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ABSTRACT

Many combinatorial optimization problems, including maximum
weighted matching and maximum independent set, can be approxi-
mated within (1+e€) factors in poly(log n, 1/€) rounds in the LOCAL
model via network decompositions [Ghaffari, Kuhn, and Maus,
STOC 2018]. These approaches, however, require sending mes-
sages of unlimited size, so they do not extend to the more realistic
CONGEST model, which restricts the message size to be O(log n)
bits. For example, despite the long line of research devoted to the
distributed matching problem, it still remains a major open problem
whether an (1 — €)-approximate maximum weighted matching can
be computed in poly(logn, 1/€) rounds in the CONGEST model.

In this paper, we develop a generic framework for obtain-
ing poly(logn, 1/€)-round (1 + €)-approximation algorithms for
many combinatorial optimization problems, including maximum
weighted matching, maximum independent set, and correlation clus-
tering, in graphs excluding a fixed minor in the CONGEST model.
This class of graphs covers many sparse network classes that have
been studied in the literature, including planar graphs, bounded-
genus graphs, and bounded-treewidth graphs.

Furthermore, we show that our framework can be applied to give
an efficient distributed property testing algorithm for an arbitrary
minor-closed graph property that is closed under taking disjoint
union, significantly generalizing the previous distributed property
testing algorithm for planarity in [Levi, Medina, and Ron, PODC
2018 & Distributed Computing 2021].

Our framework uses distributed expander decomposition algo-
rithms [Chang and Saranurak, FOCS 2020] to decompose the graph
into clusters of high conductance. We show that any graph exclud-
ing a fixed minor admits small edge separators. Using this result,
we show the existence of a high-degree vertex in each cluster in an
expander decomposition, which allows the entire graph topology
of the cluster to be routed to a vertex. Similar to the use of network
decompositions in the LOCAL model, the vertex will be able to
perform any local computation on the subgraph induced by the
cluster and broadcast the result over the cluster.
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1 INTRODUCTION

The LOCAL and CONGEST models are two prominent vertex-
centric models for studying distributed graph algorithms. In these
models, vertices host processors and operate in synchronized
rounds. In each round, each vertex sends a message to each of
its neighbors, receives messages from its neighbors, and performs
local computations. The time complexity of an algorithm is defined
to be the number of rounds used. The main difference between the
two models is the restriction on the message size. In the LOCAL
model, we allow messages of unlimited size to be sent across each
link; while in the CONGEST model, an upper bound of O(logn)
bits is imposed on the message size, where n is the number of nodes.
Algorithms designed for the vertex-centric models can be optimized
by Pregel-like systems [75] such as GraphX [56] and Gigraph [54]
to process massive graph data, see [76] for a comprehensive survey.
Since algorithms designed for the CONGEST model use smaller
messages, it is likely they will be converted to more efficient pro-
cesses than their counterparts in the LOCAL model.
Combinatorial optimization problems, such as matching and
independent set, are central in the area of distributed graph algo-
rithms. Many combinatorial optimization problems are known to
be efficiently solvable in the LOCAL model. Ghaffari, Kuhn, and
Maus [49] gave a general framework for approximating packing
and covering integer linear programming problems within (1 + €)
of the optimality in poly(log n, 1/€) rounds. The framework covers,
for example, the maximum weighted matching problem and the
maximum independent set problem. With the recent breakthrough
of Rozhon and Ghaffari [83] on deterministic network decomposi-
tions, their approach can even be implemented deterministically.
The approach of [49], however, requires sending messages of unlim-
ited size, so the complexities of many of these problems remain to
be tackled in the CONGEST model. For example, in contrary to the
LOCAL model, it is still unclear whether a poly(logn, 1/€)-round
(1 — e)-approximate algorithm for maximum weighted matching
exists in the CONGEST model. Moreover, it is known that some
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problems cannot be computed efficiently in the CONGEST model
in general [8, 36]. For example, there is a constant € > 0 such that
finding an (1 — €)-approximate maximum independent set requires
Q(n?) rounds.

Our Contribution. We develop a new tool set for solving combi-
natorial optimization problems in the CONGEST model on a wide
range of sparse network classes that have been studied in the liter-
ature. Our framework applies to any graph classes that are minor
closed, covering many natural graph classes such as planar graphs,
bounded-genus graphs, and bounded-treewidth graphs.

Our approach is as follows. We use an expander decomposition
to decompose the graph into components of high conductance. The
existence of small edge separators guarantees the existence of a
high-degree vertex in each component, which allows the entire
graph topology of the component to be routed to a vertex. Similar
to the use of the network decompositions in the LOCAL model, the
vertex will then be able to solve the problem locally and broadcast
the result over the component.

We show that our framework can be applied to give efficient
algorithms to solve various combinatorial optimization problems,
property testing problems, and graph decomposition problems in
the CONGEST model, narrowing the gaps of these problems be-
tween the CONGEST model and the LOCAL model in H-minor-free
networks.

Notation. Throughout this paper, n = |V| denotes the number
of the vertices and A = maxyecy deg(v) denotes the maximum
degree of the graph G = (V, E) under consideration. We say that
an algorithm succeeds with high probability (w.h.p.) if it succeeds
with probability 1 — 1/poly(n). We write 0(-), Q(-), and O() to

compress a logio(l) n factor.

1.1 Our Results

Matching. A matching is a set of edges that do not share end-
points. Given a weighted graph G = (V, E, w), the maximum weight
matching (MwM) problem is to compute a matching M with the
maximum weight, where the weight of M is defined as >, w(e).
Given an unweighted graph G = (V, E), the maximum cardinality
matching (Mcm) problem is to compute a matching M such that |M|
is maximized. Clearly, the MmcMm problem is a special case of the Mmwm
problem. For MwM, we assume that all the edge weights w(e) are
positive integers, and we write W to denote the maximum weight
maxecg W(e).

In the CONGEST model, [10, 74] showed that a (1 — €) approx-
imate McM can be computed in rounds with exponential depen-
dencies on (1/¢). Very recently, and independently from our work,
[43] showed that a (1 — €)-approximate McM can be computed in
poly(logn, 1/¢) rounds. However, for the MwM problem in gen-
eral graphs, currently the best approximation ratio one can get in
poly(logn, 1/€) rounds is (2/3 — €) by the rounding approach of
[2]. Using exponential in (1/€) rounds, recently [41] showed that
a (1 — e€)-approximate MwM can be computed in general graphs.
Also in bipartite graphs, a (1 — €)-approximate MwM is known to
be obtainable in poly(logn, 1/€) rounds [42, 74].
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On the other hand, in the LOCAL model, many fast
poly(logn, 1/€)-round algorithms for computing a (1 — ¢)-
approximate MwWM in general graphs have been developed [44,
48-50, 62, 79, 83] (see Table 1 in the full version [21] for a
more detailed survey). Using our framework, we obtain the
first poly(logn,1/e)-round algorithms for computing (1 — €)-
approximate MWM in non-trivial graph classes outside bipartite
graphs in the CONGEST model.

THEOREM 1.1. A (1 — ¢)-approximate maximum weighted
matching of an H-minor-free network G can be computed
in ¢900 logo(l)n rounds with high probability in the
CONGEST model.

Throughout the paper, although the hidden leading constant in
the round complexity of our H-minor-free networks algorithms de-
pend on H, we emphasize that the constants O(1) in the exponents
of the round complexity oM logo(l) n are independent of H.

Maximum Independent Set. An independent set is a set of non-
adjacent vertices. The maximum independent set (MAXIS) problem
is to find an independent set whose cardinality is maximum over
all possible independent sets. Note that a maximal independent set
is a (1/A)-approximation to the MAXIS problem. Therefore, in the
CONGEST model, a (1/A)-approximate solution can be computed
in MIS(n, A) time, where MIS(n, A) is the number rounds needed to
compute a maximal independent set in the CONGEST model. The
weighted version of the problem was considered in [10], and they
gave an algorithm that finds a (1/A)-approximate weighted MaxIS
in O(MIS(n, A) - log W) rounds, where W is the maximum weight.
Later, it was shown in [66] that a ((1—¢€)/A)-approximate weighted
MaAXIS can be computed in poly(loglogn) - O(1/¢) rounds with
high probability. Moreover, they also showed that a ((1 — €)/8a)-
approximate weighted MAXIS in graphs of arboricity a can be
obtained in O(log n/e) rounds with high probability. For the un-
weighted version, [66] also showed that a ((1 — €)/A)-approximate
MAXIS can be computed in O(1/¢€) rounds with high probability
when A < n/logn.

In the LOCAL model, Ghaffari, Kuhn, Maus [49] showed that
an (1 — €)-approximation to the MAxIS problem can be computed
in poly(logn, 1/€) rounds. No analogous (1 — €)-approximation
algorithms are known in the CONGEST model as there are lower
bounds showing algorithms with constant approximation ratios
require 72 younds (8, 36]. Using our framework, we show:

THEOREM 1.2. A (1 — ¢)-approximate maximum independent set
of an H-minor-free network G can be computed in 00 logo(l) n
rounds with high probability and ¢~O(1) 20(Vlognloglogn) 5, g
deterministically in the CONGEST model.

Correlation Clustering. The correlation clustering problem intro-
duced by Bansal, Blum, and Chawla [9] is known to have various
applications in spam detection, gene clustering, chat disentangle-
ment, and co-reference resolution [6, 13, 23, 37, 38]. In this problem,
each edge is labeled with a positive label or a negative label that
denotes whether the two endpoints of the edge are positively cor-
related or negatively correlated.

The goal is to partition the vertices V into clusters V1, Va, -+, Vi
such that they are as consistent with the labels as possible. Let E*
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denote the positively-labeled edges and E~ denote the negatively-
labeled edges. There are two versions of the problem: In the agree-
ment maximization version, the goal is to maximize Zf:l [E* N
(Vi x V)| + lei<jsk |[E~ N (V; x VJ)| In the disagreement mini-
mization version, the goal is to minimize 2;11 [E- N (Vi x V)| +
Yi<i<j<k |[E* N (Vi X Vj)|. Note that two versions of the problem
are equivalent if one is looking for the exact solution.

We focus on approximate solutions for the agreement maximiza-
tion version of the problem. In the centralized setting, the problem
is shown to be APX-Hard in general graphs [22, 39]. In particular,
Charikar, Guruswami, and Wirth [22] showed that it is NP-hard to
approximate the problem within a factor of 115/116+¢€ for any € > 0.
On the positive side, they gave a 0.7664-approximation algorithm
for the problem. Later, Swamy [85] gave a 0.7666-approxmation
algorithm for the problem. In the distributed setting, while there
are O(1)-approximation parallel algorithms on complete graphs
[14, 23, 80] for the disagreement minimization problem, to our
knowledge, no efficient algorithms for the CONGEST model or the
LOCAL model have been proposed outside of complete graphs for
both versions of the problem.1 Using our framework, we show:

THEOREM 1.3. A (1 — ¢)-approximate agreement maximiza-
tion correlation clustering of an H-minor-free network G can
be computed in 00 logo(l)n rounds with high probabil-
ity and e=O()20(Vlognloglogn) yo,nds deterministically in the
CONGEST model.

In addition to approximation algorithms for combinatorial opti-
mization problems, we demonstrate applications of our framework
to the realm of property testing and graph decompositions.

Property Testing. A graph property ¥ is a set of graphs. We say
that a graph G has property P if G € . We say that an n-vertex
graph G = (V, E) is e-far from having property # if removing and
adding at most €|E| edges cannot turn G into a graph in #. The
study of property testing in the distributed setting was initiated
by Censor-Hillel, Fischer, Schwartzman, and Vasudev [17]. We say
that a distributed property testing algorithm A for a property #
with proximity parameter ¢ is correct if it satisfies the following.

o If G has property %, then all vertices output Accept.
o If G is e-far from having property %, then at least one vertex
outputs Reject.

Levi, Medina, and Ron [72] showed an ¢ () . O(log n)-round
randomized distributed algorithm for property testing of planarity
in the CONGEST model with one-sided error. If G has property P,
then all vertices output Accept. If G is e-far from having property
P, then at least one vertex outputs Reject with high probability.
Their algorithm uses the distributed planarity testing algorithm of
Ghaffari and Haeupler [45] as a subroutine.

Using our framework, we give a simple proof that distributed
property testing of planarity can be solved in poly(1/e, logn)
rounds in the randomized setting and in n°(!) . poly(1/¢) rounds
in the deterministic setting. More generally, our algorithm can be
generalized to testing an arbitrary minor-closed graph property
that is closed under taking disjoint union.

!t is, however, not hard to see that a poly(log n, 1/€)-round (1 — €)-approximate

algorithm for the agreement maximization problem in general graphs can be obtained
via low diameter decompositions in the LOCAL model.
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THEOREM 1.4. Distributed property testing for any minor-closed
graph property P that is closed under taking disjoint union
can be solved in ¢ O logo(l)n rounds with high probabil-
ity and ¢~ O 20(Vlognloglogn) voynds deterministically in the
CONGEST model.

Graph Decompositions. An (¢, D) low-diameter decomposition of a
graph G = (V, E) is a partition of the vertex set V = ViUV, U- - UV}
such that the number of inter-cluster edges is at most ¢|E| and the
diameter of the induced subgraph G[V;] is at most D for each
1<i<k

It is well-known [1, 40, 68] that for any H-minor-free graph, a
low-diameter decomposition with D = O(¢™!) exists, where the
hidden constant in O(-) depends only on H. It is straightforward to
see that the inverse linear dependence D = O(e™!) on « is the best
possible by considering cycle graphs.

In the distributed setting, Czygrinow, Han¢kowiak, and Wawrzy-
niak [29] designed a distributed algorithm that computes a low-
diameter decomposition with D = 00 jn 0. O(log™ n)
rounds for planar networks. Their algorithm also applies to the
edge-weighted setting where the guarantee of the algorithm is that
the summation of the weights of inter-cluster edges is at most ¢-
fraction of the summation of the weights of all edges. Although
they presented their algorithm in the LOCAL model, the algorithm
also works in the CONGEST model. Levi, Medina, and Ron [72]
also designed a distributed algorithm that computes a low-diameter
decomposition with D = e 0 jn 00 . O(log n) rounds for H-
minor-free networks, which is used in their distributed algorithm
for property testing of planarity.

Using our framework, we improve the inverse polynomial de-
pendence D = e 9 on ¢ to the optimal D = O(¢™!). We present a
simple proof that a low-diameter decomposition with D = O(e7})
can be computed in £79(1 log®™) 1 rounds with high probabil-
ity and ¢~ ©Q(1)20(Vlognloglogn) y5unds deterministically in the
CONGEST model.

THEOREM 1.5. Given an H-minor free network, a low-diameter
decomposition with D = O(e™!) can be computed in g0 logo(l) n
rounds with high probability and ¢~O(1) 20(Vlognloglogn) 1o, g
deterministically in the CONGEST model.

1.2 Our Framework

Our framework of algorithm design is based on the recently devel-
oped distributed constructions of expander decompositions in the
CONGEST model [19, 20]. We say that a graph is an ¢-expander if
its conductance is at least ¢. An (¢, ¢) expander decomposition of
a graph is a removal of at most ¢ fraction of the edges such that
each remaining connected component is an ¢-expander. Intuitively,
the conductance of a graph measures how well-connected it is. In
particular, any random walk converges quickly to its stationary dis-
tribution in a high-conductance graph. Expander decompositions
have a wide range of applications in theoretical computer science,
including linear system solvers [84], unique games [7, 81], minimum
cut [67], property testing [55, 69], and dynamic algorithms [24, 78].

We say that H is a minor of G if H can be obtained from G by
iteratively removing vertices and edges and contracting edges. We
write H < G if H is a minor of G. We say that G is H-minor-free if
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H £ G. A class of graphs G is minor-closed if G € G implies H € G
for any H < G. Many natural graph classes, such as planar graphs,
bounded-genus graphs, and bounded-treewidth graphs, are minor-
closed. The graph minor theorem of Robertson and Seymour [82]
implies that for any minor-closed family of graphs G, there exists
a finite set of forbidden minors H such that G ¢ G if and only if
H < G for some H € H. For example, if G is the set of all planar
graphs, then H = {Ks, K3 3}. That is, G is planar if and only if G is
K3 3-minor-free and Ks-minor-free. The graph minor theorem also
implies that a minor-closed family of graphs must be a subset of
the family of H-minor free graphs for some fixed graph H.

In this paper, we focus on the class of H-minor-free networks
for any fixed H. The idea of our framework is that we want to use
expander decompositions in the CONGEST model in a way similar
to the use of low-diameter decompositions [73, 83] in the LOCAL
model. That is, for each low-diameter cluster V;, we want to gather
the graph topology G[Vi] to a vertex o} € V; so that v} can run
any sequential algorithm on G[V;] locally and broadcast the result
to all other vertices in V;. This approach clearly requires sending
messages of unlimited size in the general case.

An edge separator of a graph is a cut {S,V \ S} such that
min{|S|, |V \ S|} = |V|/3. The size of an edge separator {S, V' \ S} is
the number of edges crossing S and V' \ S. If G[V;] is an ¢-expander
and admits a small edge separator, then there must exist a high-
degree vertex o] € Vj, so the connectivity property of a #-expander
allows us to design an efficient routing algorithm to let ] gather
the entire graph topology of G[V;]. These properties are shown in
Section 2.

It is known [33, 77] that planar graphs admit an edge separator of
size O(4/A|V|). More generally, any graph that can be embedded on
a surface of genus g has an edge separator of size O(4/gA|V]) [86].In
this paper, we generalize these results to show that all H-minor-free
graphs admit an edge separator of size O(4/A|V]), so the approach
discussed above is applicable to all H-minor-free graphs.

THEOREM 1.6. For any H-minor-free graph G = (V,E), there is a
cut S such that min{|S|, |V \ S|} > n/3 and |3(S)| = O(VAn), where
the hidden constant in O(-) depends only on H.

1.3 Applying Our Framework

We show that by using our framework, many unweighted opti-
mization problems can be approximated within (1 + €) factors in
a straightforward manner. Then, we use the Mwm problem as an
example to demonstrate that our framework can be applied to solve
weighted problems as well.

Unweighted Problems. As a warm up, to illustrate how our frame-
work can be used, we first describe how to use our framework to ob-
tain simple poly(1/e,log n)-round (1 — €)-approximate algorithms
for mcM in planar graphs, as well as other unweighted problems
such as the MaxIS problem and the correlation clustering problem
in H-minor-free graphs.

The idea behind these algorithms is very simple. If the size of an
optimal solution is linear in the number of vertices, then we can
simply let each cluster of an expander decomposition to compute
its local optimal solution by letting a high-degree vertex in the
cluster learn the graph topology of the cluster. We just need to show
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that ignoring the €|E| inter-cluster edges only worsens the quality
solution by a factor of at most (1—¢). It is conceivable that this holds
for many unweighted problems. Indeed, this is true for the MaxIS
problem in O(1)-arboricity graphs and the agreement maximization
correlation clustering problem in general graphs, so our framework
immediately gives efficient (1 — ¢)-approximate algorithms for
these problems in H-minor-free graphs, see Sections 3.1 and 3.3 for
details.

For the case of the McM problem, the size of an optimal solution
is not linear in the number of vertices in general, but it is possible
to preprocess the graph so that the size of an optimal solution
is linear in the number of the vertices by using the preprocessing
procedure of [27] for planar graphs. By doing so, we obtain a (1—¢)-
approximate algorithm for McMm on planar graphs. We describe such
an approach in Section 3.2.

Weighted Matching. Extending the framework to weighted prob-
lems is significantly more challenging, because when applying the
expander decomposition in Theorem 2.6 we do not have control
over which edges we will remove. For unweighted problems, the
€|E| edges that we remove usually can only cause a small degrade
on the optimal solution. However, in the weighted problem, the
small fraction of edges could have very high weights. As a result,
the optimal solution could become much worse after removing
those edges.

To overcome this obstacle, instead of applying the decomposi-
tion only once in the beginning, we embed our method into Duan
and Pettie’s sequential scaling algorithm [34] for approximating
MwM. Roughly speaking, their scaling algorithm is a primal-dual
algorithm that consists of multiple iterations. It processes the sub-
graphs from the ones induced by higher weight edges to the ones
induced by lower weight edges over the iterations. Each iteration
consists of non-trivial steps such as the augmentation step as well
as the blossom shrinking step that are not easily implementable
in the CONGEST model, but implementable in linear time in the
centralized setting. For example, the augmentation step involves
finding a maximal set of augmenting paths in the working sub-
graph. Since the length of an augmenting path can as large as ©(n),
it would not be possible to find it in poly(logn, 1/€) rounds in the
CONGEST model.

We apply our expander decomposition framework to the work-
ing subgraph before some of the non-trivial steps. Instead of phys-
ically removing the inter-component edges from the graph, we
add or subtract a small weight to the edges so they are no longer
the “tight” edges (i.e. the edges in the working subgraph) in the
primal-dual algorithm. We show that adding or subtracting the
small weights would only degrade the optimal solution slightly.
Moreover, we show this allows us to process each component inde-
pendently (e.g. the long augmenting paths mentioned in the previ-
ous paragraph would be broken). Each component can then route
the topology to a vertex and let the vertex perform the non-trivial
steps locally and broadcast the result back.

This summarizes the high-level idea. However, there are several
technical challenges such as that the expander decomposition may
cut through some intermediate structures (i.e. the active blossoms).
In addition, similar to the aforementioned unweighted case, we
also need to preprocess the working subgraph before running the
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expander decomposition to ensure the number of inter-component
edges is small relative to the solution. The planar graph prepro-
cessing procedure of [27] does not work for H-minor free graphs
in general. We discuss how we resolve these issues in the full ver-
sion [21] of the paper.

1.4 Related Work

Chang, Pettie, Saranurak, and Zhang [19] gave the first application
of expander decompositions to the CONGEST model of distributed
computing. They designed a distributed algorithm for constructing
an expander decomposition and applied it to give a near-optimal
distributed algorithm for the triangle listing problem, based on the
following framework. First construct an (¢, ¢) expander decomposi-
tion to partition the vertex set V = VUV, U- - .UV} into ¢-expanders.
Using existing routing algorithms [51, 52] for ¢-expanders, existing
distributed triangle listing algorithms that make use of non-local
communication can be simulated in ¢-expanders with small over-
head. Based on this approach, all triangles containing at least one
edge in G[V;] can be listed efficiently, for all high-conductance
clusters G[V;] in parallel. Finally, the remaining e-fraction of the
inter-cluster edges are handled using recursive calls.

Subsequent to the work of [19], expander decomposition has
been applied to numerous other problems in the CONGEST model
via this framework of algorithm design [16, 18, 35, 63, 70]. So far, all
applications of distributed expander decomposition have been con-
fined to the distributed subgraph finding problems [15], except the
work of Daga, Henzinger, Nanongkai, and Saranurak [32], where
they designed a sublinear-round exact min-cut algorithm in the
CONGEST model by incorporating distributed expander decompo-
sition into the sequential min-cut algorithm of Kawarabayashi and
Thorup [67].

Distributed Algorithms on Minor-closed Networks. Many real-
world networks have sparse structures. Over the past few years,
much of the research effort has been devoted to designing efficient
distributed algorithms in LOCAL and CONGEST utilizing struc-
tural properties of sparse networks, and many natural graph classes
studied in the literature, such as planar graphs, bounded-genus
graphs, and bounded-treewidth graphs, are minor-closed, so they
can be characterized by a finite list of excluded minors.

Distributed Approximation. There is a long line of research study-
ing distributed approximation on graphs with an excluded mi-
nor [3, 5, 12, 25-31, 71, 88]. Czygrinow, Hani¢kowiak, and Wawrzy-
niak [29] showed that an (1+¢)-approximation of maximum match-
ing, maximum independent set, and minimum dominating set of a
planar graph can be constructed in O(log* n) rounds deterministi-
cally in the LOCAL model, for any constant ¢ > 0. The algorithm for
minimum dominating set was later extended to k-dominating set
on bounded-genus graphs [5, 29, 30]. These algorithms are based
on a generic approach [5, 25, 26, 29-31] using low-diameter de-
compositions. A common ingredient shared by all these algorithms
is a computation of an (1 * ¢)-approximate solution of each low-
diameter cluster via a brute-force information gathering, requiring
sending unbounded-size messages and confining all these algo-
rithms to the LOCAL model. Our framework which is based on
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expander decompositions provides an opportunity to extend this
line of research to the CONGEST model.

Low-congestion Shortcuts and its Applications. There is a line of
work designing efficient algorithms on networks with an excluded
minor via low-congestion shortcuts [46, 47, 53, 57-61]. Given a
partition of the vertex set V of a graph G = (V, E) into connected
clusters V.= V; UV, U --- U Vg, a low-congestion shortcut with
congestion c and dilation d is a set of subgraphs Hy, Hy, ..., H
such that the diameter of G[V;] + H; is at most d and each edge
belongs to at most ¢ subgraphs H;. Here G[V;] + H; denotes the
subgraph of G induced by the union of the edges in G[V;] and H;.
For any clustering of an H-minor-free graph, there is an O(D)-
round CONGEST algorithm computing a low-congestion shortcut
with ¢ = O(Dlogn) and d = O(D), where D is the diameter of the
graph [47]. As a result, many graph problems, including minimum
spanning tree, minimum cut, and shortest-path approximations,
can be solved in near-optimal O(D) rounds in CONGEST on any
H-minor-free graph [46, 57].

The type of problems efficiently solvable via low-congestion
shortcuts is fundamentally very different from the type of problems
efficiently solvable via our framework. Low-congestion shortcut is
useful in designing near-optimal O(D)-round algorithms for global
problems that already require Q (D) rounds to solve. Our framework
is useful in designing algorithms that take logo(l) nor n° rounds
for local problems that do not have the Q(D) lower bound.

1.5 Organization

Our framework of algorithm design based on expander decom-
positions is presented in Section 2. Using this framework, in Sec-
tion 3, we give poly(1/¢,log n)-round randomized algorithms and
no() . poly(1/¢)-round deterministic algorithms for various opti-
mization, property testing, and graph decomposition problems on
planar or H-minor-free networks, proving Theorems 1.2 to 1.5. Due
to the page constraint, the proofs of Theorems 1.1 and 1.6 are left
to the full version [21] of the paper.

2 GRAPH PARTITIONING

Let G = (V, E) be a graph. Consider the following graph terminol-
ogy regarding a subset S C V.

vol(S) = Z deg(v),
veS

3(S) = E(S,V\S)
={e={uov} €E|{uwo}NS#0and {u,0} N (V\S) # 0},

0,
o(5) = {L
min{vol(S),vol(V\S) }’

S=0orS=V,
S#0andS # V.

We call vol(S) the volume of the vertex set S. When S is interpreted
as acut {S,V \ S}, we call ®(S) the conductance of the cut S.

Graph Conductance. The conductance of a graph G is defined as

?(G) = a(S).

min
SCV s.t. S#0 and S#V

In other words, ®(G) is the minimum value of ®(S) over all non-
trivial cuts S C V.
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Mixing Time. A uniform lazy random walk starting at a vertex
v € V is described by the following probability distribution, where
N (u) denotes the set of neighbors of u.

pg(u) = {

1, u=u,
0, u#o,
Z pii(w), for ix>1.

v I % 1
O(u) = = - p% , (u) + —— -
pl( : 2 pl_l( : 2 deg(u) weN (u)

If G is connected, then the stationary distribution of a uniform
lazy random walk is 7 (u) = deg(u)/vol(V), regardless of the start-
ing vertex v. The mixing time tyix(G) of G is defined as the mini-
mum number ¢ such that [p?(u) — 7(u)| < 7(u)/|V| forallu € V
and v € V. The following relation [64] between the mixing time
Tmix (G) and conductance ®(G) is well-known:

6 1
i )-

log |V
(G)?

Expander Decompositions. We say that G is an ¢-expander if
®(G) = ¢. An (¢, ¢) expander decomposition of a graph is a removal
of at most ¢ fraction of the edges such that each remaining con-
nected component has conductance at least ¢. Formally, an (¢, ¢)
expander decomposition of G is a partition E = EyUEaU- - -UE, UE"
of the edge set E meeting the following requirements.

) < Tmix(G) < 8(

o The set of inter-cluster edges E" satisfies |E"| < ¢|E|.

e We write V; C V to denote the set of vertices incident to
an edge in E;. It is required that V. = VUV, U --- U V.
partitions the vertex set V and G; = (V;, E;) has conductance
O(Gj) > pforeach1 <i < k.

Existentially, it is well known that for any n-vertex graph, an
(€, ¢)-expander decomposition exists for any 0 < € < 1 and ¢ =
Q(e/logn) [55, 65, 84], and this bound is tight. After removing
any constant fraction of the edges in a hypercube, some remaining
component must have conductance at most O(1/logn) [4].

The following distributed algorithms for constructing expander
decompositions are due to Chang and Saranurak [20].

THEOREM 2.1. For any 0 < ¢ < 1, an (¢, ¢) expander decom-
position of a graph G = (V,E) with ¢ = ©0 log_o(l) n can be

constructed in e~©(1) logo(l) n rounds with high probability.

THEOREM 2.2. Forany0 < ¢ < 1, an (¢, ¢) expander decomposi-
tion of a graph G = (V, E) with ¢ = £0(1) 2O (Vlognloglogn) ¢4 pe
constructed in e~O(1) 20(Vlognloglogn) o, nds deterministically.

2.1 Existence of a High-degree Vertex

LetE = E{UEyU- - -UEi UE" be any (¢, ¢) expander decomposition.
Let G; = (V;, E;) be the subgraph of G induced by E;. Let A; be the
maximum degree of the graph G;. Recall that V =V, UV, U--- UV,
partitions the vertex set V and observe that G; is a subgraph of
G[V;], the subgraph of G induced by the vertex set V;. We will
show that if G is H-minor-free, then there must exist a vertex
in each G[V;] whose degree is Q(¢?)|V;| for any (¢, $) expander
decomposition of G.

Edge Separators. An edge separator of a graph is a cut {S,V \ S}
such that
min{|S|, [V \ S|} > |V|/3.
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The size of an edge separator is the number of cut edges [9(S)|. In
the full version [21] of the paper, we show that any H-minor-free
graph G admits an edge separator of size O(4/A|V|), where the
hidden constant in O(-) depends only on H. The following lemma
is a consequence of this result.

LEMMA 2.3. IfG is H-minor-free, then A; = Q(¢?)|V;| for each
cluster G; = (V;, E;) of any (&, ¢) expander decomposition of G. The
hidden constant in Q(-) depends only on H.

Proor. We focus on the H-minor-free graph G; = (V;, E;) in the
proof. Consider any O(~y/A;|V;|)-size edge separator S of G;. The
fact that min{|S|, |V; \ S|} > |Vi|/3 implies

min{vol(S), vol(V; \ §)} = min{|S], [V; \ S|} = Q(|Vi)),

and hence

[o(S)]
< O(Gy) <P(S) =
¢ < ®(Gi) < &(5) min{vol(S), vol(V \ S)}
-0 Ail Vi Ai ’
Vi Vil
which implies A; = Q(¢2)|V;|. o

2.2 Routing

Select v} as any vertex v € V; that has the maximum degree A; in
G;. We show that the bound given by Lemma 2.3 implies an efficient
algorithm for o to learn the entire graph topology of G[V;].

Expander Routing. Consider a routing task where each vertex v
is the source and the destination of at most L - deg(v) O(log n)-bit
messages. If G is an ¢-expander, then such a task can be solved
in L - Tyix - 20(\/@) =L-¢%. 20(‘/@) rounds with high
probability [51, 52] or L - ¢~ OV . 20(log”* nlog'*logn) younds de-
terministically [20].

nlog

Edge Density of H-minor-free Graphs. The edge density of a graph
G is |E|/|V|. It is well-known that any H-minor-free graph has
edge density O(1), where the constant O(1) depends only on H.
Specifically, Thomason [87] showed that any K;-minor-free graph
G = (V,E) satisfies |E| = O(t+/logt)-|V|. Moreover, Barenboim and
Elkin [11] showed that given an upper bound d on the edge density
of a graph G = (V, E), its edge set E can be oriented such that the
out-degree of each vertex is at most O(d) in O(log n) rounds. As a
result, for any H-minor-free graph G, in O(log n) rounds we can
orient its edges such that each v € V; has out-degree O(1).

Information Gathering. In view of the above discussion, the task
of letting v} learn the entire graph topology of G[V;] can be reduced
routing O(1) messages of O(logn) bits from each v € V; to v}, as
we can first spend O(log n) rounds to find an edge orientation of
G[Vi] with O(1) out-degree, and then each vertex v € V; only has
to send information about its outgoing edges in G[V;] to v}.

By Lemma 2.3, if G is H-minor-free, then the degree of U;‘ in
Gi = (Vi,Ep) is Q(¢?)|Vil, so the number of O(logn)-bit mes-
sages sent to v} in this routing task is 0(¢p7?) - degg, (07). There-
fore, using expander routing, this routing task can be solved in
$2- 20(Vlogn) 1ounds with high probability [51, 52] or ¢_O(1) .
20(log”’* nlog'/* log n) rounds deterministically [20].
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We provide faster randomized and deterministic algorithms for
this task in Lemmas 2.4 and 2.5. Due to Lemma 2.3, the conditions
in Lemmas 2.4 and 2.5 are satisfied. In these lemmas, n denotes the
number of vertices in the underlying network G, not the number of
vertices in one cluster G;. The above discussion on the edge density
of H-minor-free graphs implies that for any H-minor-free graph
G, the degree of v} in G; = (V;, E;) is Q) |Vi| = Q(¢?)|E;| by
Lemma 2.3.

LEMMA 2.4. Suppose degg (vF) = Q(¢%)|E;|. In O(¢™*log’ n)
rounds, an O(log n)-bit message from each v € V; can be routed via
the edges E; to v} with high probability.

Proor. The algorithm runs a lazy random walk of length
O(¢~*log? n) from each vertex v € V; in parallel. We claim that
each step of the lazy random walk can be simulated in O(log n)
rounds with probability 1 — 1/poly(n), so the overall round com-
plexity is O(¢~*log> n). To prove this claim, observe that for each
edge e € E; and for each j, the expected number of random walks
traversing e in the jth step is O(1), so a Chernoff bound implies
that this number is at most O(log n) with probability 1 —1/poly(n).
By a union bound over all e € E; and 1 < j < O(¢~*log? n), the
number of O(log n)-bit messages sent along each edge in each step
is O(log n) with probability 1 — 1/poly(n).

For the correctness of the algorithm, we show that with prob-
ability 1 — 1/poly(n) each random walk passes v}, so in the end
o} receives all the messages. After 7y = O(¢?logn) lazy ran-
dom walk steps, it lands at a random vertex according to the
degree distribution 7w(u) = degg, (v)/2|Ei|, up to a small addi-
tive error +7(u)/n. In particular, it lands at o} with probability
Q(degGi(v;‘)/|Ei|) = Q(¢?). Thus, after s = O(¢~2 log n) segments
of random walks of length 7., = O($~% log n), the probability that
the walk never reach o is at most (1 - Q(¢?))* = n~ QM O

LEMMA 2.5. Suppose degg, (vf) = Q(¢?)|E;|. In O(¢~18) -
20WVl0g ") ounds, an O(log n)-bit message from eachv € V; can
be routed via the edges E; to v} deterministically.

Proor. Although this routing task can be solved in ¢—O(1) .

2/3 1/3 . .
20(log™" nlog'"logn) 1ounds using deterministic expander rout-

ing [20], we provide a faster and more direct algorithm via an
almost maximal flow algorithm [20, Lemma D.10].2

In order to apply [20, Lemma D.10], we need to do some pre-
processing to the graph G;. Let G/ be the result of replacing each
vertexv in G; by a deg, (v)-vertex graph X, with ©(1) conductance
and ©(1) maximum degree in such a way that the deg, (v) edges
in E; incident to o are attached to distinct degg, (v) vertices in Xj.
Observe that the new graph G; has maximum degree O(1).

Define the sparsity of a cut S of a graph G = (V,E) as ¥(S) =
m if S # 0 and S # V. Define the sparsity of a graph
G = (V,E) as the minimum sparsity over all cuts S € V with S # 0
and S # V. Then we must have ¥(G;) = ©(®(G;)) = Q(¢) [20,
Lemma C.2].

Next, define G/’ as the result of replacing each vertex u € Xo:

by an O(¢~2)-vertex graph Y, with ©(1) conductance and ©(1)

2See the full version arXiv:2007.14898v1 of [20].
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maximum degree such that T = J,ex,, Yu constitutes more than

half of the vertices in G/’ It is clear that the new graph G/’ has
sparsity Q(¢*) [20, Lemma C.1] and maximum degree O(1).
Now, let S be the vertices in G’ that are not in T. Then the
original routing problem is reduced to finding a set of paths from
each v € S to an arbitrary vertex in T. Suppose that this set of paths
satisfies that the maximum path length is d and each vertex belongs
to at most ¢ paths, then the routing can be done with an additional
O(cd) rounds. As |S| < |T|, [20, Lemma D.10] shows that such a set
of paths with ¢ = O(Ay~1log®/? n) and d = O(A2y~2) . 20(Viogn)
can be found in t = O(A%y~) - 20(Vlogn) rounds. Here A = 0(1)
is the maximum degree and i = Q(¢?) is the sparsity. Therefore,
the overall round complexity of routing is O(t + c¢d) = O(¢p~18) -

90 (\logn). O

Observe that the routing algorithms of Lemmas 2.4 and 2.5 can
also be used to deliver an O(log n)-bit message from o to each
vertex v € V; in G; by reversing the routing procedure.

2.3 Summary

We summarize our results as a theorem.

THEOREM 2.6. Given any parameter 0 < € < 1, there is an algo-
rithm for finding a partition V. =V; U Vo U --- U Vi of the vertex set
of an H-minor-free graph G = (V, E) with the following properties.
Inter-cluster Edges: The number of inter-cluster edges is at most

emin{|V|, |E|}.

Construction Time: The round complexity for partitioning the
graph is 00 logo(l) n in the randomized setting and is
g0 20(lognloglogn) i the deterministic setting.

Routing Time: Each cluster V; has a leader v} € V; that knows
the entire graph topology of G[V;]. Furthermore, we can let
o} exchange a distinct O(log n)-bit message with each vertex

veVine 00 logo(l) n rounds in the randomized setting

and in e~ 20(Wlognloglogn) ounds in the deterministic
setting.

Proor. Since G is H-minor-free, there is a constant t = O(1)
depending only on H such that |E|/|V| < t [87]. The partition V =
ViUV, U--- UV is constructed using the expander decomposition
algorithms of Theorems 2.1 and 2.2 with parameter ¢’ = ¢/t < ¢, so
the requirement on the construction time is met. The upper bound
on the number of inter-cluster edges ¢’|E| = ¢|E|/t < ¢|V| follows
from the definition of an (¢, ¢) expander decomposition.

For each cluster G; = (V;, E;) in the expander decomposition, in
O(¢~'logn) rounds the vertices in G; can select a vertex vy €V
that has the maximum degree in G;. The algorithm for selecting
v;‘ is as follows. In the first step, each vertex v in G; broadcasts
(ID(v), degg, (v)) to its neighbors in G;. After that, in each round
each vertex v maintains a pair (ID(u), degg, (u)) that has the high-
est degg, (u) over all pairs that v has received, breaking the tie by
comparing ID(u), and v broadcasts this pair (ID(u), degg, (u)) to
all its neighbors in G;. The graph G; has diameter O(¢~! log n) be-
cause G; is an ¢-expander. Therefore, after O(¢~! log n) rounds
of communication, all vertices in G; agree with the same pair
(ID(u), degg, (u)) and we may set o] = u.



Session 6

For learning the graph topology of G[V;] and routing, we ap-
ply the routing algorithms of Lemmas 2.4 and 2.5 to G[V;], in
parallel for all 1 < i < k. In view of Theorems 2.1 and 2.2,
we use ¢ = £ log_o(l) n in the randomized setting and
¢ = ¢9(1)p-O(lognloglogn) i the deterministic setting. Due to
Lemma 2.3, the conditions in Lemmas 2.4 and 2.5 are satisfied. The
requirement on the routing time is met in view of the round com-
plexities specified in Lemmas 2.4 and 2.5. O

The Behavior of a Failed Execution. We briefly discuss the behav-
ior of the algorithm of Theorem 2.6 when it fails. For example, if G
is not H-minor-free, then the algorithm of Theorem 2.6 might not
work successfully. Note that the choice of the parameter ¢ in the
algorithm of Theorem 2.6 depends only on H, regardless of whether
the underlying graph is H-minor-free.

Even if G is H-minor-free, the algorithm might fail with a prob-
ability of 1/poly(n) in the randomized setting. Understanding the
behavior of a failed execution of the algorithm of Theorem 2.6 is
crucial to its application in property testing, which we will discuss
in Section 3.4, as there is no guarantee that the underlying network
G is H-minor-free.

The algorithm of Theorem 2.6 has two parts, the clustering step
and the routing step.

Clustering Step. In the clustering step we may assume that the
algorithm always outputs a clustering V=V, UV, U --- U Vg, even
in a failed execution. In particular, if a vertex v is not assigned to
any cluster, then v simply assign itself to the cluster {v}.

In a successful execution, each G[V;] has diameter O(¢~! log n)
because G; is an ¢-expander and G; is the result of removing some
edges from G[V;]. We can also guarantee that each cluster has
this property even in a failed execution, as follows. Choose b =
O(¢~!logn) be any upper bound on the cluster diameter for a
successful execution of an expander decomposition algorithm. The
number b depends only on ¢ and n. in O(¢~! log n) rounds, we run
the following algorithm. Using b rounds, each vertex v computes the
maximum ID(u) over all vertices u within distance b to v in G[V;].
After that, each vertex v compares its result with its neighbors in
G[V;], and then v marks itself * if there is a disagreement. Finally,
each vertex v € V; checks in 2b + 1 rounds whether there is a vertex
u € V; within distance 2b + 1 to v that is marked =. If such a vertex
u exists, then v also marks itself =. It is that there are two possible
outcomes. Either all vertices in V; are marked *, or all vertices in
V; are not marked =. If the diameter of G[V;] is at most b, then all
vertices in V; are not marked =. If the diameter of G[V;] is at least
2b + 1, then all vertices in V; are marked *. Hence if a vertex v is
marked #, it knows that the clustering step has failed, in which case
we can let v reset its cluster to be {v}.

For the number of inter-cluster edges, if G is H-minor-free, then
the upper bound ¢ min{|V|, |E|} is always satisfied in the determin-
istic setting and it is satisfied with probability 1 — 1/poly(n) in
the randomized setting. Recall that the algorithm of Theorem 2.6
is based on an expander decomposition algorithm with parame-
ter ¢’ < ¢. Since the expander decomposition algorithm does not
rely on the assumption that G is H-minor-free, the weaker upper
bound ¢|E| on the number of inter-cluster edges holds regardless
of whether the input graph G is H-minor-free or not.
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Routing Step. We distinguish between different reasons for the
routing algorithms of Lemmas 2.4 and 2.5 to fail. The first reason of
failure is that the condition degg, (07) = Q(¢?)|E;| for Lemmas 2.4
and 2.5 is not satisfied. In view of Lemma 2.3, the only possibility
that this condition is not met is when G is not H-minor-free. In view
of the above discussion, each cluster G[V;] always has diameter
0(¢~'logn), so whether the condition degg, (07) = Q(¢?)|E;| is
satisfied can be checked in O(¢ ! log n) rounds.

Even if the condition degg, (0]) = Q(¢?)|E;| is met, the routing
algorithms of Lemmas 2.4 and 2.5 might still fail. There are two
possible reasons. One reason is that ®(G;) < ¢ is too small due to
an error in the expander decomposition algorithm in the clustering
step. The other reason is because that in the randomized setting
there is a small probability that the algorithm might fail. In either
case, the failure occurs with probability 1/poly(n), regardless of
whether G is H-minor-free.

In an failed execution of the routing algorithms of Lemmas 2.4
and 2.5, only a subset of all messages are delivered. To detect a
failure of delivery of a message, we can simply reverse the execution
of the algorithm. Once a vertex v € V; detects that some of its
messages are not successfully delivered, it broadcasts to all vertices
in V; that the routing algorithm has failed in O(¢~! log n) rounds.
Hence we can assume that all vertices in a cluster V; know whether
the routing algorithm is successful.

3 APPLICATIONS

Using Theorem 2.6, we give poly(1/e,logn)-round randomized
algorithms and no() -poly(1/¢)-round deterministic algorithms for
various optimization, property testing, and graph decomposition
problems on planar or H-minor-free networks.

3.1

We design an efficient algorithm for computing a (1 — ¢)-
approximate maximum independent set of any H-minor-free net-
work by combining Theorem 2.6 with the approach of Czygrinow,
Hanc¢kowiak, and Wawrzyniak [29].

Let G be an H-minor-free graph. Let «(G) denote the size of the
maximum independent set of G. Recall that any H-minor-free graph
has edge density d = O(1), where the constant O(1) depends only
on H [87]. For any H-minor-free graph, as |E|/|V| < d, its minimum
degree is at most 2d. Hence a(G) = ©(n), as an independent set I
of size at least n/(2d + 1) can be computed by repeatedly adding
a minimum-degree vertex v to I and removing all its neighboring
vertices. For example, if G is planar, then a(G) > n/4 due to the
four color theorem.

Run the algorithm of Theorem 2.6 on G with parameter ¢’ =
e/(2d + 1) to partition the vertices into V. =V; UV, U ... U V.. For
each V;, we route the entire graph topology of G[V;] into v} and
let o compute the maximum independent set I; of G[V;] locally.
Then, v} sends a message to each vertex in V; to inform if it is in J;.

LetI =1 U...UI. For each edge e = {u, v}, if both u and v are
in I, we add one of u and v to Z. Since this can only happen if e is
an inter-cluster edge, we have |Z| < ¢’ -n.Let I’ =1\ Z. Clearly, I’
is an independent set.

Maximum Independent Set
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Using the fact that a(G) > n/(2d + 1) and ¢’ = ¢/(2d + 1), we
have

k
Ir'| = (Z Il =121 2 «(6) = |Z] = «(G) — ¢ - n

i=1
> a(G) —ea(G) = (1 —¢e)a(G).

Hence we conclude the following theorem.

THEOREM 1.2. A (1 — ¢)-approximate maximum independent set
of an H-minor-free network G can be computed in 00 logo(l) n
rounds with high probability and ¢©(1) 20(Vlognloglogn) 5, g
deterministically in the CONGEST model.

3.2 Maximum Cardinality Matching in Planar
Graphs

We show that a (1 — ¢)-approximate maximum cardinality match-
ing of a planar network G can be computed in ¢ (1) logo(l) n
rounds with high probability and ¢~0(1) 20(Vlognloglogn) 1ynds
deterministically.

Let G be a planar graph. We begin by creating a new graph
G = (V,E) from G by removing some vertices from G such that
the sizes of the maximum matching are the same in G and in G.
Moreover, the size of maximum matching is at least Q(|V]). After
applying the algorithm of Theorem 2.6 on G, the leader v} of each
cluster gathers the graph topology of the cluster and compute the
maximum matching locally.

A k-star is a subgraph induced by the vertices {x,v1,...,0}
where for each 1 < i < k, deg(v;) = 1 and there is an edge con-
necting x and v;. A k-double-star is a subgraph induced by the
vertices {x,y,v1,...,0r} where for each 1 < i < k, deg(v;) = 2 and
there are two edges {x, v;} and {y, v;}. The graph G is created by
eliminating all 2-stars and 3-double-stars from G by the following
procedure.

To eliminate 2-stars, every vertex u with degree 1 sends a token
(u) to its neighbor. Then every vertex who has received more than
one tokens bounces all the tokens, except one of them, back to their
originators. Vertices of degree 1 whose token was bounced back
are removed from G. To eliminate 3-double stars, every vertex u
with exactly two neighbors uj, uz sends a token (u, (u1,u2)) to their
neighbors. Every vertex then aggregate the tokens based on the
second coordinate, the 2-tuple (u1,u2). If there are more than 2
tokens with the same second coordinate, all but two of them are
bounced back to their originators. Vertices whose tokens were
bounced back are removed from G.

Note that the eliminations of 2-stars and 3-double-stars do not
change the size of the maximum matching. Moreover, we have the
following property:

LEMMA 3.1 ([27, LEmMA 6]). Let G = (V,E) be a planar graph
with n = |V| and no isolated vertices. If G contains no 2-stars and
3-double-stars then the size of the maximum matching of G is Q(n).

By Lemma 3.1, the size of the maximum matching of |V is at
least ¢ - |V| for some constant ¢ > 0. Czygrinow, Han¢kowiak, and
Wawrzyniak [29] used Lemma 3.1 to design an O(log* n)-round
deterministic algorithm for computing a (1 — ¢)-approximate maxi-
mum cardinality matching in the LOCAL model, for any constant
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& > 0. We show that Theorem 2.6 allows us to obtain efficient
matching algorithms in the CONGEST model as well.

Now we run the algorithm of Theorem 2.6 on G with parameter
¢’ = ¢ - ¢ to partition the vertices into V=ViuWhu...u V. For
each V;, we route the entire graph topology of G[V;] into v} and let
it compute the maximum matching M; of G[V;] locally. We claim
that the union of the matching M = M; UM U ... U My is an
(1 — ¢)-approximate maximum matching,.

Let M* be a maximum matching. Let M; = M* N (V; X V;) be M*
restricted to V;. We have

k

M| = > M

i=1

k
> Z [M]| = |M*| — (# inter-cluster M*-edges)
i=1

> M| =€ |V
=M —e-c- V| 2 M| - e|M"|
= (1-9IM"|.

Hence we conclude the following theorem.

THEOREM 3.2. A (1—¢)-approximate maximum matching of a pla-
nar network G can be computed in 00 logo(l) n rounds with high
probability and e~©(1) 20 (Vlognloglogn) 1o, nds deterministically in
the CONGEST model.

In the full version [21] of the paper, we will generalize this result
to the more difficult maximum weighted matching problem for an
arbitrary H-minor-free graph to prove Theorem 1.1.

3.3 Correlation Clustering

In the agreement maximization correlation clustering problem, the
edge set is partitioned into E = E* U E~ two parts, and the goal
is to compute a clustering of the vertices V=V UV, U--- UV}
maximizing 5| [E* 0 (V; x Vi) |+ X1 <i< j<k |E* N (Vi x V)], which
is the number of intra-cluster E*-edges plus the number of inter-
cluster E™-edges.

Given a partition E = E* U E~ of the edges in G, let y(G) de-
note the optimal value for the agreement maximization correlation
clustering problem. Note that y(G) > |E|/2 if G is connected. This
is because if |E*| > |E|/2, we can put each vertex as a standalone
cluster and get a score of at least |E|/2. Otherwise, putting every
vertex in the same cluster yields a score of at least |E|/2.

Apply the algorithm of Theorem 2.6 on G with parameter
€’ = €/2 to partition the vertices into V; ... Vi. For each V;, route
the entire graph topology of G[V;] into o} and let v} compute an
optimal correlation clustering C; of G[V;]. Let C be the union of
C1,Cy, ..., Cy. Let C* be an optimal clustering and Ci* be the re-
striction of C* to V;. Formally, C}' is constructed by adding C N'V;
to C/" for each cluster C € C* such that CN'V; # 0.

Using the fact that y(G) > |E|/2 and €’ = €/2, we have

k k
score(C) > Z score(C;) > Z score(C;)
i=1 i=1
> score(C*) — €’|E| 2 y(G) — ey(G) = (1 - e)y(G).
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Hence we conclude the following theorem. Note that the require-
ment that G is H-minor-free is only used in applying Theorem 2.6.

THEOREM 1.3. A (1 — ¢)-approximate agreement maximiza-
tion correlation clustering of an H-minor-free network G can
be computed in 00 logo(l)n rounds with high probabil-
ity and e=O()20(Vlognloglogn) yo,nds deterministically in the
CONGEST model.

3.4 Property Testing

We design an efficient algorithm for testing an arbitrary minor-
closed property P that is closed under taking disjoint union. This
covers many natural graph classes, including planar graphs, outer-
planar graphs, graphs with treewidth at most w, and H-minor-free
graphs for a fixed connected graph H.

We pick s to be the smallest positive integer such that K ¢ P,
i.e. the s-vertex clique does not have property . If such a number
s does not exist, then P contains the set of all cliques. Since P is
minor-closed and any finite graph is a minor of some clique,
must be the trivial property that contains all graphs, in which case
we have a trivial property tester that works by letting each vertex
output Accept.

Algorithm. From now on we assume that s exists, and we let
H = K; be the s-clique. Our property testing algorithm applies
Theorem 2.6 under the assumption that the underlying graph is
H-minor-free, and then each vertex v makes its decision as follows.

e Suppose that the routing algorithm of Theorem 2.6 works
successfully for a cluster V;, then v} knows the graph topol-
ogy of G[V;]. We let v} locally check whether G[V;] has
property # and broadcast the results to all vertices in V;.
If G[V;] does not have property %, then all vertices in V;
outputs Reject, otherwise all vertices in V; outputs Accept.

e Suppose that the routing algorithm of Theorem 2.6 does
not work successfully for a cluster V;. If it fails because the
condition deg, (07) = Q(¢?)|E;| is not met, then all vertices
in V; outputs Reject, otherwise all vertices in V; outputs
Accept.

Here we recall from the discussion in Section 2.3 that each cluster
Vi is able to check whether the routing algorithm works successfully
and whether the condition deg, (07) = Q(¢?)|E;| is met. Therefore,
each vertex v is able to decide whether to output Accept or Reject
in the above algorithm.

Analysis. Suppose G has property $. Because ¥ is minor-closed,
G[V;] also has property . Moreover, G € ¥ implies that G is H-
minor-free. Recall the discussion in Section 2.3 that the condition
degg, (0]) = Q(¢?)|E;| is not met only when G is not H-minor-free.
Therefore, from the description of our algorithm, all vertices will
output Accept with probability one.

Suppose G is e-far from having property #. There are two cases.
The first case is that the algorithm of Theorem 2.6 does not fail.
Recall that the algorithm of Theorem 2.6 is based on an expander
decomposition algorithm with parameter ¢’ < . Therefore, as
long as the execution of the expander decomposition algorithm
is successful, the number of inter-cluster edges is at most ¢|E|,
regardless of whether the input graph G is H-minor-free or not.
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Since G is e-far from having property P, the graph G’ resulting
from removing all inter-cluster edges also does not have property
. Since G’ is the disjoint union of all clusters G[V;] and P is closed
under taking disjoint union, there must be at least one cluster G[V;]
that does not have property P, so all vertices V; in this cluster will
output Reject, as required.

The second case is that the algorithm of Theorem 2.6 fails. If
it fails because the condition degg, (v]) = Q(¢?)|E;] is not met,
then all vertices in V; outputs Reject, as required. As discussed in
Section 2.3, the probability that algorithm of Theorem 2.6 fails due
to other reasons is at most 1/poly(n), so the probability that all ver-
tices in the graph output Accept is at most 1/poly(n). In particular,
a failure in the expander decomposition algorithm might cause the
number of inter-cluster edges to be significantly higher than ¢|E|,
potentially causing all G[V;] to have property . Although such
a failure might not be detected, it occurs with probability at most
1/poly(n).

Hence we conclude the following theorem. Note that in the
randomized setting our algorithm has one-sided error in that all
vertices output Accept with probability one if G has property $.

THEOREM 1.4. Distributed property testing for any minor-closed
graph property P that is closed under taking disjoint union
can be solved in ¢ 90 logomn rounds with high probabil-
ity and ¢~ O 20(Vlognloglogn) voynds deterministically in the
CONGEST model.

Lower Bound. In the full version [21] of the paper, we give a
concrete example of a minor-closed property # that is not closed
under taking disjoint union and requires Q(n) rounds to test even
for constant ¢ > 0 and in the LOCAL model. This shows that the
requirement in Theorem 1.4 that the graph property is closed under
taking disjoint union is, in a sense, necessary.

3.5 Low-diameter Decompositions

Using Theorem 2.6, we design an efficient algorithm that finds a
partition of the vertex set V.= V4 UV, U --- U Vi such that the
number of inter-cluster edges )1 <;j<x |0(V;)|/2 is at most ¢|E| and
the diameter of the induced subgraph G[V;] is at most D = O(¢™!)
foreach1 <i<k.

We first run Theorem 2.6 with parameter £ = ¢/2 to obtain a
clustering V.= V3 UV, U - -+ U Vi such that the number of inter-
cluster edges is at most £|E| < ¢|E|/2. We then refine the cluster V;
by letting v} compute a low-diameter decomposition of G[V;] with
£ =¢/2and D = O(&7!) using any known sequential algorithm [1,
40, 68] for this task. Hence each cluster in the final clustering has
diameter O(¢7!). This step introduces at most ¢|E|/2 inter-cluster
edges, so the total number of inter-cluster edges is at most ¢|E|/2 +
e|E|/2 = ¢|E|, as required.

THEOREM 1.5. Given an H-minor free network, a low-diameter
decomposition with D = O(e™1) can be computed in 00 logo(l) n
rounds with high probability and ¢~O(1) 20(Vlognloglogn) 1o, g
deterministically in the CONGEST model.
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