a first rough estimate for the threshold value
qlinear ⩽ 1/(8ℓ2) dependence on the ℓ-mode. This deserves further study, including higher
modes and accuracy, in the orbital case. Mode decomposition is often used in the phenomen-
ological modeling of gravitational waves and in self-force calculations which include much
higher ℓ-modes [19]. Higher ℓ-modes not only are smaller in amplitude but of higher fre-
quency content, leading not only to resolution issues but also to resilience of nonlinearities
(involving derivatives of the fields), as we can infer from our study.

Finally, we note that since the current numerical relativity codes display a good constant
load (weak) scaling, with larger computational resources they can deal with an increase in
resolution of the current simulations, and perform explorations of the binary’s parameter space
(with the advantage of having to deal with increased amplitude of the gravitational radiation)
that may include precession and the spin of the large hole at essentially no extra delays from
the base case that usedO(10) computer nodes per run [28]. Much longer numerical evolutions
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in time (scaling likeO(1/q)), in the intermediate to small mass ratio regime, would benefit of
any future software and hardware speedups by the time of 3G detectors operation and LISA
launch, but our use of a low Courant factor (1/4) warrants to keep the accuracy of those long
term merger simulations and they could be coupled with a hybridization of the waveform
when the binary is at larger initial separations than those considered in our pure numerical
simulations. Further work will be needed in order to determine precisely what advances will
be necessary for binary-black-hole simulations with mass ratios of 1000:1 to achieve sufficient
accuracy (at a feasible cost) for application to LISA and 3G gravitational-wave detectors.
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