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We describe and study an instantaneous definition of eccentricity to be applied at the initial moment of

full numerical simulations of binary black holes. The method consists of evaluating the eccentricity at the

moment of maximum separation of the binary. We estimate it using up to third post-Newtonian (3PN) order

and compare these estimates with the results of evolving (conservative) 3PN equations of motion for a full

orbit and compute the eccentricity er from the radial turning points, finding excellent agreement. We then

include terms with spins up to 3.5PN and next compare this initial data eccentricity estimate method with

the turning points estimates of the eccentricity eNR
r during full numerical evolutions of spinning binary

black holes, characterized invariantly by a fractional factor 0 ≤ f ≤ 1 of the initial tangential momenta to a

quasicircular one. We find that our initial instantaneous definition is a particularly useful and accurate tool

to predict and characterize even highly eccentric full numerical simulations.

DOI: 10.1103/PhysRevD.106.104035

I. INTRODUCTION

While the concept of eccentricity is uniquely defined in

Newtonian gravity, an extension to general relativity is not

strictly uniquely or even well defined, but we have found

it useful to have an instantaneous eccentricity estimate e
defined at the initial data level of a full numerical

simulation. The question of astrophysical binary black

holes retaining non-negligible eccentricity close to merger

has been the subject of recent interest [1–3], with growing

observational evidence from gravitational wave events that

large eccentricities may actually occur in nature [4–8].

To start a full numerical simulation of a binary black

hole, we have to choose first the orbital parameters at the

beginning of the simulation, then compute the initial data

(metric variables and its first time derivatives) along with

choices of gauge and numerical coordinates to perform

the desired evolution [9]. To compute the numerical initial

data, we use the puncture approach [10] along with the

TWOPUNCTURES [11] code implementation. For each

eccentric family of simulations, we first determine at the

initial separation Rc the tangential quasicircular momentum

Pc, using the results of [12]. To increase the eccentricity

of the system at an apocenter, the initial tangential

momentum Pt is modified by a fractional parameter

0 ≤ f ≤ 1, such that Pt ¼ ð1 − fÞPc. See Fig. 1 for a

schematic representation.

This method was applied to the estimates of templates

of the LIGO-Virgo detection GW190521 [13] in Ref. [5]

and to the 824 simulations included in the latest (fourth

release [14]) Rochester Institute of Technology (RIT)

catalog of binary black hole simulations. In Refs. [5,14],

the initial eccentricity was then approximately evaluated by

the Newtonian relationship e ¼ 2f − f2. In this paper, we

extend this definition to higher post-Newtonian (PN) orders

to improve the identification of highly eccentric simula-

tions and to test it against full numerical evolutions.

II. METHOD

The idea of this method applied to PN expansions is to

evaluate the conserved Hamiltonian at the two radial

turning points of a binary r�, to evaluate j, the conserved

angular momentum at those points, and to relate the

eccentric and circular values at the apastron rþ by a factor

(1 − f) as displayed in Fig. 1, following the equivalent of

what we will perform for evaluating eccentricities for the

full numerical simulations.

A. Nonspinning case

Let us begin with the nonspinning binary case, for which

we can write the reduced Hamiltonian H ¼ H=μ with

μ ¼ m1m2=ðm1 þm2Þ,

Hðr; p̂Þ ¼ H0ðr; p̂Þ þ
1

c2
H1ðr; p̂Þ þ

1

c4
H2ðr; p̂Þ

þ 1

c6
H3ðr; p̂Þ; ð1Þ

where explicit expressions for the reduced 3PN Hamiltonian

in the ADMTT (Arnowit-Deser-Misner transverse traceless)
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gauge that are given in Ref. [15] (see also Appendix A and

Ref. [16] for a history on Hamiltonian results). Here, we

define r ¼ R=ðGMÞ and p̂ ¼ P=μ where R is the relative

separation vector, M ¼ m1 þm2, and P is the linear

momentum. Writing this Hamiltonian in polar coordinates

(r; θ;ϕ), we see that it does not depend on the coordinate ϕ.
Therefore, p̂ϕ is a conserved quantity and the motion will

happen only on a plane. Thus, we may consider p̂ ¼
ðp̂r; 0; p̂ϕ=rÞ at r ¼ ðr; 0; 0Þ in Cartesian coordinates (x,

y, z). Now, p̂r vanishes at the turning points rþ and r−, and
we can write

Hðr�; p̂Þ ¼ Hðr�; p̂ϕÞ ¼ Hðr�; jÞ; ð2Þ

where j ¼ p̂ϕ is constant along the orbit.

We now define the eccentricity measure er as

er ¼
rþ − r−

rþ þ r−
: ð3Þ

Therefore, r− is given by

r− ¼ rþ
1 − er

1þ er
ð4Þ

(see Fig. 1 where Rc ¼ rþ and e ¼ er).
To simplify more the computation, we scale again the

Hamiltonian, the momentum p̂, and the r-coordinate as

H̃ ¼ rþH; p̃ ¼ ffiffiffiffiffi

rþ
p

p̂; r̃ ¼ r

rþ
: ð5Þ

This allows us to rewrite the Hamiltonian as

H̃ðr̃; p̃Þ ¼ H̃0ðr̃; p̃Þ þ αH̃1ðr̃; p̃Þ þ α2H̃2ðr̃; p̃Þ
þ α3H̃3ðr̃; p̃Þ; ð6Þ

where α ¼ 1=ðc2rþÞ.
The advantage of this rescaling is that in this way we

explicitly remove the value of rþ from our problem. This

appears only in the expression for α. In particular, we have

(in polar coordinates)

r̃þ ¼ 1; r̃− ¼ 1 − er

1þ er
: ð7Þ

Now since the Hamiltonian is conserved along the orbit,

we must have

H̃ðr̃þ; j̃Þ − H̃ðr̃−; j̃Þ ¼ 0; ð8Þ

where

j̃ ¼ j
ffiffiffiffiffi

rþ
p : ð9Þ

Using Eqs. (7) and (8), and specifying values for α and η,

we have an expression for j̃ in terms of er. Finally,

introducing a momentum suppression factor f as

j̃ðerÞ ¼ ð1 − fÞj̃C; ð10Þ

where j̃ð0Þ ¼ j̃C for the circular orbit, we obtain

fðerÞ ¼ 1 −
j̃ðerÞ
j̃C

: ð11Þ

This final expression provides us with the desired

relationship to evaluate fðerÞ and to invert (numerically)

for any specific set of initial parameters of a binary black

hole simulation and obtain the estimated er (for example,

see Appendix B for an implementation).

B. Spinning case

For the spinning case, we can apply the same method.

Let us consider two orbiting black holes with spins S1

and S2. The Hamiltonian becomes [17,18] (we restore here

the explicit dependence with the speed of light c to better

display PN orders)

Rc=r+

Rc(1−e)/(1+e)

Pc

Pt=(1−f)Pc

Rc

r_

FIG. 1. Schematic of the initial momentum choice to describe

eccentric orbits in our numerical relativity simulations. Rc and Pc

denote the initial separation and tangential momentum for a

quasicircular binary. Then, Pt ¼ ð1 − fÞPc, where f is a frac-

tional parameter, 0 ≤ f ≤ 1, is the initial tangential momentum

for an eccentric binary with an instantaneous eccentricity e. Here,
one of the focus points (F1) of the ellipse is located at the center

of the circle.
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Hðr; p̂;S1;S2Þ ¼ H0ðr; p̂Þ þ
1

c2
H1ðr; p̂Þ þ

1

c4
H2ðr; p̂Þ þ

1

c6
H3ðr; p̂Þ þ

δ

c2
HLO

SOðr; p̂;S1;S2Þ þ
δ

c4
HNLO

SO ðr; p̂;S1;S2Þ

þ δ2

c2
HLO

S1S2ðr; p̂;S1;S2Þ þ
δ2

c2
HLO

S2
ðr; p̂;S1;S2Þ þ

δ2

c4
HNLO

S1S2ðr; p̂;S1;S2Þ þ
δ2

c4
HNLO

S2
ðr; p̂;S1;S2Þ

þ δ

c6
HNNLO

SO ðr; p̂;S1;S2Þ þ
δ3

c4
HLO

S3
ðr; p̂;S1;S2Þ; ð12Þ

where δ is a dimensionless factor introduced to keep track

of the spin order (linear, quadratic, or cubic) of the term

considered (see also Ref. [17]). In this case, we define

S̃a ¼
Sa
ffiffiffiffiffi

rþ
p ¼

ffiffiffi

α
p

χ a; ða ¼ 1; 2Þ; ð13Þ

where in the last equality we introduced the dimensionless

quantity χ a as

χ a ¼
Ŝa

m2
a

; ða ¼ 1; 2Þ: ð14Þ

Here, Ŝa are the actual spins with dimension (geometric

units) ½Ŝ� ¼ ½ðMassÞ�2.
In terms of this new dimensionless variable, we have the

rescaled Hamiltonian as

H̃ðr̃; p̃; χ 1; χ 2Þ ¼ H̃0ðr̃; p̃Þ þ αH̃1ðr̃; p̃Þ þ α2H̃2ðr̃; p̃Þ þ α3H̃3ðr̃; p̃Þ þ α3=2H̃LO
SOðr̃; p̃; χ 1; χ 2Þ þ α5=2H̃NLO

SO ðr̃; p̃; χ 1; χ 2Þ
þ α2H̃LO

S1S2ðr̃; p̃; χ 1; χ 2Þ þ α2H̃LO
S2
ðr̃; p̃; χ 1; χ 2Þ þ α3H̃NLO

S1S2ðr̃; p̃; χ 1; χ 2Þ þ α3H̃NLO
S2

ðr̃; p̃; χ 1; χ 2Þ
þ α7=2H̃NNLO

SO ðr̃; p̃; χ 1; χ 2Þ þ α7=2H̃LO
S3
ðr̃; p̃; χ 1; χ 2Þ: ð15Þ

We can now follow the same steps as indicated in

Eqs. (8)–(11) to obtain a relationship between the fractional

parameter f, by which the tangential circular momentum is

suppressed to generate eccentric orbits, and the eccentricity

er, defined through the periastron and apastron.

III. RESULTS

Here, we first validate our method to evaluate eccen-

tricities at the periastron with actual post-Newtonian equa-

tion of motion integrations (3PN in the ADMTT gauge). We

will then compare our method with full numerical simu-

lations. In the applications below, we will assume, for the

sake of definiteness and comparisons with the simulations

used for GW190521 in Ref. [5], an initial coordinate

separation of the holes of about r ≈ 24.7M, which we use

in the evaluation of α above. This corresponds in the cases

studied in Ref. [5] to an initial quasicircular reference

frequency of 10 Hz for a M ¼ 30 M⊙ system, as evaluated

by the techniques described in Ref. [12]. We will also

consider another application for unequal mass binaries

starting at r ≈ 11.3M. This range covers essentially all

our simulations in the RIT catalog’s initial separations [14].

A. Explicit analytic expressions for 1PN

Here, we derive explicit analytic expressions for fðerÞ at
a lower order PN expansions in the eccentricity. We hence

consider the 1PN Hamiltonian,

H ¼ 1

2

Pϕ
2

r2
−
1

r

þ α

�

1

8

ð3η − 1ÞPϕ
4

r4
−
1

2

ð3þ ηÞPϕ
2

r3
þ 1

2r2

�

: ð16Þ

From equating the values of the Hamiltonian at the

periastron and apastron rþ,

Hðr ¼ rþ; P
2

ϕÞ ¼ Hðr ¼ rþð1 − erÞ=ð1þ erÞ; P2

ϕÞ; ð17Þ

picking up the right root of P2

ϕ, we find an analytic

expression for fðerÞ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2

ϕ=P
2

ϕðer ¼ 0Þ
q

at 1PN,

fðerÞ ¼ 1 −

� ð1 − eÞ
ðe2 þ 1Þð

ffiffiffiffiffiffiffiffiffiffiffiffi

Δþ 4
p

þ 3αðηþ 3Þ − 2Þ
½3αðηþ 3Þ þ αe2ðηþ 3Þ þ ðΔþ α2e4ðηþ 3Þ2 − 20αe3ðη − 1Þ

þ 2e2ðαðαð3ηðηþ 2Þ þ 31Þ þ 10ðη − 1ÞÞ þ 2Þ − 4eð3αη − 11αþ 2Þ þ 4Þ1=2 þ 2e − 2�
�

1=2

; ð18Þ
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where

Δ ¼ αðαð9η2 þ 30ηþ 89Þ þ 12η − 44Þ: ð19Þ

We can find an approximate expression for fðerÞ
expanding in powers of α to obtain

fðerÞ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − er
p

þ erð−4þ erð−2þ ηÞÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − er
p α: ð20Þ

This expression can be used as a first estimate up to

intermediate eccentricities, er < 0.6 in the large separation

regime rþ > 12M, comparable masses q > 1=4, and slowly
spinning black holes χi < 0.5, as we verified by direct

comparisons with full 3PN expressions in Fig. 2, represent-

ing the first correction to the Newtonian estimate used in the

fourth RIT binary black holes waveforms catalog [14] and

the analysis of GW190521 [5]. The advantage of using the

full expressions, particularly at higher PN orders, relies on

the behavior at large er and the merging of curves toward the

expected limit fðer ¼ 1Þ ¼ 1.

B. f ðerÞ for initial parameters and its comparison

with integrations of 3PN equations of motion

The result for nonspinning equal mass binaries, i.e., the

mass ratio q ¼ m2=m1 ¼ 1, at different successive PN

orders is shown in Fig. 2. We plot here the factor f by

which we reduce the tangential linear momentum of a

quasicircular orbit versus the computed eccentricity er.
This allows us to read off the eccentricity associated with

our initial data setup (here at r ¼ 24M for reference). We

can see the good agreement to all displayed PN orders at

low eccentricities ðer < 0.4Þ. At intermediate eccen-

tricities, the 1PN computation deviates from the higher

order trend for er > 0.4, while the 2PN computation

remains consistent for er < 0.7. On the other hand, the

3PN computation converges toward the Newtonian (0PN)

curve for larger er. We interpret this as the correct behavior

since for large er the expected evolution of a binary is

essentially a plunge that tends to reduce the differences

between PN orders.

In the case of spinning holes, we will hence focus

directly on the 3PN computation and compare them with

the nonspinning case. To better display the effects (and the

subsequent comparisons with full numerics), we consider

the cases when both equal mass black holes have spins

aligned ðχi ¼ þ0.8Þ or antialigned ðχi ¼ −0.8Þ with the

orbital angular momentum (we checked that the χ1 ¼ −χ2
case gives a curve remarkably close to the nonspinning

case). The results for this 3PN order comparison for the

various values of the spins are shown in Fig. 3 (note that

the dashed lines for the corresponding 3PN equations of

motion integration are truncated as they lead to mergers at

large e). We observe a close dependence of the three curves

for small and intermediate eccentricities, but for er > 0.75

there is a reverse in their relative behavior. While the case of

aligned spins eventually merges for large eccentricities

(plunges) with the nonspinning holes, the antialigned spins

case shows a quite different behavior. We will come back

later to this case with a 3.5PN computation that resolves

this behavior.

A first validation of our initial instantaneous eccentricity

estimate can be performed by comparing our analytical

results with the numerical integrations of the conservative

3PN equation of motion [19,20], where we suppressed the

2.5PN radiative terms. We integrate the orbital motion over

the first orbit and evaluate the eccentricity from the apastron

and periastron differences, er ¼ ðrþ − r−Þ=ðrþ þ r−Þ. The
comparisons for spinning and nonspinning cases with q ¼ 1

and χi ¼ 0;�0.8 are displayed in Fig. 3. The results show a

FIG. 2. Momentum suppression factor f vs eccentricity er for
nonspinning equal mass binaries, χi ¼ 0 and q ¼ 1, at various

PN orders. Dotted lines are for the first order α-expansions of the

1PN calculation.

FIG. 3. Comparison of initial analytic vs integration of the 3PN

equations of motion: Eccentricity er vs momentum suppression

factor f for q ¼ 1 and different values of the spins.
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notable agreement and consistency between the integrated

and initial estimates of the eccentricity, for er ≤ 0.9, at

3PN order.

To verify the mass ratio dependence of our eccentricity

estimator as well, we compare our analytical results with

numerical evolutions of the 3PN equations of motion in

Fig. 4 for mass ratios q ¼ 1; 1=2; 1=3, and 1=7 (for non-

spinning binaries). We observe again a notable agreement

in their corresponding regions of validity (as the 3PN

approximation reduces its validity to medium and small

eccentricity as we deal with smaller mass ratios).

C. Comparisons with full numerical

relativity simulations

We are now able to directly compare our initial eccen-

tricity PN estimates to actual full numerical simulations

where it is possible to evaluate the eccentricity via the

turning points in the simulations. We thus identify the

numerical and PN (in the ADMTT gauge) parameters,

Rc ¼ rþ and Pc ¼ Pϕðer ¼ 0Þ=rþ, and the values of f, α,

q, and S1 and S2 for several simulations available in the RIT

waveforms catalog [14] identified in Table I. The results are

displayed in Fig. 5. The agreement for simulations in the

range of low to middle eccentricities is remarkable. We also

include here the 3.5PN corrections to the antialigned spins

configurations to display an improved behavior all the way

up to er → 1, merging with the plunging behavior in the

cases of nonspinning and aligned spins.

In the RIT catalog [14], we have another family of

eccentric simulations (for nonspinning and different mass

ratios q ¼ 1; 3=4; 1=2, and 1=4), starting at much closer

initial separations, r ≈ 11.35M, that we can use to compare

to our PN eccentric estimations. These separations are

roughly half the ones we considered so far and are at the

limit of applicability of PN expansions. The results of these

estimates are displayed in Fig. 6. It is also difficult to

compute the er from the full numerical evolutions for large

eccentricities since the trajectories are highly inspiral

or merge before we can complete a meaningful orbit to

extract rþ and r−. Yet, the estimates are very good for the

expected range of validity of the PN expansions for small

mass ratios (here er < 0.5). The excellent agreement

between the analytic and full numerical estimates extends

to the intermediate mass ratio q ¼ 1=7 when we consider

FIG. 4. Comparison of initial analytic vs 3PN equation of

motion integration of the momentum suppression factor f vs

eccentricity er for nonspinning binaries, χi ¼ 0, and different

values of the mass ratio q.

FIG. 5. Top: momentum suppression factor f vs eccentricity er
with PN estimates for various spins (continuous curves) in

comparison with the full numerical simulation measurements

(dots). Bottom: differences between the PN and numerical values.

TABLE I. Eccentric simulations used in Fig. 5 and their

estimated eccentricities from its radial turning points eNR
r . Here,

Rc denotes the initial separation, q, χ
z
1
, and χz

2
are the mass ratio

and the dimensionless spins projected along the initial orbital

angular momentum, respectively, and f is the momentum

suppression factor.

RIT catalog no. Rc q χz
1

χz
2

f eNR
r

RIT:eBBH:1282 24.64 1 0.0 0.0 0.10 0.2357

RIT:eBBH:1283 24.64 1 0.0 0.0 0.15 0.3416

RIT:eBBH:1285 24.64 1 0.0 0.0 0.20 0.4459

RIT:eBBH:1293 24.64 1 0.0 0.0 0.25 0.5488

RIT:eBBH:1303 24.64 1 0.0 0.0 0.30 0.6646

RIT:eBBH:1807 24.56 1 0.8 0.8 0.25 0.5064

RIT:eBBH:1808 24.56 1 0.8 0.8 0.27 0.5410

RIT:eBBH:1809 24.56 1 0.8 0.8 0.30 0.5915

RIT:eBBH:1811 24.56 1 0.8 0.8 0.35 0.6735

RIT:eBBH:1813 24.56 1 0.8 0.8 0.40 0.7587

RIT:eBBH:1763 24.75 1 −0.8 −0.8 0.10 0.2644

RIT:eBBH:1764 24.75 1 −0.8 −0.8 0.20 0.5143
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the larger initial separation r ¼ 24.7M at the apastron,

showing the convergence of the PN approach at larger

separations.

We conclude that our eccentricity estimator provides an

accurate description of the initial eccentric properties for

binary black holes and can be directly applied to all the

eccentric simulations in the fourth RIT catalog [14] and

future targeted studies.

IV. CONCLUSIONS AND DISCUSSION

We have defined eccentric binary black hole simulations

invariantly in terms of fractional, f ¼ 1 − PtðerÞ=Pc, tan-

gential linear momenta to the circular one. We have found

that the PN analytic estimates of the initial eccentricity of

these full numerical simulations are an accurate and practical

tool to predict and assess the eccentricity of the first orbit in

full numerical simulations, allowing, for instance, precise

design of new runs for parameter coverage or targeted

studies. For low and medium eccentricities, er < 0.5, and

separated enough binaries [see also Eq. (20) for the 1PN

analytic expression], even the 2PN estimates are accurate

(see Appendixes A and B for an explicit implementation).

For higher eccentricities and highly spinning (particularly for

both antialigned) binary black holes, we require the 3PN,

3.5PN, or even eventually 4PN estimates at closer initial

separations and higher eccentricities, i.e., er ∼ 0.85 [21].

Our formalism can be also applied to generic orientations of

the spins by use of the concept of spherical orbits [22] to

compute the turning points r�.

Here, we have suppressed the tangential momentum with

respect to the quasicircular one by a (1 − f) factor, with
0 ≤ f ≤ 1. But if we allow for f < 0, we would actually

increase the tangential momentum, leading to an elliptic

orbit, but starting at the periastron ðr−Þ instead of the

apastron ðrþÞ. This can be evaluated by reversing the sign

of e in our equations. For instance, for the Newtonian case

we would have er ¼ −2f þ f2 and for Fp < f ≤ 0, where

in this case Fp ¼ 1 −
ffiffiffi

2
p

¼ −0.41421356, would lead to a

parabola. For values more negative than this Fp, i.e.,

f < Fp, we would generate a hyperbolic orbit.

The estimates which we have developed can now be

directly applied to the 824 eccentric simulations in the

fourth RIT catalog [14]. Our formulas should still provide

good estimates for well-separated precessing binaries

with small radial momentum components by use of the

projected spins along the initial orbital angular momentum

as variables. This is the case for all our simulations in

Ref. [14], and in particular, we can now reassess the best

eccentricity estimate of the gravitational wave event

GW190521 [5]. In that paper, we assessed the eccentricity

of the optimal full numerical simulation (precessing binary,

with in-plane spin components χ
p
1;2 ¼ 0.66, aligned spin

components χz
1;2¼0.27, q¼1, Rc ¼ 24.7M, and f ¼ 0.44)

with the Newtonian estimate to be eN ¼ 0.69. We can now

recompute the eccentricity using our 3.5PN estimator by

evaluating the turning points r�, assuming that in the

first half orbit negligible precession of the spins took

place, and find ePN ¼ 0.80, which highlights again the

potentially interesting astrophysical scenarios that might

have led to the merger of the two black holes generating

GW190521 [23,24].
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corresponding full numerical simulations evaluations (dots).

The q ¼ 1=7 case is taken at initial separation r ¼ 24.7M to

display the improved agreement with larger r.
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APPENDIX A: PN HAMILTONIAN

In this appendix we provide the explicit form of the Hamiltonian terms (up to 2PN order) that we used throughout this

paper. From Eq. (7) in Ref. [15] (see also Refs. [25,26] for the 1PN equations of motion and Refs. [27–33] for the 2PN

Hamiltonian) in the ADMTT gauge that is closer to our gauge choice in the numerical simulations [34], we have the

nonspinning components of the Hamiltonian,

H0ðr; p̂Þ ¼
p̂2

2
−
1

r
; ðA1Þ

H1ðr; p̂Þ ¼
1

8
ð3η − 1Þðp̂2Þ2 − 1

2r
½ð3þ ηÞp̂2 þ ηðn · p̂Þ2� þ 1

2r2
; ðA2Þ

H2ðr; p̂Þ ¼
1

16
ð1 − 5ηþ 5η2Þðp̂2Þ3 þ 1

8r
½ð5 − 20η − 3η2Þðp̂2Þ2 − 2η2ðn · p̂Þ2p̂2 − 3η2ðn · p̂Þ4�

þ 1

2r2
½ð5þ 8ηÞp̂2 þ 3ηðn · p̂Þ2� − 1

4r3
ð1þ 3ηÞ; ðA3Þ

where η ¼ m1m2=ðm1 þm2Þ2.
The explicit expressions for the spin terms of the Hamiltonian are given in Eqs. (13)–(16) of Ref. [17] and Eqs. (15)–(18)

of Ref. [18]. Here, we write some of them in the notation used throughout this paper,

HLO
SOðr; p̂;S1;S2Þ ¼

1

r3

��

1 −
η

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p

�

ðh · S1Þ þ
�

1 −
η

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4η
p

�

ðh · S2Þ
�

; ðA4Þ

HLO
S2
ðr;p̂;S1;S2Þ¼

η

r3
½λ1ð−1þ2η−

ffiffiffiffiffiffiffiffiffiffiffiffi

1−4η
p

Þð3ðn12 ·S1Þ2−ðS1 ·S1ÞÞþλ2ð−1þ2ηþ
ffiffiffiffiffiffiffiffiffiffiffiffi

1−4η
p

Þð3ðn12 ·S2Þ2−ðS2 ·S2ÞÞ�;

ðA5Þ

HLO
S1S2ðr; p̂;S1;S2Þ ¼

η

r3
ð3ðn12 · S1Þðn12 · S2Þ − ðS1 · S2ÞÞ; ðA6Þ

where for BHs λ1 ¼ λ2 ¼ −1=2, n12 ¼ r=jrj and h ¼ rn12 × p̂.

APPENDIX B: SCRIPTS/NOTEBOOKS

Here, in Fig. 7, we present a minimalistic script to compute the eccentricity from the full numerical simulation

parameters q; R; χz
1
; χz

2
, and f. For the sake of simplicity, we only include explicitly up to the 2PN Hamiltonian terms

(see Ref. [35] and references therein), but in the results of the paper we computed up to 3.5PN terms. 4PN local terms

can be added in a straightforward way too, but the nonlocal terms (see Ref. [16]) are more difficult to include in our

formalism. The script only allows for spins oriented along the z-axis but it can be extended in order to include any

orientation of the spins.
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