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Abstract— In this paper, we present a method for updating
robotic state belief through contact with uncertain surfaces and
apply this update to a Kalman filter for more accurate state
estimation. Examining how guard surface uncertainty affects
the time spent in each mode, we derive a novel guard saltation
matrix – which maps perturbations prior to hybrid events to
perturbations after – accounting for additional variation in the
resulting state. Additionally, we propose the use of parame-
terized reset functions – capturing how unknown parameters
change how states are mapped from one mode to the next – the
Jacobian of which accounts for additional uncertainty in the
resulting state. The accuracy of these mappings is shown by
simulating sampled distributions through uncertain transition
events and comparing the resulting covariances. Finally, we
integrate these additional terms into the “uncertainty aware
Salted Kalman Filter”, uaSKF, and show a peak reduction
in average estimation error by 24-60% on a variety of test
conditions and systems.

I. INTRODUCTION

Making and breaking contact is critical for robots as they

often need to physically interact with their environment to

accomplish their tasks. For a legged robot to navigate to a

desired location – for search and rescue, mapping, remote

surveying, etc. – its feet will need to repeatedly impact the

ground as it walks or runs. Manipulation robots must grasp,

push, pull, etc, the objects they need to manipulate. In order

to safely and reliably operate during these changing contact

conditions, robots need to have an accurate estimation of

their state in order to generate reasonable plans and complete

their tasks. However, when dealing with these intermittent

contacts, the robot’s dynamics become non-smooth and even

discontinuous, which presents a challenge for classic meth-

ods that assume smoothness [1–4].

Another difficulty with intermittent contact systems is that

outside of constrained environments like labs and factories,

there will not be perfect models of the environment. The

contact surface and physical properties may not be perfectly

known ahead of time. In the language of hybrid systems

[5–7], this environmental uncertainty requires us to consider

the guards (where contact conditions change) and reset maps

(how contact conditions change) to be stochastic. The com-

bination of uncertainty in the guard with the discontinuity
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Fig. 1. Simulating a 2D bouncing ball impacting an angled ground.
a) No uncertainty in the guard offset or normal. b) Only offset (guard
location) uncertainty. c) Only surface normal (reset function) uncertainty.
d) Both offset and normal uncertainty. Yellow particles: Initial and final
distribution. Black curve: Nominal trajectory. Black ellipses: Initial and final
covariances. Red dotted ellipse: Predicted covariance using only saltation
matrix (identical in all four plots). Blue dashed ellipse: Predicted covariance
using the proposed method. The proposed method captures the effect of
guard and reset uncertainty on the propagated covariance.

in dynamics results in additional state uncertainty due to

variation in the time spent in each mode. For example, Fig. 1

shows a simple contact system – a ball bouncing off of a

slanted surface. If there is uncertainty in the guard location

or in the angle at which the ball will rebound, the resulting

state uncertainty will grow. Filtering methods present a way

to utilize the information of how state and guard uncertainty

interact at hybrid events by directly updating the state belief

based on hybrid model uncertainty.

To address these issues, this paper presents an “uncertainty

aware Salted Kalman Filter”, or uaSKF, for hybrid dynamical

systems. We propose to model uncertainty as distributions of

guard locations and reset map parameters, and we derive how

these distributions couple into the system state uncertainty.

We introduce the “guard saltation matrix,” which captures

the uncertainty due to variations in the guard location and

time to impact (Fig. 1b). To handle reset uncertainty, we

use the Jacobian of the reset function with respect to the

uncertain parameters (Fig. 1c). These terms combine to

produce an accurate state uncertainty update through the

uncertain ground interaction (Fig. 1d). Then we integrate



these tools into a Kalman filter and provide results showing

reduced estimation error on several example systems.

II. RELATED WORK

While the fields of hybrid systems and state estimation

both have long histories, here we focus on related work that

specifically tackles the intersection of the two.

A. State Estimation for Hybrid Systems

Initial work on Kalman filter (KF) based methods for

hybrid dynamical systems such as [2,3] utilized the reset

map to update the mean estimate and the Jacobian of the

reset map to update covariance beliefs at hybrid events.

However, recent work showed that the Jacobian does not

capture all of the effects of the hybrid event on reshaping

the covariance. Instead, [8] proposes the “Salted Kalman

Filter” (SKF), which uses the saltation matrix in place of the

Jacobian of the reset map for Kalman filtering. The saltation

matrix is a rank 1 update to the Jacobian that accounts for

state variations caused by time to impact variations. This

work was extended to include filtering on manifolds in [9]

with the hybrid invariant extended Kalman filter (HInEKF).

In this work, the saltation matrix method is further extended

to account for uncertainties in the structure of the underlying

hybrid system, such as variation in guard location and the

reset map.

Other work on hybrid system state estimation has largely

involved multiple estimators. Some have kept the number

of estimators relatively low, such as in Interacting Multiple

Model estimation (IMM) [10], which maintains KFs for

each of the hybrid modes. Multiple model methods have

been extended to a variety of problems including nonlinear

dynamics [11] and non-identity rests [12]. Multiple model

methods are not easily applicable on event-driven hybrid

dynamical systems as one of the core assumptions of these

methods is that the transitions between discrete modes follow

a Markov model, which is not necessarily true when the

probabilities of discrete state transitions are dependent on

the continuous state beliefs.

Alternatively, many methods such as [13,14] have adopted

particle filtering approaches and have used large numbers of

individual estimates to represent a distribution, as opposed

to summary statistics like mean and covariance in the case

of KFs. While these methods have many benefits, including

capturing nonlinear dynamics and non-Gaussian beliefs, the

computational complexity of running a particle filter is far

greater than a simpler Kalman style filter. As such, this

work aims to utilize KFs to maintain the benefits of fast

computation times.

B. Nonlinear Event Mapping and Saltation Matrices

In this paper, the standard KF is augmented with addi-

tional knowledge about the structure of reset maps from the

saltation matrix.

The saltation matrix [15–18] is used to map perturba-

tions through nonsmooth dynamics at the boundary between

modes. Previously, [19] demonstrated the saltation matrix

can be used to map probability distributions through hybrid

transitions and [8] extended this to use in Kalman filtering,

as in (Fig. 1a).

The primary difference in this work is that perfect knowl-

edge of guard locations and reset maps is not assumed. This

is similar to [20] in which they examined the “noisy saltation

matrix” for systems with guards that are time varying with

random low amplitude, zero mean, mean reverting noise.

This paper uses similar time to impact analysis to derive our

guard saltation matrix, which instead views the uncertainty

in guard locations as stationary with an estimated distribution

they are drawn from. This results in a different mapping, as

the noisy saltation matrix views the guard as time varying

(so the velocity of the noise affects the time to impact for the

system), which is not present in our guard saltation matrix.

The other difference is that the noisy saltation matrix does

not assume any sort of distribution, only that information

about time to impact can be extracted. This work assumes

that Gaussian information is known about the guard and

directly determines the time to impact from that distribution.

III. BACKGROUND

A. Hybrid Dynamical Systems

A hybrid dynamical system is a system with both con-

tinuous states, such as positions and velocities, and discrete

states or modes, such as whether a specific limb is in contact

with the ground, in which the sequence of discrete states is

determined by the evolution of the continuous states. More

formally, closely following [21, Def. 2]:

Definition 1. A Cr hybrid dynamical system, for continuity

class r ∈ N>0∪{∞, ω}, is a tuple H := (J , Γ,D,F ,G,R)
whose constituent parts are defined as:

1) J := {I, J, ...,K} ⊂ N is the set of discrete modes.

2) Γ ⊂ J × J is the set of discrete transitions forming

a directed graph structure over J .

3) D := ⨿I∈J DI is the collection of domains,

4) F := ⨿I∈JFI is a collection of Cr time-varying

vector fields, FI : R×DI → T DI .

5) G := ⨿(I,J)∈Γ GI,J(t) is the collection of guards,

where GI,J(t) ⊂ DI for each (I, J) ∈ Γ is defined as

a sublevel set of a Cr function, i.e. GI,J(t) = {x ∈
DI |gI,J(t, x) ≤ 0}.

6) R : R × G → D is a Cr map called the reset that

restricts as RI,J := R|GI,J (t) : GI,J(t) → DJ for

each (I, J) ∈ Γ .

B. Perturbation Analysis and the Saltation Matrix

Within a single mode, the Jacobian of the continuous

dynamics can be used to update the covariance of a distri-

bution. However, at hybrid events, the same method cannot

be used. In order to properly update covariance through a

mode transition, the time to impact of perturbations must be

considered. The saltation matrix includes the time to impact

for covariance updates [15–18]:

Ξx := DxRI,J +
(fJ −DxRI,JfI −DtRI,J)DxgI,J

DxgI,JfI +DtgI,J
(1)



Fig. 2. Uncertainty in guard location changing the relative position of
variations before and after transition. For ease of depiction, the reset map
is shown as identity, but accounting for them is an additive term in the
saltation matrix. This is the basis of the guard saltation matrix.

where Dx and Dt represent Jacobians with respect to state

and time, fI is the linearization of the vector field FI at

the point of impact. The saltation matrix captures both the

effects of the Jacobian of the reset map and variations in

the time a system is acted upon by the dynamics of each

mode. It maps pre-transition variations δx− to post-transition

variations δx+ as, δx+ = Ξxδx
−, and, by extension [8,19],

maps pre-transition covariance in state Σ−
x to post-transition

covariance Σ+
x as:

Σ+
x = ΞxΣ

−
x Ξ

T
x (2)

In order to ensure the saltation matrix is well defined, we

utilize the conventional assumptions from [22, Assumption

1], which most notably includes that transitions are trans-

verse. This ensures that trajectories in a neighborhood of

a guard must transition exactly once at small timescales.

This assumption excludes Zeno behavior from this analysis.

Additionally, we make the assumption that the vector fields

in each mode are extensible beyond the nominal guard as is

done in [20]. This assumption allows us to analyze the effect

of each mode’s dynamics on a trajectory through a guard that

is not at the nominal position.

IV. MODELING UNCERTAINTY IN GUARDS AND RESET

MAPS

A notable limitation of the saltation matrix formulation

is that it assumes perfect knowledge of the structure of

the hybrid system. However, in real applications, the guard

boundaries and reset properties will be uncertain. This work

seeks to capture these uncertainties for covariance propaga-

tion in hybrid systems with uncertainty in the guard (Sec. IV-

A) and reset (Sec. IV-B).

A. Uncertainty in Guard Location

When the location of the guard is unknown along its nor-

mal direction, the post-transition state uncertainty is higher

than if the guard location is perfectly known. The effects of

uncertainty along the guard normal direction can be captured

as an additional rank 1 update to the standard saltation

matrix. Note that the effects of uncertainty in the normal

direction of the guard surface are discussed in (Sec. IV-

B), as the timing elements of uncertainty in normal are

higher order terms that do not show up for a first order

approximation, similar to the curvature of the guard surface.

This section goes through the mathematical derivation of

the guard-uncertainty saltation matrix, using a geometric

derivation similar to the saltation matrix derivation in [17].

Here we consider how pre-impact displacements δx(t−)
in mode I map to post-impact displacements δx(t̃+) in mode

J . To do so, we start by considering how the nominal state

x(t) and a perturbed state x̃(t) evolve from the time the

nominal state reaches the guard before transitioning (t−) to

the time the perturbed state enters the new mode (t̃+). For

simplicity of notation, in this derivation we assume that the

nominal trajectory reaches the guard first, however, the same

result is reached if the opposite assumption is chosen. The

displacements can be expanded as:

δx(t−) = x̃(t−)− x(t−) (3)

δx(t̃+) = x̃(t̃+)− x(t̃+) (4)

For readability, hereafter we use the + and - superscripts

to represent the state at times t̃+ and t−, respectively, e.g.

x+ = x(t̃+). The evolution of these trajectories can be seen

in Fig. 2.

We would like to solve for δx+ as a function of δx−

and known system parameters by using the continuous and

reset dynamics. For this first-order analysis we linearize

the pre-impact dynamics FI about the point x(t−) as fI ,

and similarly we linearize the post-impact dynamics FJ

about the point x(t+) as fJ . Following the linearized hybrid

dynamics forward from time t−, and assuming without loss

of generality that the nominal trajectory impacts the guard

first at time t−, we have:

x+ = RI,J(x
−, t−) + fJδt (5)

that is, the final state is equal to the initial state passed

through the reset map and then following the dynamics of

the new mode for time δt = t̃− t, the time between impact

events, until time t̃+. Similarly, we can follow the hybrid

dynamics forward from x̃− to get:

x̃+ = RI,J(x̃
− + fIδt, t̃

−) (6)

where in this case the perturbed state first flows in the prior

mode until time t̃− and then passes through the reset. Using

the definition of δx− and δt, (6) can be written entirely in

terms of the pre-impact variation and times:

x̃+ = RI,J(x
− + δx− + fIδt, t

− + δt) (7)

Substituting (5) and (7) back into (4) yields:

δx+ =RI,J(x
− + δx− + fIδt, t

− + δt)

−RI,J(x
−, t−)− fJδt (8)



Using the first-order Taylor series expansion of the reset

map about (x−, t−), we can replace this expression with:

δx+ =RI,J(x
−, t−) +DxRI,Jδx

− +DxRI,JfIδt

+DtRI,Jδt−RI,J(x
−, t−)− fJδt (9)

=DxRI,Jδx
− + (DxRI,JfI +DtRI,J − fJ) δt (10)

The next step is to determine what δt is in terms of δx−

and system parameters by examining the dynamics of the

first mode along the guard normal direction, Dxg:

(DxgfI +Dtg)δt = −Dxgδx
− + δg (11)

δt =
−Dxgδx

− + δg

DxgfI +Dtg
(12)

where δg is the perturbation in the guard location along

its normal direction, which holds whether the guard occurs

early or late. Effectively, this means that time is equal to

distance divided by velocity on infinitesimal perturbations.

Note that this additional perturbation δg is the key difference

compared to the derivation of the traditional saltation matrix.

Additionally, it should be noted that this requires the extra

assumption that the dynamics are extensible beyond the

nominal guard surfaces.

Plugging (12) into (10) results in the following expression:

δx+ =

(

DxRI,J +
(fJ −DxRI,JfI −DtRI,J)Dxg

DxgfI +Dtg

)

δx−

+

(

DxRI,JfI +DtRI,J − fJ

DxgfI +Dtg

)

δg (13)

=Ξxδx
− + Ξgδg (14)

where Ξx is the traditional saltation matrix, (1), and Ξg is a

“guard saltation matrix”, defined as:

Ξg :=
DxRI,JfI +DtRI,J − fJ

DxgfI +Dtg
(15)

Note that Ξx = DxRI,J − ΞgDxg, and so Ξg can be

computed as part of computing Ξx. The guard saltation

matrix is a single column vector if δg is only the normal

direction component of guard uncertainty1. Note also that

while (15) was derived assuming the nominal transitions first,

the same expression is obtained if the perturbed trajectory is

assumed to transition first.

This can be used as an extended saltation matrix, which

we call Ξ̂,
[

δx+

δg

]

=

[

Ξx Ξg

0 1

] [

δx−

δg

]

= Ξ̂

[

δx−

δg

]

(16)

Extending now to covariance, as in (2), when using this

saltation matrix with no prior known covariance between the

guard and state, the covariance updates for both the state and

the guard are:
[

Σ+
x Σ+

xg

Σ+
gx Σ+

g

]

= Ξ̂

[

Σ−
x 0
0 Σ−

g

]

Ξ̂T (17)

1For a full dimensional guard uncertainty vector δg−, we have δg =
Dxgδg

−, and can use the matrix (ΞgDxg) as δx+ = Ξxδx
− +

(ΞgDxg)δg−, however note that only the uncertainty along the normal
direction affects the outcome.

where Σx is the state covariance and Σg is the guard covari-

ance. Pulling out the state covariance through an uncertain

guard, we get:

Σ+
x = ΞxΣ

−
x Ξ

T
x + ΞgΣ

−
g Ξ

T
g (18)

The improved covariance estimation of the guard saltation

matrix is shown in Fig. 1b. Note that the covariance of the

uncertain guard distribution is equivalent to the sum of the

covariance of propagating the initial distribution through the

certain guard and the resulting covariance of propagating a

known starting condition through an uncertain guard. For

this trial, the K-L divergence [23] (which is a measure of the

difference between two probability distributions) between the

actual covariance and the estimated is reduced from 402 to

0.03 by including the guard uncertainty propagation terms.

The final error between the true and the estimated covariance

from the guard saltation matrix is caused by the linearization

of the dynamics.

There are trade-offs between using the extended matrix

(17) and directly updating the state covariance (18). Using

the extended matrix requires extending the state and in-

creases the dimensionality of all terms, but it allows for past

measurements to affect knowledge of the guard distribution.

Directly updating the state distribution allows for a simpler

state vector, but assumes that the guard distribution is static.

If repeated behavior near the same region of a guard is

expected, then it would be beneficial to try to estimate the

guard parameters. However, in situations like locomotion

on uneven ground where the system is not expected to re-

traverse the same areas frequently, it makes sense to accept

the mean and covariance as fixed (or calculated separately,

e.g. based on exteroceptive sensor noise) parameters for the

guard surface.

B. Uncertainty in Reset Parameters

Even in cases where the location of the guard is perfectly

known, the exact properties of the reset map may not be

known. Some physical examples of this include the coeffi-

cient of restitution in elastic systems and the precise surface

normal in any contact system. These types of uncertainties

can be handled by parameterizing the reset maps to be

not only functions of state and time, but to also include

other parameters. By including these additional parameters,

the resulting uncertainty in state caused by variations in

reset parameters can be examined through the Jacobian with

respect to these additional parameters.

For this derivation, we re-define the reset map R(x) to

include its “fixed” parameters as arguments R(x, θ). This

θ term can include values like the coefficient of restitution

in the bouncing ball problem. Using this formulation, we

can examine how uncertainty in model parameters can affect

the resulting state estimation covariance after an impact,

updating (5) and (6):

x+ = RI,J(x
−, θ) + fJδt (19)

x̃+ = RI,J(x̃
− + fIδt, θ̃) (20)



Taking the difference between these two to find δx+:

δx+ = RI,J(x̃
− + fIδt, θ̃)− (RI,J(x

−, θ) + fJδt) (21)

Now using first order approximations of the reset map with

the Taylor series expansion, as in (10):

δx+ =RI,J(x
−, θ) +DxRI,Jδx

− +DxRI,JfIδt

+DθRI,Jδθ +DtRI,J(x
−, θ)δt

−RI,J(x
−, θ)− fJδt (22)

=DxRI,Jδx
− + (DxRI,JfI +DtRI,J − fJ) δt

+DθRI,Jδθ (23)

where equality holds to first order.

By using δt from (12), and rearranging into a block matrix,

this becomes:
[

δx+

δθ+

]

=

[

Ξx DθRI,J

0 1

] [

δx−

δθ−

]

(24)

Assuming there is no initial covariance between the state

and the reset map information, this can be used to update

the state covariance with:

Σ+
x = ΞxΣ

−
x Ξ

T
x + (DθRI,J)Σ

−

θ (DθRI,J)
T (25)

where Σ−

θ is the covariance of the θ parameters. Note that,

as was the case with uncertain guard, the covariance of the

uncertain reset distribution is equivalent to the sum of the

covariance of propagating the initial distribution through the

certain reset and the resulting covariance of propagating a

known starting condition through an uncertain reset.

This expression can be used in combination with the

uncertainty in guard location for a total covariance update:

Σ+
x = ΞxΣ

−
x Ξ

T
x + ΞgΣ

−
g Ξ

T
g + (DθR)Σθ(DθR)T (26)

Results demonstrating the improvement over assuming

perfect knowledge of the reset map in uncertainty prop-

agation can be found in Fig. 1c. For this trial, the K-L

divergence between the actual covariance and the estimated is

reduced from 357.6 to 19.8 by including the reset uncertainty

propagation term. Furthermore, combining both guard and

reset uncertainty, Fig. 1d, the K-L divergence between the

actual covariance and the estimated is reduced from 739

to 0.03. The final error between the true and the estimated

covariance is caused by the linearization of the dynamics.

V. KALMAN FILTERING WITH UNCERTAIN

ENVIRONMENT

This section applies the covariance update rules found

in the prior section to the problem of state estimation

using Kalman filtering (summarized briefly in Sec. V-A).

With these more accurate distribution updates through hybrid

events, we can achieve better estimation accuracy. The imple-

mentation details for this “uncertainty aware SKF” (uaSKF)

follow the algorithm for SKF, presented in [8]. The key

differences from the SKF occur during hybrid transition

events. We discuss how to handle these events in both the

process and measurement updates in Sec. V-B and Sec. V-C,

respectively.

A. Kalman Filtering in the Smooth Domains

While the system is not interacting with any guard sur-

faces, the uaSKF behaves as a standard KF or EKF would. In

these cases, the system follows the standard update rules. The

standard KF updates the mean x̂ and covariance Σ̂ estimate

in two steps [24, Eqns. 1.9–1.13]: first, the a priori update:

x̂(k + 1|k) = AI,∆x̂(k) (27)

Σ̂(k + 1|k) = AI,∆Σ̂(k)A
T
I,∆ +WI,∆ (28)

at timestep k+1, where AI,∆ is the discrete dynamic matrix

for FI , ∆ is the discretization timestep, and WI,∆ is the

covariance of the additive Gaussian process noise. Second,

the a posteriori update:

Kk+1 = Σ̂(k + 1|k)CT
I

[

CIΣ̂(k + 1|k)CT
I + VI

]−1

(29)

x̂(k + 1|k + 1) = x̂(k + 1|k) (30)

+Kk+1 [y(k + 1)− CI x̂(k + 1|k)]

Σ̂(k + 1|k + 1) = Σ̂(k + 1|k)−Kk+1CIΣ̂(k + 1|k) (31)

where Kk+1 is the Kalman gain, CI is the measurement

function, y(k + 1) is the measurement, and VI is the

covariance of the additive Gaussian measurement noise.

While the standard Kalman update works well during the

continuous domains, additional consideration has to be taken

for hybrid events. We will now present how to handle hybrid

transitions in both the a priori and a posteriori updates.

B. Uncertainty Aware Hybrid A Priori Updates

In a discretized KF, the hybrid event will most likely

not take place perfectly at the time steps. Accordingly, the

a priori update must include the first mode dynamics, the

discrete update, and the second mode dynamics to bridge the

time from one sample time to the next. Conceptually, what

happens here is three separate updates (or more if multiple

hybrid transitions occur in a single timestep) combined into

one, with the first and final portions following (27)–(28) with

timesteps ∆1 and ∆2, respectively. This does not require

knowledge of the number of impact events in the system

as these updates are driven by the mean estimate reaching

guards, not by ground truth impacts.

The instantaneous mean and covariance updates during the

discrete transition from mode I to J use the following update

rules, using (26) as in [8, Eqns. 16–17]2:

xJ(t) = RI,J(xI(t)) (32)

ΣJ(t) = ΞxΣI(t)Ξ
T
x + ΞgΣgΞ

T
g + (DθRI,J)Σθ(DθRI,J)

T

(33)

By combining this instantaneous update with the standard

KF updates (27)–(28) in the first and second modes, as in

2In the notation of [8, Eqn. 17], we are setting
WR(I,J)

= ΞgΣgΞT
g +DθRΣθDθR

T .







trajectories is 54.7%. Additionally, the maximum percent

improvement in average error magnitude for a timestep is

60.1% at 1.9s.

VII. CONCLUSION AND FUTURE WORK

In this work we derive a first order propagation law for

guard and reset uncertainty by using the guard saltation ma-

trix and a Jacobian of the reset map. This uncertainty aware

method outperforms the standard saltation matrix method

at estimating resulting probability distributions simulated

through uncertain hybrid guards and reset maps. We then

use this propagation law in the uncertainty aware SKF and

achieved lower estimation error than the standard SKF. The

uncertainty aware SKF reduces the average estimation error

overall, with up to 24-60% improvement after impact events.

While these results aid in updating the covariance once a

transition is believed to have occurred, there is still the prob-

lem of determining whether mode transitions have occurred.

Future work will extend these results to include explicit

reasoning about which mode the system is in. One potential

approach for reasoning about whether mode transitions have

occurred is to modify multiple model estimation methods

[10–12] to account for variable transition probabilities based

on the estimated position relative to guard locations.

Additionally, this work handles single mode transitions

and multiple mode transitions with known mode sequences.

This can be extended to reasoning about simultaneous (or

near simultaneous) contact utilizing the Bouligand derivative

[18,27], which encodes multiple potential contact sequences.
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