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O N  T H E  L O C A L I T Y  O F  N A S H - W I L L I A M S  F O R E S T
D E C O M P O S I T I O N  A N D  S T A R - F O R E S T  D E C O M P O S I T I O N *

D AV I D  G.  H A R R I S r  , H S I N - H A O  SU r  , A N D  H O A  T .  VUS

A b s t r a c t .  Given a graph G  =  (V , E )  with arboricity a, we study the problem of decomposing the
edges of G  into (1+n )a disjoint forests in the distributed L O C A L model. Here G  may be a simple graph or
multigraph. While there is a polynomial time centralized algorithm for a-forest decomposition (e.g.,
[H. Imai, J .  Oper. Res. Soc. Japan, 26 (1983), pp. 186--211]), it remains an open question how close
we can get to this exact decomposition in the L O C A L model. Barenboim and Elkin [L. Barenboim
and M. Elkin, Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-
Williams decomposition, Distrib. Comput., 22 (2010), pp. 363--379] developed a L O C A L algorithm to
compute a (2+n )a-forest decomposition in O( l}o}g} n  )  rounds. Ghaffari and Su [Proc. 28th AC M - S I A M
Symposium on Discrete Algorithms, 2017, pp. 2505--2523] made further progress by computing a (1
+  n )a-forest decomposition in O( l}o}g}

4 
n  )  rounds when n a =  a (  a log n); i.e., the limit of their

algorithm is an (a +  a (  a log n))-forest decomposition. This algorithm, based on a combinatorial
construction of Alon, McDiarmid, and Reed [Combinatorica, 12 (1992), pp. 375--380], in fact provides a
decomposition of the graph into star-forests, i.e., each forest is a collection of stars. Our main goal
is to reduce the threshold of n a in (1 + n )a-forest decomposition. We obtain a number of results with
different parameters; some notable examples are the following: (1) An O( a o l}o}g}4 n  )-round algorithm

when n a =  a o (1) in multigraphs, where o >  0 is any arbitrary constant; (2) an O( l}o}g}4 n l}o}g} a )-round

algorithm when n a =  a (  l}o}g} a       )  in multigraphs; (3) an O( l}o}g}4 n  )-round algorithm when n a =
a (log n) in multigraphs (this also covers an extension of the forest-decomposition problem to list-edge-

coloring); (4) an O( l}o}g}3 n  )-round algorithm for star-forest decomposition for n a =  a (  log a + log a) in
simple graphs (when n a q a (log a ), this also covers a list-coloring variant). Our techniques also give
an algorithm for (1 + n )a-outdegree-orientation in O( l}o}g}3 n  )  rounds, which is the first algorithm with
linear dependency on n -  1 . A t  a high level, the first three results come from a combination of network
decomposition, load balancing, and a new structural result on local augmenting sequences. The fourth
result uses a more careful probabilistic analysis for the construction of Alon, McDiarmid, and Reed;
the bounds on star-forest decomposition were not previously known even non constructively.

K e y  words .  arboricity, L O C A L  algorithm, star-arboricity, forest decomposition

M S C  codes. 05C05, 68R10, 68W15, 05385

D O I .  10.1137/21M1434441

1. Intro duction.  Consider a loopless (multi)graph G  =  (V , E ) with n =  | V |
vertices, m =  | E| edges, and maximum degree a . A  k-forest decomposition (abbre-
viated k-FD) is a partition of the edges into k forests. The arboricity of G, denoted
a(G), is a measure of sparsity defined as the minimum number k for which a k-forest
decomposition of G  exists. We also write a(E ),  or just a, when G  is understood. An
elegant result of Nash-Williams [47] shows that a(G) is given by the formula
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a(G) =      max     
l 

| V
| 
(H)| -  1

l 
.

| V (H )| q 2

Note that the right-hand side is clearly a lower bound on a since each forest can
consume at most | V (H)| - 1 edges in a subgraph H .

Forest decomposition can be viewed as a variant of proper edge coloring: in the
latter problem, the edges should be partitioned into matchings, while in the former,
they should be partitioned into forests. Like edge coloring, forest decomposition has
applications to the scheduling of radio or wireless networks [34, 50]. In the centralized
setting, a series of polynomial-time algorithms have been developed to compute a-
forest decompositions [24, 25, 38, 51].

In this work, we study the problem of computing forest decompositions in the
L O C A L model of distributed computing [43]. In this model, the vertices operate in
synchronized rounds, where each vertex sends and receives messages of arbitrary size
to its neighbors and performs arbitrary local computations. Each vertex also has a
unique I D  which is a binary string of length O(log n). An r-round L O C A L algorithm
implies that each vertex only uses information in its r-hop neighborhood to compute
the answer and vice versa.

There has been growing interest in investigating the gap between eficient com-
putation in the L O C A L model and the existential bounds of various combinatorial
structures. For example, consider proper edge coloring. Vizing's classical result [59]
shows that there exists a (a +  1)-edge-coloring in simple graphs. A  long series of
works have developed L O C A L algorithms using smaller number of colors [15, 19, 21, 30,
48, 58]. This culminated with a poly(a , log n)-round algorithm in [12] for (a + 1)-edge-
coloring, matching the existential bound.

Computing an a-forest decomposition in the L O C A L model requires a (n) rounds
even in simple graphs with constant a (see Proposition 6.5). Accordingly, we aim for
(1 +  n )a-forests, i.e., n a excess forests beyond the a-forests required existentially.
Besides round complexity, a key objective is to minimize the value n a.

The first results in the L O C A L model were due to Barenboim and Elkin [7], who
developed an O( log n )-round algorithm for (2 +  n )a-FD along with a lower bound of a
( log n  -  logt n) rounds for O(a)-FD. These have been building blocks in many dis-
tributed and parallel algorithms [7, 8, 10, 42, 56]. Open Problem 11.10 of [9] raised
the question of whether it is possible to use fewer than 2a forests. Ghaffari and Su
[32] made some progress with a randomized algorithm for (1 + n )a-FD in O(log3 n/n 4)
rounds in simple graphs when n =  a (      log n/a); i.e., the minimum number of obtain-
able forests is a +  a (  a log n).

We make further progress with a randomized algorithm for (a +  3)-FD in
poly(a , log n) rounds in multigraphs. The polynomial dependence on a can be re-
moved when n a is larger; for example, we obtain a (1 + n )a-FD in O(1/n ) t polylog(n)
rounds for n a =  a (log a / log log a ).

L i s t  forest decomposition. Similar to edge coloring, there is a list version of
the forest decomposition problem: each edge e has a color palette Q(e) and should
choose a color i (e) n Q(e) so that, for any color c, the subgraph induced by the c-
colored edges forms a forest. We refer to this as list forest decomposition (abbreviated
L F D ) .  We denote by C = Q(e) the set of all possible colors; this generalizes k-forest
decomposition, which can be viewed as the case where C =  { 1, . . . , k} .

Based on general matroid arguments, Seymour [55] showed that an L F D  exists
whenever all of the palettes have size at least a. The total number of forests (one per
color) may then be much larger than a; in this case, the excess is measured in
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terms of the number of extra colors in the edges' palettes (in addition to the a colors
required by the lower bound).

Seymour's construction can be turned into a polynomial-time centralized algo-
rithm with standard matroid techniques. However, these do not extend to the L O C A L
model. As a proof of concept, we give poly(log n, 1/n )-round algorithms when palettes
have size (1 + n )a for n a =  a (min{ log n,     a log a } ). A  key open problem is to find an
eficient algorithm for n a q a (1).

Low-diameter and star-forest decompositions. We say the decomposition
has diameter D  if every tree in every c-colored forest has strong diameter at most D .
Minimizing D  is interesting from both practical and theoretical aspects. For example,
given a k -FD of diameter D ,  we can find an orientation of the edges to make it into
k rooted forests in O (D ) rounds of the L O C A L model.

In the extreme case D  =  2, each forest is a collection of stars, i.e., a star-forest .
This has received some attention in combinatorics. We refer to this as k-star-forest
decomposition (abbreviated k-SFD); we give an O( log3 n )-round algorithm for (1+n )a-
SFD when n a =  a (log a + log a ) in simple graphs. The algorithm also solves the
list-coloring variant, which we call list-star-forest decomposition (abbreviated L S F D ) ,
when n a =  a (log a ).

For larger diameters, we show how to convert an arbitrary k -FD into a (1+n )k -FD
with diameter D  =  O(log n/n ); when n k is large enough, the diameter can be reduced
further to D  =  O(1/n ), which is optimal (see Proposition E.1).

1.1. Summary of results. Our results for forest decomposition balance a num-
ber of measures: the number of excess colors required, the running time, the tree
diameters, L F D  versus FD,  and multigraphs versus simple graphs. Table 1 below
summarizes a number of parameter combinations.

Here, o >  0 represents any desired constant and we use a o to represent a constant
term which may depend on o . Thus, for instance, the final listed algorithm requires
excess K  log a and the third listed algorithm requires excess K o  , where K  and K o
are universal constants.

We also show that a (1/n )  rounds are needed for (1 + n )a-FD in multigraphs (see
Theorem 6.4).

Note on deterministic algorithms. All  of the algorithms we consider (un-
less specifically stated otherwise) are randomized algorithms which succeed with high

Ta b l e  1
Possible algorithms for forest decompositions of G .

Excess colors

3

≥  4

Ωρ (1)
l o g  Δ

l o g  l o g  Δ

≥  4 +  ρ log Δ

Ω(     a log Δ )

Ω(log n)

Ω(     a log Δ )

Ω(log n)

Ω(     log Δ  +  log a)

Ω ( log Δ )

Lists? Multigraph?

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

Yes Yes

Yes Yes

No No

Yes No

Runtime

O (Δ 2 a l og 4  n l og Δ )

O ( Δ 2  log4 n log Δ/ε )

O ( Δ ρ  log4 n/ε )

Oρ ( log4  n logρ  Δ / ε )

Oρ ( log4  n/ε )

O(log4 n/ε )

O(log3 n/ε )

O(log4 n/ε2 )

O(log4 n/ε )

O(log3 n/ε )

O(log3 n/ε )

Forest Diameter

≤  n

O(log n/ε )

O(log n/ε )

O(log n/ε )

O(log n/ε )

O (1/ε )

O (1/ε )

O(log n/ε2 )

O(log n/ε )

2 (star)

2 (star)
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probability (abbreviated w.h.p.), i.e., with probability at least 1 - 1/poly(n). It will
turn out that the algorithms we develop have the property that if the algorithm fails
(i.e., the output does not satisfy desired properties), then this can be detected by a
node checking its local neighborhood during the algorithm run. Such randomized al-
gorithms are referred to as Las Vegas algorithms in [27]. Using a recent breakthrough
of [27, 52], such Las Vegas algorithms can be automatically derandomized with an ad-
ditional polylog(n) factor in the runtime. For brevity, we will not explicitly show that
the algorithms are Las Vegas and do not discuss any further issues of determinization
henceforth.

1.2. Technical  summary: Distr ibuted augmentation. The results for for-
est decomposition in multigraphs are based on augmenting paths, where we color one
uncolored edge and possibly change some of the colored edges while maintaining so-
lution feasibility. Augmentation approaches have been used for many combinatorial
constructions, such as coloring and matching. The forest-decomposition algorithm of
Gabow and Westermann [25] also follows this approach. Roughly speaking, it works
as follows: given an uncolored edge e1, we try to assign it color c1. If no cycle is
created, we are done. Otherwise, if it creates a cycle C1 , we recolor some edge e2 on
C1  with a different color c2 =  c1. Continuing in this way gives an augmenting sequence
e1, c1, e2, c2, . . . , el , cl , such that recoloring el in cl does not create a cycle. This can
be found using a Breadth-first Search algorithm in the centralized setting.

There are two main challenges for the L O C A L model. First, to get a distributed
algorithm, we must color edges in parallel. Second, to get a local algorithm, we must
restrict the recoloring to edges which are near the initial uncolored edge. Note that the
augmenting sequences produced by the Gabow-Westermann algorithm can be long,
and consecutive edges in the sequence (e.g., e1 and e2) can be arbitrarily far from
each other.

Structural  results on augmenting sequences. We first show a structural re-
sult on forest decomposition: given a partial (1+n )a-FD (or, more generally, an L F D )
in a multigraph, there is an augmenting sequence of length O(log n/n )  where, more-
over, every edge in the sequence lies in the O(log n/n )-neighborhood of the starting
uncolored edge einit . This characterization may potentially lead to other algorithms
for forest decompositions. We show this through a key modification to the B F S  algo-
rithm for finding an augmenting sequence. In [25], if assigning ei to color ci creates a
cycle, then all edges on the cycle get enqueued for the next layer; by contrast, in our
algorithm, only the edges within distance i  of einit get enqueued.

Network decomposition and removing edges. We will parallelize the algo-
rithm by breaking the graph into low-diameter subgraphs similarly to [29]. However,
there is a major roadblock we need to address: identifying an augmenting sequence
may require checking edges distant from the uncolored edge. For example, edge e1

may belong to a color-c1 cycle which extends far beyond the vicinity of e1.1

To  sidestep this issue, we develop a procedure CUT to remove edges, thereby
breaking long paths and allowing augmenting sequences to be locally checkable. At
the same time, we must ensure that the collection of edges removed by CUT (the

1 A  closely related computational model called S L O C A L was developed in [29], where each vertex
sequentially (in some order) reads its r-hop neighborhood for some radius r  and then produces its
answer. If a problem has an S L O C A L algorithm with radius r, then it can be solved in O(r log2 n)-
rounds in the L O C A L model. Again, augmenting sequences need not lead to S L O C A L algorithms
because of the need to check faraway edges.

©  2023 David G.  Harris, Hsin-Haoi Su, Hoa T .  Vu
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``leftover graph"") has arboricity O(n a). This can be viewed as an online load-balancing
problem, where the load of a vertex is the number of directed neighbors which get
removed. It is similar to the load-balancing problem encountered in [58], where paths
come in an online fashion and internal edges need to be removed. Here, we encounter
rooted trees instead of paths, and we need to remove edges to disconnect the root
from all the leaves.

If edges were removed independently, then the load of a vertex would be stuck
at a (log n) due to the concentration threshold. To  break this barrier, as in [58] we
randomly remove edges incident to vertices with small load. We show that throughout
the algorithm, the root-leaf paths of the trees always contain many such vertices; thus,
long paths are always killed with high probability.

Palette partit ioning for list coloring. The final step is to recolor the leftover
edges using an additional O(n a) colors. For ordinary forest decomposition, this is
nearly automatic due to our bound on the arboricity of the leftover graph. For list
coloring, we must reserve a small number of backup colors for the leftover edges. We
develop two different methods for this; the first uses the Lov\a'sz local lemma, and the
second uses randomized network decomposition.

There are some additional connections in our work to two related graph parame-
ters, pseudo-arboricity and star-arboricity . Let us summarize these next.

1.3. Pseudo-forest decomposition and low outdegree orientation. There
is a closely related decomposition using pseudo-forests, which are graphs with at
most one cycle in each connected component. The pseudo-arboricity at     is the min-
imum number of pseudo-forests into which a graph can be decomposed. A  result of
Hakimi [36] shows that pseudo-arboricity is given by an analogous formula to the
Nash-Williams formula for arboricity, namely,

l l

at (G)  =      max
| V (H)|

.
| V (H )| q 1

In particular, as noted in [49], loopless multigraphs have at q a q 2at , and simple
graphs have a q at +  1.

There is an equivalent, completely local, characterization of pseudo-arboricity:
a k-orientation of a graph is an orientation of the edges where every vertex has
outdegree at most k.     It turns out that k =  at     is the minimum value for which
such a k-orientation exists. In a sense, at     is a more fundamental graph parameter
than a, and the problems of pseudo-forest decomposition, low outdegree orientation,
and maximum density subgraph are better understood than forest decomposition.
For example, maximum density subgraph has been studied in many computational
models, e.g., [5, 6, 13, 16, 22, 26, 31, 33, 39, 45, 49, 53, 54]. Low outdegree orientation
has been studied in the centralized context in [11, 14, 25, 35, 40, 41].

There has been a long line of work on L O C A L algorithms for (1 + n )at -orientation
[23, 27, 32, 37, 57].2 Most recently, [57] gave an algorithm in O(log2 n/n 2) rounds for n at

q 32; this algorithm also works in the C O N G E S T model, which is a special case of the L O
C A L model where messages are restricted to O(log n) bits per round.

2 For many of these works, the graph was implicitly assumed to be simple, and the algorithm
provides a (1 +  n )a-orientation; since simple graphs have at q a q at +  1, this is a minor adjustment of
the parameters. Also note that [37] claims a (1 + n )a-orientation in multigraphs, but the algorithm
actually provides a (1 +  n )at -orientation.

©  2023 David G.  Harris, Hsin-Haoi Su, Hoa T .  Vu
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Our general strategy of augmenting paths and network decompositions can also
be used for low outdegree orientations. We will show the following result.

Theorem 1.1. For a (multi) graph G  with pseudo-arboricity at     and n n (0, 1),
there is a L O C A L algorithm for obtaining l at (1 +  n )l -orientation in O( log3 n )  rounds
w.h.p.

Note in particular the linear dependency on 1/n . For example, if at =  
d 

n, we
can get an (at +  1)-orientation in O( n) rounds, while previous results require a (n)
rounds. Notably, the 1/n 2 factor in [57] comes from the number of iterations needed
to solve the L P.  In addition to being a notable result on its own, Theorem 1.1 provides
a simple warmup exercise for our more advanced forest-decomposition algorithms.

1.4. Star-arb oricity and list-star-arboricity for simple graphs. The star-
arboricity astar is the minimum number of star-forests into which the edges of a graph
can be partitioned. This has been studied in combinatorics [1, 2, 3]. We analogously
define alist     as the smallest value k such that an L S F D  exists whenever each edge
has a palette of size k (this has not been studied before to our knowledge). For
general loopless multigraphs, it can be shown that astar q 2at (see Proposition E.2)
and alist q 4at (see Theorem E.3). In simple graphs, Alon, McDiarmid, and Reed [2]
showed that astar q a +  O(log a ).

Our algorithms for star-forest decomposition in simple graphs come from a
strengthened version of the construction of [2]. To  briefly summarize, consider some
fixed k-orientation of the graph. For each color c, mark each vertex as a c-center inde-
pendently with some probability p. Then finding a star-forest decomposition reduces
to finding a perfect matching, for each vertex u, between the colors c for which u is a
not a c-center, and the out-neighbors of u which are c-centers.

In the general L S F D  case, we show that these perfect matchings exist, and can
be found eficiently, when n k =  a (log a ). This is based on more advanced analysis of
concentration bounds for the number of c-leaf neighbors. In the ordinary S F D  case,
instead of perfect matchings, we obtain near-perfect matchings, leaving n k unmatched
edges per vertex. These leftover edges can later be decomposed into 2n k stars. This
gives a bound n k =  a ( log a +  log a).

In addition to being powerful algorithmic results, these also give two new combi-
natorial bounds.

C o r o l l a r y  1.2. A  simple graph has astar q a +  O(log a + log a ) and alist q
a +  O(log a ).

For lower bounds, [2] showed that there are simple graphs with astar =  2a and
a =  2a ( a  ) , while [1] showed that there are simple graphs where every vertex has
degree exactly d =  2a and where astar q a +  a (log a). These two lower bounds show
that the dependence of astar on a and a are nearly optimal in Corollary 1.2. In
particular, the term log a cannot be replaced by a function o(log a), and the term

log a cannot be replaced by a function o( log a ).

1.5. Preliminaries. Our algorithms will frequently use global parameters such
as n , a, at , m, n, a . As usual in distributed algorithms, we always suppose that we are
given some globally known upper bounds on such values as part of the input; when
we write a, n, etc. we are technically referring to input values a\̂ ,n\̂ , etc. which are
upper bounds on them. Almost all of our results become vacuous if n <  1/n (since,
in the L O C A L model, we can simply read in the entire graph in O(n) rounds), so we
assume throughout that n n (1/n, 1/2).
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We define the r-neighborhood of a vertex v, denoted N r (v ), to be the set of
vertices within distance r  of v. We likewise write N r (e)  for an edge e, and N r ( X )
for a set X  of vertices or edges. For any vertex set X ,  we define E ( X )  to be the set
of induced edges on X .  We define the power-graph G r  to be the graph on vertex set
V and with an edge uv if u, v have distance at most r  in G. Note that in the L O C A L
model, G r  can be simulated in O(r) rounds of G.

For any integer t q 0, we define [t] =  { 1, . . . , t} . We write A  =  B  p C  for a disjoint
union, i.e., A  =  B  p C  and B  p C  =  t .

Concentration bounds. At several places, we refer to Chernoff bounds on sums
of random variables. To  simplify formulas, we define F+ (u , t) = ea      

a where a =
t/u - 1, i.e., the upper bound on the probability that a Binomial random variable with
mean u takes a value as large as t. Some well-known bounds are F+ (u , t) q (eu /t)t for
any value t q 0, and F+ (u ,u (1 +  a ))  q e- u a /3 for a n [0, 1]. Chernoff bounds also apply to
certain types of negatively correlated random variables; for instance, we have the
following standard result (see, e.g., [48]).

Lemma 1.3. Suppose that X1 , . . . , Xk are Bernoulli random variables and for
every S  q [k] it holds that Pr( in S  X i  =  1) q q| S| for some parameter q n [0, 1]. Then,
for any t q 0, we have Pr( i = 1  X i  q t) q F+ (kq , t).

Lov\a'sz local lemma ( L L L ) .  The L L L  is a general principle in probability the-
ory which states that for a collection of `̀ bad"" events B =  { B1, . . . , Bt} in a probability
space, where each event has low probability and is independent of most of the other
events, there is a positive probability that none of the events B i  occurs. It often
appears in the context of graph theory and distributed algorithms, wherein each bad
event is some locally checkable property on the vertices.

We will use a randomized L O C A L algorithm of [17] to determine values for the
variables to avoid the bad events. This algorithm runs in O(log n) rounds under the
criterion epd2 q 1 - a (1), where p is the maximum probability of any bad event, and d
is the maximum number of bad events B j  dependent on any given B i .  Note that this
is stronger than the general symmetric L L L  criterion, which requires merely epd q 1.

Network decomposition. A  (D , i  )-network decomposition is a partition of the
vertices into i  classes such that every connected component in every class has strong
diameter at most D .  Each connected component within each class is called a cluster .
An (O(log n), O(log n))-network decomposition can be obtained in O(log2 n) rounds
by randomized L O C A L algorithms [4, 20, 44].

We also consider a related notion of (D, a )-stochastic network decomposition,
which is a randomized procedure for selecting an edge-set L  q E  such that (i) the
connected components of the graph Ge =  (V , L) have strong diameter at most D ,
and (ii) any given edge goes into L  with probability at least 1 -  a . There is an
algorithm in [46] for producing an (O( log n ), a )-stochastic network decomposition in
O( log n )  rounds of the L O C A L model.

1.6. Basic forest decomposition algorithms. We list here some simpler al-
gorithms for forest decomposition. These will be important building blocks later and
may also be of independent combinatorial and algorithmic interest.

Theorem 1.4. Let t =  r (2+n )at r for n n (0, 1). There are deterministic O( log n )-
round algorithms for obtaining the following decompositions of G:

t A  partition of the vertices into k =  O( log n )  classes H1, . . . , Hk , such that each
vertex v n H i  has at most t neighbors in H i  p t t t p H k .

©  2023 David G.  Harris, Hsin-Haoi Su, Hoa T .  Vu
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t An orientation of the edges such that the resulting directed graph is acyclic,
and each vertex has outdegree at most t. (We refer to this as an acyclic t-
orientation.)

t A  3t-star-forest decomposition.
t A  list-forest decomposition when every edge has a palette of size t.

Theorem 1.5. If every edge has a palette of size r (4 +  n )at r for n n (0, 1), then
an L S F D  can be computed in min O( log3 n ), O( log n logt  m )      rounds w.h.p.

Propos i t ion 1.6. Suppose we are given some k-FD of the multigraph G  of arbi-
trary diameter. For any n >  0, there is an O( log n )-round algorithm for computing a (k
+ l  n al ) -FD of diameter D  q O( log n )  w.h.p. If a q a min{ log n , log a } , we can get D  q
O(n )  w.h.p. with the same runtime.

The first two results of Theorem 1.4 were shown (with slightly different terminol-
ogy) in the H-partition algorithm of [7]; we also provide full proofs in Appendix A.
The proof of Theorem 1.5 appears in Appendix B. The proof of Proposition 1.6 ap-
pears in Appendix C,  along with a more general result we will need later for reducing
the diameter of list forest decompositions.

2. A lgor i thm for low outdegree orientation. We now discuss a L O C A L al-
gorithm for (1+n )at -orientation, based on augmenting sequences and network decom-
position. Consider a multigraph G  of pseudo-arboricity at . For the purposes of this
section only, we allow G  to contain loops. Following [32], we can ``augment"" a given
edge-orientation i  by reversing the edges in some directed path. We begin with the
following observation, which is essentially a reformulation of results of [32, 36] with a
more careful counting of parameters.

Lemma 2.1. Let n n (0, 1). For any edge-orientation i  and vertex v, there is
a directed path of length O( log n )  from v to a vertex with outdegree strictly less than
at (1 +  n ).

Proof. For i  q 0, let Vi denote the vertices at distance at most i  from v. If all
vertices in Vi have outdegree at least at (1 +  n ), then for each j  <  i  we can count the
edge-set E ( V j + 1 )  in two ways. First, each vertex in Vj  has outdegree at least at (1+n ),
and these edges have both endpoints in Vj + 1 ,  so | E (Vj +1 )| q | Vj| at (1 +  n ). On the
other hand, by definition of pseudo-arboricity, we have | E (Vj +1 )| q | Vj+1| at . Putting
these two observations together, we see that

| Vj+1| q | Vj| t (1 +  n ) for j  =  0, . . . , i -  1.

Since V =  { v} , by telescoping products this implies that | V | q (1 +  n )i . Since
clearly | Vi| q n, we must have i  q log1+n n q O( log n ).

For the purposes of our algorithm, the main significance of this result is that we
can locally fix a given edge-orientation. For a given parameter n >  0, let us say that
a vertex v is overloaded with respect to a given orientation i  if the outdegree of v is
strictly larger than l at (1 +  n )l ; otherwise, if the outdegree is at most l at (1 +  n )l , it
is underloaded. We summarize this as follows.

Propos i t ion 2.2. Suppose multigraph G  has an edge-orientation i  , and let U q
V be an arbitrary vertex set. Then there is an edge-orientation i  e with the following
properties:

t i  e agrees with i  outside N r (U ) where r  =  O( log n ) .
t Al l vertices of U are underloaded with respect to i  e .
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t Al l vertices which are underloaded with respect to i  remain underloaded with
respect to i  e .

Proof. Following [32], consider the following process: while some vertex of U is
overloaded, we choose any arbitrary such vertex v n U. We then find a shortest
directed path v, v1, . . . , vr from v where vertex vr has outdegree strictly less than
at (1 + n ). Next, we reverse the orientation of all edges along this path. This does not
change the outdegree of the vertices v1, . . . , vr- 1, while it decreases the outdegree of
v by one and increases the outdegree of vr by one.

This process never creates a new overloaded vertex while decreasing the outdegree
of v at each step. Thus, after a finite number of steps, it terminates, and all the
vertices in U are underloaded. Also, each step of this process only modifies edges
within distance r  q O( log n )  of some vertex of U. Hence, i  e agrees with i  for all other
edges.

We remark that this type of ``local patching"" has also been critical for other
L O C A L algorithms, such as the a -vertex-coloring algorithm of [28] or the (a +  1)-
edge-coloring algorithm of [12]. We next use network decomposition to extend this
local patching into a global solution via the following Algorithm 2.1. Here, K  is a
universal constant to be specified.

Algor i thm 2.1 Low-degree  O r i entat i o n  Decomposition(G).
1: Initialize i  to be some arbitrary orientation of G.
2: Compute an (O(log n), O(log n))-network decomposition in G 2 R  for R = l  K  log n/n l .
3: for each class z in the network decomposition do
4: for each component U in the class z in  parallel do
5: Modify i  so that vertices inside U become underloaded, vertices outside

N R (U )  are unchanged, and no new overloaded vertices are created.

Theorem 2.3. Algorithm 2.1 runs in O(log3 n/n )  rounds. At the termination,
the edge-orientation i  has maximum outdegree l at (1 +  n )l w.h.p.

Proof. For line 2, we use the algorithm of [20] to obtain the network decomposition
for G 2 R  in O(R log2 n) rounds. Algorithm 2.1 processes each cluster U of a given class
simultaneously, and we also define Ue =  N R (U ).  From Proposition 2.2, it is possible
to modify i  within Ue for suficiently large K  such that all vertices in U become
underloaded, and no additional overloaded vertices are created. This can be done by
having some ``leader"" vertex in each cluster U read in the neighborhood N R (U )  and
choose a modified i  e and broadcast it to the other nodes in the cluster.

The distance between two clusters in the same class is at least 2R + 1.  Moreover, if
u, v are adjacent in G2 R ,  their distance in G  is at most 2R. So each cluster U has weak
diameter at most O(R log n), and also the balls Ue and Ue must be disjoint for any
two clusters U1 and U2 of the same class. Therefore, each iteration can be simulated
locally in O(R log n) rounds. Since there are O(log n) classes, the total running time
is O(R log2 n) =  O(log3 n/n ).

Algorithm 2.1 can be viewed as part of a family of algorithms based on network
decomposition described in [29]. (In the language of [29], the algorithm can be im-
plemented in S L O C A L with radius r  =  O( log n ).) However, we describe the algorithm
explicitly to keep this paper self-contained, and because we later need a more general
version of Algorithm 2.1.
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F i g .  1. An illustration of an augmenting sequence before and after the augmentation process.

We will use the same overall strategy for forest decomposition, but we will en-
counter two technical obstacles. First, we must define an appropriate notion of local
patching and augmenting sequences; this will be far more complex than Proposition
2.2. Second, and more seriously, forest decomposition, unlike low-degree orientation,
cannot be locally checked due to the possibility of long cycles. To  circumvent this, we
must remove edges at each step to destroy these cycles. These leftover edges will need
some postprocessing steps at the end.

3. Augment ing  sequences for list-coloring. We now show our main struc-
tural result on augmenting sequences. Given a partial L F D  i  of multigraph G  and an
edge e =  uv, we define C (e, c) to be the unique u-v path in the c-colored forest; if u and
v are disconnected in the color-c forest, then we write C (e, c) =  t .

We define an augmenting sequence with respect to i  to be a sequence P  =
(e1, e2, . . . , el , c), for edges ei and color c, satisfying the following four conditions:

(A1) ei n C (e i -  1, i (ei )) for 2 q i  q l .
(A2) ei n/ C (ej , i  (ei )) for every i  and j  such that j  <  i  - 1.
(A3) C (el , c) =  t .
(A4) i  (e i + 1 )  n Q(ei ) for each i  =  1, . . . , l -  1 and c n Q(el ).

Recall that Q(e) denotes the list of available colors for edge e. We say that l
is the length of the sequence. We define the augmentation i  e to be a new (partial)
coloring obtained by setting i  e (ei ) =  i  (e i + 1 )  for 1 q i  q l -  1, and i  e (el )  =  c, and
i  e (e) =  i  (e) for all other edges e n E  s { e1, . . . , el } . See Figure 1.

Lemma 3.1. For an augmenting sequence P  with respect to i  , the augmentation
i  e remains a partial list-forest decomposition.

Proof. In this proof, the notation C (e, b) always refer to the cycles with respect
to the original coloring i  .

We first claim that i  e (ei ) =  i  e (e i + 1 )  for i  =  1, . . . , l -  1. For i  =  l -  1, this follows
from (A3) since C (el , i e (el ))  =  C (el , c) =  t while C (el  , i e (el -  1 )) =  C (el  , i (cl ))  =
{ el } . For i  <  l -  1, suppose for contradiction that i  e (ei ) =  i  e (e i +1 ),  i.e., i  (e i + 1 )  =
i  (ei +2 ).  By (A1) applied at i+2,  we have e i + 2  n C (e i + 1 , i  (e i + 2 ))  =  C (e i + 1 , i  (e i + 1 ) )  =
{ ei+1 } . So e i + 2  =  ei+1 . But then (A1) applied at i  +  1 would give e i + 2  =  e i + 1  n
C (ei , i  (e i +1 )),  which contradicts (A2).

Now for each i  =  1, . . . , l +  1, define i i  to be the coloring obtained by setting
i i (e j )  =  i  e (e j )  for all j  =  i, . . . , l , and setting i i (e) =  i  (e) for all other edges e. Thus,
i  =  i l + 1  and i  e =  i 1.

By (A3), i l does not have a cycle. So if i  e is not a partial L F D ,  let i  n { 1, . . . , l -  1}
be maximal such that i i  has a cycle. Since i i  and i i + 1  differ only at edge ei , it must
be that i i + 1  has a path p1 on color i  e (ei ) from u to v. Since i i + 1 (e i + 1 )  =  i  e (e i + 1 )  =

©  2023 David G.  Harris, Hsin-Haoi Su, Hoa T .  Vu
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Algor i thm 3.1 Find  A l m o s t  Augmenting  sequence(einit ).
1: E 1  =  { einit}
2: for i  =  1 . . . n do
3: E i + 1  w E i .
4: for each e n E i  and each color c n Q(e) do
5:           if C (e, c) =  t then
6: for each edge ee n C (e, c) s E i  which is adjacent to an edge of E i  do
7:                        Set E i + 1  w E i + 1  p { ee } and i (ee )  w e.
8: else
9: Return the almost augmenting sequence P  =  (einit , . . . , i (i (e)), i (e), e, c).

i  e (ei ), path p1 does not contain edge ei +1 . Since i i + 2  and i i + 1  only differ at edge
ei+1 , where e i + 1  n/ p1, path p1 is also present in i i + 2 .  On the other hand, by (A1) we
have e i + 1  n p2 for path p2 =  C (ei , i  (e i +1 )).  By (A2), none of the edges ei+2, . . . , el
were on p2, and hence p2 remains in i i + 2 .

We must have p1 =  p2 since e i + 1  n/ p1 but e i + 1  n p2. Thus i i + 2  contains two
distinct paths of the same color from u to v. This contradicts the maximality of i.

With this definition, we will show the following main result.

Theorem 3.2. Given a partial L F D  of a multigraph G  where every edge has
palette size (1 +  n )a and an uncolored edge e, there is an augmenting sequence P  =
(e, e2, . . . , el , c) from e where e2, . . . , el n N r (e)  for r  =  O( log n ) .

The main significance of Theorem 3.2 is that it allows us to locally fix a partial
L F D ,  in the same way Proposition 2.2 allows us to locally fix an edge-orientation. We
summarize this as follows.

C o r o l l a r y  3.3. Suppose multigraph G  has a partial L F D  i  , and every edge has
palette size (1 +  n )a, and let L  q E  be an arbitrary edge-set. Then there is a partial
L F D  i  e with the following properties:

t i  e agrees with i  outside N r ( L )  where r  =  O( log n ) .
t i  e is a full coloring of the edges L .
t Al l edges colored in i  are also colored in i  e .

Proof (assuming Theorem 3.2). We can go through each uncolored edge e n L
in an arbitrary order, obtain an augmenting sequence P  from Theorem 3.2, and then
replace i  with its augmentation with respect to P . This ensures that e is colored
and does not de-color any edges. Furthermore, since P  lies inside N r (e), it does not
modify any edges outside N r ( L ) .  At the end of this process, all edges in L  have
become colored, and none of the edges outside N r ( L )  have been modified.

To  prove Theorem 3.2, we first construct a weaker object called an almost aug-
menting sequence, which is a sequence satisfying properties (A1), (A3), and (A4) but
not necessarily (A2). Algorithm 3.1 as follows finds an almost augmenting sequence
starting from a given edge einit .

Lemma 3.4. Algorithm 3.1 terminates within O( log n )  iterations.

Proof. In each iteration i, let Vi denote the endpoints of the edges in E i ,  and
let E i , c  be the set of edges in E i  whose palette contains color c. An edge only gets
added to E i + 1  if it is adjacent to an edge in E i .  Thus, the graph spanned by (V i , E i )
is connected, and E i  q N i -  1(einit ).
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F i g .  2. In the leftmost subfigures, the ovals represent the connected component of G c .  The
rightmost subfigures shows the graph H c ;  here, the bold edges are guaranteed to be added to E i + 1 .

Let us assume we are at some iteration i  and the algorithm has not terminated,
i.e., C (e, c) =  t for all e n E i , c .  For each color c, let rc  be the number of connected
components in the subgraph G c  =  (Vi , Ei , c ).  Consider forming a graph H c  on vertex
set V with edge-set given by E ( H c )  = C (e, c). This is a forest consisting of
c-colored edges. By our assumption that C (e, c) =  t for all e n E i , c ,  any vertices in
Vi which are connected in G c  are also connected in Hc .  Thus, H c  has at most rc
components, and if we choose some arbitrary rooting of forest Hc ,  then at most rc
vertices in Vi can be root nodes.

Now, consider any such nonroot node x  n Vi , with parent edge ee n Hc .  We have
ee n C (e, c) for some edge e n E i , c .  Since x  is an endpoint of ee and is also an endpoint
of an edge in E i ,  the new edge ee gets added to E i + 1  at iteration i, unless it was
already part of E i .  This holds for every nonroot node in Hc ,  so E i + 1  contains at least
| Vi| -  rc  edges from Hc ,  which are c-colored. (See Figure 2.) We sum over colors c to
get

| Ei+1 | q 
m 

( | Vi| - rc) .
cn C

To  bound this sum, consider an arbitrary spanning tree T of the connected graph
(Vi , E i ) ,  where | T| =  | Vi| -  1. Since T is a tree, we have | T p Ei,c| q | Vi| -  rc  for each
color c, and so,

| Ei+1 | q 
m 

(| Vi| -  rc )  q 
m 

| T p Ei,c| =  
m 

| Q(e)| q | T| t (1 +  n )a =  (1 +  n )a(| Vi| -  1) .
cn C cn C en T

Since | V1| =  2, this implies | E2| q (1 +  n )a. For iteration i  >  1, note that by
definition of arboricity, we have | Ei| /(| Vi| -  1) q a, and so

| Ei+1 | q (1 +  n )a t | Ei| /a =  (1 +  n )| Ei| .

Hence | E l  +1| q (1 +  n )l a for each l q 1. The overall graph has m q na edges, so
the process must terminate by iteration l =  l log1+n nl .

Note that if Algorithm 3.1 terminates by iteration l =  O( log n ), then the sequence
has length l , and all edges are within distance l of the starting edge einit . We can
then short-circuit it into an augmenting sequence as shown in the following result.
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Propos i t ion 3.5. If there exists an almost augmenting sequence P  from e to ee ,
then there exists an augmenting sequence from e to ee which is a subsequence of P .

Proof. We show this by induction on l . If l =  0, it holds vacuously. Otherwise,
consider an almost augmenting sequence P  =  (e1, e2, . . . , el , c) with e1 =  e and el =  ee .
If P  satisfies (A2), we are done. If not, suppose that ei n C (e j , i  (ei )) for j  <  i  - 1.
Then, Pe =  (e1, . . . , ej , ei, . . . , el , c) is also an almost augmenting sequence of length
l e <  l which is a subsequence of P . By an induction hypothesis, it has a subsequence
Pe e which is an augmenting sequence, which in turn is a subsequence of P .

Theorem 3.2 now follows immediately from Lemma 3.4 and Proposition 3.5.

4. Lo cal  forest decompositions via augmentation. Algorithm 4.1 is a high-
level description of our forest decomposition algorithm, in terms of a parameter R ,  a
constant K e , and a subroutine CUT (all to be specified).

The subroutine CUT(U, R) removes edges from the graph so as to break all long
monochromatic paths in the vicinity of U. We call the set of removed edges from
all CUT(U, R) instances the leftover edges, denoted by E leftover ; the graph induced
on them is the leftover graph, denoted Gleftover . We also define the main edges by
E main =  E  s E leftover (i.e., the edges never removed by CUT) and the induced graph on
them, the main graph, by Gmain.

Formally, for each class U, define Ue =  N R e  
(U ) and Ue e =  N R + R e  

(U ), and define
H (U ) to be the graph on the edges in Ue e s Ue . Furthermore, for each color c n C ,
define Hc (U ) to be the c-colored edges in H (U ); note that Hc (U ) is a forest. We say
that the execution of Algorithm 4.1 is good if, after every application of CUT(U, R), the
vertex sets Ue and V s Ue e are disconnected in Hc (U ) for every color c. (See Figure 3.)

We will show the following main result for Algorithm 4.1.

Algor i thm 4.1 F o r e s t  Decomposition(G).
1: Initialize i  w t .
2: Compute an (O(log n), O(log n))-network decomposition in G2t ( R + R e  )  for Re =

l K e log n/n l .
3: for each class z in the network decomposition do
4: for each component U in the class z in  parallel do
5:           Execute CUT(U, R).
6: Modify i  within N R e  

(U ) so that edges inside N (U ) become colored.

F i g .  3. H c (U )  with R  =  3. We want to disconnect Ue from all nodes with distance R  from Ue

(illustrated as black nodes).
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Theorem 4.1. If every edge has a palette of size (1 + n )a, then w.h.p. Algorithm
4.1 generates a list forest decomposition of Gma i n  such that at (Gleftover ) q n a. It has
the following complexity:

t If n a q a (log n), the complexity is O( log n )  rounds.
t If n a q a (log n) and C =  { 1, . . . , a(1 + n )} , the complexity is O( log3 n )  rounds.
t If n a q log a , the complexity is O( a 2 / ( n  a )  log a log4  n )  rounds.
t If n a q log a , the complexity is O( log4 n )  rounds.

The key to the algorithm is to ensure that the CUT subroutine load-balances the
number of removed out-neighbors of any vertex. We describe the implementation of
CUT to achieve this, along with choice of parameter R ,  in section 4.1. At the end of
this process, we finish with a decomposition of the leftover graph; this is summarized
next in section 4.2. Putting aside the implementation of CUT for the moment, we
summarize the algorithm as follows.

Theorem 4.2. Algorithm 4.1 runs in O(R log2 n +  log3 n/n )  rounds. If the exe-
cution of the algorithm is good and every edge has a palette of size (1 +  n )a, then at the
termination, i  is a list forest decomposition of Gma i n .

Proof. Let R  =  R  +  Re .     For line 2, we use the algorithm of [20] to get an
(O(log n), O(log n))-network decomposition in the power graph G 2 R  in O(R log2 n)
rounds. Then Algorithm 4.1 colors all edges that are adjacent to or inside a cluster U
of a class z (lines 4--6). Thus, if an edge uv is not removed, it will become colored when
we process the first class containing u or v.

Consider some cluster U, and suppose the execution is good. The modified color-
ing i  e can be found by some ``leader"" vertex in U, which reads in the neighborhood
Ue e =  N R (U ).  By Corollary 3.3, it is possible to modify edge colors within Ue so that
all edges in U become colored for large enough constant K e . Note that, since there
are no paths in Hc (U ) from U to outside Ue e , we can check whether the coloring is
acyclic by looking within Ue e alone.

The distance between clusters in the same class is at least 2R  +  1. Moreover,
if u, v are adjacent in G2 R ,  their distance in G  is at most 2R. So each cluster U
has weak diameter at most O(R log n), and also the balls N R (U1 ) and N R (U2 ) must
be disjoint for any two clusters U1 and U2 of the same class. We can process each
cluster independently without interfering with others. Therefore, lines 4--6, including
implementation of CUT, can be simulated locally in O(R log n) rounds. Since there are
O(log n) classes, the total running time is O(R log2 n).

4.1. Implementing CUT. Let us define T =  O(log n) to be the number of classes
in the network decomposition. We now describe a few strategies for implementing
CUT, with different parameter choices for the radius R .  We summarize these rules as
follows.

Theorem 4.3. The procedure CUT can be implemented so that w.h.p. the leftover
subgraph has pseudo-arboricity at most n a, and the execution of Algorithm 4.1 is good,
with the following values for parameter R :

1. R  =  O( log n )  if n a q a (log n).
2. R  =  O( log n )  if n a q a (log n) and C =  { 1, . . . , a(1 + n )} (i.e. forest decomposi-

tion).
3. R  =  O( a 2 / ( n  a )  log a log2 n )  if n a q log a
4. R  =  O( log2 n )  if n a q log a
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Theorem 4.1 will follow directly from Theorems 4.2 and 4.3. We show Theorem 4.3
here; the first two results follow from straightforward diameter-reduction algorithms.

Proof of Theorem 4.3(1). We apply Proposition 1.6 to H (U ) with parameter
n e =  n /(2T ) in place of n . This reduces the diameter of each forest H  (U ) to D  =
O(log2 n/n ) and removes an edge-set of arboricity at most l n a/(2T )l . In particular,
when R  q D ,  the execution of Algorithm 4.1 is good.     Over the T iterations of
Algorithm 4.1, the arboricity of Gleftover is at most T t l n a/(2T )l ; since T =  O(log n)
and n a q a (log n), this is at most n a.

Proof of Theorem 4.3(2). For each color c, we choose an arbitrary root for each
tree of H  (U ). Next, we choose an integer J  uniformly at random from [N ], where
N  =  l 4T/n l , and set R  =  2N +  1 =  a ( log n ). Then CUT(U, R) removes all edges e in
each Hc (U ) whose tree-depth de satisfies de v J c      mod N . After this deletion step,
each Hc (U ) has path length at most 2N <  R.  So V s Ue e is disconnected from Ue with
probability one, and Algorithm 4.1 is always good.

When the algorithm removes any edge e =  uv, where u is the parent of v in the
rooted tree of Hc (U ), we can orient edge e away from v in Gleftover . The outdegree of v in
Gleftover is then Yi,c , where Yi,c is the indicator function that v has its c-
colored parent edge removed when processing class i. For a subset S  of [T ]s C , we have
Pr( (i,c)n S  Yi,c =  1) q q| S| where q =  1/N . Note that | C | T q q n a/2, so by Lemma 1.3,
the probability that the outdegree of v exceeds n a is at most F+ (n a/2,n a) q e- n a/6 .
When n a q a (log n), then w.h.p. every vertex has at most n a out-neighbors in the
orientation.

We now turn to the last two results of Theorem 4.3. We assume that n a =  O(log n),
as otherwise we could apply Theorem 4.3(1). In particular, from our assumption that
n >  1/n, we have a q O(n log n). The algorithm for CUT(U, R) here has two stages:
an initialization procedure, which is called at the beginning of Algorithm 4.1, and an
on-line procedure for a given cluster Ue .

We say a vertex u is overloaded if L (u)  q n a; otherwise, it is underloaded; thus,
Algorithm 4.2 only modifies underloaded vertices. For an edge e oriented from u to v in
J ,  we say that e is overloaded or underloaded if u is. Given a path P , we let E 0 (P )  and
E 1 (P )  denote the set of underloaded and overloaded edges in P, respectively. A
length-R path in Hc (U ) is called a live branch.

Propos i t ion 4.4. Let a n (0, 1/2]. If p q 30a log n ,  then w.h.p., either the execu-
tion of Algorithm 4.1 is good, or some live branch P  has | E0(P )| <  a R .

Algor i thm 4.2 C U T ( U, R ) .

1: function In i t i a l i z at i o n
2: Using Theorem 1.4, obtain a 3a-orientation J  of G
3: For each vertex v n V , set L (v )  w 0
4: function C U T ( U , R )  execution
5: for each vertex v n Ue e with L (v )  <  n a do
6: Draw independent Bernoulli-p random variable X v
7: if X v  =  1 then
8: Select an edge e uniformly at random from the outgoing edges of v under J
9: Remove edge e from G

10: L(v )  w L(v )  +  1
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Proof. Any path from Ue to V s Ue e has length at least R  and hence will pass over
some live branch. So it sufices to show that any live branch P  in Hc (U ) during an
invocation of CUT(U, R) is cut. Each underloaded edge of P  gets removed with prob-
ability at least p/(3a), and such removal events are negatively correlated. Thus, for |
E0(P )| q a R ,  the probability that P  remains is at most (1 - p/(3a))a R  q e- pRa /(3a) . By
our choice of p, this is at most e- 30/3 log n q n- 10.

Each forest Hc (U ) has at most n2 live branches, and Algorithm 4.1 invokes
CUT(U, R) at most O(n log n) times, and the number of colors c is at most ma(1 + n )  q
2na2 q O(n3 log2 n). Hence, by a union bound, we conclude that either the algorithm
is good or some live branch has | E0(P )| <  a R .

Lemma 4.5. If R  q a ( a 
2 + 4 a   

log2 n )  for some a n (0, 1/2], then p can be chosen so
that Algorithm 4.1 is good w.h.p.

Proof. Let t =  n a and p =  30a log n . We set R  =  K a  
2 + 4 a   

log2 n  for some constant
K ,  and we can calculate

(4.1) p =  
30a log n

 
q n a t 

30
 
t 

log n t 
1 

2 + 4 a        .

Since we are assuming n a q O(log n), we have p n [0, 1] for large enough K .  By
Proposition 4.4, it now sufices to show that w.h.p. | E1(P )| <  (1 - a ) R  for all live
branches P .

Consider the probability that all edges in S  are overloaded where S  is an arbitrary
subset of the edges in a given live branch P . Since P  is a path, S  involves at least
| S| /2 distinct vertices. For each such vertex u, the value L (u)  is a truncated binomial
random variable with mean at most T p. Hence u is overloaded with probability at
most r  =  F+ (T p, t). Accordingly, the probability that all edges in S  are overloaded is
at most r| S| /2 .

Since T q O(log n), (4.1) implies that pT q n 
2 + 4 a         for large enough K ,  and

therefore,                                                                                          
t

F+ (T p, t) q 
( eT p ) t  

q 
( 

10ea 
e t n a

/t  t n a

) t  
q 

10a 
1 +

4
a
    

 .

So we apply Lemma 1.3 with parameter q =  
d 

r  for the random variable | E1(P )|
to get

Pr (| E1(P )| >  (1 - a ) R )  q F + ( R
d  

r, (1 - a ) R )  q 
( 

1 -
 
 

a 

) (1-  a ) R

q d 
10(1

 
-

 
a
 
)a

 
1+2a

  
(1-  a ) R  

q (e/
d 

10)R/2 a -  (1-  a )(1+2a ) R  q (0.93/a ) R  .

Since a q 1/2 and R  q a (log n), this is at most poly(1/n)t a -  R .  There are at most
na R -  1 paths of length R .  By a union bound, we conclude that w.h.p. | E0(P )| q a R
for all such paths.

Proof of Theorem 4.3(3),(4). In the algorithm for CUT, each vertex removes at
most n a outgoing neighbors under J .  Hence, at (Gleftover ) q n a. Given a , we choose
R, p according to Lemma 4.5 so that Algorithm 4.1 is good w.h.p. For result (3), we set
a =  2 log a

 , giving R  q O( a 2 / ( n  a )  log a log2 n ). For result (4), we set a =  1/2, giving R  q
O( log n ).
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We remark that, by orienting edges in terms of the forest H  (U ) instead of the
fixed orientation J ,  the bound on R  can be reduced to a 1 / ( n  a )  log a log2 n ; this leads to
an O( a log a log4 n )-round algorithm for ordinary forest decomposition when n a q 3. We
omit this analysis here.

4.2. P u t t i n g  everything together. We now need to combine the forest de-
composition of the main graph with a forest decomposition on the leftover graph. For
ordinary coloring, this is straightforward; we summarize it as follows:

Theorem 4.6. We can obtain a (1 +  n )a-FD of G  of diameter D ,  under the
following conditions:

t If n a q 3, then D  q n, and the complexity is O( a      log a log n ) .
t If 4 q n a q log a , then D  q O( log n ) ,  and the complexity is a O ( 1 / n  a )  log a log4 n .
t If n a q log a , then D  q O( log n ) ,  and the complexity is O( log4 n ) .
t If n 2a q a (log a ), then D  q O( 1 ), and the complexity is O( log4 n ) .
t If n a q a (log n), then D  q O( n ), and the complexity is O( log3 n ) .

Proof. The first step for all these results is to apply Theorem 4.1, where each
edge is given the palette { 1, . . . , a + l n a/10l } . Then Gleftover has pseudo-arboricity at
most ke =  l n a/10l , and Theorem 1.4(3) yields a r 2.01ke r -FD  of these leftover edges.
Taken together, these give a k -FD of G  for k =  a +  r 2.01l n a/10l r +  l n a/10l .

The runtime bounds follow immediately from the four different cases of Theorem
4.1.

This immediately gives us the first result in our list. For the next four results,
we apply Proposition 1.6 to convert this into a k +  l n a/10l -FD  of G, with the given
bounds on the diameter.

For list-coloring, we will combine the main graph and leftover graph by partition-
ing the color-space C . Specifically, each vertex v will choose a color set C v  q C ; we
also write C  for the ensemble of values C u  : u n V . Given C ,  we define a new color
palette for each edge e =  uv by

Qmain(uv) =  Q(uv) p C u  p Cv ,
Qleftover (uv) =  Q(uv) s ( C u  p Cv ).

We can now describe two main algorithms for this type of color partition.

Theorem 4.7. Suppose that each edge has a palette of size (1+n )a. Then, w.h.p.,
we can choose C  in O( log n )  rounds with the following palette sizes:

t If n a q a (log n), every edge e has | Qmain(e)| q (1 +  n /2)a and | Qleftover(e)| q
n a/20.

t If n 2a q a (log a ), every edge e has | Qmain(e)| q (1+n /2)a and | Qleftover(e)| q
n 2a/200.

Proof. For the first result, we independently draw a (O( log n ),  n )-stochastic net-
work decomposition L c  for each color c, and for each connected component U in the
graph (V , Lc ) we draw a Bernoulli-(n /10) random variable X c , U  . Then each vertex
v n U has c n C v  if and only if X c , U  =  0.

Now consider some edge e =  uv and color c n Q(e). If e n L c ,  then vertices
u and v are in the same component U of (V , Lc ), so c is in Qmain(e) or Qleftover(e)
depending on the value X c , U  . Thus, c goes into Qmain(e), Qleftover(e) with probability
at least (1 -  n /10)(1 - n /10) q 1 - n /5 and (1 - n /10)n /10 q n /11, respectively.
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Since each color operates independently, Chernoff bounds imply that | Qmain(e)| and
| Qleftover(e)| have respective sizes at least a(1 +  n /2) and n a/20 with probability at
least 1 - e- a (n a) . There are m q na edges, so the desired bounds hold with probability
at least 1 - nae- a (n a) ; since n >  1/n, this is 1 - 1/poly(n) for n a q a (log n).

For the second result, we draw an independent Bernoulli-(n /10) random variable
X c , v  for each color c and vertex v, and we place c in C v  if and only if X c , v  =  0. For any
edge e, the expected size of Qmain(uv) is a(1 + n )(1 - n /10)(1 - n /10) q a(1 + n /5), and
the expected size of Qleftover (e) is a(1+n )(n /10)(n /10) q n 2a/100. We can use the L L L
algorithm of [17], where each edge e has a bad-event B e  that | Qmain(e)| <  (1 +  n /2)a
or | Qleftover(e)| <  n 2a/200. When n 2a q a (log a ), a straightforward Chernoff bound
shows p q a -  11. Also, B e  affects at most d =  2a other bad-events (corresponding to its
neighboring edges). So the criterion pd2 l  1 holds, and the L L L  algorithm runs in
O(log n) rounds.

These give the following final results for L F D .

Theorem 4.8. Suppose that G  is a multigraph where each edge has a palette of
size (1 +  n )a. We can obtain an L F D  of G  of diameter D  w.h.p. under the following
conditions:

t If n a q a (log n), the complexity is O( log n )  rounds and D  =  O( log n ) .
t If n 2a q a (log a ), the complexity is O( log

2 
n )  rounds and D  =  O( log n ) .

Proof. For the first result, let n e =  n /1000.     We begin by applying Theorem
4.7, obtaining palettes Qmain, Qleftover. We then apply Theorem 4.1 with respect to
palettes Qmain; given our bound | Qmain(e)| q (1 +  n /2)a q (1 +  n e )a for all e and
n e a q a (log n), this produces an L F D  i of Gmain, along with a leftover graph with
pseudo-arboricity at most n e a.

Next, we apply Proposition C.1 to i with parameter n e to obtain an edge-set
Ee q E main such that a(Ee )  q l n e al and i has diameter O( log n )  on E main s Ee .
Finally, we apply Theorem 1.5 to edge-set Ee e =  E leftover p Ee to get an L S F D  i e e

of Ee e with palettes Qleftover; note that at (Ee e )  q at (E leftover ) +  at (Ee )  q 2l n e al and
| Qleftover(e)| q n a/20 q 5at (Ee e )  for all e n Ee e .

Now consider the coloring i defined by setting

\=
{ 

i e e (e)     if e n Ee e ,
i (e) if e n E  s E  .

We claim that any component of any color c can only contain edges from Ee e     or E  s
Ee e , but not both. For suppose some vertex v has c-colored edges vu,vue e in E s Ee e

, Ee e , respectively. Since i (vu) =  i (vu), we have c n Qmain(vu) q C v  but since i (vue e )  =  i
e e (vue e ), we have c n Qleftover(vue e )  q C s Cv .  This is a contradiction.

In particular, i is an L F D  of the full graph G, and the diameter of i is the
maximum of the diameters of i on E  s Ee e and of i e e on Ee e .

The second result is completely analogous, except we set n e =  n 2/1000.

5. Star-forest decomposition for simple graphs. Let G  be a simple graph
of arboricity a. By using Theorem 1.1, we may assume that we have obtained some
t-orientation J  in O(log3 n/n )  rounds, where t =  l (1 + n )al . We write J (v )  for the set of
out-neighbors of each vertex v; by adding dummy directed edges as necessary, we may
assume that | J (v)| =  t exactly.

To  obtain a star-forest decomposition of the graph, consider the following process:
each vertex v in the graph selects a color set C v  q C ; again, we write C  for the ensemble
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of values C u  : u n V . For each vertex v, we construct a corresponding bipartite graph
Wv (C ), whose left-nodes correspond to C and whose right-nodes correspond to J (v ),
with an edge from left-node c to right-node u if and only if c n Q(uv) p ( C v  s Cu ).  We
make the following key observation.

Propos i t ion 5.1. Let a n Z q 0 be a globally known parameter. If each Wv (C )
has a matching of size at least t - a , then in O(1) rounds we can generate a partition
of the edges E  =  E 0  p E1 ,  along with an L S F D  i 0 of E0 ,  such that at (E 1 )  q a . ( In
particular, if a =  0, then i 0 is an L S F D  of G.)

Proof. For each edge (c, u) in the matching Mv of Wv (C ), we set i (vu) =  c. Thus,
all color-c edges have the form vu where c n Cv s C u  and (c, u) n Mv. For c n Cv ,  we say
that v is a c-leaf, and for c n/ C v  we say that v is a c-center. Since Mv is a matching,
the edges of each color c are a collection of stars on the c-centers and c-leaves. The
original t-orientation J  of G  in turn yields a a -orientation for the residual uncolored
edges.

So, we need to select C  so that every graph Wv (C ) has a large matching. The
following two results show how to achieve this by random sampling; the precise details
are different for list- and ordinary colorings. Given a fixed choice for C ,  we write Wv as
shorthand for Wv (C ).

Lemma 5.2. Suppose that n a q 100( log a +  log a). If C =  [t] and each set C u
is chosen uniformly at random among a-element subsets of C , then for any vertex v
there is a probability of at least 1 - 1/a 10 that Wv (C ) has a matching of size at least
a(1 - n ).

Proof. Let us suppose that we have fixed C v  to some arbitrary value. By a slight
extension of Hall's theorem, it sufices to show that any set X  q J (v )  has at least
| X| - 2n a neighbors in Wv ; equivalently, there is no pair of sets X  q J (v), Y q C v  with
| X| q 2n a and | Y | =  a(1 +  2n ) - | X| such that Wv contains no edges between X  and Y .
We say that such a pair X , Y is bad. For any fixed X , Y with x  =  | X| , y =  | Y | =  a(1 +
2n )  - x, the probability that X , Y is bad is given by

( 
( a -  y) /(

 t) 
) x  

=  
( 

( t -  y) /( n a) 
) x  

q (1 - y/t)xn a  q e- xyn a / t  q e- xyn /2 .

Summing over the ( a(1+n ))
 

choices for X  and ( a)
 

choices for Y of a given cardi-
nality, the total probability of any bad pair X , Y is at most

(5.1)
a(1+n )  ( 

a(1 +  n )
) (

a
) 

-  x(a(1+2n ) -  x)n /2

x=2n a
x              a(1 +  2n )  - x

When 2an q x  q a/2, the summand in (5.1) is at most

( a(1+n )) ( a(1+
a

n ) -  x) e- x(a(1+2n ) -  a/2)n /2 q ( a(1+n )) ( x -  
a

n a) e- xn a/4  q (a(1 +  n ))x ax e-  xn a/4

q (2a2e- n a / 4 )x  q (2a2e- 25 log a -  25     log a ) x  q (2a- 23e- 25     log a ) x

q (e- 25
d 

log a
 
) x  q (e- 25

d 
log a

 
)2n a  q (e- 25

d 
log a

 
)200

d 
log a

  
=  a -  5000.

In a completely analogous way (but with slightly different numerical constants),
the summand of (5.1) for a/2 q x  q a(1 +  n )  is at most a -  2500. Since there are at
most a such summands, the overall sum is at most a -  2499.
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Lemma 5.3. Let n q 10- 6, a q 106, and n a q 106 log a . Suppose each edge has a
palette of size a(1+200n ). If we form each set C u  by selecting each color independently
with probability 1 - n , then for any vertex v there is a probability of at least 1 - 1/a 10 that
Wv (C ) has a matching of size t.

Proof. Let s =  a(1 +  100n ). We say that C v  is good if | Q(uv) p Cv| q s for
all u n J (v ). We first claim that C v  is good with probability at least 1 - a -  100.
Observe that | Q(uv) s Cv| is a binomial random variable with mean | Q(uv)| n q 2n a.
Hence, Pr(| Q(uv) s Cv| q 100n a) q F+ (2n a,100n a) q (100n a )100n a  q 2- 100n a ; by our
assumption n a q 10 log a , this is at most a . By a union bound over u n J (v ),
the probability that C v  is good is at least 1 - t t a -  108 

q 1 - a -  100.
We next argue that, conditioned on a fixed choice of good Cv ,  there is a probability

of at least 1 - a -  11 that Wv has a t-matching. By Hall's theorem, it sufices to show
that any set X  q J (v )  has at least | X| neighbors in Wv ; define B X  to be the bad-event
that this condition fails for X .  By considering the exponential generating function
for the number of neighbors of X ,  with is similar to a Chernoff bound argument, we
can show that any such set X  has

P r ( B X )  q 
( 

s - 

n 

x  

) s -  x (  s
(
1 - e- n x ) ) x

where x  =  | X| .

(The details are somewhat involved, so we defer the proof of this fact to Proposition
D.1.) We can take a union bound over the x      possible sets X  of cardinality x  to get

m 
P r ( B X )  q 

x = 1  

a x for a x  : =  
( 

s - 

n 

x  

) s -  x ( s
(
1 - e- n x ) ) x

(  
t

) 
.

We will upper-bound a x  separately over two different parameter regimes as fol-
lows:

Case I:  a /3 q x q t . Here, we have se- n x  q (2a)en a/3  q (2a )e- 106 (log a ) /3  q
2a -  1000 and x      q tt- x  q (2a )t -  x .  Thus, we use the upper bound

a x  q f1 (x)  : =  ( 2a -  1000) s -
 x (s/x)x (2a )t -  x .

Letting g1 (x) =  log f1 (x), we compute the derivative ge (x )  =  -  1 +  999 log a +
log s- log(4x); since x  q s and a q 106, this is at least 100 log a . Hence, in this range, we
have a x  q eg 2 (x )  q eg1 (s) -  100(s- x ) log  a . Since g1(s) =  (t - s) log(2a ) q 0, we have a x  q a -

100(s- x ) ,  and the overall sum x = a / 3  a x  is at most 2a -  100(s- t )  q 2a -  100.
Case I I :  1 q x q a /3. Here s(1 - e- n x ) / x  q s and q tx , giving the upper

bound:

a x  q f2 (x)  : =  (se- n x /(s - x ) ) s -  x (st)x .

Again, letting g2 (x) =  log f2 (x), we compute the derivative ge (x )  =  1 - n s +
2n x  +  log t +  log(s - x). Now x  q a/3 while a q s, t q 2a ; along with our bound
n a q 106 log a , we get ge (x )  q - 100 log a for x  q 0. Hence, in this range, we have
a x  q eg 2 (x)  q eg2 (0)- 100x log a     =  a -  100x, and so the overall sum a/3 a x  is at most
2a -  100.

Putting the two cases together, we have shown that, conditional on a fixed good
choice of Cv ,  we have           P r ( B X )  q 4a -  100. Since C v  is good with probability at
least 1- a -  100, the overall probability that Wv has a t-matching is at least 1- a -  10.

This leads to our main results for star-forest decomposition.
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Theorem 5.4. Let G  be a simple graph with arboricity a.
t If n a q a (  log a +  log a), then we get an a(1 +  n )-SFD in O( log n )  rounds

w.h.p.
t If n a q a (log a ), and every edge has palette size a(1+n ), we can get an L S F D

in O( log3 n )  rounds w.h.p.

Proof. By reparametrizing, it sufices to show that we can get an a(1+O(n ) ) -SFD
of G  or get an L S F D  when every edge has palette size (1 +  O(n ))a.

After obtaining the orientation J ,  we use the L L L  algorithm of [17] to select C ;
here, each vertex v has a bad-event that Wv (C ) has maximum matching size less than
t - 2an . By Lemma 5.2, this event has probability at most p =  a -  10 and depends on
d =  a 2 other such events (u and v can only affect each other if they have distance
at most 2). Thus, the criterion pd2 l  1 is satisfied, and the L L L  algorithm runs in
O(log n) rounds.

Having selected C ,  we apply Proposition 5.1 to get a (1 +  n )a-SFD of G, plus a
leftover graph of pseudo-arboricity at most 2n a. We finish by applying Theorem 1.4
to get a 6.01n a-SFD of the leftover graph. Overall, we get a (1 +  7.01n )a-SFD.

The second result is completely analogous, except we use Lemma 5.3 to obtain
the matchings of Wv . In this cases, there is no left-over graph to recolor.

We remark that the main algorithmic bottleneck for Theorem 5.4 is obtaining the
t-orientation. For example, we could alternatively use the algorithm of [57] to obtain
the t-orientation, and hence obtain the a(1 +  n ) -LSFD,  in O( log

2 
n )  rounds.

6. Lower bounds on round complexity. In this section, we show lower
bounds for the round complexity of randomized L O C A L algorithms for forest decom-
position, using the following construction. For given integer parameters a q 2 and t q
1, we can form a multigraph G  beginning with four named vertices x1, x2, y1, x2. We
then put r a/2r parallel edges from x1 to x2 and r a/2r parallel edges from y1 to y2. We
insert a path P1 with t +  2 vertices from x1 to y1, with a parallel edges between
successive vertices on the path (thus, P1 contains t vertices aside from x1, y1), and
we insert a second path P2 of t +  2 vertices arranged in a line from x2 to y2 with a
parallel edges. See Figure 4.

The graph G  has arboricity a; to see this, consider coloring the edges x1 to x2
by { 1, . . . , r a/2r } and coloring the edges from y1 to y2 by { r a/2r +  1, . . . , 2r a/2r } , as
well as coloring edges in P1 and P2 by { 1, . . . , a} . Also, G  has n =  2t +  4 vertices and
maximum degree a =  O(a).

Propos i t ion 6.1. For any a(1 + n )-forest decomposition on G,  there are at most
2(t +  1)n a colors c where there is a c-colored edge between x1 , x2 and also a c-colored
edge between y1, y2.

(a)

F i g .  4. An illustration of G  when a =  4 and t =  3.
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Proof. For any two adjacent nodes u, v in G, let us say that color c appears if any
of the parallel edges between u and v have color c; otherwise, color c is missing . We
need to show that at most 2(t +  1)n a colors appear on both x1 , x2 and y1, y2.

For consecutive vertices u, v in path P1 or P2, the a parallel edges must receive
distinct colors (otherwise, it would immediately have a cycle). Thus, u, v are missing
at most n a colors. Over the entire paths P1, P2 which have 2(t + 1) vertices, there are
at most 2(t +  1)n a colors missing in total.

But now observe that if a color c appears on all consecutive vertices in the path
P1, P2 as well as between x1 , x2 and between y1, y2, then the c-colored edges would
have a cycle. Hence, the only colors which can appear between x1 , x2 and also between
y1, y2 are the ones that are missing from some consecutive vertices in P1, P2, and there
are at most 2(t +  1)n a of them.

Our lower bound will depend in a critical way on using a randomized algorithm
which is oblivious, i.e., it does not use the provided vertex IDs. In particular, for an r-
round oblivious randomized algorithm, the output for a given edge e is determined by
the isomorphism class of N r (e).

Observation 6.2. If any randomized or deterministic L O C A L algorithm can solve
a problem in r  rounds, then also an oblivious randomized L O C A L algorithm can solve
it in r  rounds w.h.p.

Proof. Given the original algorithm A, each vertex chooses a random bit-string
of length K  log n and uses it as its new vertex I D  for algorithm A. W.h.p., all chosen
IDs are unique for K  suficiently large, and hence algorithm A  succeeds (either with
probability one or w.h.p., depending on whether A  is randomized).

Lemma 6.3. Suppose that 2(t +  1)n a q r a/2r . Then any oblivious algorithm A
for a(1 +  n )-forest decomposition on G  in less than t/2 rounds has success probability
at most 4(r a/2r -  2(t+1)n a ) .

Proof. Let l =  a(1 + n ). For any color i  =  1, . . . , l , let X i  be the indicator function
that (x1 , x2 ) has an i-colored edge, and let Yi be the indicator function that (y1, y2)
has an i-colored edge, after we run algorithm A  on the graph. Since the edges (x1 , x2 )
and (y1, y2) have distance t, the random variables X i , Y i  are independent for each
i. Furthermore, since the view from (x1 , x2 ) is isomorphic to the view from (y1, y2),
and algorithm A  is oblivious, they follow the same distribution. Thus, we denote
qi =  E [X i ]  =  E [Yi] and note that E [X i Y i ]  =  E [Xi ]E [Yi] =  q2.

If A  returns a forest decomposition, there are r a/2r colors between x1 and x2 (a
repeated color immediately leads to a cycle), and by Proposition 6.1 there are at most
2(t +  1)n a colors i  which appear between x1 , x2 and also between y1, y2, i.e., colors
which satisfy X i  =  Yi =  1. Overall, whenever A  returns a forest decomposition, we
have i = 1  X i  = i = 1  Yi =  r a/2r and i = 1  X i Y i  q 2(t +  1)n a and, in particular,

m 
X i ( 1  - Yi ) q r a/2r - 2(t +  1)n a.

i = 1

Let p be the probability that A  successfully returns an l -forest decomposition.
Taking expectations and noting that E [X i (1  - Yi )] =  E [X i ](1 - E [Yi ]) =  qi (1 -  qi ), we
have

m 
qi (1 - qi ) q p(r a/2r - 2(t +  1)n a).

i = 1

©  2023 David G.  Harris, Hsin-Haoi Su, Hoa T .  Vu
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(a) (b)

F i g .  5.

On the other hand, clearly qi (1 - qi ) q 1/4 for all i  (since qi n [0, 1]), and so
m 

qi (1 - qi ) q l /4.
i = 1

Putting the bounds together gives p(r a/2r -  2(t + 1)n a) q l /4, which leads to the
claimed bound after rearrangement.

Putting these results together, we obtain the following.

Theorem 6.4. Let a, n n Z q 2 and n n (0, 1) with n a q 1. Any randomized
algorithm for (1 +  n )a-forest decomposition on n-node graphs of arboricity a with
success probability at least 0.51 requires a (min{ n,1/n } )  rounds. This bound holds
even on graphs of maximum degree a =  O(a).

Proof. It sufices to show this for an oblivious randomized algorithm A  and where
1/n <  n q 0.0001. In this case, consider forming graph G  with parameter t =  l 0.001/n l ;
note that t +  2 q 0.002/n due to the upper bound on n . Thus, G  has at most 2t +
4 q 2(0.002/n )  q n nodes.

Here r a/2r q 0.499a since a q 1/n q 10000, and also 2(t +  1)n a q 2(0.002/n )n a q
r a/2r . If A  runs in fewer than t/2 rounds, then by Lemma 6.3 it has success probability
at most 4(r a/2r -  2(t+1)n a )  q 4(0.499a- 2(0.002/n )n a )  q 0.506(1 +  n )  <  0.51.

We also show that it is impossible to compute a-FD in o(n) rounds in simple
graphs.

Propos i t ion 6.5. In simple graphs with arboricity 2, computing a 2-forest de-
composition with success probability at least 0.5 requires a (n) rounds.

Proof. First, construct G  with parameters a =  2 and t =  n/10 (see Figure 5(a)).
Next, replace every set of parallel edges by a copy of the complete graph K 4  (see
Figure 5b). The resulting simple graph H  has 6t +  8 q n nodes and arboricity 2.

Suppose now that A  is an oblivious randomized algorithm which runs in n/100
rounds and assigns colors { 1, 2} to the edges of H .  Let q denote the probability that
algorithm A  outputs color 1 on edge (x1 , x2 ). Since the two edges are t-hops away and
n/100 <  t/2, the probability that A  outputs color 1 on (y1, y2) is also q, independent
of the color of (x1 , x2 ). Therefore, with probability at least q(1 - q) +  (1 - q)q q 1/2, the
edges (x1 , x2 ) and (y1, y2) receive the same color; in this case, that color does not form a
forest.

A p p e n d i x  A .  Proof of Theorem 1.4. For the first result, starting with i  =  1,
we remove vertices with degree at most t =  r (2 +  n )at r and add them to H i .  We
continue this process, forming sets H1, . . . , Hk , until the graph is empty.
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We claim that each iteration removes at least a (n /(2 + n ))  fraction of the vertices
in the remaining graph. Consider the remaining graph Ge =  (V e , Ee ). If more than
 2 | V e | vertices have degree greater than (2 + n )at , then we derive a contradiction as
follows:

2| Ee | =  
m

deg(v) >  ((2 +  n )at )| V e | t
2

=  2at | V e | q 2(| Ee | /| V e | )  t | V e | =  2| Ee | .
vn V e

Since the number of vertices reduces by a (1 - a (n ))  factor in each iteration, there
are at most k =  O(log n/n )  iterations in total.

For the second result, consider an edge e =  uv where u n H i  and v n H j .  If i  <  j ,
we orient it from u to v, and likewise if i  >  j ,  we orient it from v to u. If i  =  j ,  we
orient it from the vertex with a lower I D  to the vertex with a higher ID. Since a vertex
in H i  has at most t neighbors in H i  p t t t p H k ,  the outdegree is at most t. Since the
edges are always oriented from a lower index partition to a higher index, with ties
broken by vertex ID, the resulting orientation is acyclic.

For the third result, we arbitrarily give distinct labels to the out-edges of each
vertex; this gives us a t-forest decomposition where, moreover, each tree in each forest
is rooted. We can use the algorithm of [18] to get a proper 3-vertex-coloring of each
tree in O(logt n) rounds. If we assign each edge to the color of its parent, then each
of the t forests decomposes into three star forests.

For the final result, consider the following process: we first fix some acyclic t-
orientation. For each vertex v, we go through its out-edges e1, . . . , et in some arbitrary
order, and each edge ei in turn chooses a color from its palette not already chosen by
edges e1, . . . , ei- 1. This can be done in a greedy fashion since every edge has a palette
of size t. Each vertex operates independently, so the entire process can be simulated
in O(1) rounds.

A p p e n d i x  B .  Proof of Theorem 1.5. To  start, apply Theorem 1.4(1) with
n /10 in place of n , giving partition H1 , . . . , Hk for k =  O( log n )  where each vertex
v n H i  has at most t =  r (2 + n /10)at r neighbors in H i  p t t t p H k .  We orient the edges
from H i  to H j  if i  <  j ;  otherwise, we break the tie by vertex ID.

We proceed for iterations j  =  k, k - 1, . . . , 1; at iteration j ,  we define E j  to be the
set of edges which have one endpoint in H j  and the other endpoint in H j  p t t t p H k .
We also define a related line graph Ge     as follows: each edge e in E j  corresponds to
a node xe in Ge . For every pair of edges e,ee in E j  which share a common vertex in
H j ,  there is an edge in Ge     between corresponding nodes xe and xee . Our strategy is
to compute a proper list vertex-coloring of each Ge , where the residual palette Qe (xe )
for edge e =  uv n E j  is obtained by removing from Q(e) any colors chosen already by
any out-edges of u or v in E j + 1  p t t t p E k .

We first claim that this procedure gives an L S F D ,  where each edge is oriented
toward the center of the star. Suppose edges e =  uv,ee =  ue v share a color c and
intersect in vertex v but that e is oriented away v. Say v n Hi , u n Hj , ue n Hj e  ;
necessarily j  q i  and e n H i  by definitions. If je q i, then ee n H i  and the graph Ge

would have an edge between xe and xee , and they could not receive the same color. If
je <  i, then ee n Hj e      and the color chosen by e would have been removed from Qe (xee )
in iteration je . Either case is a contradiction.

Next let us argue that each graph Ge     can be greedily colored; i.e., for each edge
e =  uv, the palette of each node xe is larger than its degree. Suppose that u and v
have a and b many neighbors in H j + 1  p t t t p H k ,  respectively. Then xe has at most
2t- 1 - (a + b) neighbors in Ge and has | Qe (xe)| q | Q(e)| - (a + b). So Ge has maximum
degree a (Ge )  =  2t =  a (at ), and in either case the node xe n Ge     satisfies
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| Qe (xe)| - deg(xe) q | Q(e)| - (2t - 1) q r (4 + n )at r -  2r (2 + 0.1n )at r + 1  q 1 + r n at /2r .

Finally, let us analyze the round complexity. We use an algorithm of [21]
for listvertex-coloring with palettes of size deg +n a     applied to each graph Ge .
There are three parameter regimes to consider.     First, if a q     n3, then the al-
gorithm of [21, Corollary 4.1], combined with the network decomposition result
of [52], runs in O(log(1/n )) +  polyloglogm rounds; since m q     na q     n4, this is
O(log(1/n ))  +  polyloglogn.

Next, when a >  n3, we use the algorithm of [21, Theorem 4.1]. This algorithm
requires n a (Ge )  >  (log| V (Ge )| )1 + a  (1) . Here, | V (Ge )| =  m and a (Ge )  =  a (a), and
n >  1/n by assumption, so l

o
g a |  

V
 (G

e 
)|

 q a ( n
n

 l
o

g
2 

m)  >  a (1). So, the algorithm runs in
O(log m +  log(1/n )) rounds.

Finally, when a is superexponentially larger than n, we can obtain an
(O(log n), O(log n))-network decomposition of G3. We then color each E j  by iterating
sequentially through the classes; within each cluster, we simulate a greedy coloring of
the edges. Since clusters are at distance at least 3, no edges will choose a conflicting
color. The overall runtime is O(log2 n).

Putting the three cases together, we can color each Ge     with round complexity

O( min
{ 

log(1/n )  +  logt m, log(1/n )  +  polyloglogn, log2 n
} 

) .

This process is repeated for iterations j  =  1, . . . , k =  O( log n ).

A p p e n d i x  C .  Proof of Proposition 1.6. We begin with the following algo-
rithm to reduce diameter in a given list-forest decomposition i .

Propos i t ion C.1.  Given a multigraph G  with an L F D  i and n >  0, Algorithm
C.1 runs in O( log n )  rounds. It partitions the edges as E  =  E 0  p E1 ,  where i 1 is an

Algor i thm C .1  Reduce  F o r e s t  Diameter(n , i ).
1: Initialize E 0  w E  and Ee , Ee e w t .
2: Apply Theorem 1.4(2) to get an acyclic 3a-orientation J  of G.
3: for each vertex v do
4: Draw independent Bernoulli-1/2 random variable X v
5: if X v  =  1 then
6: for j  =  1 to ke where ke =  l n a/20l do
7: Select an edge ev,j uniformly at random from the out-neighbors of v in J .
8: Remove edge ev , j  from E0 ; add it to Ee .
9: Set i e (ev , j )  =  j .

10: for each color i  n C and each vertex v do
11: if there is an i-colored directed path of length 10000 log n/n starting from v in

E 0  then
12: Remove all edges of color i  incident to v from E0 ; add them to Ee e .
13: for each j  =  1, . . . ,ke and each vertex v do
14: if there is a j-colored directed path of length 10000 log n/n starting from v in

Ee then
15: Remove all edges of color j  incident to v from Ee ; add them to Ee e .
16: Apply Theorem 1.4(3) to obtain a 3r 2.01at (Ee e )r -star-forest decomposition i e e

of Ee e .
17: Return E 0  and E 1  =  Ee p Ee e along with forest decomposition i 1 =  i e p i e e of E1 .
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l n a l -FD  of E  . W.h.p., both the restriction of i to E  and the decomposition i on
E 1  have diameter D  q O( log n ) .

Proof. The complexity follows from specifications of Theorem 1.4. Since the orien-
tation is acyclic, i e is a ke -forest decomposition of Ee for ke =  l n a/20l . The two mod-
ification steps (lines 10--12 and 13--15) ensure that each forest in E  or Ee has diame-
ter O( log n ), while the forests in Ee e have diameter 2. Overall, E 1  is decomposed into
ke + 3r 2.01at (Ee e )r forests; we can upper-bound this, somewhat crudely, as ke +7| Ee e | .

It remains to bound | Ee e | . We first claim that any edge goes into Ee e with proba-
bility at most 1/n24. Suppose that e remains in E  with color i. Every other color-i
edge gets removed with probability at least 1 s l n a/20l q 0.005n , and edges at dis-
tance 2 are independent. Thus, any path of length r  q 10000 log n/n survives with
probability at most (1 - 0.005n )r / 2  q e- 0.005t 10000t 1/2t log n  =  n- 25, and there are at
most n paths of color i  involving any given edge.

Similarly, suppose that e goes into Ee with color j  n { 1, . . . ,ke } . Each vertex only
has deleted out-neighbors with probability 1/2. Thus, starting at the edge e, and
following its directed path with respect to the j-colored edges, there is a probability
of 1/2 of stopping at each vertex. Thus, the probability that e goes into Ee e is at most
2- 10000 log n/n q n- 24.

Putting these two cases together, Ee e has expected size at most m/n24 q a/n23.
By our assumption that n >  1/n, Markov's inequality gives Pr(| Ee e | q n a/20) q
O( a / n 2 3  

)  q O(n- 22). So w.h.p. E 1  uses at most l n a/20l +  7(n a/20) q l n al forests.

We next show that the diameter can be reduced further in some cases. Note
that Proposition C.2, in its full generality for list-forest decompositions, will not be
directly required for our algorithm.

Propos i t ion C.2.  Let G  be a multigraph with an L F D  i . If | C | =  o a and
a q a min{ log n , o log a } , there is an O(o log n )-round algorithm for obtaining an edge-set
Ee such that at (Ee )  q n a and such that w.h.p. i has diameter D  q O(o /n )  in the graph G
s Ee .

Proof. First, by applying Proposition C.1 with n /4 in place of n , we reduce the
diameter of the forests to O( log n ), while discarding an edge set of pseudo-arboricity at
most ke q l n a/4l . In O( log n )  rounds we can choose an arbitrary rooting of each
remaining tree. For each color c, let Uc be the set of vertices whose depth is a multiple
of N  =  l 4o /n l .

Consider the following random process: for each color c and each vertex u n Uc,
we independently draw an integer J u , c  uniformly at random from [N ]. For all vertices
v of depth J u , c  below u in the color-c tree, we remove the color-c parent edge of
u. After this deletion step, every vertex u n Uc is disconnected from its distance-
N descendants and is also disconnected from its distance-N ancestors. Thus, with
probability one, the forests have diameter reduced to 4N q O(o /n ).

It remains to bound the pseudo-arboricity of the deleted edges. For each vertex
v, let B v  denote the bad-event that v has more than ke e =  n a/2 deleted parent edges.
If all these bad-events are avoided, then the deleted edges have pseudo-arboricity at
most ke +  ke e q n a from both stages.

For a vertex v and color c, let uc be the maximum-depth ancestor of v in Uc. The
color-c parent of v gets deleted if and only if J u  ,c is equal to the depth of v below
uc. This has probability 1/N , so the expected number of deleted parents is at most
| C | /N  q n a/4. Each color operates independently, so by Chernoff's bound we have
Pr(B v )  q F+ (n a/4,n a/2) q e- n a/12 .
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If n a q a (log n), then w.h.p. none of the bad-events occur, and we are done.
If n 2a q a (o log a ), we use the L L L  algorithm of [17]. We have already calculated
p q e- n a/12 . Also, events B v  and B w  only affect each other if v and w have distance
at most 2N ; hence d q a 2 N  q a 4o /n + 2 .  So, pd2 q e- n a/12(a 4o /n + 2 )2  l  1 for n 2a q
a (o log a ). Each B  depends on vertices within distance O(o /n ), so the L L L  algorithm
can be simulated in O(o log n )  rounds on G.

To  show Proposition 1.6, suppose now we are given some k-FD of G; we may
assume that k q O(a), as we can always use Theorem 1.4 to obtain a 2.01-FD. Here,
we have | C | =  k, and so o =  k/a q O(1). For the bound D  q O( log n ), we can directly
apply Proposition C.1. For the bound D  q O( 1 ) when a is large, we apply Proposition
C.2 with n /10 in place of n to obtain a k +  l n a/10l -FD, where the uncolored edges
Ee have at (Ee )  q n a/10. We then use Theorem 1.4 to obtain a 3at (Ee ) -SFD of Ee .
Overall, this gives a k +  l n al -FD  of G  of diameter O(1/n ).

A p p e n d i x  D .  Concentration b ound for Lemma 5.3. Here, we show the
concentration bound we used in the proof of Lemma 5.3.

Propos i t ion D.1. Let s =  a(1 +  100n ), t =  a(1 +  n ). Let X  be any fixed subset
of J (v ), and let x  =  | X| q t. Suppose the hypotheses of Lemma 5.3 hold and that C v
is fixed so that | Q(uv) p Cv| q s for all u n X .  Then the probability that X  has fewer
than x  neighbors in Wv is at most

(
 se- n x  ) s- x (  s(1 - e- n x ) ) x s -

x x

Proof. For each c n Cv ,  let zc be the number of vertices u n X  with c n Q(uv),
and let Yc be the indicator function that c n               (Q(uv) s Cu ).  Here Pr(Yc =  1) =
1 - (1 - n ) z c  q 1 - e- n z c  . By hypothesis we have                zc =               | Q(uv) p Cv| q xs.

Consider variable Y =        Yc, and note that X  has fewer than x  neighbors if and
only if Y <  x. For some parameter a n [0, 1] to be determined, we define the random
variable

i  =  (1 - a ) Y  =  
d      

(1 - a ) Y c  .
cn C v

Since the colors are independent, we have

(D.1) E [ i  ] =  
d      

(1- a Pr(Yc =  1)) q 
d

     
(1- a (1- e- n z c  ))  =  e

m 
c n  C v  log(1- a (1-  e-  n z c  ) ) .

cn C v cn C v

Elementary calculus shows that the function y w log(1 - a (1 - e- y ))  is negative,
decreasing, and concave-up. Since 0 q zc q x, we thus bound it by the secant line
from 0 to x, i.e.,

log(1 - a (1 - e- n z c  ))  q 
zc log(1 - a (1 - e- n x )).

Substituting this bound into (D.1) and using the bound 
m 

zc q xs, we calculate

E [ i  ] q e
m 

c n  C v      x  log(1- a (1-  e-  n x ) )  =  ( 1 -  a (1 - e- n x )) 
m 

c n  C v  z
c

/ x  q ( 1 -  a (1 - e- n x )) s .

Now by Markov's inequality applied to i  , we get

(D.2) Pr(Y <  x )  q E [ i  ](1 - a ) -  x  q ( 1 - a (1 - e- n x )) s( 1 -  a ) -  
x .
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a = .

D + 1

star

star

D
ow

nl
oa

de
d 

06
/2

7/
23

 to
 1

36
.1

67
.8

8.
15

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

tt
ps

:/
/e

pu
bs

.s
ia

m
.o

rg
/t

er
m

s-
pr

iv
ac

y

L O C A L I T Y  O F  F O R E S T  D E C O M P O S I T I O N 827

At this point, we set

(1 - e- n x )s - x
(1 - e- n x )(s - x )

Clearly a q 1. We claim also that a q 0, which when substituted into (D.2) will
give the claimed formula. Consider the function f ( x )  =  (1 - e- n x )s -  x. The second
derivative is given by fe e (x )  =  -  e- n xn 2s q 0. Hence, the minimum value of f ( x )  in
the region x  n [0, t] will occur at either 0 or t. For the former, we have f (0)  =  0. For
the latter, we have

f (t)  =  (1 - e- n t )s - t =  (1 - e- n a(1+n ) )a(1 +  100n )  - a(1 +  n ).

Now n a q 106 log a , so e- n a(1+n )  q a -  106 
. Since a q a and a q 2, we get

f (t)  q (1 - a -  106 
)a(1 +  100n )  - a(1 +  n )  =  a(99n - 100n /a 106 

-  a/a 106 
)  q 0

as desired.

A p p e n d i x  E .  Miscellaneous observations and formulas.

Propos i t ion E.1.  For any integer a q 1 and any n >  0, there is a multigraph
with arboricity a and n =  O(1/n )  and a =  O(a), for which any a(1 +  n ) -FD has
diameter a (1/n ).

Proof. Consider the graph G  with l =  l 1/n l vertices arranged in a path and a
edges between consecutive vertices. This has maximum degree a =  2a and arboricity
a. In any forest decomposition of diameter D ,  each forest must consist of consecutive
subpaths each of length at most D .  Thus, each color uses at most l      l       l s D  q
D ( 1 + l  / D  + 1 )  edges. There are (l -  1)a total edges, so we must have a(1 + n ) D ( 1 +
l /(d +  1)) q (l -  1)a. Since l =  a (1/n ), this implies that D  q a (1/n ).

Propos i t ion E.2.  For a loopless multigraph, there holds astar q 2at .

Proof. It sufices to show that a loopless pseudo-tree can be decomposed into two
star forests. This pseudo-tree can be represented as a cycle C  =  { x1, . . . , xt} plus trees
T1, . . . , Tt rooted at each x i .

We can two-color the edges of C  from { 0, 1} , such that there is at most one pair
of consecutive edges on C  with the same color; say without loss of generality it is
color 0. For each edge e in a tree Ti which is at depth d (d =  0 means that e has an
endpoint x i ) ,  we assign e to color (d +  1) mod 2. In particular, the child edges from
root x i  have color 1, the grandchild edges have color 0, etc.

Theorem E.3.  For a multigraph with degeneracy a , there holds alist     q 2a q
min{ 4at , 4a - 2} .

Proof. It is a standard result that a q 2 min{ a - 1, at } , so it sufices to show
alist q 2a .

F ix  some acyclic a -orientation of G, and color each edge sequentially, going back-
ward in the orientation. For each edge e oriented from u to v, we choose a color in
Q(e) not already chosen by any out-neighbor of u or v. Each vertex has at most a
out-neighbors, so at most a colors are already used by out-neighbors of v, and a - 1
colors are used by out-neighbors of u. Since e has a palette of size 2a , we can always
choose a color for e. The resulting coloring at the end is a star-list-coloring, where
each edge is oriented toward the center of its star.
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