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ABSTRACT

Many combinatorial optimization problems, including maximum

weighted matching and maximum independent set, can be approxi-

matedwithin (1±𝜖) factors in poly(log𝑛, 1/𝜖) rounds in the LOCAL
model via network decompositions [Ghaffari, Kuhn, and Maus,

STOC 2018]. These approaches, however, require sending mes-

sages of unlimited size, so they do not extend to the more realistic

CONGEST model, which restricts the message size to be 𝑂 (log𝑛)
bits. For example, despite the long line of research devoted to the

distributed matching problem, it still remains a major open problem

whether an (1 − 𝜖)-approximate maximum weighted matching can

be computed in poly(log𝑛, 1/𝜖) rounds in the CONGEST model.

In this paper, we develop a generic framework for obtain-

ing poly(log𝑛, 1/𝜖)-round (1 ± 𝜖)-approximation algorithms for

many combinatorial optimization problems, including maximum

weightedmatching, maximum independent set, and correlation clus-

tering, in graphs excluding a fixed minor in the CONGEST model.

This class of graphs covers many sparse network classes that have

been studied in the literature, including planar graphs, bounded-

genus graphs, and bounded-treewidth graphs.

Furthermore, we show that our framework can be applied to give

an efficient distributed property testing algorithm for an arbitrary

minor-closed graph property that is closed under taking disjoint

union, significantly generalizing the previous distributed property

testing algorithm for planarity in [Levi, Medina, and Ron, PODC

2018 & Distributed Computing 2021].

Our framework uses distributed expander decomposition algo-

rithms [Chang and Saranurak, FOCS 2020] to decompose the graph

into clusters of high conductance. We show that any graph exclud-

ing a fixed minor admits small edge separators. Using this result,

we show the existence of a high-degree vertex in each cluster in an

expander decomposition, which allows the entire graph topology

of the cluster to be routed to a vertex. Similar to the use of network

decompositions in the LOCAL model, the vertex will be able to

perform any local computation on the subgraph induced by the

cluster and broadcast the result over the cluster.
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1 INTRODUCTION

The LOCAL and CONGEST models are two prominent vertex-

centric models for studying distributed graph algorithms. In these

models, vertices host processors and operate in synchronized

rounds. In each round, each vertex sends a message to each of

its neighbors, receives messages from its neighbors, and performs

local computations. The time complexity of an algorithm is defined

to be the number of rounds used. The main difference between the

two models is the restriction on the message size. In the LOCAL

model, we allow messages of unlimited size to be sent across each

link; while in the CONGEST model, an upper bound of 𝑂 (log𝑛)
bits is imposed on the message size, where 𝑛 is the number of nodes.

Algorithms designed for the vertex-centric models can be optimized

by Pregel-like systems [75] such as GraphX [56] and Gigraph [54]

to process massive graph data, see [76] for a comprehensive survey.

Since algorithms designed for the CONGEST model use smaller

messages, it is likely they will be converted to more efficient pro-

cesses than their counterparts in the LOCAL model.

Combinatorial optimization problems, such as matching and

independent set, are central in the area of distributed graph algo-

rithms. Many combinatorial optimization problems are known to

be efficiently solvable in the LOCAL model. Ghaffari, Kuhn, and

Maus [49] gave a general framework for approximating packing

and covering integer linear programming problems within (1 ± 𝜖)
of the optimality in poly(log𝑛, 1/𝜖) rounds. The framework covers,

for example, the maximum weighted matching problem and the

maximum independent set problem. With the recent breakthrough

of Rozhoň and Ghaffari [83] on deterministic network decomposi-

tions, their approach can even be implemented deterministically.

The approach of [49], however, requires sending messages of unlim-

ited size, so the complexities of many of these problems remain to

be tackled in the CONGEST model. For example, in contrary to the

LOCAL model, it is still unclear whether a poly(log𝑛, 1/𝜖)-round
(1 − 𝜖)-approximate algorithm for maximum weighted matching

exists in the CONGEST model. Moreover, it is known that some
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problems cannot be computed efficiently in the CONGEST model

in general [8, 36]. For example, there is a constant 𝜖 > 0 such that

finding an (1 − 𝜖)-approximate maximum independent set requires

Ω̃(𝑛2) rounds.

Our Contribution. We develop a new tool set for solving combi-

natorial optimization problems in the CONGEST model on a wide

range of sparse network classes that have been studied in the liter-

ature. Our framework applies to any graph classes that are minor

closed, covering many natural graph classes such as planar graphs,

bounded-genus graphs, and bounded-treewidth graphs.

Our approach is as follows. We use an expander decomposition

to decompose the graph into components of high conductance. The

existence of small edge separators guarantees the existence of a

high-degree vertex in each component, which allows the entire

graph topology of the component to be routed to a vertex. Similar

to the use of the network decompositions in the LOCAL model, the

vertex will then be able to solve the problem locally and broadcast

the result over the component.

We show that our framework can be applied to give efficient

algorithms to solve various combinatorial optimization problems,

property testing problems, and graph decomposition problems in

the CONGEST model, narrowing the gaps of these problems be-

tween theCONGESTmodel and the LOCALmodel in𝐻 -minor-free

networks.

Notation. Throughout this paper, 𝑛 = |𝑉 | denotes the number

of the vertices and Δ = max𝑣∈𝑉 deg(𝑣) denotes the maximum

degree of the graph 𝐺 = (𝑉 , 𝐸) under consideration. We say that

an algorithm succeeds with high probability (w.h.p.) if it succeeds

with probability 1 − 1/poly(𝑛). We write 𝑂̃ (·), Ω̃(·), and Θ̃(·) to
compress a log±𝑂 (1) 𝑛 factor.

1.1 Our Results

Matching. A matching is a set of edges that do not share end-

points. Given a weighted graph𝐺 = (𝑉 , 𝐸,𝑤), the maximumweight

matching (mwm) problem is to compute a matching 𝑀 with the

maximum weight, where the weight of𝑀 is defined as
∑

𝑒∈𝑀 𝑤 (𝑒).
Given an unweighted graph 𝐺 = (𝑉 , 𝐸), the maximum cardinality

matching (mcm) problem is to compute a matching𝑀 such that |𝑀 |
is maximized. Clearly, the mcm problem is a special case of the mwm

problem. For mwm, we assume that all the edge weights𝑤 (𝑒) are
positive integers, and we write𝑊 to denote the maximum weight

max𝑒∈𝐸 𝑤 (𝑒).
In the CONGEST model, [10, 74] showed that a (1 − 𝜖) approx-

imate mcm can be computed in rounds with exponential depen-

dencies on (1/𝜖). Very recently, and independently from our work,

[43] showed that a (1 − 𝜖)-approximate mcm can be computed in

poly(log𝑛, 1/𝜖) rounds. However, for the mwm problem in gen-

eral graphs, currently the best approximation ratio one can get in

poly(log𝑛, 1/𝜖) rounds is (2/3 − 𝜖) by the rounding approach of

[2]. Using exponential in (1/𝜖) rounds, recently [41] showed that

a (1 − 𝜖)-approximate mwm can be computed in general graphs.

Also in bipartite graphs, a (1 − 𝜖)-approximate mwm is known to

be obtainable in poly(log𝑛, 1/𝜖) rounds [42, 74].

On the other hand, in the LOCAL model, many fast

poly(log𝑛, 1/𝜖)-round algorithms for computing a (1 − 𝜖)-
approximate mwm in general graphs have been developed [44,

48ś50, 62, 79, 83] (see Table 1 in the full version [21] for a

more detailed survey). Using our framework, we obtain the

first poly(log𝑛, 1/𝜖)-round algorithms for computing (1 − 𝜖)-
approximate mwm in non-trivial graph classes outside bipartite

graphs in the CONGEST model.

Theorem 1.1. A (1 − 𝜀)-approximate maximum weighted

matching of an 𝐻 -minor-free network 𝐺 can be computed

in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds with high probability in the

CONGEST model.

Throughout the paper, although the hidden leading constant in

the round complexity of our 𝐻 -minor-free networks algorithms de-

pend on 𝐻 , we emphasize that the constants𝑂 (1) in the exponents

of the round complexity 𝜀−𝑂 (1) log𝑂 (1) 𝑛 are independent of 𝐻 .

Maximum Independent Set. An independent set is a set of non-

adjacent vertices. The maximum independent set (MaxIS) problem

is to find an independent set whose cardinality is maximum over

all possible independent sets. Note that a maximal independent set

is a (1/Δ)-approximation to the MaxIS problem. Therefore, in the

CONGEST model, a (1/Δ)-approximate solution can be computed

inMIS(𝑛,Δ) time, whereMIS(𝑛,Δ) is the number rounds needed to

compute a maximal independent set in the CONGEST model. The

weighted version of the problem was considered in [10], and they

gave an algorithm that finds a (1/Δ)-approximate weightedMaxIS

in 𝑂 (MIS(𝑛,Δ) · log𝑊 ) rounds, where𝑊 is the maximum weight.

Later, it was shown in [66] that a ((1−𝜖)/Δ)-approximate weighted

MaxIS can be computed in poly(log log𝑛) · 𝑂 (1/𝜖) rounds with
high probability. Moreover, they also showed that a ((1 − 𝜖)/8𝛼)-
approximate weighted MaxIS in graphs of arboricity 𝛼 can be

obtained in 𝑂̃ (log𝑛/𝜖) rounds with high probability. For the un-

weighted version, [66] also showed that a ((1− 𝜖)/Δ)-approximate

MaxIS can be computed in 𝑂 (1/𝜖) rounds with high probability

when Δ ≤ 𝑛/log𝑛.
In the LOCAL model, Ghaffari, Kuhn, Maus [49] showed that

an (1 − 𝜖)-approximation to the MaxIS problem can be computed

in poly(log𝑛, 1/𝜖) rounds. No analogous (1 − 𝜖)-approximation

algorithms are known in the CONGEST model as there are lower

bounds showing algorithms with constant approximation ratios

require 𝑛Θ(1) rounds [8, 36]. Using our framework, we show:

Theorem 1.2. A (1 − 𝜀)-approximate maximum independent set

of an 𝐻 -minor-free network 𝐺 can be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛

rounds with high probability and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds

deterministically in the CONGEST model.

Correlation Clustering. The correlation clustering problem intro-

duced by Bansal, Blum, and Chawla [9] is known to have various

applications in spam detection, gene clustering, chat disentangle-

ment, and co-reference resolution [6, 13, 23, 37, 38]. In this problem,

each edge is labeled with a positive label or a negative label that

denotes whether the two endpoints of the edge are positively cor-

related or negatively correlated.

The goal is to partition the vertices𝑉 into clusters𝑉1,𝑉2, · · · ,𝑉𝑘
such that they are as consistent with the labels as possible. Let 𝐸+
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denote the positively-labeled edges and 𝐸− denote the negatively-

labeled edges. There are two versions of the problem: In the agree-

ment maximization version, the goal is to maximize
∑𝑘
𝑖=1 |𝐸+ ∩

(𝑉𝑖 ×𝑉𝑖 ) | +
∑

1≤𝑖< 𝑗≤𝑘 |𝐸− ∩ (𝑉𝑖 ×𝑉𝑗 ) |. In the disagreement mini-

mization version, the goal is to minimize
∑𝑘
𝑖=1 |𝐸− ∩ (𝑉𝑖 × 𝑉𝑖 ) | +

∑

1≤𝑖< 𝑗≤𝑘 |𝐸+ ∩ (𝑉𝑖 ×𝑉𝑗 ) |. Note that two versions of the problem

are equivalent if one is looking for the exact solution.

We focus on approximate solutions for the agreement maximiza-

tion version of the problem. In the centralized setting, the problem

is shown to be APX-Hard in general graphs [22, 39]. In particular,

Charikar, Guruswami, and Wirth [22] showed that it is NP-hard to

approximate the problemwithin a factor of 115/116+𝜖 for any 𝜖 > 0.

On the positive side, they gave a 0.7664-approximation algorithm

for the problem. Later, Swamy [85] gave a 0.7666-approxmation

algorithm for the problem. In the distributed setting, while there

are 𝑂 (1)-approximation parallel algorithms on complete graphs

[14, 23, 80] for the disagreement minimization problem, to our

knowledge, no efficient algorithms for the CONGEST model or the

LOCAL model have been proposed outside of complete graphs for

both versions of the problem.1 Using our framework, we show:

Theorem 1.3. A (1 − 𝜀)-approximate agreement maximiza-

tion correlation clustering of an 𝐻 -minor-free network 𝐺 can

be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds with high probabil-

ity and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds deterministically in the

CONGEST model.

In addition to approximation algorithms for combinatorial opti-

mization problems, we demonstrate applications of our framework

to the realm of property testing and graph decompositions.

Property Testing. A graph property P is a set of graphs. We say

that a graph 𝐺 has property P if 𝐺 ∈ P. We say that an 𝑛-vertex

graph 𝐺 = (𝑉 , 𝐸) is 𝜀-far from having property P if removing and

adding at most 𝜖 |𝐸 | edges cannot turn 𝐺 into a graph in P. The

study of property testing in the distributed setting was initiated

by Censor-Hillel, Fischer, Schwartzman, and Vasudev [17]. We say

that a distributed property testing algorithm A for a property P
with proximity parameter 𝜀 is correct if it satisfies the following.

• If 𝐺 has property P, then all vertices output Accept.

• If𝐺 is 𝜀-far from having property P, then at least one vertex

outputs Reject.

Levi, Medina, and Ron [72] showed an 𝜀−𝑂 (1) ·𝑂 (log𝑛)-round
randomized distributed algorithm for property testing of planarity

in the CONGEST model with one-sided error. If 𝐺 has property P,

then all vertices output Accept. If 𝐺 is 𝜀-far from having property

P, then at least one vertex outputs Reject with high probability.

Their algorithm uses the distributed planarity testing algorithm of

Ghaffari and Haeupler [45] as a subroutine.

Using our framework, we give a simple proof that distributed

property testing of planarity can be solved in poly(1/𝜀, log𝑛)
rounds in the randomized setting and in 𝑛𝑜 (1) · poly(1/𝜀) rounds
in the deterministic setting. More generally, our algorithm can be

generalized to testing an arbitrary minor-closed graph property

that is closed under taking disjoint union.

1It is, however, not hard to see that a poly(log𝑛, 1/𝜖)-round (1 − 𝜖)-approximate
algorithm for the agreement maximization problem in general graphs can be obtained
via low diameter decompositions in the LOCAL model.

Theorem 1.4. Distributed property testing for any minor-closed

graph property P that is closed under taking disjoint union

can be solved in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds with high probabil-

ity and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds deterministically in the

CONGEST model.

Graph Decompositions. An (𝜀, 𝐷) low-diameter decomposition of a

graph𝐺 = (𝑉 , 𝐸) is a partition of the vertex set𝑉 = 𝑉1∪𝑉2∪· · ·∪𝑉𝑘
such that the number of inter-cluster edges is at most 𝜀 |𝐸 | and the

diameter of the induced subgraph 𝐺 [𝑉𝑖 ] is at most 𝐷 for each

1 ≤ 𝑖 ≤ 𝑘 .
It is well-known [1, 40, 68] that for any 𝐻 -minor-free graph, a

low-diameter decomposition with 𝐷 = 𝑂 (𝜀−1) exists, where the
hidden constant in𝑂 (·) depends only on 𝐻 . It is straightforward to

see that the inverse linear dependence 𝐷 = 𝑂 (𝜀−1) on 𝜀 is the best
possible by considering cycle graphs.

In the distributed setting, Czygrinow, Hańćkowiak, and Wawrzy-

niak [29] designed a distributed algorithm that computes a low-

diameter decomposition with 𝐷 = 𝜀−𝑂 (1) in 𝜀−𝑂 (1) · 𝑂 (log∗ 𝑛)
rounds for planar networks. Their algorithm also applies to the

edge-weighted setting where the guarantee of the algorithm is that

the summation of the weights of inter-cluster edges is at most 𝜀-

fraction of the summation of the weights of all edges. Although

they presented their algorithm in the LOCAL model, the algorithm

also works in the CONGEST model. Levi, Medina, and Ron [72]

also designed a distributed algorithm that computes a low-diameter

decomposition with 𝐷 = 𝜀−𝑂 (1) in 𝜀−𝑂 (1) ·𝑂 (log𝑛) rounds for 𝐻 -
minor-free networks, which is used in their distributed algorithm

for property testing of planarity.

Using our framework, we improve the inverse polynomial de-

pendence 𝐷 = 𝜀−𝑂 (1) on 𝜀 to the optimal 𝐷 = 𝑂 (𝜀−1). We present a

simple proof that a low-diameter decomposition with 𝐷 = 𝑂 (𝜀−1)
can be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds with high probabil-

ity and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds deterministically in the

CONGEST model.

Theorem 1.5. Given an 𝐻 -minor free network, a low-diameter

decomposition with𝐷 = 𝑂 (𝜀−1) can be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛

rounds with high probability and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds

deterministically in the CONGEST model.

1.2 Our Framework

Our framework of algorithm design is based on the recently devel-

oped distributed constructions of expander decompositions in the

CONGEST model [19, 20]. We say that a graph is an 𝜙-expander if

its conductance is at least 𝜙 . An (𝜀, 𝜙) expander decomposition of

a graph is a removal of at most 𝜀 fraction of the edges such that

each remaining connected component is an 𝜙-expander. Intuitively,

the conductance of a graph measures how well-connected it is. In

particular, any random walk converges quickly to its stationary dis-

tribution in a high-conductance graph. Expander decompositions

have a wide range of applications in theoretical computer science,

including linear system solvers [84], unique games [7, 81], minimum

cut [67], property testing [55, 69], and dynamic algorithms [24, 78].

We say that 𝐻 is a minor of 𝐺 if 𝐻 can be obtained from 𝐺 by

iteratively removing vertices and edges and contracting edges. We

write 𝐻 ⪯ 𝐺 if 𝐻 is a minor of 𝐺 . We say that 𝐺 is 𝐻 -minor-free if
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𝐻 ⪯̸ 𝐺 . A class of graphs G is minor-closed if𝐺 ∈ G implies 𝐻 ∈ G
for any 𝐻 ⪯ 𝐺 . Many natural graph classes, such as planar graphs,

bounded-genus graphs, and bounded-treewidth graphs, are minor-

closed. The graph minor theorem of Robertson and Seymour [82]

implies that for any minor-closed family of graphs G, there exists
a finite set of forbidden minors H such that 𝐺 ∉ G if and only if

𝐻 ⪯ 𝐺 for some 𝐻 ∈ H . For example, if G is the set of all planar

graphs, then H = {𝐾5, 𝐾3,3}. That is, 𝐺 is planar if and only if 𝐺 is

𝐾3,3-minor-free and 𝐾5-minor-free. The graph minor theorem also

implies that a minor-closed family of graphs must be a subset of

the family of 𝐻 -minor free graphs for some fixed graph 𝐻 .

In this paper, we focus on the class of 𝐻 -minor-free networks

for any fixed 𝐻 . The idea of our framework is that we want to use

expander decompositions in the CONGEST model in a way similar

to the use of low-diameter decompositions [73, 83] in the LOCAL

model. That is, for each low-diameter cluster 𝑉𝑖 , we want to gather

the graph topology 𝐺 [𝑉𝑖 ] to a vertex 𝑣∗𝑖 ∈ 𝑉𝑖 so that 𝑣∗𝑖 can run

any sequential algorithm on 𝐺 [𝑉𝑖 ] locally and broadcast the result

to all other vertices in 𝑉𝑖 . This approach clearly requires sending

messages of unlimited size in the general case.

An edge separator of a graph is a cut {𝑆,𝑉 \ 𝑆} such that

min{|𝑆 |, |𝑉 \𝑆 |} ≥ |𝑉 |/3. The size of an edge separator {𝑆,𝑉 \𝑆} is
the number of edges crossing 𝑆 and𝑉 \𝑆 . If𝐺 [𝑉𝑖 ] is an 𝜙-expander
and admits a small edge separator, then there must exist a high-

degree vertex 𝑣∗𝑖 ∈ 𝑉𝑖 , so the connectivity property of a 𝜙-expander

allows us to design an efficient routing algorithm to let 𝑣∗𝑖 gather

the entire graph topology of 𝐺 [𝑉𝑖 ]. These properties are shown in

Section 2.

It is known [33, 77] that planar graphs admit an edge separator of

size𝑂 (
√

Δ|𝑉 |). More generally, any graph that can be embedded on

a surface of genus𝑔 has an edge separator of size𝑂 (
√

𝑔Δ|𝑉 |) [86]. In
this paper, we generalize these results to show that all𝐻 -minor-free

graphs admit an edge separator of size 𝑂 (
√

Δ|𝑉 |), so the approach

discussed above is applicable to all 𝐻 -minor-free graphs.

Theorem 1.6. For any 𝐻 -minor-free graph 𝐺 = (𝑉 , 𝐸), there is a
cut 𝑆 such that min{|𝑆 |, |𝑉 \ 𝑆 |} ≥ 𝑛/3 and |𝜕(𝑆) | = 𝑂 (

√
Δ𝑛), where

the hidden constant in 𝑂 (·) depends only on 𝐻 .

1.3 Applying Our Framework

We show that by using our framework, many unweighted opti-

mization problems can be approximated within (1 ± 𝜖) factors in
a straightforward manner. Then, we use the mwm problem as an

example to demonstrate that our framework can be applied to solve

weighted problems as well.

Unweighted Problems. As a warm up, to illustrate how our frame-

work can be used, we first describe how to use our framework to ob-

tain simple poly(1/𝜖, log𝑛)-round (1 − 𝜖)-approximate algorithms

for mcm in planar graphs, as well as other unweighted problems

such as the MaxIS problem and the correlation clustering problem

in 𝐻 -minor-free graphs.

The idea behind these algorithms is very simple. If the size of an

optimal solution is linear in the number of vertices, then we can

simply let each cluster of an expander decomposition to compute

its local optimal solution by letting a high-degree vertex in the

cluster learn the graph topology of the cluster. We just need to show

that ignoring the 𝜖 |𝐸 | inter-cluster edges only worsens the quality

solution by a factor of at most (1−𝜀). It is conceivable that this holds
for many unweighted problems. Indeed, this is true for the MaxIS

problem in𝑂 (1)-arboricity graphs and the agreement maximization

correlation clustering problem in general graphs, so our framework

immediately gives efficient (1 − 𝜖)-approximate algorithms for

these problems in 𝐻 -minor-free graphs, see Sections 3.1 and 3.3 for

details.

For the case of the mcm problem, the size of an optimal solution

is not linear in the number of vertices in general, but it is possible

to preprocess the graph so that the size of an optimal solution

is linear in the number of the vertices by using the preprocessing

procedure of [27] for planar graphs. By doing so, we obtain a (1−𝜀)-
approximate algorithm for mcm on planar graphs. We describe such

an approach in Section 3.2.

Weighted Matching. Extending the framework to weighted prob-

lems is significantly more challenging, because when applying the

expander decomposition in Theorem 2.6 we do not have control

over which edges we will remove. For unweighted problems, the

𝜖 |𝐸 | edges that we remove usually can only cause a small degrade

on the optimal solution. However, in the weighted problem, the

small fraction of edges could have very high weights. As a result,

the optimal solution could become much worse after removing

those edges.

To overcome this obstacle, instead of applying the decomposi-

tion only once in the beginning, we embed our method into Duan

and Pettie’s sequential scaling algorithm [34] for approximating

mwm. Roughly speaking, their scaling algorithm is a primal-dual

algorithm that consists of multiple iterations. It processes the sub-

graphs from the ones induced by higher weight edges to the ones

induced by lower weight edges over the iterations. Each iteration

consists of non-trivial steps such as the augmentation step as well

as the blossom shrinking step that are not easily implementable

in the CONGEST model, but implementable in linear time in the

centralized setting. For example, the augmentation step involves

finding a maximal set of augmenting paths in the working sub-

graph. Since the length of an augmenting path can as large as Θ(𝑛),
it would not be possible to find it in poly(log𝑛, 1/𝜖) rounds in the

CONGEST model.

We apply our expander decomposition framework to the work-

ing subgraph before some of the non-trivial steps. Instead of phys-

ically removing the inter-component edges from the graph, we

add or subtract a small weight to the edges so they are no longer

the “tightž edges (i.e. the edges in the working subgraph) in the

primal-dual algorithm. We show that adding or subtracting the

small weights would only degrade the optimal solution slightly.

Moreover, we show this allows us to process each component inde-

pendently (e.g. the long augmenting paths mentioned in the previ-

ous paragraph would be broken). Each component can then route

the topology to a vertex and let the vertex perform the non-trivial

steps locally and broadcast the result back.

This summarizes the high-level idea. However, there are several

technical challenges such as that the expander decomposition may

cut through some intermediate structures (i.e. the active blossoms).

In addition, similar to the aforementioned unweighted case, we

also need to preprocess the working subgraph before running the
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expander decomposition to ensure the number of inter-component

edges is small relative to the solution. The planar graph prepro-

cessing procedure of [27] does not work for 𝐻 -minor free graphs

in general. We discuss how we resolve these issues in the full ver-

sion [21] of the paper.

1.4 Related Work

Chang, Pettie, Saranurak, and Zhang [19] gave the first application

of expander decompositions to the CONGEST model of distributed

computing. They designed a distributed algorithm for constructing

an expander decomposition and applied it to give a near-optimal

distributed algorithm for the triangle listing problem, based on the

following framework. First construct an (𝜀, 𝜙) expander decomposi-

tion to partition the vertex set𝑉 = 𝑉1∪𝑉2∪· · ·∪𝑉𝑘 into𝜙-expanders.

Using existing routing algorithms [51, 52] for 𝜙-expanders, existing

distributed triangle listing algorithms that make use of non-local

communication can be simulated in 𝜙-expanders with small over-

head. Based on this approach, all triangles containing at least one

edge in 𝐺 [𝑉𝑖 ] can be listed efficiently, for all high-conductance

clusters 𝐺 [𝑉𝑖 ] in parallel. Finally, the remaining 𝜀-fraction of the

inter-cluster edges are handled using recursive calls.

Subsequent to the work of [19], expander decomposition has

been applied to numerous other problems in the CONGEST model

via this framework of algorithm design [16, 18, 35, 63, 70]. So far, all

applications of distributed expander decomposition have been con-

fined to the distributed subgraph finding problems [15], except the

work of Daga, Henzinger, Nanongkai, and Saranurak [32], where

they designed a sublinear-round exact min-cut algorithm in the

CONGEST model by incorporating distributed expander decompo-

sition into the sequential min-cut algorithm of Kawarabayashi and

Thorup [67].

Distributed Algorithms on Minor-closed Networks. Many real-

world networks have sparse structures. Over the past few years,

much of the research effort has been devoted to designing efficient

distributed algorithms in LOCAL and CONGEST utilizing struc-

tural properties of sparse networks, and many natural graph classes

studied in the literature, such as planar graphs, bounded-genus

graphs, and bounded-treewidth graphs, are minor-closed, so they

can be characterized by a finite list of excluded minors.

Distributed Approximation. There is a long line of research study-

ing distributed approximation on graphs with an excluded mi-

nor [3, 5, 12, 25ś31, 71, 88]. Czygrinow, Hańćkowiak, and Wawrzy-

niak [29] showed that an (1±𝜀)-approximation of maximummatch-

ing, maximum independent set, and minimum dominating set of a

planar graph can be constructed in 𝑂 (log∗ 𝑛) rounds deterministi-

cally in the LOCALmodel, for any constant 𝜀 > 0. The algorithm for

minimum dominating set was later extended to 𝑘-dominating set

on bounded-genus graphs [5, 29, 30]. These algorithms are based

on a generic approach [5, 25, 26, 29ś31] using low-diameter de-

compositions. A common ingredient shared by all these algorithms

is a computation of an (1 ± 𝜀)-approximate solution of each low-

diameter cluster via a brute-force information gathering, requiring

sending unbounded-size messages and confining all these algo-

rithms to the LOCAL model. Our framework which is based on

expander decompositions provides an opportunity to extend this

line of research to the CONGEST model.

Low-congestion Shortcuts and its Applications. There is a line of

work designing efficient algorithms on networks with an excluded

minor via low-congestion shortcuts [46, 47, 53, 57ś61]. Given a

partition of the vertex set 𝑉 of a graph 𝐺 = (𝑉 , 𝐸) into connected

clusters 𝑉 = 𝑉1 ∪ 𝑉2 ∪ · · · ∪ 𝑉𝑘 , a low-congestion shortcut with

congestion 𝑐 and dilation 𝑑 is a set of subgraphs 𝐻1, 𝐻2, . . . , 𝐻𝑘

such that the diameter of 𝐺 [𝑉𝑖 ] + 𝐻𝑖 is at most 𝑑 and each edge

belongs to at most 𝑐 subgraphs 𝐻𝑖 . Here 𝐺 [𝑉𝑖 ] + 𝐻𝑖 denotes the

subgraph of 𝐺 induced by the union of the edges in 𝐺 [𝑉𝑖 ] and 𝐻𝑖 .

For any clustering of an 𝐻 -minor-free graph, there is an 𝑂̃ (𝐷)-
round CONGEST algorithm computing a low-congestion shortcut

with 𝑐 = 𝑂 (𝐷 log𝑛) and 𝑑 = 𝑂 (𝐷), where 𝐷 is the diameter of the

graph [47]. As a result, many graph problems, including minimum

spanning tree, minimum cut, and shortest-path approximations,

can be solved in near-optimal 𝑂̃ (𝐷) rounds in CONGEST on any

𝐻 -minor-free graph [46, 57].

The type of problems efficiently solvable via low-congestion

shortcuts is fundamentally very different from the type of problems

efficiently solvable via our framework. Low-congestion shortcut is

useful in designing near-optimal 𝑂̃ (𝐷)-round algorithms for global

problems that already requireΩ(𝐷) rounds to solve. Our framework

is useful in designing algorithms that take log𝑂 (1) 𝑛 or 𝑛𝑜 (1) rounds
for local problems that do not have the Ω(𝐷) lower bound.

1.5 Organization

Our framework of algorithm design based on expander decom-

positions is presented in Section 2. Using this framework, in Sec-

tion 3, we give poly(1/𝜀, log𝑛)-round randomized algorithms and

𝑛𝑜 (1) · poly(1/𝜀)-round deterministic algorithms for various opti-

mization, property testing, and graph decomposition problems on

planar or𝐻 -minor-free networks, proving Theorems 1.2 to 1.5. Due

to the page constraint, the proofs of Theorems 1.1 and 1.6 are left

to the full version [21] of the paper.

2 GRAPH PARTITIONING

Let 𝐺 = (𝑉 , 𝐸) be a graph. Consider the following graph terminol-

ogy regarding a subset 𝑆 ⊆ 𝑉 .

vol(𝑆) =
∑

𝑣∈𝑆
deg(𝑣),

𝜕(𝑆) = 𝐸 (𝑆,𝑉 \ 𝑆)
= {𝑒 = {𝑢, 𝑣} ∈ 𝐸 | {𝑢, 𝑣} ∩ 𝑆 ≠ ∅ and {𝑢, 𝑣} ∩ (𝑉 \ 𝑆) ≠ ∅},

Φ(𝑆) =
{

0, 𝑆 = ∅ or 𝑆 = 𝑉 ,
|𝜕 (𝑆) |

min{vol(𝑆),vol(𝑉 \𝑆) } , 𝑆 ≠ ∅ and 𝑆 ≠ 𝑉 .

We call vol(𝑆) the volume of the vertex set 𝑆 . When 𝑆 is interpreted

as a cut {𝑆,𝑉 \ 𝑆}, we call Φ(𝑆) the conductance of the cut 𝑆 .

Graph Conductance. The conductance of a graph𝐺 is defined as

Φ(𝐺) = min
𝑆⊆𝑉 s.t. 𝑆≠∅ and 𝑆≠𝑉

Φ(𝑆).

In other words, Φ(𝐺) is the minimum value of Φ(𝑆) over all non-
trivial cuts 𝑆 ⊆ 𝑉 .
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Mixing Time. A uniform lazy random walk starting at a vertex

𝑣 ∈ 𝑉 is described by the following probability distribution, where

𝑁 (𝑢) denotes the set of neighbors of 𝑢.

𝑝𝑣0 (𝑢) =
{

1, 𝑢 = 𝑣,

0, 𝑢 ≠ 𝑣,

𝑝𝑣𝑖 (𝑢) =
1

2
· 𝑝𝑣𝑖−1 (𝑢) +

1

2 deg(𝑢) ·
∑

𝑤∈𝑁 (𝑢)
𝑝𝑣𝑖−1 (𝑤), for 𝑖 ≥ 1.

If 𝐺 is connected, then the stationary distribution of a uniform

lazy random walk is 𝜋 (𝑢) = deg(𝑢)/vol(𝑉 ), regardless of the start-
ing vertex 𝑣 . The mixing time 𝜏mix (𝐺) of 𝐺 is defined as the mini-

mum number 𝑡 such that |𝑝𝑣𝑡 (𝑢) − 𝜋 (𝑢) | ≤ 𝜋 (𝑢)/|𝑉 | for all 𝑢 ∈ 𝑉
and 𝑣 ∈ 𝑉 . The following relation [64] between the mixing time

𝜏mix (𝐺) and conductance Φ(𝐺) is well-known:

Θ

(

1

Φ(𝐺)

)

≤ 𝜏mix (𝐺) ≤ Θ

(

log |𝑉 |
Φ(𝐺)2

)

.

Expander Decompositions. We say that 𝐺 is an 𝜙-expander if

Φ(𝐺) ≥ 𝜙 . An (𝜀, 𝜙) expander decomposition of a graph is a removal

of at most 𝜀 fraction of the edges such that each remaining con-

nected component has conductance at least 𝜙 . Formally, an (𝜀, 𝜙)
expander decomposition of𝐺 is a partition 𝐸 = 𝐸1∪𝐸2∪· · ·∪𝐸𝑘∪𝐸r
of the edge set 𝐸 meeting the following requirements.

• The set of inter-cluster edges 𝐸r satisfies |𝐸r | ≤ 𝜀 |𝐸 |.
• We write 𝑉𝑖 ⊆ 𝑉 to denote the set of vertices incident to

an edge in 𝐸𝑖 . It is required that 𝑉 = 𝑉1 ∪ 𝑉2 ∪ · · · ∪ 𝑉𝑘
partitions the vertex set𝑉 and𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) has conductance
Φ(𝐺𝑖 ) ≥ 𝜙 for each 1 ≤ 𝑖 ≤ 𝑘 .

Existentially, it is well known that for any 𝑛-vertex graph, an

(𝜖, 𝜙)-expander decomposition exists for any 0 < 𝜖 < 1 and 𝜙 =

Ω(𝜖/log𝑛) [55, 65, 84], and this bound is tight. After removing

any constant fraction of the edges in a hypercube, some remaining

component must have conductance at most 𝑂 (1/log𝑛) [4].
The following distributed algorithms for constructing expander

decompositions are due to Chang and Saranurak [20].

Theorem 2.1. For any 0 < 𝜀 < 1, an (𝜀, 𝜙) expander decom-

position of a graph 𝐺 = (𝑉 , 𝐸) with 𝜙 = 𝜀𝑂 (1) log−𝑂 (1) 𝑛 can be

constructed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds with high probability.

Theorem 2.2. For any 0 < 𝜀 < 1, an (𝜀, 𝜙) expander decomposi-

tion of a graph𝐺 = (𝑉 , 𝐸) with 𝜙 = 𝜀𝑂 (1)2−𝑂 (
√
log𝑛 log log𝑛) can be

constructed in 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds deterministically.

2.1 Existence of a High-degree Vertex

Let 𝐸 = 𝐸1∪𝐸2∪· · ·∪𝐸𝑘 ∪𝐸r be any (𝜀, 𝜙) expander decomposition.

Let 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) be the subgraph of 𝐺 induced by 𝐸𝑖 . Let Δ𝑖 be the

maximum degree of the graph𝐺𝑖 . Recall that𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘
partitions the vertex set 𝑉 and observe that 𝐺𝑖 is a subgraph of

𝐺 [𝑉𝑖 ], the subgraph of 𝐺 induced by the vertex set 𝑉𝑖 . We will

show that if 𝐺 is 𝐻 -minor-free, then there must exist a vertex

in each 𝐺 [𝑉𝑖 ] whose degree is Ω(𝜙2) |𝑉𝑖 | for any (𝜀, 𝜙) expander
decomposition of 𝐺 .

Edge Separators. An edge separator of a graph is a cut {𝑆,𝑉 \ 𝑆}
such that

min{|𝑆 |, |𝑉 \ 𝑆 |} ≥ |𝑉 |/3.

The size of an edge separator is the number of cut edges |𝜕(𝑆) |. In
the full version [21] of the paper, we show that any 𝐻 -minor-free

graph 𝐺 admits an edge separator of size 𝑂 (
√

Δ|𝑉 |), where the

hidden constant in 𝑂 (·) depends only on 𝐻 . The following lemma

is a consequence of this result.

Lemma 2.3. If 𝐺 is 𝐻 -minor-free, then Δ𝑖 = Ω(𝜙2) |𝑉𝑖 | for each
cluster 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) of any (𝜀, 𝜙) expander decomposition of 𝐺 . The

hidden constant in Ω(·) depends only on 𝐻 .

Proof. We focus on the 𝐻 -minor-free graph𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) in the

proof. Consider any 𝑂 (
√

Δ𝑖 |𝑉𝑖 |)-size edge separator 𝑆 of 𝐺𝑖 . The

fact that min{|𝑆 |, |𝑉𝑖 \ 𝑆 |} ≥ |𝑉𝑖 |/3 implies

min{vol(𝑆), vol(𝑉𝑖 \ 𝑆)} ≥ min{|𝑆 |, |𝑉𝑖 \ 𝑆 |} = Ω( |𝑉𝑖 |),
and hence

𝜙 ≤ Φ(𝐺𝑖 ) ≤ Φ(𝑆) = |𝜕(𝑆) |
min{vol(𝑆), vol(𝑉 \ 𝑆)}

= 𝑂

(
√

Δ𝑖 |𝑉𝑖 |
𝑉𝑖

)

= 𝑂

(
√

Δ𝑖

|𝑉𝑖 |

)

,

which implies Δ𝑖 = Ω(𝜙2) |𝑉𝑖 |. □

2.2 Routing

Select 𝑣∗𝑖 as any vertex 𝑣 ∈ 𝑉𝑖 that has the maximum degree Δ𝑖 in

𝐺𝑖 . We show that the bound given by Lemma 2.3 implies an efficient

algorithm for 𝑣∗𝑖 to learn the entire graph topology of 𝐺 [𝑉𝑖 ].

Expander Routing. Consider a routing task where each vertex 𝑣

is the source and the destination of at most 𝐿 · deg(𝑣) 𝑂 (log𝑛)-bit
messages. If 𝐺 is an 𝜙-expander, then such a task can be solved

in 𝐿 · 𝜏mix · 2𝑂 (
√
log𝑛)

= 𝐿 · 𝜙−2 · 2𝑂 (
√
log𝑛) rounds with high

probability [51, 52] or 𝐿 · 𝜙−𝑂 (1) · 2𝑂 (log2/3 𝑛 log1/3 log𝑛) rounds de-
terministically [20].

Edge Density of𝐻 -minor-free Graphs. The edge density of a graph

𝐺 is |𝐸 |/|𝑉 |. It is well-known that any 𝐻 -minor-free graph has

edge density 𝑂 (1), where the constant 𝑂 (1) depends only on 𝐻 .

Specifically, Thomason [87] showed that any 𝐾𝑡 -minor-free graph

𝐺 = (𝑉 , 𝐸) satisfies |𝐸 | = 𝑂 (𝑡
√

log 𝑡) · |𝑉 |. Moreover, Barenboim and

Elkin [11] showed that given an upper bound 𝑑 on the edge density

of a graph 𝐺 = (𝑉 , 𝐸), its edge set 𝐸 can be oriented such that the

out-degree of each vertex is at most 𝑂 (𝑑) in 𝑂 (log𝑛) rounds. As a
result, for any 𝐻 -minor-free graph 𝐺 , in 𝑂 (log𝑛) rounds we can
orient its edges such that each 𝑣 ∈ 𝑉𝑖 has out-degree 𝑂 (1).

Information Gathering. In view of the above discussion, the task

of letting 𝑣∗𝑖 learn the entire graph topology of𝐺 [𝑉𝑖 ] can be reduced
routing 𝑂 (1) messages of 𝑂 (log𝑛) bits from each 𝑣 ∈ 𝑉𝑖 to 𝑣∗𝑖 , as
we can first spend 𝑂 (log𝑛) rounds to find an edge orientation of

𝐺 [𝑉𝑖 ] with 𝑂 (1) out-degree, and then each vertex 𝑣 ∈ 𝑉𝑖 only has

to send information about its outgoing edges in 𝐺 [𝑉𝑖 ] to 𝑣∗𝑖 .
By Lemma 2.3, if 𝐺 is 𝐻 -minor-free, then the degree of 𝑣∗𝑖 in

𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) is Ω(𝜙2) |𝑉𝑖 |, so the number of 𝑂 (log𝑛)-bit mes-

sages sent to 𝑣∗𝑖 in this routing task is 𝑂 (𝜙−2) · deg𝐺𝑖
(𝑣∗𝑖 ). There-

fore, using expander routing, this routing task can be solved in

𝜙−2 · 2𝑂 (
√
log𝑛) rounds with high probability [51, 52] or 𝜙−𝑂 (1) ·

2𝑂 (log2/3 𝑛 log1/3 log𝑛) rounds deterministically [20].
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We provide faster randomized and deterministic algorithms for

this task in Lemmas 2.4 and 2.5. Due to Lemma 2.3, the conditions

in Lemmas 2.4 and 2.5 are satisfied. In these lemmas, 𝑛 denotes the

number of vertices in the underlying network𝐺 , not the number of

vertices in one cluster𝐺𝑖 . The above discussion on the edge density

of 𝐻 -minor-free graphs implies that for any 𝐻 -minor-free graph

𝐺 , the degree of 𝑣∗𝑖 in 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) is Ω(𝜙2) |𝑉𝑖 | = Ω(𝜙2) |𝐸𝑖 | by
Lemma 2.3.

Lemma 2.4. Suppose deg𝐺𝑖
(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 |. In 𝑂 (𝜙−4 log3 𝑛)

rounds, an 𝑂 (log𝑛)-bit message from each 𝑣 ∈ 𝑉𝑖 can be routed via

the edges 𝐸𝑖 to 𝑣
∗
𝑖 with high probability.

Proof. The algorithm runs a lazy random walk of length

𝑂 (𝜙−4 log2 𝑛) from each vertex 𝑣 ∈ 𝑉𝑖 in parallel. We claim that

each step of the lazy random walk can be simulated in 𝑂 (log𝑛)
rounds with probability 1 − 1/poly(𝑛), so the overall round com-

plexity is 𝑂 (𝜙−4 log3 𝑛). To prove this claim, observe that for each

edge 𝑒 ∈ 𝐸𝑖 and for each 𝑗 , the expected number of random walks

traversing 𝑒 in the 𝑗th step is 𝑂 (1), so a Chernoff bound implies

that this number is at most𝑂 (log𝑛) with probability 1− 1/poly(𝑛).
By a union bound over all 𝑒 ∈ 𝐸𝑖 and 1 ≤ 𝑗 ≤ 𝑂 (𝜙−4 log2 𝑛), the
number of𝑂 (log𝑛)-bit messages sent along each edge in each step

is 𝑂 (log𝑛) with probability 1 − 1/poly(𝑛).
For the correctness of the algorithm, we show that with prob-

ability 1 − 1/poly(𝑛) each random walk passes 𝑣∗𝑖 , so in the end

𝑣∗𝑖 receives all the messages. After 𝜏mix = 𝑂 (𝜙−2 log𝑛) lazy ran-

dom walk steps, it lands at a random vertex according to the

degree distribution 𝜋 (𝑢) = deg𝐺𝑖
(𝑢)/2|𝐸𝑖 |, up to a small addi-

tive error ±𝜋 (𝑢)/𝑛. In particular, it lands at 𝑣∗𝑖 with probability

Ω(deg𝐺𝑖
(𝑣∗𝑖 )/|𝐸𝑖 |) = Ω(𝜙2). Thus, after 𝑠 = 𝑂 (𝜙−2 log𝑛) segments

of random walks of length 𝜏mix = 𝑂 (𝜙−2 log𝑛), the probability that
the walk never reach 𝑣∗𝑖 is at most (1 − Ω(𝜙2))𝑠 = 𝑛−Ω (1) . □

Lemma 2.5. Suppose deg𝐺𝑖
(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 |. In 𝑂 (𝜙−18) ·

2𝑂 (
√
log𝑛) rounds, an 𝑂 (log𝑛)-bit message from each 𝑣 ∈ 𝑉𝑖 can

be routed via the edges 𝐸𝑖 to 𝑣
∗
𝑖 deterministically.

Proof. Although this routing task can be solved in 𝜙−𝑂 (1) ·
2𝑂 (log2/3 𝑛 log1/3 log𝑛) rounds using deterministic expander rout-

ing [20], we provide a faster and more direct algorithm via an

almost maximal flow algorithm [20, Lemma D.10].2

In order to apply [20, Lemma D.10], we need to do some pre-

processing to the graph 𝐺𝑖 . Let 𝐺
′
𝑖 be the result of replacing each

vertex 𝑣 in𝐺 ′
𝑖 by a deg𝐺𝑖

(𝑣)-vertex graph𝑋𝑣 withΘ(1) conductance
and Θ(1) maximum degree in such a way that the deg𝐺𝑖

(𝑣) edges
in 𝐸𝑖 incident to 𝑣 are attached to distinct deg𝐺𝑖

(𝑣) vertices in 𝑋𝑣 .

Observe that the new graph 𝐺 ′
𝑖 has maximum degree 𝑂 (1).

Define the sparsity of a cut 𝑆 of a graph 𝐺 = (𝑉 , 𝐸) as Ψ(𝑆) =
|𝜕 (𝑆) |

min{ |𝑆 |, |𝑉 \𝑆 | } if 𝑆 ≠ ∅ and 𝑆 ≠ 𝑉 . Define the sparsity of a graph

𝐺 = (𝑉 , 𝐸) as the minimum sparsity over all cuts 𝑆 ⊆ 𝑉 with 𝑆 ≠ ∅
and 𝑆 ≠ 𝑉 . Then we must have Ψ(𝐺 ′

𝑖 ) = Θ(Φ(𝐺𝑖 )) = Ω(𝜙) [20,
Lemma C.2].

Next, define 𝐺 ′′
𝑖 as the result of replacing each vertex 𝑢 ∈ 𝑋𝑣∗

𝑖

by an 𝑂 (𝜙−2)-vertex graph 𝑌𝑢 with Θ(1) conductance and Θ(1)
2See the full version arXiv:2007.14898v1 of [20].

maximum degree such that 𝑇 =
⋃

𝑢∈𝑋
𝑣
∗
𝑖

𝑌𝑢 constitutes more than

half of the vertices in 𝐺 ′′
𝑖 . It is clear that the new graph 𝐺 ′′

𝑖 has

sparsity Ω(𝜙3) [20, Lemma C.1] and maximum degree 𝑂 (1).
Now, let 𝑆 be the vertices in 𝐺 ′′

𝑖 that are not in 𝑇 . Then the

original routing problem is reduced to finding a set of paths from

each 𝑣 ∈ 𝑆 to an arbitrary vertex in𝑇 . Suppose that this set of paths

satisfies that the maximum path length is 𝑑 and each vertex belongs

to at most 𝑐 paths, then the routing can be done with an additional

𝑂 (𝑐𝑑) rounds. As |𝑆 | < |𝑇 |, [20, Lemma D.10] shows that such a set

of paths with 𝑐 = 𝑂 (Δ𝜓−1 log3/2 𝑛) and 𝑑 = 𝑂 (Δ2𝜓−2) · 2𝑂 (
√
log𝑛)

can be found in 𝑡 = 𝑂 (Δ6𝜓−6) · 2𝑂 (
√
log𝑛) rounds. Here Δ = 𝑂 (1)

is the maximum degree and𝜓 = Ω(𝜙3) is the sparsity. Therefore,
the overall round complexity of routing is 𝑂 (𝑡 + 𝑐𝑑) = 𝑂 (𝜙−18) ·
2𝑂 (

√
log𝑛) . □

Observe that the routing algorithms of Lemmas 2.4 and 2.5 can

also be used to deliver an 𝑂 (log𝑛)-bit message from 𝑣∗𝑖 to each

vertex 𝑣 ∈ 𝑉𝑖 in 𝐺𝑖 by reversing the routing procedure.

2.3 Summary

We summarize our results as a theorem.

Theorem 2.6. Given any parameter 0 < 𝜀 < 1, there is an algo-

rithm for finding a partition 𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 of the vertex set

of an 𝐻 -minor-free graph 𝐺 = (𝑉 , 𝐸) with the following properties.

Inter-cluster Edges: The number of inter-cluster edges is at most

𝜀min{|𝑉 |, |𝐸 |}.
Construction Time: The round complexity for partitioning the

graph is 𝜀−𝑂 (1) log𝑂 (1) 𝑛 in the randomized setting and is

𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) in the deterministic setting.

Routing Time: Each cluster 𝑉𝑖 has a leader 𝑣∗𝑖 ∈ 𝑉𝑖 that knows

the entire graph topology of 𝐺 [𝑉𝑖 ]. Furthermore, we can let

𝑣∗𝑖 exchange a distinct 𝑂 (log𝑛)-bit message with each vertex

𝑣 ∈ 𝑉𝑖 in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds in the randomized setting

and in 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds in the deterministic

setting.

Proof. Since 𝐺 is 𝐻 -minor-free, there is a constant 𝑡 = 𝑂 (1)
depending only on 𝐻 such that |𝐸 |/|𝑉 | ≤ 𝑡 [87]. The partition 𝑉 =

𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 is constructed using the expander decomposition

algorithms of Theorems 2.1 and 2.2 with parameter 𝜀 ′ = 𝜀/𝑡 ≤ 𝜀, so
the requirement on the construction time is met. The upper bound

on the number of inter-cluster edges 𝜀 ′ |𝐸 | = 𝜀 |𝐸 |/𝑡 ≤ 𝜀 |𝑉 | follows
from the definition of an (𝜀, 𝜙) expander decomposition.

For each cluster 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) in the expander decomposition, in

𝑂 (𝜙−1 log𝑛) rounds the vertices in 𝐺𝑖 can select a vertex 𝑣∗𝑖 ∈ 𝑉𝑖
that has the maximum degree in 𝐺𝑖 . The algorithm for selecting

𝑣∗𝑖 is as follows. In the first step, each vertex 𝑣 in 𝐺𝑖 broadcasts

(ID(𝑣), deg𝐺𝑖
(𝑣)) to its neighbors in 𝐺𝑖 . After that, in each round

each vertex 𝑣 maintains a pair (ID(𝑢), deg𝐺𝑖
(𝑢)) that has the high-

est deg𝐺𝑖
(𝑢) over all pairs that 𝑣 has received, breaking the tie by

comparing ID(𝑢), and 𝑣 broadcasts this pair (ID(𝑢), deg𝐺𝑖
(𝑢)) to

all its neighbors in 𝐺𝑖 . The graph 𝐺𝑖 has diameter 𝑂 (𝜙−1 log𝑛) be-
cause 𝐺𝑖 is an 𝜙-expander. Therefore, after 𝑂 (𝜙−1 log𝑛) rounds
of communication, all vertices in 𝐺𝑖 agree with the same pair

(ID(𝑢), deg𝐺𝑖
(𝑢)) and we may set 𝑣∗𝑖 = 𝑢.
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For learning the graph topology of 𝐺 [𝑉𝑖 ] and routing, we ap-

ply the routing algorithms of Lemmas 2.4 and 2.5 to 𝐺 [𝑉𝑖 ], in
parallel for all 1 ≤ 𝑖 ≤ 𝑘 . In view of Theorems 2.1 and 2.2,

we use 𝜙 = 𝜀𝑂 (1) log−𝑂 (1) 𝑛 in the randomized setting and

𝜙 = 𝜀𝑂 (1)2−𝑂 (
√
log𝑛 log log𝑛) in the deterministic setting. Due to

Lemma 2.3, the conditions in Lemmas 2.4 and 2.5 are satisfied. The

requirement on the routing time is met in view of the round com-

plexities specified in Lemmas 2.4 and 2.5. □

The Behavior of a Failed Execution. We briefly discuss the behav-

ior of the algorithm of Theorem 2.6 when it fails. For example, if 𝐺

is not 𝐻 -minor-free, then the algorithm of Theorem 2.6 might not

work successfully. Note that the choice of the parameter 𝑡 in the

algorithm of Theorem 2.6 depends only on𝐻 , regardless of whether

the underlying graph is 𝐻 -minor-free.

Even if 𝐺 is 𝐻 -minor-free, the algorithm might fail with a prob-

ability of 1/poly(𝑛) in the randomized setting. Understanding the

behavior of a failed execution of the algorithm of Theorem 2.6 is

crucial to its application in property testing, which we will discuss

in Section 3.4, as there is no guarantee that the underlying network

𝐺 is 𝐻 -minor-free.

The algorithm of Theorem 2.6 has two parts, the clustering step

and the routing step.

Clustering Step. In the clustering step we may assume that the

algorithm always outputs a clustering 𝑉 = 𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 , even
in a failed execution. In particular, if a vertex 𝑣 is not assigned to

any cluster, then 𝑣 simply assign itself to the cluster {𝑣}.
In a successful execution, each 𝐺 [𝑉𝑖 ] has diameter 𝑂 (𝜙−1 log𝑛)

because 𝐺𝑖 is an 𝜙-expander and 𝐺𝑖 is the result of removing some

edges from 𝐺 [𝑉𝑖 ]. We can also guarantee that each cluster has

this property even in a failed execution, as follows. Choose 𝑏 =

𝑂 (𝜙−1 log𝑛) be any upper bound on the cluster diameter for a

successful execution of an expander decomposition algorithm. The

number 𝑏 depends only on 𝜙 and 𝑛. in𝑂 (𝜙−1 log𝑛) rounds, we run
the following algorithm. Using𝑏 rounds, each vertex 𝑣 computes the

maximum ID(𝑢) over all vertices 𝑢 within distance 𝑏 to 𝑣 in 𝐺 [𝑉𝑖 ].
After that, each vertex 𝑣 compares its result with its neighbors in

𝐺 [𝑉𝑖 ], and then 𝑣 marks itself ∗ if there is a disagreement. Finally,

each vertex 𝑣 ∈ 𝑉𝑖 checks in 2𝑏 + 1 rounds whether there is a vertex
𝑢 ∈ 𝑉𝑖 within distance 2𝑏 + 1 to 𝑣 that is marked ∗. If such a vertex

𝑢 exists, then 𝑣 also marks itself ∗. It is that there are two possible

outcomes. Either all vertices in 𝑉𝑖 are marked ∗, or all vertices in
𝑉𝑖 are not marked ∗. If the diameter of 𝐺 [𝑉𝑖 ] is at most 𝑏, then all

vertices in 𝑉𝑖 are not marked ∗. If the diameter of 𝐺 [𝑉𝑖 ] is at least
2𝑏 + 1, then all vertices in 𝑉𝑖 are marked ∗. Hence if a vertex 𝑣 is
marked ∗, it knows that the clustering step has failed, in which case

we can let 𝑣 reset its cluster to be {𝑣}.
For the number of inter-cluster edges, if𝐺 is 𝐻 -minor-free, then

the upper bound 𝜀min{|𝑉 |, |𝐸 |} is always satisfied in the determin-

istic setting and it is satisfied with probability 1 − 1/poly(𝑛) in
the randomized setting. Recall that the algorithm of Theorem 2.6

is based on an expander decomposition algorithm with parame-

ter 𝜀 ′ ≤ 𝜀. Since the expander decomposition algorithm does not

rely on the assumption that 𝐺 is 𝐻 -minor-free, the weaker upper

bound 𝜀 |𝐸 | on the number of inter-cluster edges holds regardless

of whether the input graph 𝐺 is 𝐻 -minor-free or not.

Routing Step. We distinguish between different reasons for the

routing algorithms of Lemmas 2.4 and 2.5 to fail. The first reason of

failure is that the condition deg𝐺𝑖
(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 | for Lemmas 2.4

and 2.5 is not satisfied. In view of Lemma 2.3, the only possibility

that this condition is not met is when𝐺 is not𝐻 -minor-free. In view

of the above discussion, each cluster 𝐺 [𝑉𝑖 ] always has diameter

𝑂 (𝜙−1 log𝑛), so whether the condition deg𝐺𝑖
(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 | is

satisfied can be checked in 𝑂 (𝜙−1 log𝑛) rounds.
Even if the condition deg𝐺𝑖

(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 | is met, the routing

algorithms of Lemmas 2.4 and 2.5 might still fail. There are two

possible reasons. One reason is that Φ(𝐺𝑖 ) < 𝜙 is too small due to

an error in the expander decomposition algorithm in the clustering

step. The other reason is because that in the randomized setting

there is a small probability that the algorithm might fail. In either

case, the failure occurs with probability 1/poly(𝑛), regardless of
whether 𝐺 is 𝐻 -minor-free.

In an failed execution of the routing algorithms of Lemmas 2.4

and 2.5, only a subset of all messages are delivered. To detect a

failure of delivery of a message, we can simply reverse the execution

of the algorithm. Once a vertex 𝑣 ∈ 𝑉𝑖 detects that some of its

messages are not successfully delivered, it broadcasts to all vertices

in 𝑉𝑖 that the routing algorithm has failed in 𝑂 (𝜙−1 log𝑛) rounds.
Hence we can assume that all vertices in a cluster𝑉𝑖 know whether

the routing algorithm is successful.

3 APPLICATIONS

Using Theorem 2.6, we give poly(1/𝜀, log𝑛)-round randomized

algorithms and 𝑛𝑜 (1) ·poly(1/𝜀)-round deterministic algorithms for

various optimization, property testing, and graph decomposition

problems on planar or 𝐻 -minor-free networks.

3.1 Maximum Independent Set

We design an efficient algorithm for computing a (1 − 𝜀)-
approximate maximum independent set of any 𝐻 -minor-free net-

work by combining Theorem 2.6 with the approach of Czygrinow,

Hańćkowiak, and Wawrzyniak [29].

Let𝐺 be an 𝐻 -minor-free graph. Let 𝛼 (𝐺) denote the size of the
maximum independent set of𝐺 . Recall that any𝐻 -minor-free graph

has edge density 𝑑 = 𝑂 (1), where the constant 𝑂 (1) depends only
on𝐻 [87]. For any𝐻 -minor-free graph, as |𝐸 |/|𝑉 | ≤ 𝑑 , its minimum

degree is at most 2𝑑 . Hence 𝛼 (𝐺) = Θ(𝑛), as an independent set 𝐼

of size at least 𝑛/(2𝑑 + 1) can be computed by repeatedly adding

a minimum-degree vertex 𝑣 to 𝐼 and removing all its neighboring

vertices. For example, if 𝐺 is planar, then 𝛼 (𝐺) ≥ 𝑛/4 due to the

four color theorem.

Run the algorithm of Theorem 2.6 on 𝐺 with parameter 𝜀 ′ =
𝜀/(2𝑑 + 1) to partition the vertices into 𝑉 = 𝑉1 ∪𝑉2 ∪ . . . ∪𝑉𝑘 . For
each 𝑉𝑖 , we route the entire graph topology of 𝐺 [𝑉𝑖 ] into 𝑣∗𝑖 and

let 𝑣∗𝑖 compute the maximum independent set 𝐼𝑖 of 𝐺 [𝑉𝑖 ] locally.
Then, 𝑣∗𝑖 sends a message to each vertex in 𝑉𝑖 to inform if it is in 𝐼𝑖 .

Let 𝐼 = 𝐼1 ∪ . . . ∪ 𝐼𝑘 . For each edge 𝑒 = {𝑢, 𝑣}, if both 𝑢 and 𝑣 are

in 𝐼 , we add one of 𝑢 and 𝑣 to 𝑍 . Since this can only happen if 𝑒 is

an inter-cluster edge, we have |𝑍 | ≤ 𝜀 ′ · 𝑛. Let 𝐼 ′ = 𝐼 \𝑍 . Clearly, 𝐼 ′
is an independent set.
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Using the fact that 𝛼 (𝐺) ≥ 𝑛/(2𝑑 + 1) and 𝜀 ′ = 𝜀/(2𝑑 + 1), we
have

|𝐼 ′ | =
(

𝑘
∑

𝑖=1

|𝐼𝑖 |
)

− |𝑍 | ≥ 𝛼 (𝐺) − |𝑍 | ≥ 𝛼 (𝐺) − 𝜀 ′ · 𝑛

≥ 𝛼 (𝐺) − 𝜀𝛼 (𝐺) = (1 − 𝜀)𝛼 (𝐺).

Hence we conclude the following theorem.

Theorem 1.2. A (1 − 𝜀)-approximate maximum independent set

of an 𝐻 -minor-free network 𝐺 can be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛

rounds with high probability and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds

deterministically in the CONGEST model.

3.2 Maximum Cardinality Matching in Planar

Graphs

We show that a (1 − 𝜀)-approximate maximum cardinality match-

ing of a planar network 𝐺 can be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛

rounds with high probability and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds

deterministically.

Let 𝐺 be a planar graph. We begin by creating a new graph

𝐺 = (𝑉 , 𝐸) from 𝐺 by removing some vertices from 𝐺 such that

the sizes of the maximum matching are the same in 𝐺 and in 𝐺 .

Moreover, the size of maximum matching is at least Ω( |𝑉 |). After
applying the algorithm of Theorem 2.6 on 𝐺 , the leader 𝑣∗𝑖 of each

cluster gathers the graph topology of the cluster and compute the

maximum matching locally.

A 𝑘-star is a subgraph induced by the vertices {𝑥, 𝑣1, . . . , 𝑣𝑘 }
where for each 1 ≤ 𝑖 ≤ 𝑘 , deg(𝑣𝑖 ) = 1 and there is an edge con-

necting 𝑥 and 𝑣𝑖 . A 𝑘-double-star is a subgraph induced by the

vertices {𝑥,𝑦, 𝑣1, . . . , 𝑣𝑘 } where for each 1 ≤ 𝑖 ≤ 𝑘 , deg(𝑣𝑖 ) = 2 and

there are two edges {𝑥, 𝑣𝑖 } and {𝑦, 𝑣𝑖 }. The graph 𝐺 is created by

eliminating all 2-stars and 3-double-stars from 𝐺 by the following

procedure.

To eliminate 2-stars, every vertex 𝑢 with degree 1 sends a token

(𝑢) to its neighbor. Then every vertex who has received more than

one tokens bounces all the tokens, except one of them, back to their

originators. Vertices of degree 1 whose token was bounced back

are removed from 𝐺 . To eliminate 3-double stars, every vertex 𝑢

with exactly two neighbors𝑢1, 𝑢2 sends a token (𝑢, (𝑢1, 𝑢2)) to their
neighbors. Every vertex then aggregate the tokens based on the

second coordinate, the 2-tuple (𝑢1, 𝑢2). If there are more than 2

tokens with the same second coordinate, all but two of them are

bounced back to their originators. Vertices whose tokens were

bounced back are removed from 𝐺 .

Note that the eliminations of 2-stars and 3-double-stars do not

change the size of the maximum matching. Moreover, we have the

following property:

Lemma 3.1 ([27, Lemma 6]). Let 𝐺 = (𝑉 , 𝐸) be a planar graph

with 𝑛 = |𝑉 | and no isolated vertices. If 𝐺 contains no 2-stars and

3-double-stars then the size of the maximum matching of 𝐺 is Ω(𝑛).

By Lemma 3.1, the size of the maximum matching of |𝑉 | is at
least 𝑐 · |𝑉 | for some constant 𝑐 > 0. Czygrinow, Hańćkowiak, and

Wawrzyniak [29] used Lemma 3.1 to design an 𝑂 (log∗ 𝑛)-round
deterministic algorithm for computing a (1 − 𝜀)-approximate maxi-

mum cardinality matching in the LOCAL model, for any constant

𝜀 > 0. We show that Theorem 2.6 allows us to obtain efficient

matching algorithms in the CONGEST model as well.

Now we run the algorithm of Theorem 2.6 on 𝐺 with parameter

𝜀 ′ = 𝑐 · 𝜀 to partition the vertices into 𝑉 = 𝑉1 ∪𝑉2 ∪ . . . ∪𝑉𝑘 . For
each𝑉𝑖 , we route the entire graph topology of𝐺 [𝑉𝑖 ] into 𝑣∗𝑖 and let

it compute the maximum matching𝑀𝑖 of 𝐺 [𝑉𝑖 ] locally. We claim

that the union of the matching 𝑀 = 𝑀1 ∪ 𝑀2 ∪ . . . ∪ 𝑀𝑘 is an

(1 − 𝜀)-approximate maximum matching.

Let𝑀∗ be a maximum matching. Let𝑀∗
𝑖 = 𝑀∗ ∩ (𝑉𝑖 ×𝑉𝑖 ) be𝑀∗

restricted to 𝑉𝑖 . We have

|𝑀 | =
𝑘

∑

𝑖=1

|𝑀𝑖 |

≥
𝑘

∑

𝑖=1

|𝑀∗
𝑖 | = |𝑀∗ | − (# inter-cluster𝑀∗-edges)

≥ |𝑀∗ | − 𝜀 ′ · |𝑉 |
= |𝑀∗ | − 𝜀 · 𝑐 · |𝑉 | ≥ |𝑀∗ | − 𝜀 |𝑀∗ |
= (1 − 𝜀) |𝑀∗ |.

Hence we conclude the following theorem.

Theorem 3.2. A (1−𝜀)-approximate maximummatching of a pla-

nar network𝐺 can be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds with high

probability and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds deterministically in

the CONGEST model.

In the full version [21] of the paper, we will generalize this result

to the more difficult maximum weighted matching problem for an

arbitrary 𝐻 -minor-free graph to prove Theorem 1.1.

3.3 Correlation Clustering

In the agreement maximization correlation clustering problem, the

edge set is partitioned into 𝐸 = 𝐸+ ∪ 𝐸− two parts, and the goal

is to compute a clustering of the vertices 𝑉 = 𝑉1 ∪ 𝑉2 ∪ · · · ∪ 𝑉𝑘
maximizing

∑𝑘
𝑖=1 |𝐸+∩ (𝑉𝑖 ×𝑉𝑖 ) | +

∑

1≤𝑖< 𝑗≤𝑘 |𝐸+∩ (𝑉𝑖 ×𝑉𝑗 ) |, which
is the number of intra-cluster 𝐸+-edges plus the number of inter-

cluster 𝐸−-edges.
Given a partition 𝐸 = 𝐸+ ∪ 𝐸− of the edges in 𝐺 , let 𝛾 (𝐺) de-

note the optimal value for the agreement maximization correlation

clustering problem. Note that 𝛾 (𝐺) ≥ |𝐸 |/2 if𝐺 is connected. This

is because if |𝐸+ | ≥ |𝐸 |/2, we can put each vertex as a standalone

cluster and get a score of at least |𝐸 |/2. Otherwise, putting every
vertex in the same cluster yields a score of at least |𝐸 |/2.

Apply the algorithm of Theorem 2.6 on 𝐺 with parameter

𝜖 ′ = 𝜖/2 to partition the vertices into 𝑉1 . . .𝑉𝑘 . For each 𝑉𝑖 , route

the entire graph topology of 𝐺 [𝑉𝑖 ] into 𝑣∗𝑖 and let 𝑣∗𝑖 compute an

optimal correlation clustering C𝑖 of 𝐺 [𝑉𝑖 ]. Let C be the union of

C1, C2, . . . , C𝑘 . Let C∗ be an optimal clustering and C∗
𝑖 be the re-

striction of C∗ to 𝑉𝑖 . Formally, C∗
𝑖 is constructed by adding 𝐶 ∩𝑉𝑖

to C∗
𝑖 for each cluster 𝐶 ∈ C∗ such that 𝐶 ∩𝑉𝑖 ≠ ∅.

Using the fact that 𝛾 (𝐺) ≥ |𝐸 |/2 and 𝜖 ′ = 𝜖/2, we have

score(C) ≥
𝑘

∑

𝑖=1

score(C𝑖 ) ≥
𝑘

∑

𝑖=1

score(C∗
𝑖 )

≥ score(C∗) − 𝜖 ′ |𝐸 | ≥ 𝛾 (𝐺) − 𝜖𝛾 (𝐺) = (1 − 𝜖)𝛾 (𝐺).
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Hence we conclude the following theorem. Note that the require-

ment that 𝐺 is 𝐻 -minor-free is only used in applying Theorem 2.6.

Theorem 1.3. A (1 − 𝜀)-approximate agreement maximiza-

tion correlation clustering of an 𝐻 -minor-free network 𝐺 can

be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds with high probabil-

ity and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds deterministically in the

CONGEST model.

3.4 Property Testing

We design an efficient algorithm for testing an arbitrary minor-

closed property P that is closed under taking disjoint union. This

covers many natural graph classes, including planar graphs, outer-

planar graphs, graphs with treewidth at most𝑤 , and 𝐻 -minor-free

graphs for a fixed connected graph 𝐻 .

We pick 𝑠 to be the smallest positive integer such that 𝐾𝑠 ∉ P,

i.e. the 𝑠-vertex clique does not have property P. If such a number

𝑠 does not exist, then P contains the set of all cliques. Since P is

minor-closed and any finite graph is a minor of some clique, P
must be the trivial property that contains all graphs, in which case

we have a trivial property tester that works by letting each vertex

output Accept.

Algorithm. From now on we assume that 𝑠 exists, and we let

𝐻 = 𝐾𝑠 be the 𝑠-clique. Our property testing algorithm applies

Theorem 2.6 under the assumption that the underlying graph is

𝐻 -minor-free, and then each vertex 𝑣 makes its decision as follows.

• Suppose that the routing algorithm of Theorem 2.6 works

successfully for a cluster 𝑉𝑖 , then 𝑣
∗
𝑖 knows the graph topol-

ogy of 𝐺 [𝑉𝑖 ]. We let 𝑣∗𝑖 locally check whether 𝐺 [𝑉𝑖 ] has
property P and broadcast the results to all vertices in 𝑉𝑖 .

If 𝐺 [𝑉𝑖 ] does not have property P, then all vertices in 𝑉𝑖
outputs Reject, otherwise all vertices in 𝑉𝑖 outputs Accept.

• Suppose that the routing algorithm of Theorem 2.6 does

not work successfully for a cluster 𝑉𝑖 . If it fails because the

condition deg𝐺𝑖
(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 | is not met, then all vertices

in 𝑉𝑖 outputs Reject, otherwise all vertices in 𝑉𝑖 outputs

Accept.

Here we recall from the discussion in Section 2.3 that each cluster

𝑉𝑖 is able to check whether the routing algorithmworks successfully

andwhether the condition deg𝐺𝑖
(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 | is met. Therefore,

each vertex 𝑣 is able to decide whether to output Accept or Reject

in the above algorithm.

Analysis. Suppose𝐺 has property P. Because P is minor-closed,

𝐺 [𝑉𝑖 ] also has property P. Moreover, 𝐺 ∈ P implies that 𝐺 is 𝐻 -

minor-free. Recall the discussion in Section 2.3 that the condition

deg𝐺𝑖
(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 | is not met only when𝐺 is not𝐻 -minor-free.

Therefore, from the description of our algorithm, all vertices will

output Accept with probability one.

Suppose𝐺 is 𝜀-far from having property P. There are two cases.

The first case is that the algorithm of Theorem 2.6 does not fail.

Recall that the algorithm of Theorem 2.6 is based on an expander

decomposition algorithm with parameter 𝜀 ′ ≤ 𝜀. Therefore, as

long as the execution of the expander decomposition algorithm

is successful, the number of inter-cluster edges is at most 𝜀 |𝐸 |,
regardless of whether the input graph 𝐺 is 𝐻 -minor-free or not.

Since 𝐺 is 𝜀-far from having property P, the graph 𝐺 ′ resulting
from removing all inter-cluster edges also does not have property

P. Since𝐺 ′ is the disjoint union of all clusters𝐺 [𝑉𝑖 ] and P is closed

under taking disjoint union, there must be at least one cluster𝐺 [𝑉𝑖 ]
that does not have property P, so all vertices 𝑉𝑖 in this cluster will

output Reject, as required.

The second case is that the algorithm of Theorem 2.6 fails. If

it fails because the condition deg𝐺𝑖
(𝑣∗𝑖 ) = Ω(𝜙2) |𝐸𝑖 | is not met,

then all vertices in 𝑉𝑖 outputs Reject, as required. As discussed in

Section 2.3, the probability that algorithm of Theorem 2.6 fails due

to other reasons is at most 1/poly(𝑛), so the probability that all ver-
tices in the graph output Accept is at most 1/poly(𝑛). In particular,

a failure in the expander decomposition algorithm might cause the

number of inter-cluster edges to be significantly higher than 𝜀 |𝐸 |,
potentially causing all 𝐺 [𝑉𝑖 ] to have property P. Although such

a failure might not be detected, it occurs with probability at most

1/poly(𝑛).
Hence we conclude the following theorem. Note that in the

randomized setting our algorithm has one-sided error in that all

vertices output Accept with probability one if 𝐺 has property P.

Theorem 1.4. Distributed property testing for any minor-closed

graph property P that is closed under taking disjoint union

can be solved in 𝜀−𝑂 (1) log𝑂 (1) 𝑛 rounds with high probabil-

ity and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds deterministically in the

CONGEST model.

Lower Bound. In the full version [21] of the paper, we give a

concrete example of a minor-closed property P that is not closed

under taking disjoint union and requires Ω(𝑛) rounds to test even

for constant 𝜀 > 0 and in the LOCAL model. This shows that the

requirement in Theorem 1.4 that the graph property is closed under

taking disjoint union is, in a sense, necessary.

3.5 Low-diameter Decompositions

Using Theorem 2.6, we design an efficient algorithm that finds a

partition of the vertex set 𝑉 = 𝑉1 ∪ 𝑉2 ∪ · · · ∪ 𝑉𝑘 such that the

number of inter-cluster edges
∑

1≤𝑖≤𝑘 |𝜕(𝑉𝑖 ) |/2 is at most 𝜀 |𝐸 | and
the diameter of the induced subgraph 𝐺 [𝑉𝑖 ] is at most 𝐷 = 𝑂 (𝜀−1)
for each 1 ≤ 𝑖 ≤ 𝑘 .

We first run Theorem 2.6 with parameter 𝜀 = 𝜀/2 to obtain a

clustering 𝑉 = 𝑉1 ∪ 𝑉2 ∪ · · · ∪ 𝑉𝑘 such that the number of inter-

cluster edges is at most 𝜀 |𝐸 | ≤ 𝜀 |𝐸 |/2. We then refine the cluster 𝑉𝑖
by letting 𝑣∗𝑖 compute a low-diameter decomposition of𝐺 [𝑉𝑖 ] with
𝜀 = 𝜀/2 and 𝐷̃ = 𝑂 (𝜀−1) using any known sequential algorithm [1,

40, 68] for this task. Hence each cluster in the final clustering has

diameter 𝑂 (𝜀−1). This step introduces at most 𝜀 |𝐸 |/2 inter-cluster
edges, so the total number of inter-cluster edges is at most 𝜀 |𝐸 |/2 +
𝜀 |𝐸 |/2 = 𝜀 |𝐸 |, as required.

Theorem 1.5. Given an 𝐻 -minor free network, a low-diameter

decomposition with𝐷 = 𝑂 (𝜀−1) can be computed in 𝜀−𝑂 (1) log𝑂 (1) 𝑛

rounds with high probability and 𝜀−𝑂 (1)2𝑂 (
√
log𝑛 log log𝑛) rounds

deterministically in the CONGEST model.
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