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One of the open problems in developing binary black hole (BBH) waveforms for gravitational wave

astronomy is to model the intermediate-mass-ratio regime and connect it to the extreme-mass-ratio regime.

A natural approach is to employ the effective-one-body (EOB) approach to the two-body dynamics that, by

design, can cover the entire mass ratio range and naturally incorporates the extreme-mass-ratio limit. Here

we use recently obtained numerical relativity (NR) data with mass ratios m1=m2 ¼ ð7; 15; 32; 64; 128Þ to

test the accuracy of the state-of-the-art EOB model TEOBResumS in the intermediate-mass-ratio regime. We

generally find an excellent EOB/NR consistency around merger and ringdown for all mass ratios and for all

available subdominant multipoles, except for the l ¼ m ¼ 5 one. This mode can be crucially improved

using the new large mass ratio NR data of this paper. The EOB/NR inspirals are also consistent with the

estimated NR uncertainties. We also use several NR datasets taken by different public catalogs to probe the

universal behavior of the multipolar hierarchy of waveform amplitudes at merger, that smoothly connects

the equal-mass BBH to the test-mass result. Interestingly, the universal behavior is strengthened if the

nonoscillatory memory contribution is included in the NR waveform. Future NR simulations with

improved accuracy will be necessary to further probe, and possibly quantitatively refine, the TEOBResumS

transition from late inspiral to plunge in the intermediate-mass-ratio regime.

DOI: 10.1103/PhysRevD.105.124061

I. INTRODUCTION

While ground based gravitational wave detectors like

Laser Interferometer Gravitational Wave Observatory

(LIGO)-Virgo [1,2] are particularly sensitive to comparable

(stellar) mass binaries, third generation (3G) ground detec-

tors [3] and space detectors, like Laser Interferometer

Space Antenna (LISA), will also be sensitive to the

observation of very unequal mass binary black holes [4].

These will allow the search and study of intermediate mass

black holes, either as the large hole in a merger with a

stellar mass black hole (a source for 3G detectors) or as

the smaller hole in a merger with a supermassive black hole

(a source for LISA).

LISAwill be sensitive to the inspiral and merger of black

hole systems where the primary is significantly (10–1000

times) larger than the secondary. These intermediate-mass-

ratio inspiral systems are crucial LISA sources, but their

gravitational waveforms are poorly understood, with com-

ponent mass scales distinct enough to present challenges for

waveform modeling, particularly in numerical simulations,

and yet hard to match to black hole perturbation theory

computations in the extreme-mass-ratio inspirals regime.

The evolution of these large mass ratio binaries has been

approached via perturbation theory and the computation of

the gravitational self-force exerted by the field of the small

black hole on itself [5–11]. The resolution of the binary

black hole problem in its full nonlinearity has been only

possible after the 2005 breakthroughs in numerical rela-

tivity (NR) [12–14], and a first proof of principle has been

performed in [15] for the 100∶1 mass ratio case, following

studies of the 10∶1 and 15∶1 [16] ones. In the case of [15]

the evolution covered two orbits before merger, and while

this proved that evolutions are possible, practical applica-

tion of these gravitational waveforms requires longer

evolutions. Other approaches to the large mass ratio regime

recently followed [17,18]. A new set of evolutions that are

based on the numerical techniques refined for the long-term

evolution of a spinning precessing binary with mass ratio
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q≡m1=m2 ¼ 15 [19] have been used in [20] to perform

a sequence of binary black hole simulations with increas-

ingly large mass ratios, reaching to a 128∶1 binary that

displays 13 orbits before merger. Based on a detailed

convergence study of the q ¼ 15 nonspinning case,

Ref. [20] applied additional mesh refinements levels

around the smaller hole horizon to reach, successively,

the q ¼ 32, q ¼ 64, and q ¼ 128 cases. Reference [20]

also computed the remnant properties of the merger, as well

as gravitational waveforms, peak frequency, amplitude,

and luminosity. The obtained values were consistent with

corresponding phenomenological formulas, reproducing

the particle limit within 2%.

Beside the direct use of NR simulations, the analysis of

gravitational wave (GW) sources is mostly done using

waveform models that are obtained from the synergy

between analytical and numerical relativity results. The

effective-one-body (EOB) approach [21–25] is a way to

deal with the general-relativistic two-body problem that,

by construction, allows the inclusion of perturbative [e.g.,

obtained using post-Newtonian (PN) methods] and full NR

results within a single theoretical framework. It currently

represents a state-of-the-art approach for modeling dynam-

ics and waveforms from binary black holes, conceptually

designed to describe the entire inspiral-merger-ringdown

phenomenology of quasicircular binaries [26–32] or even

eccentric inspirals [33–35] and dynamical captures along

hyperbolic orbits [34,36–38].

The TEOBResumS model is the EOB waveform model that

currently shows the highest level of NR faithfulness [39]

against all the spin-aligned NR waveforms available (see

also Ref. [40,41] for the precessing case). The model has

been tested [30,42] against NR simulations available up to

q ¼ 18. Although the model generates waveforms that look

qualitatively sane and robust also for larger mass ratios,

only a direct comparison with NR data can effectively

probe its performance in the large-q regime.

The aim of this paper is to provide EOB/NR waveform

comparisons to validate the TEOBResumSmodel (at least) up to

q ¼ 128. To do so, we exploit the NR waveform data

discussed above and presented in Ref. [20]. This paper is

organized as follows: Section II reviews both the NR wave-

forms we are going to use and the basics of the EOB model

TEOBResumS. Section III exploits various sets of NR data to

probe the universal behavior of the multipolar hierarchy of

waveform amplitudes at merger, showing consistency with

test-mass results. The EOB/NR phasing comparisons are

discussed inSec. IV,while Sec.V reports a fewconsiderations

about the impact of NR systematics on informing EOB

waveform models. Concluding remarks are collected in

Sec. VI. We use geometrized units with c ¼ G ¼ 1.

II. NR AND EOB WAVEFORM DATA

Let us start by fixing our waveform conventions. The

multipolar decomposition of the strain waveform is given by

hþ − ih× ¼ D
−1
L

X

lm

hlm−2Ylmðθ;φÞ; ð1Þ

where DL is the luminosity distance, and
−2Ylmðθ;φÞ

are the s ¼ −2 spin-weighted spherical harmonics.

For consistency with previous works involving the

TEOBResumS waveform model, we work with Regge-

Wheeler-Zerilli normalized multipoles [43,44] defined as

Ψlm ¼ hlm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þðlþ 1Þlðl − 1Þ
p

, and each mode is

decomposed in amplitude and phase,

Ψlm ¼ Alme
−iϕlm : ð2Þ

The binary has masses ðm1; m2Þ. We adopt the convention

that m1 ≥ m2, and thus we define q≡m1=m2 ≥ 1, M ¼
m1 þm2 and the symmetric mass ratio as ν≡m1m2=M.

A. NR simulations

In Ref. [20] we performed simulations of the merger of

small mass ratio binary black holes, reaching a 128∶1 case

with 13 orbits before merger. In order to perform this

simulation we have used the LazEv code [45] with eighth-

order spatial finite differences [46], fourth-order Runge-

Kutta time integration with a Courant factor ðdt=dx ¼ 1=4Þ,
and a grid structure developed for the q ¼ 1=15 simulations

in [19] adapted for the 128∶1 with three additional refine-

ment levels (totaling 15) from the external boundaries of the

simulation down to the horizon of the smaller hole. It is

noteworthy here the recent extension of these techniques to

the 1000∶1 mass ratio binary in [47].

We use here the simulations presented in Ref. [20], to

which we refer the reader for additional technical details

(see also Refs. [48,49]). Reference [48] explored different

gauge choices in the moving puncture formulation in order

to improve the accuracy of a linear momentum measure

evaluated on the horizon of the remnant black hole

produced by the merger of a binary. Similarly, Ref. [49]

investigated the benefits of adapted gauges to large mass

ratio binary black hole evolutions. We found expressions

that approximate the late time behavior of the lapse and

shift, ðα0; β0Þ, and use a position and black hole mass

dependent shift damping term, η½x⃗1ðtÞ; x⃗2ðtÞ; m1; m2�. We

found that this substantially reduces noise generation at the

start of the numerical integration and keeps the numerical

grid stable around both black holes, allowing for more

accuracy with lower resolutions. We tested this gauge in

detail in a case study of a binary with a 7∶1 mass ratio, and

then use 15∶1 and 32∶1 binaries for a convergence study.

NR waveforms [50,51] are being directly applied to GW

parameter estimation, demonstrating how source parame-

ters for generic binary black holes (BBHs) can be inferred

based directly on solutions of Einstein’s equations. Specific

cases have been performed for the GW150914 and

GW170104 [52–54] events, finding excellent agreement

between Rochester Institute of Technology (RIT) and

ALESSANDRO NAGAR et al. PHYS. REV. D 105, 124061 (2022)

124061-2



SXS [52,55–66] waveforms up to l ¼ m ¼ 5 modes,

but for comparable masses between q ¼ 1=0.85 and

q ¼ 1=0.43. The direct use of theoretical waveform infor-

mation to interpret gravitational wave observations and to

determine the precise nature of the astrophysical sources

has proven to be a remarkable success when applied to

O1/O2 BBH events [67] and beyond [68]. And the recent

release of the RIT binary black hole waveform public

catalog includes 1881 simulations [69].

We only report here the information that is pertinent for

our targeted EOB/NR comparisons. In particular, let us

remember that we follow Ref. [70] to set up quasicircular

initial data that allow our simulations to have a negligible

amount of initial eccentricity. Similarly, we use the pro-

cedure of Ref. [71] to accurately extrapolate the waveform

to infinity. The code natively outputs the Weyl scalar Ψ4

that is then transformed to the strain by applying a standard

integration procedure in the frequency domain [72].

We consider mass ratios q ¼ ð7; 15; 32; 64; 128Þ. For q ¼
ð7; 15; 32Þ, we could complete runs at three resolutions,

named low (L), medium (M), and high (H), so to have a

complete convergent series. This allowed us to Richardson-

extrapolate the waveform to infinite resolution and thus

give an estimate of the phase uncertainty. Figure 1 reports

the phase differences between the resolution-extrapolated

l ¼ m ¼ 2 waveform (indicated as ∞) and each finite

resolution. All waveforms are aligned at merger point

(marked with t − tmrg ¼ 0), where merger is defined as

the peak of the quadrupolar amplitude A22. We remark that

the Δϕ22ðtÞ≡ ϕ∞

22 − ϕL;M;H
22 is fundamentally a linear

function of time during the inspiral up to merger, and its

slope “decreases” as the resolution is increased.
1
This well-

known effect related to resolution will be useful later when

interpreting EOB/NR phase comparison. Finally, Fig. 1

indicates that a phase uncertainty Δϕ22 between ∼0.2 and

∼0.4 rad looks like a reasonable (conservative) error bar

estimate on resolution extrapolated waveforms.

B. Effective-one-body framework

We use here the most advanced quasicircular version of

the TEOBResumS model [30,42] that also includes several

subdominant modes completed through merger and ring-

down. More precisely, we use here the MATLAB private

implementation of the model (and not the public one

written in C [42]) that relies on the iterative determination

of the next-to-quasicircular correction parameters and not

on the fits described in Ref. [42]. Let us recall that this

waveform model exploits NR waveform data in two ways.

On the one hand, NR waveforms are used to inform two

dynamical parameters that enter directly the EOB

Hamiltonian (both in the orbital and spin-orbital sector).

On the other hand, NR waveform data are used in the

description of merger and ringdown via a certain fitting

procedure [73] of NR data. The model exploited SXS data

up to q ¼ 10, with five more datasets with q ¼ 18 [30].

Test-mass data obtained using Teukode [74] are also used

to inform the fits of amplitude and frequency at the peak of

each multipole. The resulting TEOBResumS waveform model

has been validated against several hundreds of NR simu-

lations, of different accuracy, including mass ratios up to

q ¼ 18. For larger mass ratios the model generates wave-

forms that looks sane, in general, nonpathological (exclud-

ing extremely spinning cases), but a systematic validation

of their quality has not been done so far for the lack of

suitable NR data, and it will be the focus of Sec. IV below.

III. MULTIPOLAR HIERARCHY AT MERGER

The multipolar structure of the waveform amplitude at

merger has a universal structure that can be described by the

mass ratio ν and an effective spin parameter. This hierarchy

emerges when leading order PN expressions are suitably

factorized. In particular, Ref. [27] pointed out a quasiuni-

versal behavior in the symmetric mass ratio ν and spin

parameter Ŝ of the l ¼ m ¼ 2 merger frequency (see
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FIG. 1. Estimate of the phase uncertainty on our simulations with q ¼ f7; 15; 32g: accumulated phase differences between finite

resolution waveform data and resolution extrapolated waveform (labeled with∞). We consider three resolutions: low (L), medium (M),

and high (H). The slope of the linear drift decreases as the resolution increases. The NR-RIT waveforms are aligned at merger time.

1
Note, however, the different behavior for q ¼ 32, suggesting

that the low resolution is not high enough to correctly capture this
behavior.
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Fig. 33 therein). Working in the test-mass limit, Ref. [75]

identified a simple structure of the multipolar peak ampli-

tudes Amax
lm ¼ maxtðAlmÞ in terms of the multipolar

order ðl; mÞ,

Amax
lm =ν ≈ ec1ðlÞmþc2ðlÞl; ð3Þ

where the coefficients ciðlÞ are listed in Table VI of [75];

for l > 2, the coefficient c1 is practically independent of l.
Here we show that this structure is present in any BBH

multipolar waveform and can be recovered by analytically

removing the leading ν dependence in each multipole. On a

practical level, this finding is important to construct the

ringdown part of the EOB waveform [73] in order to design

accurate and physically motivated fits to NR data.

From PN theory (see, e.g., [76]), the leading ν depend-

ence of Amax
lm is

ˆ̂
Alm ≡

Amax
lm

νjclþϵðνÞj
; ð4Þ

where

clþϵðνÞ ¼ Xlþϵ−1
2 þ ð−ÞmXlþϵ−1

1 : ð5Þ

In the expressions above, ϵ≡ πðlþmÞ is the parity of

lþm, ϵ ¼ 0 if lþm is even, and ϵ ¼ 1 if lþm is odd.

Although this structure is used in Refs. [27,34] to

accurately fit the multipolar amplitude values around

merger, it has not been spelled out explicitly before and,

in particular, not in connection with test-mass results.

Figure 2 contrasts the values of
ˆ̂Alm for several comparable

mass binaries (solid lines) with the corresponding test-mass

values taken from Ref. [75] (dotted lines) up to lmax ¼ 8,

when available. We use the following SXS datasets: SXS:

BBH:1354 (q ¼ 1.832), SXS:BBH:1178 (q ¼ 3), SXS:

BBH:0298 (q ¼ 7), and SXS:BBH:1107 (q ¼ 10). Each

dataset is taken at the highest resolution available and

choosing N ¼ 2 extrapolation order [77],
2
in order to

assure a more robust representation of merger and ring-

down parts. For SXS data, we have all multipoles up to

lmax ¼ 8, while our RIT waveforms are limited to

lmax ¼ 6, and we only focus on the m ¼ l and m ¼
l − 1 modes. From Fig. 2 one sees that the test-mass

hierarchy between the modes is preserved also in the

comparable-mass case. The figure also highlights the

“quantitative” consistency between the test-mass and com-

parable-mass m ¼ l and m ¼ l − 1 values of
ˆ̂Alm.

We observe a degradation of the accuracy of NR simu-

lations with both low values of m and levels of radiation

(high l).

0 1 2 3 4 5 6 7 8
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8
-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8
-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8
-14

-12

-10

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7 8
-14

-12

-10

-8

-6

-4

-2

0

FIG. 2. Multipolar hierarchy of merger amplitudes: ν-reduced maximum amplitude for each multipole, Eq. (4) versus l and m. The

test-mass values (dotted lines) are compared with the NR values for various q. Up to q ¼ 10 we use SXS data. For q > 10 (bottom

panels) we use only RITwaveforms. Note the consistency between all the l ¼ mmodes. The plot highlights the well-known decrease of

importance of the subdominant multipoles with m < l as the mass ratio is decreased. For each value of l, an approximate exponential

dependence on m is found, with qualitative consistency between the test-mass and the comparable-mass cases. The oscillations present

in the SXS l ¼ 7 and l ¼ 8 modes for small values of m denote inaccuracies in the simulations.

2
Each waveform in the SXS catalog is available with extrapo-

lation orders N ¼ 2; 3; 4. The general rule is to use N ¼ 2 when
one is mostly interested in the late part of the waveform, choose
N ¼ 4 for the inspiral, and N ¼ 3 for a compromise.
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A. Data at I + and memory effect

Additional insight may be given by considering a

different type of numerical waveforms provided in a

separate section of the SXS catalog, the Ext-Cauchy-

characteristic evolution (CCE) catalog. This section con-

tains asymptotic waveforms whose evolution has been run

with SpEC [78] and that have been computed in two ways:

(i) using the CCE
3
scheme implemented in SpECTRE [79]

and (ii) using the extrapolation procedure implemented in

the PYTHON package SCRI [80–82]. The latter waveforms

are crucially augmented by the nonoscillatory memory

contribution as described in Mitman et al. [83], using a

technique that exploits Bondi-Metzner-Sachs balance laws.

This calculation relies on the extraction from the numerical

spacetime of the full set of Weyl scalars, as discussed in

Ref. [84]. By contrast, CCE proceeds by exploiting Cauchy

data yielded by NR simulations as a boundary on a timelike

worldtube at finite radius, combining it with an exterior

evolution on null hypersurfaces reaching Iþ. Though these

templates should, in principle, be more accurate, due to

difficulties in choosing initial data, the waveforms of the

kind (i) exhibit spurious oscillations and are hence unsuited

for our purposes. The latest implementation of the SpECTRE

CCE module [85] is able to extract waveforms either

from finished simulations or from a generalized harmonic

simulation simultaneously running in SpECTRE, but this

kind of data is currently not readily available.

Interestingly, Ref. [83] proved the consistency between

CCE waveforms and extrapolated waveforms improved by

the addition of the nonoscillatory memory contribution.

The same work also pointed out that the memory

calculation turns out to be incorrect by 50% for some

unknown reason, starting from the l ¼ 3, m ¼ 0 contri-

bution (see especially Sec. IIIB.2 of Ref. [83]). Despite

these drawbacks and open issues, it is meaningful to

perform the same analysis of the
ˆ̂
Alm quantities using

SCRI-extrapolated waveforms (with the nonoscillatory

memory) taken from the Ext-CCE catalog. In this case,

the recommended extrapolation order for the strain h data is

N ¼ 5. We focus on q ¼ 4 nonspinning data: Figure 3

shows the triple comparison between: (i) standard extrapo-

lated q ¼ 4 SXS data; (ii) the SCRI-extrapolated data plus

the addition of memory and (iii) RIT data. On the one hand,

the figure highlights the consistency between SXS and RIT

data. On the other hand, the most interesting outcome of the

analysis is the “much improved consistency” between the

test-mass and q ¼ 4 scaled amplitudes
ˆ̂
Alm for l ¼ 2, most

remarkably for the l ¼ 2, m ¼ 0 mode.

IV. EOB/NR TIME-DOMAIN PHASING

COMPARISON

In this section we study the EOB/NR waveform con-

sistency, comparing higher multipoles and mass ratios to

reach to an improvement of some EOB fitting parameters of

particular relevance for large mass ratios.

A. SXS/RIT/EOB consistency for q= 7

We start our analysis considering a BBH configuration

with q ¼ 7, a mass-ratio regime where both SXS and

RIT data are well under control. A similar consideration

applies to the EOB waveform. It is thus instructive to drive

a triple comparison SXS/EOB and RIT/EOB so to better

learn the differences between the two NR simulations,

using the EOB waveform as a reference waveform. For

SXS, we use the SXS:BBH:0298 configuration, taken at

the highest available resolution and with N ¼ 3 extrapo-

lation order since we want to have good control also of the
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FIG. 3. Multipolar hierarchy of merger amplitudes for q ¼ 4 from RIT data (left panel), standard SXS data (central panel, SXS:

BBH:2030 dataset), and SXS waveforms extrapolated to Iþ using the PYTHON package SCRI of Ref. [84] (right panel) with the addition

of the contribution of the displacement memory as described in Ref. [83]. Note the improved consistency of the SCRI-extrapolated data

and test-mass data for all l ¼ 2 multipoles, as well as for the l ¼ m ones.

3
As explained in Ref. [79], Cauchy-characteristic extraction

only refers to the transformation from Cauchy coordinates to
the set of quantities that are involved in the characteristic
evolution. We adopt here their convention and denote as
Cauchy-characteristic evolution the whole process of Cauchy-
characteristic extraction and characteristic evolution.
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inspiral. For what concerns RIT, we are using resolution

extrapolated waveforms so to similarly minimize the

phase uncertainty during the inspiral. The comparison

is shown in Fig. 4. The waveforms are aligned just before

merger time, using our usual alignment procedure [86]

that minimizes the EOB/NR phase difference in the

frequency interval ½ωL;ωR� ¼ ½0.2; 0.3�. The top row of

the figure shows the real part of the l ¼ m ¼ 2 mode,

followed (in the second row) by the phase difference

and the relative amplitude difference. We recall

that the RIT waveform is extrapolated in resolution: the

EOB/NR phase difference accumulated in this case is

compatible, though larger, than the SXS one, but con-

sistent with the NR uncertainty estimated in the previous

section. The picture also highlights the consistency

between ringdowns, although the RIT one globally looks

more accurate, with a slightly smaller phase difference.

This might be traced back to the fact that (N ¼ 2)-

extrapolated SXS data (more accurate during merger

and ringdown) were used to construct the ringdown model

and not the N ¼ 3 ones that we are using here. Still, the

right panel of Fig. 4 proves the reliability and robustness

of the NR-fitting procedure behind the construction of the

EOB ringdown model.
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FIG. 4. EOB/NR comparison for q ¼ 7 configuration using either SXS:BBH:0298 (left column) or the resolution-extrapolated RIT

data presented here (right column). Waveforms are aligned on the frequency interval ½ωL;ωR� ¼ ½0.2; 0.3�, close to merger. The top row

reports the real part of the l ¼ m ¼ 2 mode, as well as the phase difference ΔϕEOBNR
22 ≡ ϕEOB

22 − ϕNR
22 and the relative amplitude

difference. The bottom panels compare amplitude and frequency of both the (2,2) and (2,1) waveform mode. Consistently with previous

work [29], the plot shows the purely analytical EOB waveform (dashed, orange) and the one improved by NQC corrections (blue), as

explained in the text. The grey line is the EOB orbital frequency. The consistency between the two NR waveforms is remarkable: the

phase difference accumulated by the RIT one is, however, globally slightly larger, though of the same order of the NR uncertainty

estimate of Fig. 1.
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The third and fourth rows of Fig. 4 complement the
above information showing amplitude and frequencies for
both the l ¼ m ¼ 2 and l ¼ 2, m ¼ 1 modes. Each panel
of the figure incorporates several curves: (i) the NR one
(black); (ii) the TEOBResumS one (red); (iii) the EOB orbital
frequency (grey); (iv) the purely analytical EOB waveform,
without NR-tuned next-to-quasicircular (NQC) corrections
nor NR-informed ringdown (orange); (v) the curve
improved by NQC corrections (light blue). The figure
confirms that RIT data are generally closer to the EOB
waveform for both modes, as well as it highlights the
excellent EOB/NR consistency already achievable with
the purely analytical waveform. An important takeaway
message of Fig. 4 is that the presence of a linear-in-time
EOB/NR phase difference for RIT data during the inspiral

does not harm the quality of the merger and ringdown
description. This observation will turn out to be useful in
the next section, where we will similarly be analyzing RIT
data with larger mass ratios.

This general good agreement of SXS and RIT NR

waveforms supplements those observed for the sources

of GW150914 [52] and GW170104 [53] for the more

comparable mass ratios and up to l ¼ 4 modes.

B. RIT/EOB comparison for large mass ratios

Let us focus now on the l ¼ m ¼ 2 EOB/NR phasing

comparisons for q ¼ f15; 32; 64; 128g, that we display in

Fig. 5. Likewise the q ¼ 7 case, waveforms are aligned just

before merger. For q ¼ f15; 32g we provide comparisons
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FIG. 5. EOB/NR-RIT comparison for various mass ratios. For q ¼ f15; 32g we use resolution-extrapolated waveforms, while for

q ¼ f64; 128g we adopt the highest resolution available. The waves are aligned in the late inspiral, on the frequency interval

½ωL;ωR� ¼ ½0.2; 0.3�. For each mass ratio, the upper panel compares the real part of the waveforms, while the bottom panel shows the

phase difference ΔϕEOBNR
22 ≡ ϕEOB

22 − ϕNR
22 and the relative amplitude difference. Note the high EOB/NR consistency during the merger

and ringdown phase. For q ¼ 128 the differences in the ringdown are due to NR inaccuracies.
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with the resolution-extrapolated waveform, while for

q ¼ f64; 128g we use the highest resolution available.

The plots show a remarkable EOB/NR agreement during

merger and ringdown, despite not having used any of this

data to inform TEOBResumS. The secular EOB/NR dephas-

ing accumulated during the inspiral is related to the finite

resolution of the simulation, and it is of no concern at

the moment. Note, in particular, that for q ¼ 15, the

phase difference accumulated towards early frequency is

ΔϕEOBNR
22 ∼ −0.2 rad, that is of the order of the estimated

NR uncertainty. The accumulated ΔϕEOBNR
22 is at most of

the order of ∼1 rad up to q ¼ 64. Seeing the coherence

between q ¼ f15; 32; 64g, we think that this value is

consistent with a (conservative) error estimate of the NR

uncertainty (especially considering that q ¼ 64 data are not

extrapolated in resolution), and thus we can claim that NR

data, in a sense, are loosely testing also the radiation-

reaction dominated epoch of the waveform up to q ¼ 64.

By contrast, this statement is certainly not correct for

q ¼ 128, that is a much more demanding simulation.

Higher resolution will be probably needed here to mutually

test the two approaches in this regime. For the moment, we

think we can claim that TEOBResumS is here giving the

most accurate (approximate) representation we have for an

inspiral waveform of a q ¼ 128 BBH.

C. Higher multipolar waveform modes

Let us finally complete our analysis considering higher

modes. The TEOBResumSmodes completed through merger

and ringdown are (2,1), (3,3), (3,2), (4,4), (4,3), and (5,5).

When tested all over the (nonspinning) parameter space, all

modes are generated robustly, without evident pathological

features, except for the (5,5) one. This mode displays

unphysical behavior already for q ≳ 15. This was already

noted by one of us during the first development of

the model in Ref. [29], while driving comparisons with

a q ¼ 18 NR dataset obtained using the BAM code of

Ref. [87], although not explicitly reported. Figure 6 is an

EOB/NR amplitude and frequency comparison using

the q ¼ 18 BAM data of Ref. [87]. This complements

the l ¼ m ¼ 2 mode comparison shown in Fig. 12 of

Ref. [29]. The picture highlights the incorrect behavior of

the l ¼ m ¼ 5 mode amplitude after merger. Similarly, the

analytical frequency does not match the NR one. Building

an improved analytical description of the l ¼ m ¼ 5 mode

will be the subject of the next section.

1. Improved analytical description of the l =m=5 merger

and ringdown waveform

The ringdown (or better saying, the “postpeak”) descrip-

tion of each multipole within TEOBResumS is based on the

NR-informed fitting procedure introduced in Ref. [73].

This approach, originally discussed for the l ¼ m ¼ 2

mode, was extended to higher modes and gives one of the

essential building blocks of TEOBResumS [29,30]. The

method also yields a stand-alone time-domain waveform

model that can be used in targeted ringdown analyses

[88,89] and improvement in the modeling of the amplitude

already exists [90]. Here we build upon Ref. [29] and

improve the (nonspinning) fits for the l ¼ m ¼ 5 postpeak

waveform presented there. To do so, we (i) use a new

sample of carefully chosen SXS datasets, with N ¼ 2

extrapolation order and mass ratio 1 < q ≤ 10; (ii) comple-

ment this data with a q ¼ 18 BAM waveform already used

in previous work [29] and all the q ¼ f15; 32; 64; 128g
datasets discussed above. This is essential to correctly

connect the comparable-mass regime with the extreme-

mass-ratio limit. We present here new fits for the amplitude

peak Â55, for the three parameters ðc3A; c
3
ϕ; c

4
ϕÞ entering the

postpeak description (see Ref. [73] for details), and for

Δt55, the time lag between the peaks of the (2,2) and (5,5)

modes. This quantity is especially important because it is

the one that assures that the postpeak waveform is attached

to the inspiral waveform at the correct point.

Following Ref. [29], both Â55 and Δt55 are fitted

after factorization of their values in the test-mass limit

and for the amplitude of the leading-order dependence

on ν. We use different SXS simulations depending on the

quantity we have to fit. In the left panel of Fig. 7 we show

the raw points for Â55 and ðc3A; c
3
ϕ; c

4
ϕÞ, extracted from

FIG. 6. EOB/NR comparison for q ¼ 18 using the NR data of

Ref. [87]. The unphysical behavior of the l ¼ m ¼ 5 mode after

merger is evident.
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q ¼ f1; 1.5; 2; 3; 4; 5; 6; 8; 9.89g SXS simulations, with the

best-fit functions superposed. They are given by

Â
peak
55

¼ 1 − 0.97509νþ 11.20088ν2; ð6Þ

c3A ¼ −0.59703þ 9.11875ν; ð7Þ

c3ϕ ¼ 4.22624 − 59.69283νþ 373.31260ν2; ð8Þ

c4ϕ ¼ 1.36397þ 14.911137ν: ð9Þ

The accurate representation of Δt55ðνÞ is a crucial element

to assure that the postpeak waveform is attached at the

correct place. As a consequence, we were especially careful

in selecting the NR datasets that are listed in Table I. We

selected the SXS simulations under the conditions that the

values are “stable” with ν, i.e., small variations of ν yield

small variations in Δt55. This is not always the case when
using data in the SXS catalog and extra care should be

exerted in the dataset choice since the (5,5) mode seems

particularly sensitive to the appearance of unphysical

effects. The points of Table I are shown in the right panel

of Fig. 7. We see that the behavior of Δt55 for q ¼
ð32; 64; 128Þ is rather complicated, and it is necessary to

have this data in order to correctly enforce the ν → 0 limit.

The fit for Δt55 reported in the figure explicitly reads

Δt55 ¼ n0
1þ n1νþ n2ν

3 þ n3ν
3 þ n4ν

4

1þ d1νþ d2ν
2

; ð10Þ

where

n0 ¼ 6.6195; ð11Þ

n1 ¼ −91.2039; ð12Þ

n2 ¼ 2556.5123; ð13Þ

n3 ¼ −11325.217; ð14Þ

n4 ¼ 27767.2164; ð15Þ
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FIG. 7. NR points and interpolating fits for the quantities entering the postpeak description of the (5,5) mode. Note the special

behavior of the Δt55 that is necessary to correctly capture the values for q ¼ 32 and q ¼ 64. The previously implemented fit (incorrectly

informed by other SXS datasets) is superposed for completeness.

TABLE I. Time delay Δtlm between the l ¼ m ¼ 2 NR

waveform peak and the corresponding peaks for l ¼ m multi-

poles up to l ¼ 6. The second column indicates the identification

number of each simulation from the SXS and RIT waveform

catalog. Exception to this are the q ¼ 18 dataset, obtained in

Ref. [87] using the BAM code and the test-mass limit waveform

obtained using Teukode [74,91].

No. ID q ν Δt44 Δt55 Δt66

1 SXS:BBH:1153 1 0.25 3.6587 … 6.65044

2 SXS:BBH:0198 1.203 0.2479 3.4943 … …

3 SXS:BBH:1354 1.832 0.2284 … 4.8445 …

4 SXS:BBH:1166 2 0.2̄ … 4.4172 …

5 SXS:BBH:0191 2.507 0.2038 2.1388 … …

6 SXS:BBH:1178 3 0.139 1.601 4.196 …

7 SXS:BBH:0197 5.522 0.0988 3.6521 4.6133 4.520

8 SXS:BBH:0298 7 0.1094 3.7126 4.6045 5.2422

9 RIT:BBH:0416 7 0.1094 4.2687 4.6794 4.6301

10 SXS:BBH:0301 9 0.09 4.2998 5.2108 5.7425

11 SXS:BBH:1107 10 0.0826 4.3957 5.3862 6.087

12 RIT:BBH:0373 15 0.0586 4.34 4.7081 4.658

13 BAM [87] 18 0.0499 4.4054 5.1464 5.8734

14 RIT:BBH:0792 32 0.0294 2.8970 2.9929 2.0056

15 RIT:BBH:0812 64 0.0151 2.946 2.7026 1.996

16 RIT:BBH:0935 128 0.0077 3.524 5.0108 4.4429

17 Teukode ∞ 0 5.2828 6.5618 7.7
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d1 ¼ −66.0362; ð16Þ

d2 ¼ 1762.4169: ð17Þ

Let us finally briefly comment on the Δt44 and Δt66 points
listed in Table I. The Δt44 points are shown in the left panel
of Fig. 8, together with the fit of Ref. [30], that is currently

implemented in TEOBResumS (dashed line on the plot). We

see that, similarly to the Δt55 case, Δt44 shows a special

behavior for small ν that is not captured by the fit. Since we

have found that this does not have a relevant influence on

the modelization of the l ¼ m ¼ 4 mode for large mass

ratios (see the corresponding plots in Fig. 9 below), we

have decided to keep the standard TEOBResumS fit. The

Δt66 points display the same qualitative behavior of the

Δt55 ones, and thus it is necessary to use a sufficiently

flexible rational function to fit them robustly (solid line in

the plot). In conclusion, our analysis shows that NR

simulations of large mass ratio binaries encode important

information that needs to be taken into account so that the

TEOBResumS model correctly tends to the test-mass limit.

Simpler interpolations to the test-mass limit can eventually

introduce systematic effects that may invalidate robust

performance all over the parameter space.

2. Global comparison

Figures 9 and 10 illustrate the EOB/NR agreement

around merger for all modes that are robustly completed

through merger and ringdown, i.e., (2,2), (2,1), (3,3), (3,2),

(4,4), (4,3), and (5,5). Note that here, to ease the compari-

son, we are not using resolution-extrapolated waveform

data, but highest resolution data instead. The reason for this

choice is that the extrapolation process can fictitiously

magnify the oscillations in the frequency that are present

during the ringdown in some modes, e.g., the (2,1) mode.

Note that these oscillations are of “physical” origin, as due

to the mixing of positive and negative frequency quasi-

normal modes, as extensively investigated in the test-mass

limit [92–94]. Still, their amplitude is still sensitive to

resolution (especially for the larger mass ratios discussed

below), so that we will not focus on this feature in this

paper. Analogously to the q ¼ 7 case mentioned above, for

each mass ratio and mode reported in Fig. 9, we compare

four curves: (i) the NR one (black); (ii) the purely analytical

one (orange); (iii) the waveform augmented with NQC

corrections (light blue); and (iv) the full waveform com-

pleted with merger and ringdown (red). We note now the

robustness of the l ¼ m ¼ 5 mode that is modeled using

the new NR-informed ringdown fits described above. Note,

however, that some unphysical features appear in the (4,3)

mode amplitude as the mass ratio is increased. In this case,

the feature is coming from the NQC correction to the

amplitude, while the behavior during ringdown is robust

and consistent with the NR waveform for “any” mass ratio.

The improvement of the (4,3) mode for large values of the

mass ratio will require a new NQC-determination strategy

that will be investigated in future work.

V. INFORMING EOB MODELS USING NR

SIMULATIONS: HUNTING FOR SYSTEMATICS

EOB analytical waveform models are informed by NR

simulations. The idea of incorporating in the model

strong-field bits of information extracted from NR was

suggested already two decades ago [95] at the dawn

of the EOB development. Nowadays, NR-informing

EOB models is a crucial step to make them highly faithful,

with respect to, error-controlled NR waveform data

[28–30,34,35,39,42,96–98]. In particular, the spin-aligned

TEOBResumS model incorporates NR information in: (i) the

ringdown part, as discussed above; (ii) the NQC corrections

to the waveform; (iii) an effective 5PN function ac6ðνÞ
entering the orbital interaction potential Aðr; νÞ, i.e., the
ν-dependent deformation of the Schwarzschild potential

1 − 2=r; and (iv) an effective next-to-next-to-next-to-

leading order (i.e., at 4.5PN accuracy) function c3ðνÞ
entering the spin-orbit coupling term of the Hamiltonian.

Here we are only dealing with nonspinning configurations,

so our interest is limited to ac6ðνÞ. Reference [29] used

several SXS datasets to determine ac
6
ðνÞ as

ac
6
ðνÞ ¼ n0

1þ n1νþ n2ν
2 þ n3ν

3

1þ d1ν
; ð18Þ

where the coefficients ðn0; n1; n2; n3; d1Þ are given by

Eqs. (4.3)–(4.7) of [29]. The (pointwise) determination

of this function relies on EOB/NR time-domain phasing

comparisons. For each selected value of q, ac6 is varied

manually until the EOB/NR phase agreement is smaller

than (or of the same order as) the NR phase uncertainty at

merger. For SXS this (probably conservative) error is

estimated by taking the difference between two resolutions

at merger time. This is done using data extrapolated at

infinity withN ¼ 3 order. For example, for q ¼ 7, Ref. [29]

used the SXS:BBH:0298 dataset, and the phase uncertainty
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FIG. 8. Behavior of the Δt44 and Δt66 points of Table I. For the
Δt44 we also superpose the current fit implemented in TEOBRe-

sumS. The differences with the NR data for small values of ν do

not seem to impact the EOB/NR waveform agreement (see

Fig. 9). The behavior of Δt66 is qualitatively analogous to the

Δt55 one.

ALESSANDRO NAGAR et al. PHYS. REV. D 105, 124061 (2022)

124061-10



at merger estimated in this way gives δϕNR
mrg ¼ −0.0775 rad

(see Table I of [29]). Figure 11 shows our current state-

of-the-art for q ¼ 7 and SXS:BBH:0298. With ac6ðνÞ

given by Eq. (18), one has ΔϕEOBNR
22 ∼ −0.244 rad at

merger point that is of the same order as, but larger than,

the corresponding NR uncertainty δϕNR
mrg mentioned above.

Figure 11 is obtained with ac6ð7=64Þ ≈ −25.562 from

Eq. (18) and delivers an analytic model that is NR faithful

FIG. 9. EOB/NR comparison of amplitude and frequency including higher modes. The l ¼ m ¼ 5 mode uses the new ringdown fit

described in Sec. IV C 1. We report the purely analytical waveform (orange, dashed), the NQC-completed waveform (light blue, dash-

dotted) and the one completed through merger and ringdown (red, dashed).
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FIG. 10. EOB/NR comparison of amplitude and frequency including the higher modes not considered in Fig. 9. Note that the (4,3)

amplitude becomes increasingly inaccurate before merger (due to the imperfect action of the next-to-quasicircular factor) as q increases.

We report the analytical waveform (orange, dashed), the NQC-completed waveform (light blue, dash-dotted) and the one completed

through merger and ringdown (red, dashed).
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for any purpose. However, the TEOBResumSmodel is robust

and flexible enough to allow us to be even “less”

conservative and actually reach the NR-error level men-

tioned above. With ac6 ¼ −33 we get a dephasing at merger

∼ − 0.06 rad, as illustrated in Fig. 12. Comparing Fig. 11

and 12 one sees that the EOB phasing during the long

inspiral is very accurate
4
and the change in ac

6
only affects

the last five or six orbits. On the basis of this analysis, it

seems evident that the level of NR faithfulness that

TEOBResumS can reach “depends on” the NR uncertainty.

Note in this respect that the SXS simulations were not

performed with the scope of accurately informing an EOB

model. As a consequence, their uncertainties (see, e.g.,

Table I of Ref. [29]), obtained by taking the difference of

two resolutions, might be either too large or too small for

our purposes. In fact, seeing all the complications of NR

simulations, the best setup to NR informing the EOBmodel

would be to have at hand different error-controlled NR

simulations with equivalent length obtained with different

numerical methods. The open question is then to determine

to which extent our ac6ðνÞ function is independent of the

choice of NR data. To attempt an answer, the left panel of

Fig. 13 shows the EOB/NR phasing comparison for q ¼ 7

using RIT NR data extrapolated to infinite resolution. The

alignment interval is the same of Fig. 11, but the phase

difference accumulated up to merger is ≃ − 1 rad. Given

our error estimate on the q ¼ 7 RITwaveform in Fig. 1, we

expect the NR phase uncertainty to be ∼0.3 rad up to

merger. The same conclusion comes from Fig. 4, where

both RIT and SXS waveforms show a high degree of

consistency among themselves and with the TEOBResumS

one when aligned during the late plunge phase. We

conclude that the effect in Fig. 13 is related to the numerical

errors accumulated during the inspiral that are probably

larger than the SXS ones, as already suggested in Fig. 1

above. However, on the basis of the complexity of NR

simulations and the very different numerical methods

employed to obtain the SXS and RIT data, it is not a priori

completely excluded the existence of subtle systematics on

both sides. A similar behavior of the phase difference is

found also for the q ¼ 32 and q ¼ 64 datasets, although it

is more compatible with the phase uncertainty.

We conclude this discussion on the dependence of the

EOB tuning on NR data with the following exercise. Let us

suppose to fully trust the q ¼ 7 RIT data and use them as a

target to inform ac6. To do so, we will need a new value of

ac6, more negative than the current −25.562, so to attempt to

absorb the phase difference around merger. The result of

this exercise is shown in Fig. 14: for ac6 ¼ −51, the phase

difference at merger is reduced to ∼ − 0.25 rad, compatible

with the NR phase uncertainty. This tuning, however, has

only a marginal effect on the phase difference during the

inspiral, giving thus another indication that one needs

improvements on the NR side. This suggests that

TEOBResumS is flexible, because it can be tuned to NR

when needed, but at the same time “rigid and robust,” in the

sense that it can be used as an auxiliary tool to spot

uncertainties (or systematics) in the NR simulations. This is

especially true during the inspiral, where TEOBResumS

performs best.

From our brief analysis it is clear that TEOBResumS can

be robustly informed only using NR simulations with very

well-controlled (and small, ≲0.1 rad) numerical uncertain-

ties. If this seems to be true for SXS, it is not yet the case for

our RIT data, although we clearly proved the consistency

between the two NR datasets. However, after this first
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FIG. 11. EOB/NR phasing comparison with SXS:BBH:0298

(q ¼ 7, nonspinning) extrapolated with N ¼ 3. The vertical dash-

dotted lines indicate the alignment region. The phase difference at

merger point, ∼ − 0.25 rad, is consistent with (and notably larger

than) the NR phase uncertainty δϕNR
mrg ¼ −0.0775 rad.
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FIG. 12. Same EOB/NR phasing comparison with SXS:

BBH:0298 of Fig. 11 but using now ac6 ¼ −33 instead of the

value given by Eq. (18): the EOB/NR phase difference at merger

is now slightly smaller than the NR phase uncertainty

δϕNR
mrg ¼ −0.0775 rad.

4
The phase difference oscillates around zero due to the small

residual NR eccentricity.
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exploration of the large mass ratio regime and comparisons

of NR waveforms with those of EOB, we have learned that

NR can inform analytic models to improve the fits in this

computationally challenging regime. The NR waveforms

we used were still first explorations, particularly for

q ¼ ð32; 64; 128Þ, and we can now revisit these scenarios

with improved accuracy. This is clearly true also for the

q ¼ 7 case that would serve as an additional benchmark for

the corresponding SXS dataset and the related NR-

informed quantities within TEOBResumS. We also note

that, as indicated by Figs. 11 and 12, shorter NR simu-

lations, with only 10 orbits or less, might be sufficient

for additionally informing TEOBResumS, provided that they

can be pushed to an accuracy comparable to that of SXS

data. Some of the areas of immediate improvements are:

(i) the use of improved gauge conditions, as described in

Ref. [49]; (ii) the use of different grid structures than in [20]

to emphasize either inspiral or ringdown accuracy;

(iii) lengthy simulations with global increase in the reso-

lution; and (iv) reduction of the initial eccentricity with the

methods of [99] or [100].

A. Mass ratio q= 15: impact of high PN test-mass terms

in the waveform and radiation reaction

While this paper was under review, a new q ¼ 15 long-

inspiral (∼30 orbits) SXS waveform became avail-

able [101]. Although this waveform is not yet accessible

through the SXS catalog, the authors of Ref. [101] kindly

shared it with us. The presence of such a long inspiral

allows us to perform a more demanding test of

TEOBResumS and complement the explorations of the

previous section by also focusing on the impact of the

analytical radiation reaction for such a large mass ratio.

Figure 15 shows the standard time-domain phasing com-

parison, with the EOB waveform aligned to the NR one

during the inspiral. The phase difference accumulated at

NR merger is ΔϕEOBNR
22 ðtNRmrgÞ ∼ −0.61 rad. As we will see

below, once the time-domain phase difference is recasted in

the form of EOB/NR unfaithfulness F̄EOBNR with the

Advanced LIGO noise, as it is standard in EOB/NR works

[30,42], this phase difference is practically negligible,

giving F̄EOBNR around 3 × 10−4. Still, since the expected

phase uncertainty in the SXS waveform is certainly smaller

than the EOB/NR phase difference at merger, it is interest-

ing to modify TEOBResumS so to attempt to reduce further

ΔϕEOBNR
22 ðtNRmrgÞ. As a first attempt, we modified ac6. We

found that in doing so it is possible to reduce the phase

difference accumulated at merger, but the corresponding

value of ac6 is very different with respect to the one

currently predicted by the fit. This means that it would

not be possible to find a new simple analytical functional

form that can easily fit the old values together with the new

one. This suggests that the physical information that is
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FIG. 13. EOB/NR phasing comparison with the waveforms aligned during the early inspiral (vertical dash-dotted lines in the plots).

We use here resolution-extrapolated waveforms. For q ¼ 15 and q ¼ 32 the comparison is clearly affected by residual initial eccentricity

in the simulation.
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FIG. 14. Attempt of NR-informing ac
6
using the q ¼ 7 RIT data.

For ac
6
¼ −51 we can reduce the phase difference around merger

at ∼ − 0.2 rad, compatible with the NR uncertainty, but this does

not affect the phase difference during the inspiral.
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currently missing in the model comes from elsewhere and

cannot be reabsorbed in an effective tunable parameter

entering the EOB potential A. As a first alternative route we
can intervene on the dissipative sector of the model, i.e., the

radiation reaction (and waveform). The TEOBResumSmodel

uses resummed residual waveform amplitudes ρlm [76]

with 3þ3 PN accuracy (i.e., 3PN ν-dependent terms are

hybridized with test-mass terms up to 6PN, multipole by

multipole [30]), except for the l ¼ m ¼ 2 and l ¼ 7, 8 that

are kept at the standard 3þ2PN accuracy.
5
In addition,

all 3þ3PN-accurate modes are resummed using suitable

Padé approximants, as discussed in detail in Ref. [30] to

which we refer the reader for additional technical infor-

mation. The ρ22 function implemented in TEOBResumS

formally reads

ρ22ðxÞ ¼ 1þ c1ðνÞxþ c2ðνÞx
2 þ c3ðνÞx

3 þ c4x
4 þ c5x

5;

ð19Þ

where x is the PN ordering parameter that for circular orbits

is given by x ¼ Ω
2=3, whereΩ is the orbital frequency. Here

we explicitly indicated that up to 3PN the coefficients

depend on ν, while ðc4; c5Þ are only the test-mass ones. See

specifically Eq. (C1) of [76]. To explore the impact of

(some of) the missing physical elements, we can simply

add to this function the test-mass 6PN contribution c6x
6 as

obtained from Ref. [102]. The EOB/NR phasing obtained

with this improved model is shown in Fig. 16: the phase

difference at merger is almost “halved” with respect to

Fig. 15, ΔϕEOBNR
22 ðtNRmrgÞ ≃ −0.36. To test the robustness of

this finding, that relies on a truncated PN-expansion

for ρ22, we redo the same test resumming the 3þ3PN

accurate ρ22 with a (4,2) Padé approximant, following

the same prescription adopted in the test-mass limit.

The result is consistent with the above, as we find

ΔϕEOBNR
22 ðtNRmrgÞ ≃ −0.4. Let us additionally mention that

it is similarly easy to obtain ΔϕEOBNR
22 ðtNRmrgÞ ≃ 0 by tuning

the ν-dependent contribution to the 4PN correction c4,
that is still analytically unknown (see, however, [103–105]

for recent work aiming at obtaining the full contribution).

From these simple considerations it seems that TEOBResumS

should be improved by adding more PN information in the

waveform amplitudes and, consequently, in the fluxes.

These changes in the fluxes will necessarily require a new

determination of the effective EOB parameters informed by

NR simulations, analogously to what was recently done in

Ref. [39]. It must be stressed, however, that at the level of

EOB/NR unfaithfulness (or mismatch) F̄EOBNR [39] with

the Advanced LIGO noise, the impact of these changes in

the model is minimal, as illustrated in Fig. 17. As a last

analysis we explored what happens when we hybridize the
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FIG. 16. EOB/NR phase comparison for q ¼ 15 though in-

cluding the 6PN test-mass term in the ρ22 function. The phase

difference at merger is halved with respect to Fig. 15.
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FIG. 17. EOB/NR unfaithfulness for q ¼ 15, using the SXS

waveform of [101], with Advanced LIGO noise according to

standard definitions [39]. Note that the effect of the 6PN term is

small but visible.
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FIG. 15. EOB/NR phase comparison using the standard

TEOBResumS with a newly released SXS waveform [101] with

q ¼ 15. We have ΔϕEOBNR
22 ðtNRmrgÞ ∼ −0.61 rad.

5
Note that the choice for l ¼ 7; 8 was already demonstrated to

be inaccurate in the test-mass limit [90].
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3PN ν-dependent information with the “full” analytical

test-mass knowledge (up to 22PN) computed in Ref. [102],

i.e., we work at 3þ19PN order. Note that we do not apply

any additional Padé approximant to the 22PN Taylor series

that represents each ρlm function. The EOB/NR phasing

in this case is shown in Fig. 18, and it is practically

equivalent to the one of Fig. 15 discussed above, with

ΔϕEOBNR
22 ðtNRmrgÞ ≃ −0.32. In other words, the high-order

test-mass PN information is irrelevant up to q ¼ 15, and the

standard resummed TEOBResumS flux (modulo the consid-

erations regarding the 6PN term mentioned above) is

sufficient for any practical purpose up to this value of

the mass ratio.

VI. CONCLUSIONS

It is generally believed that a state-of-the-art EOB-

based waveform model, specifically TEOBResumS, is not

robust and trustable outside the so-called “domain of

calibration,” i.e., that region of the parameter space

covered by the NR simulations that are used to inform

the model. We explicitly proved that this is not true, at

least for TEOBResumS. Specifically, we have used recently

published NR simulations [20,48,49] of coalescing BBHs

with mass ratios from 15 to 128 to validate TEOBResumS

in the large mass ratio regime. This is the first comparison

of a semianalytical waveform model to NR simulations

in this corner of the parameter space. The excellent

mutual consistency we have found between NR and

EOB waveform data gives additional evidence that

TEOBResumS is currently the most robust, versatile,

and NR-consistent EOB-based spin-aligned waveform

model available. Our work complements then the find-

ings of Refs. [30,39,42].

In summary:

(i) Focusing first on the (2,2) mode, we find an

excellent degree of EOB/NR consistency during

merger and ringdown up to q ¼ 128;

(ii) For the inspiral, the numerical truncation error

increases progressively with the mass ratio. Still,

the EOB/NR dephasings we find are coherent with

the expected NR uncertainty;

(iii) Similar consistency through merger and ringdown is

found for all available EOB higher modes, (2,1),

(3,3), (3,3), (3,2), (4,4), and (4,3), except for the

(5,5) mode.

(iv) The native implementation of the (5,5) multipole

develops unphysical features at merger and during

ringdown, which are related to inaccuracies in the

NR-informed fits of Ref. [30]. These features show

up for q≳ 15. We thus use the new NR data

discussed here to inform an improved l ¼ m ¼ 5

ringdown description. With this new input, the

model is tested to be accurate up to q ¼ 128, and

it is smoothly connected with results in the test-

particle limit. The new fit discussed here is imple-

mented in the last public version of TEOBResumS.

Our findings highlight the importance of producing highly

accurate NR simulations that cover the transition to merger

and ringdown in all crucial corners of the parameter space.

It also shows the robustness of the analytical scheme that is

used to construct the merger-ringdown part of the EOB

multipolar waveform [73]; once new NR data are available,

one can just use them to improve the NR-informed fits,

easily removing pathological behaviors that may occur in

the analytical waveform around merger. Sparse, but very

accurate, NR simulations remain the only tool available to

incorporate an accurate merger-ringdown description

within waveform models. We hope that the control of

quantities like Δtlm, the delay between the peak of each

multipole and the l ¼ m ¼ 2 one, becomes of primary

importance for forthcoming NR simulations.

Let us finally stress that our RIT NR simulations

effectively allow us to quantitatively probe “only” the

plunge, merger, and ringdown regime of TEOBResumS.

In principle, we would need “long” simulations with mass

ratio q > 10, with a typical SXS accuracy, to probe the

radiation-reaction driven long inspiral. One should, how-

ever, be aware that the radiation reaction of TEOBResumS

incorporates a large amount of PN information in

resummed form, in particular, “hybridizing” ν-dependent

terms with test-mass results up to (relative) 6PN accuracy

[30] for all flux modes up to l ¼ 6. The l ¼ 7 and l ¼ 8

modes, however, rely on less PN information, and an

improvement with test-mass data (following Ref. [90])

could be useful. In general, these improvements to the

dissipative sector of the model are expected to be important

for constructing long-inspiral waveform templates for 3G

detectors. As a preliminary study, we proved this is indeed

FIG. 18. EOB/NR phase comparison for q ¼ 15 replacing the

standard TEOBResumS flux with the 3þ19PN one, as discussed in

the text. The EOB/NR phasing agreement is comparable to the

one of Fig. 16.
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the case using a ∼30 orbits SXS simulation for q ¼ 15 that

became available during the peer-review process of this

paper [101]. By contrast, “shorter” NR simulations, ∼10

orbits, with reduced eccentricity and accuracy comparable to

the SXS ones, would be useful to more accurately probe the

full transition from late inspiral to plunge and merger,

possibly informing the EOB dynamics for large mass ratios.

This data would also independently benchmark the NR-

informed EOB interaction potential, that currently only relies

on strong-field information extracted from SXS simulations.

These kinds of simulations are within reach of our numerical

techniques and will be pursued in the future.
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Jiménez Forteza, and A. Bohé, Phys. Rev. D 93, 044006

(2016).

[88] W.Del Pozzo andA.Nagar, Phys. Rev.D 95, 124034 (2017).

[89] G. Carullo, G. Riemenschneider, K. W. Tsang, A. Nagar,

and W. Del Pozzo, Classical Quantum Gravity 36, 105009

(2019).

[90] S. Albanesi, A. Nagar, and S. Bernuzzi, Phys. Rev. D 104,

024067 (2021).

[91] E. Harms, S. Bernuzzi, and B. Brügmann, Classical

Quantum Gravity 30, 115013 (2013).

[92] T. Damour and A. Nagar, Phys. Rev. D 76, 064028 (2007).

[93] S. Bernuzzi and A. Nagar, Phys. Rev. D 81, 084056 (2010).

ALESSANDRO NAGAR et al. PHYS. REV. D 105, 124061 (2022)

124061-18



[94] A. Taracchini, A. Buonanno, G. Khanna, and S. A.

Hughes, Phys. Rev. D 90, 084025 (2014).

[95] T. Damour, E. Gourgoulhon, and P. Grandclement, Phys.

Rev. D 66, 024007 (2002).

[96] T. Damour and A. Nagar, Phys. Rev. D 79, 081503 (2009).

[97] A. Nagar, T. Damour, C. Reisswig, and D. Pollney, Phys.

Rev. D 93, 044046 (2016).
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