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ABSTRACT
In a work by Raz (J. ACM and FOCS 16), it was proved that any

algorithm for parity learning on n bits requires either Ω(n2) bits
of classical memory or an exponential number (in n) of random
samples. A line of recent works continued that research direction

and showed that for a large collection of classical learning tasks,

either super-linear classical memory size or super-polynomially

many samples are needed. All these works consider learning algo-

rithms as classical branching programs, which perform classical

computation within bounded memory.

However, these results do not capture all physical computational

models, remarkably, quantum computers and the use of quantum

memory. It leaves the possibility that a small piece of quantum

memory could significantly reduce the need for classical memory

or samples and thus completely change the nature of the classical

learning task. Despite the recent research on the necessity of quan-

tum memory for intrinsic quantum learning problems like shadow

tomography and purity testing, the role of quantum memory in

classical learning tasks remains obscure.

In this work, we study classical learning tasks in the presence

of quantum memory. We prove that any quantum algorithm with

both, classical memory and quantum memory, for parity learning

on n bits, requires either Ω(n2) bits of classical memory or Ω(n)
bits of quantum memory or an exponential number of samples. In

other words, the memory-sample lower bound for parity learning

remains qualitatively the same, even if the learning algorithm can

use, in addition to the classical memory, a quantum memory of size

cn (for some constant c > 0).

Our result is more general and applies to many other classical

learning tasks. Following previous works, we represent by the

matrix M : A × X → {−1, 1} the following learning task. An

unknown x is sampled uniformly at random from a concept class

X , and a learning algorithm tries to uncover x by seeing streaming
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of random samples (ai ,bi = M(ai , x)) where for every i , ai ∈ A
is chosen uniformly at random. Assume that k, ℓ, r are integers

such that any submatrix of M of at least 2
−k · |A| rows and at

least 2
−ℓ · |X | columns, has a bias of at most 2

−r
. We prove that

any algorithm with classical and quantum hybrid memory for the

learning problem corresponding toM needs either (1) Ω(k · ℓ) bits

of classical memory, or (2) Ω(r ) qubits of quantum memory, or

(3) 2
Ω(r )

random samples, to achieve a success probability at least

2
−O (r )

.

Our results refute the possibility that a small amount of quantum

memory significantly reduces the size of classical memory needed

for efficient learning on these problems. Our results also imply

improved security of several existing cryptographical protocols

in the bounded-storage model (protocols that are based on parity

learning on n bits), proving that security holds even in the presence

of a quantum adversary with at most cn2 bits of classical memory

and cn bits of quantum memory (for some constant c > 0).
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1 INTRODUCTION
Memory plays an important role in learning. Starting from the sem-

inal works by Shamir [39] and Steinhardt, Valiant andWager [41], a

sequence of works initiates and deepens the study of lower bounds

for learning under memory constraints. Steinhardt, Valiant, and

Wager [41] conjectured that in order to learn an unknown n-bit
string from samples of random-subset parity, an algorithm needs

either memory-size quadratic in n or exponentially many random

samples (also in n). This conjecture was later on proved by Raz [37],

showing for the first time that for some learning problems, super-

linear memory size is required for efficient learning. This result

was then generalized to a broad class of learning problems [6, 21–

23, 29, 34, 36, 40].

Although we have a comprehensive understanding of the (in)-

feasibility of learning under limitations on particular computation

resource (memory), the previous works mentioned above do not
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capture all physical computational models; most notably, quantum

computation and the power of quantummemory. Many researchers

believe that large-scale quantum computers will eventually be-

come viable. Recent experiments demonstrated quantum advan-

tages, for example [3], and suggested that there are possibly no

fundamental barriers to achieving quantum memory and quantum

computers. Questions on the role of quantum memory in learning

were proposed by Wright in the context of general state tomog-

raphy [43] and by Aaronson for shadow tomography [1]. A line

of works [2, 8, 11, 12, 26, 28] pioneer the idea and show either

polynomial or exponential separations for learning with/without

quantum memory, but all for intrinsic quantum learning tasks like

state tomography, shadow tomography and purity testing.

In light of the above, it is appealing to consider classical learn-

ing tasks in the presence of quantum memory, as well as hybrid

classical-quantum memory. A direct implication of all aforemen-

tioned classical results only gives trivial results. As k qubits of

memory can always be efficiently simulated by ∼ 2
k
classical bits,

we can only conclude (say, for parity learning) that either ∼ 2 logn-
qubit quantum memory or exponentially many samples are needed.

Prior to our work, it could have been the case that even if only

a very small size quantum memory was available, it might have

significantly reduced the need for classical memory and led to an

efficient learning algorithm.

In this work, we prove memory-sample lower bounds in the

presence of hybrid memory for a wide collection of classical learn-

ing problems. As in [23, 36], we will represent a learning problem

by a matrix M : A × X → {−1, 1} whose columns correspond to

concepts in the concept class X and rows correspond to random

samples. In the learning task, an unknown concept x ∈ X is sam-

pled uniformly at random and each random sample is given as

(ai ,bi ) = (ai ,M(ai , x)) for a uniformly picked ai ∈ A. The learner’s
goal is to uncover x . In [23], it is proved that when the underly-

ing matrix M is a (k, ℓ)-L2 two source extractor
1
with error 2

−r
,

a learning algorithm requires either Ω(k · ℓ) bits of memory or

2
Ω(r )

samples to achieve a success probability at least 2
−O (r )

for

the learning task.

1.1 Our Results
In this work, we model a quantum learning algorithm as a program

with hybrid memory consisting of q qubits of quantum memory

andm bits of classical memory. At each stage, a random sample

(ai ,bi = M(ai , x)) is given to the algorithm. The quantum learn-

ing algorithm applies an arbitrary quantum channel to the hybrid

memory, controlled by the random sample. Although the channel

can be arbitrary, we impose the outcome to be a hybrid classical-

quantum state of at most q qubits andm bits. We stress that there

is no limitation on the complexity of the quantum channel (and

this only makes our results stronger as we are proving here lower

bounds for such algorithms).

With the above model, we give the following main theorem.

Theorem 1 (Main Theorem, Informal). Let M : A × X →

{−1, 1} be a matrix. IfM is a (k, ℓ)-L2 two source extractor with error
2
−r , a quantum learning algorithm requires either

1
Roughly speaking, this means that every submatrixM ′

ofM with number of rows at

least 2
−k |A | and number of columns at least 2

−ℓ |X | has a relative bias at most 2
−r

.

(1) Ω(k · ℓ) bits of classical memory; or,
(2) Ω(r ) qubits of quantum memory; or,
(3) 2

Ω(r ) samples,

to succeed with a probability of at least 2−O (r ) in the corresponding
learning task.

Our main theorem implies that for many learning problems,

the availability of a quantum memory of size up to Ω(r ), does
not reduce the size of classical memory or the number of samples

that are needed. As coherent quantum memory is challenging for

near-term intermediate-scale quantum computers and is probably

expensive even if and when quantum computers are widely viable,

the impact of quantum memory is further limited for these learning

problems.

To make the theorem more precise, let us take parity learning as

an example. The above theorem says that a quantum learning algo-

rithm needs either Ω(n2) bits of memory, or Ω(n) qubits of quantum

memory, to conduct efficient learning; otherwise, it requires 2
Ω(n)

random samples. At first glance, it seems that the constraint on

quantum memory is trivial: if the target is to learn an n-bit un-
known secret, a linear amount of memory always seems necessary

to store the secret. However, noticing that our main theorem ap-

plies to quantum learning algorithms with hybrid memory and

rules out algorithms with n2/1000 bits and n/1000 qubits of hybrid
memory for parity learning, the main theorem yields non-trivial

and compelling memory-sample lower bounds. Note also that our

results (and previous results) are valid even if the goal is to output

only one bit of the secret. Currently, we do not know whether our

main theorem is tight. For parity learning, we are not aware of any

quantum learning algorithm that uses onlyO(n) qubits of quantum
memory. We leave closing the gap as a fascinating open question.

The main theorem naturally applies to other learning problems

considered in [23], including learning sparse parities, learning from

sparse linear equations, and many others. We do not present an

exhaustive list here but refer the readers to [23] for more details.

Along the way, we propose a new approach for proving the

classical memory-sample lower bounds. We call this approach, the

“badness levels” method. The approach is technically equivalent to

the previous approach in [23, 36] but is conceptually simpler to

work with and we are able to lift it to the quantum case.

We note that proving a linear lower bound on the size of the

quantum memory, without classical memory, is significantly sim-

pler (but to the best of our knowledge such a proof has not appeared

prior to our work). We present such a proof in the Appendix of the

full version of this paper.

Implications to Cryptography in the Bounded-StorageModel. Since
learning theory and cryptography can be viewed as two sides of

the same coin, our theorem also lifts the security of many existing

cryptographical protocols in the bounded-storage model (protocols

that are based on parity learning) to the quantum setting. To our best

knowledge, these are the first proofs of classical cryptographical

protocols being secure against space-bounded quantum attackers.
2

We elaborate more below.

2
On the other hand, there are known examples of classically-secure bounded-storage

protocols that are breakable with an exponentially smaller amount of quantummemory.

[24].
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Cryptography in the (classical) bounded storage model was first

proposed by Maurer [32]. In such a model, no computational as-

sumption is needed. Honest execution is performed through a long

streaming sequence of bits. Eavesdroppers have bounded storage

and limited capability of storing conversations, thus cannot break

the protocol. A line of works [4, 5, 9, 16–20, 27, 31, 33, . . . ] builds

efficient and secure protocols for key agreement, oblivious transfer,

bit commitment and time stamping in that model.

Based on the memory-sample lower bounds for parity learning

of n bits, [37] suggested an encryption scheme in the bounded-

storage model. Guan and Zhandry [25] proposed key agreement,

oblivious transfer and bit commitment with improved rounds and

better correctness, against attackers with up to O(n2) bits of mem-

ory. Following a similar idea, Liu and Vusirikala [30] showed that

semi-honest multiparty computation could be achieved against

attackers with up to O(n2) bits of memory. More recently, Dodis,

Quach, and Wichs [18] considered message authentication in the

bounded storage model based on parity learning. Our result on

parity learning gives a direct lift on all the results above. When

the cryptographic protocols are based on parity learning of n bits

(often treated as a security parameter), our result shows that se-

curity holds even in the presence of a quantum adversary with at

most O(n2) bits of classical memory and O(n) qubits of quantum
memory.

Despite many previous works on cryptography in the quantum

bounded storage model [7, 13–15, 35, 38, 42], they all rely on stream-

ing quantum states. Our memory-sample lower bounds give for

the first time a rich class of classical cryptographical schemes (key

agreement, oblivious transfer, and bit commitment) secure against

space-bounded quantum attackers.

2 PROOF OVERVIEW
2.1 Recap of Proofs for Classical Lower Bounds
Since our proof builds on the previous line of works on classical

memory-sample lower bounds for learning, specifically, on the

proof technique of [23, 36], we provide a brief review of these

proofs, using parity learning [37] as an example. In below,M(a, x)
denotes the inner product of a and x in F2.

Consider a classical branching program that tries to learn an

unknown and uniformly random x ∈ {0, 1}n from samples (a,b),
where a ∈ {0, 1}n is uniformly random and b = M(a, x). We can

associate every statev of the branching programwith a distribution

PX |v over {0, 1}n , indicating the distribution of x conditioned on

reaching that state. At the initial state, without any information

about x , the distribution is uniform (which has the smallest possible

ℓ2-norm). Along a computational path on the branching program,

the distribution PX |v evolves and eventually gets concentrated

(with large ℓ2-norms) in order to output x correctly. Therefore,

during the evolution, PX |v should at some stage have mildly large

ℓ2-norms (2
εn

times larger than uniform for some small constant

ε > 0). If we set such a distribution as a target, the distribution is

hard to achieve with random samples. Only with 2
−Ω(n)

probabil-

ity, the branching program can make significant progress towards

the target; while most of the time a sample just splits the distribu-

tions (both the current and the target distribution) into two even

parts, and that does not help much in getting closer to the target

distribution (with large ℓ2 norm).

To put it more rigorously, we examine the evolution of the inner

product

⟨PX |v , P⟩ =
∑

x ∈{0,1}n
PX |v (x) · P(x)

between the distribution PX |v on the current state v , and a target

distribution P . Receiving a sample (a,b) implies that M(a, x) = b,
hence only the part of PX |v supported on such x proceeds. If this

part is close to
1

2
probability, we say that a divides PX |v evenly.

Denoting the new distribution as P
(a,b)
X |v , after proper normalization

the new inner product is

⟨P
(a,b)
X |v , P⟩ =

∑
x ∈{0,1}n
M (a,x )=b

PX |v (x) · P(x)

/ ∑
x ∈{0,1}n
M (a,x )=b

PX |v (x). (1)

Ideally, both PX |v and the point-wise product vector PX |v ·P should

have reasonably small ℓ2-norms. Due to the extractor property of

M , most of a ∈ {0, 1}n should divide both vectors evenly, and

thus the denominator is close to
1

2
while the enumerator is close

to
1

2
⟨PX |v , P⟩. That means, given a uniformly random a, we get

limited progress on the inner product. On the other hand, from

⟨U , P⟩ = 2
−n

with uniform distribution U to ⟨P, P⟩ = 2
2εn · 2−n ,

the branching program needs to make multiple steps of progression.

Therefore it happens with an extremely small probability.

To ensure that the above statement goes smoothly, we require

the following properties for every statev in the branching program:

• The ℓ2-norm


PX |v




2
is small.

• The ℓ2-norm


PX |v · P




2
is small, which is implied when the

ℓ∞-norm



PX |v



∞
is small.

• The denominator in Eq. (1) is bounded away from 0 for every

sample (a,b).

These properties do not hold by themselves. Instead, we execute

a truncation procedure on the branching program before choosing
a target distribution. More specifically, the branching program is

modified so that it stops whenever it:

• (ℓ2 truncation): Reaches a state v with large



PX |v



2
;

• (ℓ∞ truncation): Reaches a state v with large PX |v (x) when
the unknown concept is x ;

• (Sample truncation): Or, for the next sample (a,b), a does

not divide PX |v evenly.

It turns out that after ℓ2 truncation, the other two truncation steps

add 2
−Ω(n)

error in each stage of the branching program. Therefore

the proof boils down to proving a 2
−Ω(n2)

bound on the probability

of reaching a state with large



PX |v



2
, from which by a standard

union bound, we can prove the memory-sample lower bounds for

parity learning: either 2
Ω(n)

samples or Ω(n2) bits of memory are

necessary.

2.2 Badness Levels
As mentioned above, to bound the probability of reaching a state

with a large ℓ2-norm, the basic idea is to fix its distribution as

the target distribution P , and bound the increment of the inner

product ⟨PX |v , P⟩. This was done in [23, 36] by designing a potential
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function that tracks the average of ⟨PX |v , P⟩
k
for some k = Θ(n),

where the average is over statesv in the same stage of the branching

program. Here we propose another approach using the concept of

badness levels. Although it is technically equivalent to the potential

function approach in the classical case, it is more pliable and easier

to be adapted to the quantum case. We view this approach as a

separate contribution of our work.

We first define a bad event to be a pair (v,a) of the state v and

the upcoming part of the sample a, such that ⟨PX |v , P⟩ ≥ 2
−n

, and

for one of the two possible outcomes b,∑
x ∈{0,1}n
M (a,x )=b

PX |v (x) · P(x) ≥

(
1

2

+ 2−δn
)
· ⟨PX |v , P⟩ (2)

with some small constant δ . In other words, the inner product

⟨PX |v , P⟩ is large enough, while not being divided evenly by a.
From Eq. (1) we know that the inner product gets at most roughly

doubled through a bad event. In contrast, in the good case, the inner

product either gets a mere (1 + 2
−δn ) multiplicative factor or is

already smaller than the baseline 2
−n

. Also, the extractor property

ofM ensures that for every state v , over uniformly random a, the

bad event happens with at most 2
−Ω(n)

probability.

Now, the badness level β(v) of a state v keeps track of how

many times the computational path went through bad events before

reaching v .3 The above observations on the bad events imply that

(omitting the smaller factors):

• For every state v , ⟨PX |v , P⟩ is bounded by 2
β (v) · 2−n ;

• Heading to the next stage, β(v) increases by 1 with probabil-

ity 2
−Ω(n)

.

Therefore at each stage, the total weight of states with badness level

β is at most 2
−Ω(βn)

. Thus any state with ⟨PX |v , P⟩ ≥ 2
2εn · 2−n

must have 2
−Ω(n2)

probability.

2.3 Obstacles for Proving Quantum Lower
Bounds

In this section, we present an attempt to prove the same 2
Ω(n)

-

sample or Ω(n2)-quantum-memory lower bound for the pure quan-

tum case. Along the way we identify some obstacles to proving

memory-sample lower bounds for quantum learning algorithms,

and in the next section we show how to overcome these obstacles

while proving lower bounds for hybrid learning algorithms, with

quadratic-size classical-memory and linear-size quantum-memory.

Following the same framework as the above described proof

for the classical case, we first need to transfer all the notions to a

quantum algorithms:

• The statev is a quantum state in theHilbert space of quantum

memory;

• The distribution PX |v is still well-defined: It is the distribu-

tion of x when the quantum memory is measured to v (see

Section 3.4 and Eq. (3));

• We are still able to implement ℓ2 truncation: If PX |v has

large ℓ2-norm, project the entire system to the orthogonal

3
For now we think of β (v) as a natural number. In the actual proof, β (v) is a distribu-
tion on natural numbers, as for different computational paths reaching the same state,

the count of bad events can be different.

subspace v⊥ of v and repeat, until there is no such state v
(see Section 4.1 for details).

• We are also able to implement sample truncation, in a similar

manner to ℓ2 truncation. As the criteria here depends on

a, we separately create a copy of the current system for

each a, truncate the states v using projection when PX |v is

not evenly divided by a in each copy, and then merge them

back together. We prove that the error introduced by this

truncation is small.

Here comes the first major obstacle: ℓ∞ truncation. In the clas-

sical case, ℓ∞ truncation is implemented for each individual x , in
contrast to ℓ2 truncation where the states are removed altogether.

Relying on the fact that it is already known that the ℓ2 norm of the

distribution is small, using Markov inequality, one can prove that

the error introduced by the ℓ∞ truncation is small.

However, when we try to emulate the classical implementation

of ℓ∞ truncation with quantum truncation, that is, to only project

to v⊥ the system conditioned on the specific x where PX |v (x) is
large, instead of for every x , it may lead to huge changes to the

distributions PX |u on states u non-orthogonal to v . The following
example illustrates such a scenario:

Example. Consider a quantum learning algorithm, and assume

that at some stage of the computation, for each x ∈ {0, 1}n , the

quantum memory is in some pure state v(x). We pick each v(x)

uniformly at random in a Hilbert space of dimension d ≈ 2
n/2

and consider a typical configuration of v(x). Now the ℓ2-norms

are bounded for every quantum state v: the worst ones happen

when v = v(x) for some x , where ∥PX |v(x )∥2 is typically around

d ·2−n , close to the ℓ2-norm of uniform distribution. However, those

worst distributions also have ℓ∞-norms close to d · 2−n , which is

much larger than the ℓ∞-norm of the uniform distribution, and

needs to be truncated. But truncating v(x) off for x means that x is

completely erased, and we end up removing everything.

Moving on, we fix a target state v with a target distribution

PX |v which exceeds the ℓ2-norm threshold, and the goal is again

to prove a 2
−Ω(n2)

amplitude bound on v . The bad event should

still be defined as a pair (v,a) satisfying Eq. (2), with v now being

a quantum state. We then run into the second major obstacle: it is

not clear how to define badness levels.

If we define the badness level β(v) for each state v individually

by examining the bad events over the historical states, then it is

not clear how to measure the total weight of a badness level β . In
the classical case, we simply define the total weight as the total

probability of states with badness level β . But here in the quantum

case, it turns out that such a definition either depends on the choice

of basis, which might have large increment in each stage, or com-

pletely fails to imply the desired amplitude bound on the target

state.

The other choice is to have a more operational definition of

badness levels, and it is indeed tempting to define β as another

register whose updates are controlled by the quantum memory.

The problem with such definitions is that the bad event (Eq. (2)) is

not linear in v . Therefore an operational definition of badness level,

which is a linear operator, inevitably introduces error that escalates

fast with the number of stages.
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2.4 Hybrid Memory Lower Bounds with Small
Quantum Memory

The obstacles in the previous section are for proving quadratic quan-

tum memory lower bound. We note that proving linear quantum

memory lower bound (without classical memory) is not hard: the

proof can be entirely information theoretical, as with very limited

memory, say,
1

2
n qubits, the information gained from each sample

is exponentially small, despite the memory being quantum. We

present such a proof in the Appendix of the full version of this

paper.

The lower bounds that we prove here are with hybrid memory:

To learn parity with both classical and quantum memory, an algo-

rithm needs either 2
Ω(n)

samples, or Ω(n2) classical memory, or

Ω(n) quantum memory (Theorem 1). We now describe how we

overcome the previously mentioned obstacles.

ℓ∞ Truncation. When there is only small quantum memory and

no classical memory, the treatment for ℓ∞ truncation is straightfor-

ward. We remove all quantum states v with distributions of large

ℓ∞-norm, by projecting the system to the orthogonal subspace v⊥,
just like the process of ℓ2 truncation. As the overall distribution

on x is uniform, any state v with ∥PX |v ∥∞ ≥ 2
δn · 2−n must have

weight at most 2
−δn

. Therefore, as long as the dimension of the

Hilbert space is much smaller than δn, the error introduced in this

truncation is small.
4

With classical memory in presence, the actual ℓ∞ truncation

step (see Section 4.2, Step 2) is more complicated. We first apply the

original classical ℓ∞ truncation on the classical memoryW . Now

that ∥PX |w ∥∞ is bounded for each classical memory statew , we can

remove the quantum states v with large ∥PX |v ,w ∥∞ by projection

as stated above. Since the classical ℓ∞ truncation depends on x , it
could change the distributions PX |v ,w . However, as in the classical

case, PX |w will not change a lot. Thus, wherever PX |v ,w changes

drastically, it must have a small weight and can also be removed

by projection. This removal corresponds to truncation by Gt in

Section 4.2.

Badness Levels. Interestingly, we are able to avoid the problems

of defining the badness level on quantum memory altogether, by

keeping it a property on the classical memory only. To do so we

need to alter the definition of a bad event: it is now a pair (w,a) of
classical memory statew and sample a, such that there exists some

quantum memory state v with PX |v ,w satisfying Eq. (2).

For each fixed classical memory state w , we still need to en-

sure that bad events happen with a small probability. We prove it

(Lemma 5.2) by showing that, if there are many different samples a,
each associated with some quantum stateva satisfying Eq. (2), then

there is some quantum state v that simultaneously satisfies Eq. (2)

with most of such a (which is impossible because of the extractor

property). This is ultimately due to the continuous nature of Eq. (2):

Under some proper congruent transformation, Eq. (2) becomes a

simple threshold inequality on quadratic forms over v . Now if it

is satisfied by some va , it is going to be satisfied by most v for a

much smaller threshold parameter δ , and hence the existence of a

4
The example in the previous section that shows the infeasibility of treating ℓ∞
truncation the same way as ℓ2 truncation does not work here, as it requires n/2 qubits
of memory while here we have a smaller memory size.

simultaneously satisfying v .5 In this argument, we use Lemma 3.1,

which is derived from the anti-concentration bound for Gaussian

quadratic forms, and crucially relies on the fact that the dimension

is at most 2
εn

for some small ε .
Another technical problem is that to use the extractor property,

we need to ensure that ⟨PX |v ,w , P⟩ ≥ 2
−n

for the simultaneously

satisfying v . Thus, what we do in Lemma 5.2 is to first conceptually

remove the parts where ⟨PX |v ,w , P⟩ is too small, using projection

similarly to the truncation steps. After the removal, we are left with

a subspace V ′
where ⟨PX |v ,w , P⟩ is always lower bounded, and

we show that for every state v that satisfies Eq. (2), the inequality

is still close to being satisfied after projecting v ontoV ′
. Therefore

we could still apply the above argument and find a simultaneously

satisfying v within the subspace.

3 PRELIMINARIES
3.1 Vectors and Matrices
For a vector v ∈ Cd and p ∈ [1,∞], we define the ℓp norm of v as

∥v ∥p =

( d∑
i=1

|vi |
p

)1/p
.

For two vectors u,v ∈ Cd , define their inner product as ⟨u,v⟩ =

u†v =
∑d
i=1 uivi . So ∥v ∥2

2
= ⟨v,v⟩. We also view every distribution

P over a set X as a non-negative real vector with ∥P ∥
1
= 1.

We specifically use Dirac notation to denote unit vectors, |v⟩ ∈

Cd implies that ∥ |v⟩∥2 = 1. For a non-zero vector u ∈ Cd , let
|v⟩ ∼ u be the normalization of u, that is, |v⟩ = u/∥u∥2.

For every vector v ∈ Cd , let Diagv ∈ Cd×d be the diagonal

matrix whose diagonal entries represent v . Conversely, for every
square matrixM , let diagM be the vector consisting of the diagonal

entries of M . For a matrix (or generally a linear operator) M , we

use ∥M ∥
Tr

and ∥M ∥2 to denote its trace norm and spectral norm

respectively, that is,

M


Tr
= Tr

[√
MM†

]
,



M


2
= max

v,0
∥Mv ∥2/∥v ∥2.

For an Hermitian M ∈ Cd×d , we say it is a positive semi-definite

operator if for everyv ∈ Cd ,v†Mv ≥ 0. A (partial) density operator

is a positive semi-definite operator with its trace being 1 (or at most

1, respectively).

Viewing a Learning Problem as a Matrix. LetM : A ×X → {−1, 1}

be a matrix. The matrix M corresponds to the following learn-

ing problem. There is an unknown element x ∈ X that was cho-

sen uniformly at random. A learner tries to learn x from sam-

ples (a,b), where a ∈ A is chosen uniformly at random and b =
M(a, x). That is, the learning algorithm is given a stream of samples,

(a1,b1), (a2,b2), . . ., where each at is uniformly distributed and for

every t , bt = M(at , x). For each a ∈ A, we use Ma : X → {−1, 1}

to denote the vector corresponding to the a-th row ofM .

Extractors. A matrix M : A × X → {−1, 1} with n = log
2
|X| is a

(k, ℓ)-L2 extractor with error 2
−r
, if for every distribution P over

5
We note that the error bound for sample truncation (Lemma 4.11) is also proved using

this argument.
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X with ∥P ∥2 ≤ 2
ℓ · 2−n/2, there are at most 2

−k · |A| rows a ∈ A

such that

|⟨Ma, P⟩| ≥ 2
−r .

3.2 Anti-Concentration Bound for Quadratic
Form on Unit Vectors

Lemma 3.1. There exists an absolute constant c such that following
holds. Let σ be a Hermitian operator over the Hilbert space V = Cd ,
and let v be a uniformly random unit vector in V . Then for every
ε > 0, we have

Pr

[
|v†σv | ≤

ε ∥σ ∥2
d

]
≤ c

√
ε + e−d .

The proof is based on Carbery–Wright inequality [10] and can

be found in the full version of this paper.

3.3 Multipartite Quantum Systems
The state of q qubits can be represented in a Hilbert space V =

(C2)⊗q = C2
q
. In a product ofm Hilbert spacesV[m] = V1 ⊗ · · · ⊗

Vm , a multipartite partial system V1, . . . ,Vm is represented by a

partial density operator ρV[m]
. For a subset I ⊆ [m] of indices, the

subsystem on {Vi }i ∈I (or VI for short) is defined by tracing out

j < I , that is,

ρVI = TrVj<I [ρV[m]
].

Now for any two disjoint subsets I , J ⊂ [m], given some |v J ⟩ ∈

VJ =
⊗

j ∈J Vj , the conditional system on VI is defined as

ρVI |v J
=

(
IVI ⊗ ⟨v J |

)
ρVI∪J

(
IVI ⊗ |v J ⟩

)
,

which is a partial density operator on VI . Note that the trace

Tr

[
ρVI |v J

]
= ⟨v J |ρVJ |v J ⟩

only depends on the system ρ and |v J ⟩, while being independent of
the choice of I .

Another simple fact that will be repeatedly used later on is that

for an orthogonal basis B of VJ , we have

ρVI = TrVJ [ρVI∪J ] =
∑

|v J ⟩∈B

ρVI |v J
.

3.4 Classical-Quantum Systems
In the underlying space V1 ⊗ · · · ⊗ Vm of the multipartite system,

we sayVi is classical if there is a fixed orthogonal basis Bi ofVi ,

such that for every multipartite system ρV[m]
, every pair of distinct

|vi ⟩ , |v ′
i ⟩ ∈ Bi and every two states |v⟩, |v ′⟩ ∈

⊗
j,i Vj , we

have

⟨vi ,v |ρV[m]
|v ′
i ,v

′⟩ = 0.

Without loss of generality, in the rest of the work we always assume

Bi is the set of computational basis states. We also identifyVi with

the discrete set Bi , and remove the Dirac brackets when we talk

about the classical elements inVi . In this case every multipartite

system ρV[m]
can be written as a direct sum

ρV[m]
=

⊕
vi ∈Vi

ρV[m]\{i } |vi
.

The reader may find this direct sum viewpoint easier to handle in

some later scenarios.

When VI is classical, conditioned on any |v J ⟩ ∈ VJ with J
disjoint from I , the system ρVI |v J

is represented as a diagonal

matrix on VI . If Tr[ρVI |v J
] > 0, it induces a distribution over the

computation basis states of VI , defined as

P
ρ
VI |v J

= diag ρVI |v J
/Tr[ρVI |v J

]. (3)

In the rest of this paper, whenever we use this notation P
ρ
VI |v J

, it is

always implicitly assumed that Tr[ρVI |v J
] > 0 and the distribution

exists.

In this work we typically consider the following scenario: There

is a quantum memory register V ranging in the Hilbert space V ,

and a classical memory registerW ranging in the set of memory

states W, along with some classical information X ∈ X (later in

the work, it is the concept to be learned) that is correlated with V
andW . We will make use of the following fact:

Claim 3.2. Let ρXVW be a classical-quantum system over clas-
sical X ,W and quantum V . For every w ∈ W, PρX |w is a convex

combination of PρX |v ,w for some {|v⟩} ⊆ V .

Proof. LetB be an orthogonal basis ofV , so that we have (from

the end of last section)

ρX |w =
∑

|v ⟩∈B

ρX |v ,w .

Therefore P
ρ
X |w is a linear combination of P

ρ
X |v ,w for |v⟩ ∈ B, with

non-negative coefficients. Since they are all distributions, it must

be a convex combination. □

Characterization of operators over classical-quantum hybrid sys-
tems. We identify all possible operators on the classical-quantum

hybrid memory space V ⊗ W. A priori to the assumption that

W is classical, we think of a quantum channel operating on the

system as working on the underlying space V ⊗ C |W |
. Now we

denote T
V⊗W

to be the set of all such quantum channels Φ that

satisfy the following: for every classical-quantum system ρVW in

V ⊗W,W is still classical in Φ(ρVW ). That is, for every two states

|v⟩, |v ′⟩ ∈ V and every pair of distinctw,w ′ ∈ W, we have

⟨v,w |Φ(ρVW )|v ′,w ′⟩ = 0.

Note that not all channels in T
V⊗W

are physically realizable.

For instance, with one-bit classical memory and no quantum mem-

ory, the channel (
a c
c b

)
7→

(
a ic
−ic b

)
is not a classical operator. However, since we are constrained to

classical quantum systems, this channel is effectively equivalent to

an identity channel on one-bit classical memory. Generally speak-

ing, every channel in T
V⊗W

is equivalent to a channel controlled

byW that mapsV toV ⊗W. This observation and the following

claim are proved in the full version of this paper:

Claim 3.3. Let ρXVW be a classical-quantum system over classical
X ,W and quantum V . Let Φ ∈ T

V⊗W
, and we use Φ(ρ) to denote

the system after applying Φ to VW and identity to X . Then for every
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|v⟩ ∈ V and w ∈ W, PΦ(ρ)X |v ,w is a convex combination of PρX |v ′,w ′

for some {|v ′⟩} ⊆ V and {w ′} ⊆ W.

3.5 Branching Program with Hybrid Memory
For a learning problem that corresponds to the matrixM , a branch-

ing program of hybridmemorywithm-bit classical memory,q-qubit
quantum memory and length T is specified as follows.

At each stage 0 ≤ t ≤ T , the memory state of the branching

program is described as a classical-quantum system ρ
(t )
VW over

quantum memory spaceV = (C2)⊗q and classical memory space

W = {0, 1}m . The memory state evolves based on the samples

that the branching program receives, and therefore depends on

the unknown element x ∈R X. We can then interpret the overall

systems over XVW , in which X consists of an unknown concept

x , resulting in a classical-quantum system ρ
(t )
XVW . It always holds

that the distribution of x is uniform, i.e.,

ρ
(t )
X = TrVW [ρ

(t )
XVW ] =

1

2
n IX .

Initially the memoryVW is independent ofX and can be arbitrarily

initialized. We assume that

ρ
(0)

XVW =
1

2
n IX ⊗

1

2
q IV ⊗

1

2
m IW .

At each stage 0 ≤ t < T , the branching program receives a sample

(a,b), where a ∈R A and b = M(a, x), and applies an operation

Φt ,a,b ∈ T
V⊗W

over its memory state. Thus the evolution of the

entire system can be written as

ρ
(t+1)
XVW = E

a∈RA

[ ∑
x ∈X

|x⟩⟨x | ⊗ Φt ,a,M (a,x )
(
ρ
(t )
VW |x

) ]
.

Finally, at stage t = T , a measurement over the computational bases

is applied on ρ
(T )
VW , and the branching program outputs an element

x̃ ∈ X as a function of the measurement result (v,w) ∈ {0, 1}q+m .

The success probability of the program is the probability that x̃ = x
which can be formulated as∑

x ∈X,v ∈{0,1}q ,w ∈W

x̃ (v ,w )=x

⟨x,v,w |ρ
(T )
XVW |x,v,w⟩.

4 MAIN RESULT
Theorem 2. Let X,A be two finite sets with n = log

2
|X|. Let

M : A × X → {−1, 1} be a matrix which is a (k ′, ℓ′)-L2 extractor
with error 2−r

′

for sufficiently large k ′, ℓ′ and r ′, where ℓ′ ≤ n. Let

r = min

{
1

4

r ′,
1

26

ℓ′ +
1

6

,
1

2

(k ′ − 1)

}
.

Let ρ be a branching program for the learning problem corresponding
toM , described by classical-quantum systems ρ(t )XVW , with q-qubit
quantum memory V , m-bit classical memory W and length T . If
m ≤ 1

44
(k ′ − 1)ℓ′, q ≤ r − 7 and T ≤ 2

r−2, the success probability of
ρ is at most O(2q−r ).

From now on we let k = k ′ − 1 and ℓ = 1

5
(ℓ′ − 13r − 2). Then we

have the following inequalities to be used later:

q + r + 1 − r ′ ≤ −2r . (4)

2ℓ + 9r − n ≤ −r . (5)

(k − r )ℓ ≥ 2m + 4r + 1. (6)

4.1 Truncated Classical-Quantum Systems
Here we describe how to truncate a partial classical-quantum sys-

tem ρXVW according to some propertyG(v,w) of desire on ρX |v ,w .

The goal is to remove the parts of ρXVW where G is not satisfied.

We execute the following procedure:

(1) Maintain a partial system ρ ′XVW initialized as ρXVW , and

subspaces Vw ⊆ V initialized as V for eachw ∈ W.

(2) Pick w ∈ W and |v⟩ ∈ Vw such that Tr[ρ ′X |v ,w ] > 0 and

G(v,w) is false.

(3) Change the partial system ρ ′XVW into Πv ,w ρ ′XVW Πv ,w by

the projection

Πv ,w = IX ⊗ (IVW − |v,w⟩⟨v,w |),

and change Vw to its subspace orthogonal to |v⟩, that is

{|v ′⟩ ∈ Vw | ⟨v |v ′⟩ = 0}.

(4) Repeat from step 2 until there is no suchw and |v⟩. Denote

the final system as ρ
|G
XVW .

In step 2 we pick w and |v⟩ arbitrarily as long as it satisfies the

requirements, however we could always think of it as iterating over

w ∈ W and processing each ρXV |w separately. The choices of |v⟩

for eachw do affect the final system ρ
|G
XVW ; Yet as we will see later,

these choices are irrelevant to our proof.

Below, we give two useful lemmas on truncated systems whose

proofs are omitted in this version of the paper:

Lemma 4.1. For every |v⟩ ∈ V andw ∈ W with Tr[ρ |GX |v ,w ] > 0,
there exists |v ′⟩ in the remaining subspace Vw such that

P
ρ |G

X |v ,w = P
ρ
X |v ′,w = P

ρ |G

X |v ′,w .

A direct corollary of the above lemma is that if G(v,w) only

depends on the distribution P
ρ
X |v ,w , then G(v,w) holds for every

|v⟩ ∈ V and w ∈ W in the truncated system ρ
|G
XVW , even when

|v⟩ is not in the remaining subspace Vw .

Lemma 4.2. For eachw ∈W , let |v1⟩, . . . , |vd ⟩ be the states picked
in step 2 within Vw . Then

ρXV |w − ρ

|G
XV |w




Tr

≤ 3

d∑
i=1

√
Tr[ρX |vi ,w

]Tr[ρXV |w ].

Since Tr[ρXV |w ] ≤ 1 always holds, by summing over allw ∈ W

we get the following corollary:

Corollary 4.3. Let |v1,w1⟩, . . . , |vd ,wd ⟩ be all of the memory
states picked in step 2. Then

ρXVW − ρ

|G
XVW




Tr

≤ 3

d∑
i=1

√
Tr[ρX |vi ,wi

].
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4.2 Truncated Branching Program
The properties that we desire for the partial system ρXVW consist

of three parts:

• Small L2 norm: Let G2(v,w) be the property that

PρX |v ,w




2
≤ 2

ℓ · 2−n/2.

• Small L∞ norm: Let G∞(v,w) be the property that

PρX |v ,w




∞

≤ 2
2ℓ+9r · 2−n .

• Even division: For every a ∈ A, letGa (v,w) be the property

that

|⟨Ma, P
ρ
X |v ,w ⟩| ≤ 2

−r .

Now we define the truncated branching program, by specify-

ing the truncated partial classical-quantum system τ
(t )
XVW for each

stage t . Initially let τ
(0)

XVW = ρ
(0)

XVW . For each stage 0 ≤ t ≤ T ,
the truncation consists of three ingredients (below we ignore the

superscripts on P for convenience):

(1) Remove parts where



PX |v ,w



2
is large. That is, let τ

(t ,⋆)
XVW =

τ
(t ) |G2

XVW .

(2) Remove parts where



PX |v ,w



∞
is large. This is done by two

steps.

- First, let д ∈ {0, 1}X⊗W
be an indicator vector such that

д(x,w) = 1 if and only if

Tr[τ
(t ,⋆)
X |w ] > 0 and Pτ

(t ,⋆)

X |w (x) ≤ 2
2ℓ+5r · 2−n .

Let τ
(t ,◦)
XVW = (дд† ⊗ IV )τ

(t ,⋆)
XVW (дд† ⊗ IV ), where дд

†
is the

projection operator acting on X ⊗ W.

- To make sure that the distributions did not change a lot

after the projection дд†, for each 0 ≤ t < T , let Gt (v,w)

be the property that

Tr[τ
(t ,◦)
X |v ,w ] ≥ (1 − 2

−r )Tr[τ
(t ,⋆)
X |v ,w ].

Let τ
(t ,∞)

XVW = τ
(t ,◦) |G∞∧Gt
XVW .

(3) For each a ∈ A, remove (only for this a) parts where PX |v ,w
is not evenly divided by a. That is, for each a ∈ A, let

τ
(t ,a)
XVW = τ

(t ,∞)|Ga
XVW .

Then, if t < T , for each a ∈R A we evolve the system by applying

the sample operations Φt ,a,b as the original branching program on

τ
(t ,a)
XVW , so that we have

τ
(t+1)
XVW = E

a∈RA

[ ∑
x ∈X

|x⟩⟨x | ⊗ Φt ,a,M (a,x )
(
τ
(t ,a)
VW |x

) ]
.

4.3 Bounding the Truncation Difference
In order to show that the success probability of the original branch-

ing program ρ(t ) is low, the plan is to prove an upper bound on the

success probability of the truncated branching program τ (t ), and
bound the difference between the two probabilities.

Here we bound the difference by the trace distance between the

two systems ρ
(t )
XVW and τ

(t )
XVW . We will show that the contribution

to the trace distance from each one of the truncation ingredients is

small, and in addition the evolution preserves the trace distance.

4.3.1 Truncation by G2.

Lemma 4.4. For every 0 ≤ t ≤ T , |v⟩ ∈ V andw ∈ W such that
G2(v,w) is violated (that is,



Pτ (t )

X |v ,w




2
> 2

ℓ · 2−n/2), we must have

Tr[τ
(t )
X |v ,w ] < 2

−2m · 2−4r .

The lemma says, for any direction |v,w⟩ picked by the truncation

procedure, the weight will be small and the truncation will not

change the state significantly.

Proof. This is our main technical lemma and we defer the proof

to Section 5. □

Since there are at most 2
q+m

such directions picked in the trun-

cation procedure, we conclude the following corollary.

Corollary 4.5. For every 0 ≤ t ≤ T , we have

τ (t ,⋆)XVW − τ
(t )
XVW




Tr

≤ 3 · 2q−2r .

4.3.2 Truncation by G∞.

Lemma 4.6. For every 0 ≤ t ≤ T andw ∈ W we have∑
x ∈X

д(x ,w )=0

Pτ
(t ,⋆)

X |w (x) ≤ 2
−5r .

Proof. By Claim 3.2, Pτ
(t ,⋆)

X |w is a convex combination of Pτ
(t ,⋆)

X |v ,w .

From Lemma 4.1 we know thatG2(P
τ (t ,⋆)

X |v ,w ) holds for every |v⟩ and

w , and thus by convexity of ℓ2-norms we know thatG2(P
τ (t ,⋆)

X |w ) also

holds. That means

E
x∼Pτ (t ,⋆)

X |w

[
Pτ

(t ,⋆)

X |w (x)
]
=



Pτ (t ,⋆)

X |w



2
2
≤ 2

2ℓ · 2−n .

Therefore, by Markov’s inequality we have∑
x ∈X

д(x ,w )=0

Pτ
(t ,⋆)

X |w (x) = Pr

x∼Pτ (t ,⋆)

X |w

[
Pτ

(t ,⋆)

X |w (x) > 2
2ℓ+5r · 2−n

]
≤ 2

−5r .

□

Corollary 4.7. For every 0 ≤ t ≤ T and everyw ∈ W, we have
τ
(t ,◦)
XV |w ≤ τ

(t ,⋆)
XV |w , and

Tr[τ
(t ,◦)
XV |w ] ≥ (1 − 2

−5r ) · Tr[τ
(t ,⋆)
XV |w ].

Moreover, we have


τ (t ,◦)XVW − τ

(t ,⋆)
XVW




Tr

≤ 2
−5r .

Lemma 4.8. For every 0 ≤ t ≤ T , |v⟩ ∈ V andw ∈ W such that
G∞(v,w) is violated (that is,



Pτ (t ,◦)

X |v ,w




∞
> 2

2ℓ+9r · 2−n ) orGt (v,w)

is violated (that is, Tr[τ (t ,◦)X |v ,w ] < (1−2
−r )Tr[τ

(t ,⋆)
X |v ,w ]), we must have

Tr[τ
(t ,◦)
X |v ,w ] < 2 · 2−4r · Tr[τ

(t ,◦)
X |w ].

Proof. If G∞(v,w) is violated, let x ∈ X be the one such that

Pτ
(t ,◦)

X |v ,w (x) > 2
2ℓ+9r · 2−n . If д(x,w) = 0 then Pτ

(t ,◦)

X |w (x) = 0, while

if д(x,w) = 1 then by Corollary 4.7,

Pτ
(t ,◦)

X |w (x) ≤
Tr[τ

(t ,⋆)
X |w ]

Tr[τ
(t ,◦)
X |w ]

· 22ℓ+5r · 2−n ≤ (1 − 2
−5r )−1 · 22ℓ+5r · 2−n .
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Hence we always have

Tr[τ
(t ,◦)
X |v ,w ] ≤

Pτ
(t ,◦)

X |w (x)

Pτ
(t ,◦)

X |v ,w (x)
· Tr[τ

(t ,◦)
X |w ] ≤ 2 · 2−4r · Tr[τ

(t ,◦)
X |w ],

where the first inequality comes from the fact that τ
(t ,◦)
X |w ≥ τ

(t ,◦)
X |v ,w

and Equation (3).

If Gt (v,w) is violated, since we know from Corollary 4.7 that���Tr[τ (t ,◦)X |v ,w ] − Tr[τ
(t ,⋆)
X |v ,w ]

��� ≤ 

τ (t ,◦)XV |w − τ
(t ,⋆)
XV |w




Tr

≤ 2
−5r · Tr[τ

(t ,⋆)
XV |w ]

≤ 2
−5r · (1 − 2

−5r )−1 · Tr[τ
(t ,◦)
XV |w ],

therefore from Tr[τ
(t ,◦)
X |v ,w ] < (1 − 2

−r )Tr[τ
(t ,⋆)
X |v ,w ] we deduce that

Tr[τ
(t ,◦)
X |v ,w ] < (2r − 1) ·

(
Tr[τ

(t ,⋆)
X |v ,w ] − Tr[τ

(t ,◦)
X |v ,w ]

)
≤ (2r − 1) · 2−5r · (1 − 2

−5r )−1 · Tr[τ
(t ,◦)
XV |w ]

< 2 · 2−4r · Tr[τ
(t ,◦)
X |w ]. □

Corollary 4.9. For every 0 ≤ t ≤ T , we have

τ (t ,∞)

XVW − τ
(t ,◦)
XVW




Tr

≤ 5 · 2q−2r .

4.3.3 Truncation by Ga . Notice that in the truncation step from

τ (t ,⋆) to τ (t ,◦), the distribution Pτ
(t ,⋆)

X |v ,w might change and not sat-

isfy G2 anymore. However, with the truncation by Gt , any such

distribution that changes too much is eliminated, and we have the

following guarantee.

Lemma 4.10. For every 0 ≤ t ≤ T , |v⟩ ∈ V andw ∈ W, we have

Pτ (t ,∞)

X |v ,w




2
≤ (1 − 2

−r )−1 · 2ℓ · 2−n/2.

Proof. By Lemma 4.1, there exists |v ′⟩ ∈ V such that Pτ
(t ,∞)

X |v ,w =

Pτ
(t ,∞)

X |v ′,w = Pτ
(t ,◦)

X |v ′,w . The truncation by Gt ensures that

Tr[τ
(t ,◦)
X |v ′,w ] ≥ (1 − 2

−r )Tr[τ
(t ,⋆)
X |v ′,w ],

and therefore

Pτ (t ,∞)

X |v ,w




2
=



Pτ (t ,◦)

X |v ′,w




2
=




diagτ

(t ,◦)
X |v ′,w




2

Tr[τ
(t ,◦)
X |v ′,w ]

≤




diagτ

(t ,⋆)
X |v ′,w




2

(1 − 2
−r )Tr[τ

(t ,⋆)
X |v ′,w ]

≤ (1 − 2
−r )−1 · 2ℓ · 2−n/2. □

Lemma 4.11. For every partial classical-quantum system τXV over
X ⊗ V such that



PτX |v




2
≤ 2

ℓ′ · 2−n/2 holds for every |v⟩ ∈ V , we
have

Pr

a∈RA

[
∃|v⟩ ∈ V, |⟨Ma, P

τ
X |v ⟩| ≥ 2

−r
]
≤ 2

−2r .

Proof. Notice that we can think of τV = TrX [τXV ] to be IV .
This is because we can first assume that τV is full rank (otherwise

change V to its subspace and the conclusion in this lemma still

holds), and if we have diagonalization Q†τVQ = IV for some non-

singular Q , then consider the new system

τ ′XV = (IX ⊗ Q†)τXV (IX ⊗ Q),

and the set of distributions {PτX |v } and {Pτ
′

X |v } over |v⟩ ∈ V are

the same, since Pτ
′

X |v = PτX |v ′ for |v
′⟩ ∼ Q |v⟩. With τV = IV we

have Tr[τX |v ] = 1 for every |v⟩ ∈ V , and thus PτX |v = diagτX |v .

Let A ′ ⊆ A be the set of a ∈ A such that there exists |v⟩ ∈ V

with |⟨Ma, P
τ
X |v ⟩| ≥ 2

−r
. For each a ∈ A ′

, let

σa = TrX [(DiagMa ⊗ IV )τXV ]

which is a Hermitian operator on V . There exists |v⟩ ∈ V such

that

|⟨v |σa |v⟩| = |⟨Ma, diagτX |v ⟩| = |⟨Ma, P
τ
X |v ⟩| ≥ 2

−r ,

which means that ∥σa ∥2 ≥ 2
−r

. Now let |u⟩ be a uniformly random

unit vector inV , and by Lemma 3.1 we know that for some absolute

constant c ,

Pr

|u ⟩

[
|⟨u |σa |u⟩| ≥ 2

−r ′
]
≥ 1 − 2

(q+r−r ′)/2c − e−2
q

≥ 1 − 2
−r c − e−1 ≥ 1/2.

The second last inequality comes from Eq. (4), while the last in-

equality is because of the assumption that r is sufficiently large.

Since the above holds for every a ∈ A ′
, it implies that

Pr

a∈A′, |u ⟩
[|⟨u |σa |u⟩| ≥ 2

−r ′] ≥ 1/2.

It means that there exists some |u⟩ ∈ V such that |⟨u |σa |u⟩| ≥ 2
−r ′

for at least half of a ∈ A ′
. On the other hand, sinceM is a (k ′, ℓ′)-

extractor with error 2
−r ′

, and



PτX |u




2
≤ 2

ℓ′ · 2−n/2, there are at

most 2
−k ′

fraction of a ∈ A such that |⟨u |σa |u⟩| = |⟨Ma, P
τ
X |u ⟩| ≥

2
−r ′

. That means

Pr

a∈RA

[
a ∈ A ′

]
≤ 2 · 2−k

′

≤ 2
−2r .

Here k ′ − 1 ≥ 2r , by the definition of r . □

Corollary 4.12. For every 0 ≤ t ≤ T , we have E
a∈RA



τ (t ,a)XVW −

τ
(t ,∞)

XVW




Tr

≤ 2
−2r .

4.3.4 Evolution preserves trace distance.

Lemma 4.13. For every 0 ≤ t < T , we have

τ (t+1)XVW − ρ
(t+1)
XVW




Tr

≤ E
a∈RA



τ (t ,a)XVW − ρ
(t )
XVW




Tr
.

The proof is by triangle inequality and contractivity of quantum

channels under trace norms, and thus omitted.

4.4 Proof of Theorem 2
Proof. First, combining Corollaries 4.5, 4.7, 4.9 and 4.12 and

Lemma 4.13 we have

τ (t+1)XVW − ρ
(t+1)
XVW




Tr

≤


τ (t )XVW − ρ

(t )
XVW




Tr
+ 8 · 2q−2r + 2−5r + 2−2r .
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Since τ
(0)

XVW = ρ
(0)

XVW , by triangle inequality we know that

τ (T )XVW − ρ
(T )
XVW




Tr

≤ T · 10 · 2q−2r ≤ 10 · 2q−r ,

and thus

τ (T ,∞)

XVW − ρ
(T )
XVW




Tr

≤ 10 · 2q−r + 8 · 2q−2r + 2−5r .

This bounds the difference between the measurement probabilities

of τ
(T ,∞)

XVW and ρ
(T )
XVW under any measurement, specifically the dif-

ference between the success probability of the branching program

ρ and the following value on τ :∑
x ∈X,v ∈{0,1}q ,w ∈W

x̃ (v ,w )=x

⟨x,v,w |τ
(T ,∞)

XVW |x,v,w⟩

=
∑

v ∈{0,1}q ,w ∈W

Tr[τ
(T ,∞)

X |v ,w ] · Pτ
(T ,∞)

X |v ,w (x̃(v,w)).

Since



Pτ (T ,∞)

X |v ,w




∞

≤ 2
2ℓ+9r · 2−n and Tr[τ

(T ,∞)

XVW ] ≤ 1, the above

value is at most 2
2ℓ+9r · 2−n . Therefore the success probability of

the branching program ρ is at most (recall that 2ℓ + 9r − n ≤ −r )

10 · 2q−r + 8 · 2q−2r + 2−5r + 22ℓ+9r · 2−n = O(2q−r ). □

5 PROOF OF LEMMA 4.4
The first step towards proving Lemma 4.4 is to analyze how Pτ

(t )

X |v ,w
evolves according to the rule

τ
(t+1)
XVW = E

a∈RA

[ ∑
x ∈X

|x⟩⟨x | ⊗ Φt ,a,M (a,x )
(
τ
(t ,a)
VW |x

) ]
.

We introduce the following notations. For every a ∈ A and b ∈

{−1, 1}, let

1a,b =
1

2

(®1 + b ·Ma ),

which is a 0-1 vector that indicates whetherM(a, x) = b. Let

τ
(t ,a,b)
XVW = (Diag1a,b ⊗ IVW )τ

(t ,a)
XVW , (7)

so that we can write

τ
(t+1)
XVW = E

a∈RA

[
(IX ⊗ Φt ,a,1)

(
τ
(t ,a,1)
XVW

)
+ (IX ⊗ Φt ,a,−1)

(
τ
(t ,a,−1)
XVW

) ]
.

(8)

Thus Claim 3.3 implies that Pτ
(t+1)

X |v ,w is a convex combination of

Pτ
(t ,a,b)

X |v ′,w ′ for some a,b,w ′
and |v ′⟩.

5.1 Target Distribution and Badness
Before considering the target distribution, let us first establish that

the ℓ2-norms of Pτ
(t )

X |v ,w cannot be too large, using Lemma 4.1 and

Lemma 4.10:

Lemma 5.1. For every 0 ≤ t ≤ T , |v⟩ ∈ V ,w ∈ W, we have

Pτ (t )

X |v ,w




2
≤ 4 · 2ℓ · 2−n/2.

From now on we use P to denote a fixed target distribution

(which we will later choose to be the distribution in Lemma 4.4),

such that

2
ℓ · 2−n/2 ≤ ∥P ∥2 ≤ 4 · 2ℓ · 2−n/2.

We want to bound the progress of ⟨Pτ
(t )

X |v ,w , P⟩, which starts off as

2
−n

at t = 0, and becomes at least 2
2ℓ · 2−n when Pτ

(t )

X |v ,w = P . Note

that by Cauchy-Schwarz we always have

⟨Pτ
(t )

X |v ,w , P⟩ ≤


Pτ (t )

X |v ,w




2



P


2
≤ 16 · 22ℓ · 2−n . (9)

In order to bound the progress, we introduce some new notations.

For any superscript (such as (t,a)) on the partial systems, we use

σXVW to denote τXVW (Diag P ⊗ IVW ). Notice that

Tr[σX |v ,w ] = Tr[τX |v ,w Diag P] = Tr[τX |v ,w ] · ⟨PτX |v ,w , P⟩.

Similarly, PσX |v ,w can be deduced from PτX |v ,w via

PσX |v ,w (x) =
Tr[τX |v ,w ]

Tr[σX |v ,w ]
· PτX |v ,w (x) · P(x) =

PτX |v ,w (x) · P(x)

⟨PτX |v ,w , P⟩
.

(10)

Therefore we can bound the ℓ2 norm of PσX |v ,w as

PσX |v ,w




2
≤

1

⟨PτX |v ,w , P⟩
·


PτX |v ,w




∞
·


P



2
.

Nowwe can identity the places where ⟨Pτ
(t )

X |v ,w , P⟩ increases by a

lot, which happens when the inner product is not evenly divided by

some a ∈ A (we will see the reason in the analysis later). Formally,

at stage 0 ≤ t < T , we say (w,a) is bad if

∃|v⟩ ∈ V , s.t. |⟨Ma, P
σ (t ,a)

X |v ,w ⟩| > 2
−r

and ⟨Pτ
(t ,a)

X |v ,w , P⟩ ≥
1

2

· 2−n .

(11)

Lemma 5.2. For every 0 ≤ t < T andw ∈ W, we have

Pr

a∈RA
[(w,a) is bad] ≤ 2

−k .

Proof. Since τ
(t ,a)
XVW is truncated from τ

(t ,∞)

XVW , Lemma 4.1 shows

that for every |v⟩ ∈ V ,w ∈ W and a ∈ A there is |v ′⟩ ∈ V such

that

Pτ
(t ,a)

X |v ,w = Pτ
(t ,∞)

X |v ′,w
and by Eq. (10) it also implies that

Pσ
(t ,a)

X |v ,w = Pσ
(t ,∞)

X |v ′,w .

Now fix somew ∈ W, and let A ′ ⊆ A be the set of of a ∈ A such

that

∃|v⟩ ∈ V , s.t. |⟨Ma, P
σ (t ,∞)

X |v ,w ⟩| > 2
−r

and ⟨Pτ
(t ,∞)

X |v ,w , P⟩ ≥
1

2

· 2−n .

Then A ′
contains all a such that (w,a) is bad, and our goal is to

bound the fraction of A ′
in A.

In the rest of the proof we temporarily omit the super script and

write τ (t ,∞)
and σ (t ,∞)

simply as τ and σ . For the same reason as

in Lemma 4.11 we can assume that τV |w = IV , and thus

⟨v |σV |w |v⟩ = Tr[σX |v ,w ] = ⟨PτX |v ,w , P⟩,

and Tr[σXV |w ] = ⟨PτX |w , P⟩ ≤ 16 · 22ℓ · 2−n .

where the last inequality is by Lemma 4.10 and Cauchy-Schwarz,

in the same way as Eq. (9).

Suppose that we have diagonalization σV |w = U
†DU , whereU

is unitary and D is diagonal and non-negative. Let V ′ ⊆ V be the

subspace spanned by U † |e⟩ over the computational basis vectors
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|e⟩ ∈ V such that ⟨e |D |e⟩ ≥ 2
−4r ·2−2ℓ ·2−n . So for every |v⟩ ∈ V ′

we have

⟨PτX |v ,w , P⟩ = Tr[σX |v ,w ] ≥ 2
−4r · 2−2ℓ · 2−n .

We claim that for every a ∈ A ′
, there exists |v⟩ ∈ V ′

such that

|⟨Ma, P
σ
X |v ,w ⟩| > 1

2
·2−r . To prove the claim, let Π be the projection

operator from V to V ′
, and then (IX ⊗ Π)σXV |w (IX ⊗ Π) can

be conceptually seen as a truncated partial system σ
|G
XV |w where

G(v,w) holds when Tr[σX |v ,w ] ≥ 2
−4r−2ℓ · 2−n for the fixedw . By

Lemma 4.2 we have

σ |G
XV |w − σXV |w




Tr

≤ 3 · 2q ·

√
2
−4r−2ℓ−n · Tr[σXV |w ]

≤ 12 · 2q−2r · 2−n .

Since a ∈ A ′
, assume for |u⟩ ∈ V we have |⟨Ma, P

σ
X |u ,w ⟩| > 2

−r

and Tr[σX |u ,w ] = ⟨PτX |u ,w , P⟩ ≥
1

2
· 2−n . Let |v⟩ ∼ Π |u⟩, then we

have

PσX |u ,w − PσX |v ,w




1
=



PσX |u ,w − Pσ
|G

X |u ,w




1

≤







 σX |u ,w

Tr[σX |u ,w ]
−

σ
|G
X |u ,w

Tr[σ
|G
X |u ,w ]








Tr

≤







 σX |u ,w

Tr[σX |u ,w ]
−

σ
|G
X |u ,w

Tr[σX |u ,w ]








Tr

+







 σ
|G
X |u ,w

Tr[σX |u ,w ]
−

σ
|G
X |u ,w

Tr[σ
|G
X |u ,w ]








Tr

=



σX |u ,w − σ
|G
X |u ,w




Tr

Tr[σX |u ,w ]
+

���Tr[σ |G
X |u ,w ] − Tr[σX |u ,w ]

���
Tr[σX |u ,w ]

≤
2



σX |u ,w − σ
|G
X |u ,w




Tr

Tr[σX |u ,w ]
≤

2



σXV |w − σ
|G
XV |w




Tr

Tr[σX |u ,w ]

≤ 48 · 2q−2r ≤
1

2

· 2−r ,

where the last step is due to q ≤ r − 7. Thus

|⟨Ma, P
σ
X |v ,w ⟩| ≥ |⟨Ma, P

σ
X |u ,w ⟩| −



PσX |u ,w −PσX |v ,w




1
>

1

2

· 2−r .

Similarly to the proof for Lemma 4.11, for each a ∈ A ′
let

πa = TrX [(DiagMa ⊗ U †D−1/2U ) · σXV |w · (IX ⊗ U †D−1/2U )]

which is a Hermitian operator onV . For each |v⟩ ∈ V , let |v ′⟩ ∼

U †D1/2U |v⟩. Recall that σV |w = U
†DU , and therefore

PσX |v ,w =
diag (IX ⊗ ⟨v |)σXV |w (IX ⊗ |v⟩)

⟨v |σV |w |v⟩

=
diag (IX ⊗ ⟨v ′ |U †D−1/2U )σXV |w (IX ⊗ U †D−1/2U |v ′⟩)

⟨v ′ |U †D−1/2UσV |wU
†D−1/2U |v ′⟩

= diag (IX ⊗ ⟨v ′ |U †D−1/2U )σXV |w (IX ⊗ U †D−1/2U |v ′⟩).

And that means

⟨v ′ |πa |v
′⟩ =

〈
Ma, diag (IX ⊗ ⟨v ′ |U †D−1/2U )

σXV |w (IX ⊗ U †D−1/2U |v ′⟩)

〉
= ⟨Ma, P

σ
X |v ,w ⟩.

We showed above that there exists |v⟩ ∈ V ′
, and thus |v ′⟩ ∈ V ′

such that

|⟨v ′ |πa |v
′⟩| =

���⟨Ma, P
σ
X |v ,w ⟩

��� ≥ 1

2

· 2−r ,

which means that for ΠπaΠ, the restriction of πa onV ′
, we have

∥ΠπaΠ∥2 ≥ 1

2
· 2−r . Now consider a uniformly random unit vector

|v ′⟩ in V ′
, and by Lemma 3.1 we know that for some absolute

constant c ,

Pr

|v ⟩′

[
|⟨v ′ |σa |v

′⟩| ≥ 2
−r ′

]
≥ 1 − 2

(q+r+1−r ′)/2c − e−2
q
≥

1

2

.

Therefore, for the random vector |v⟩ ∼ U †D−1/2U |v ′⟩ where |v ′⟩

is uniform in V ′
, we conclude that

Pr

|v ⟩

[
|⟨Ma, P

σ
X |v ,w ⟩| ≥ 2

−r ′
]
≥

1

2

.

On the other hand, as |v ′⟩ ∈ V ′
, it also holds that |v⟩ ∈ V ′

,

therefore ⟨PτX |v ,w , P⟩ ≥ 2
−4r · 2−2ℓ · 2−n is always true. Thus there

exists a |v⟩ ∈ V that simultaneously satisfies

⟨PτX |v ,w , P⟩ ≥ 2
−4r · 2−2ℓ · 2−n and |⟨Ma, P

σ
X |v ,w ⟩| ≥ 2

−r ′

for at least 1/2 of a ∈ A ′
. Since

PσX |v ,w




2
≤

1

⟨PτX |v ,w , P⟩
·


PτX |v ,w




∞
·


P



2
≤ 2

ℓ′ · 2−n/2,

andM is a (k ′, ℓ′)-extractor with error 2
−r ′

, there are at most 2
−k ′

fraction of a ∈ A such that |⟨Ma, P
σ
X |v ′,w ⟩| ≥ 2

−r ′
, which means

that

Pr

a∈RA
[(w,a) is bad] ≤ Pr

a∈RA
[a ∈ A ′] ≤ 2 · 2−k

′

= 2
−k . □

5.2 Badness Levels
At stage t , for each classical memory statew ∈ W we count how

many times the path to it has been bad, which is a random variable

depending on the previous random choices of a ∈ A. This is stored

in another classical register B, which we call badness level and takes
values β ∈ {0, . . . ,T }. It is initially set to be 0, that is, we let

τ
(0)

XVW B = τ
(0)

XVW ⊗ |0⟩⟨0|B .

We ensure that the distribution of B always only depends onW and

is independent of X and V conditioned onW , using the following

updating rules on the combined system τXVW B for each stage

0 ≤ t < T :

• The truncation steps are executed independently of B. There-
fore, for each a ∈ A we let

τ
(t ,a)
XVW B =

∑
w ∈W

τ
(t ,a)
XV |w ⊗ |w⟩⟨w | ⊗ Diag Pτ

(t )

B |w . (12)

• The value of B updates before the evolution step, where for

each a ∈ A and b ∈ {−1, 1} we let

τ
(t ,a,b)
XVW B = (Diag1a,b ⊗ IV ⊗ Ua )τ

(t ,a)
XVW B (IXV ⊗ U †

a ).

Here Ua is a permutation operator, depending on τ
(t ,a)
XVW ,

acting on W ⊗ {0, . . . ,T } such that

Ua |w⟩|β⟩ =

{
|w⟩|(β + 1)mod(T + 1)⟩ if (w,a) is bad,
|w⟩|β⟩ otherwise.
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• For the evolution step, we apply the channels Φt ,a,b on the

memoriesW and V to get

τ
(t+1)
XVW B = E

a∈RA

[
(IX ⊗ Φt ,a,1 ⊗ IB )

(
τ
(t ,a,1)
XVW B

)
+(IX ⊗ Φt ,a,−1 ⊗ IB )

(
τ
(t ,a,−1)
XVW B

) ]
.

Notice that the evolution step might introduce dependencies be-

tweenX ,V and B. However, such dependencies are eliminated later

due to how we handle the truncation steps (12), and thus do not

affect our proof.

We can check that the combined partial system τ
(t )
XVW B defined

above is consistent with the partial system τ
(t )
XVW that we discussed

in previous sections, in the sense that TrB [τ
(t )
XVW B ] = τ

(t )
XVW al-

ways holds:

• For the truncation step, it is straightforward to check that

TrB [τ
(t ,a)
XVW B ] =

∑
w ∈W

τ
(t ,a)
XV |w ⊗ |w⟩⟨w | = τ

(t ,a)
XVW .

• The permutation operator Ua acts on W as identity since

TrB

[
Ua |w, β⟩⟨w, β |U

†
a

]
= |w⟩⟨w |.

Recalling Eq. (7) that τ
(t ,a,b)
XVW = (Diag1a,b ⊗ IV )τ

(t ,a)
XVW , we

have TrB [τ
(t ,a,b)
XVW B ] = τ

(t ,a,b)
XVW .

• The evolution step can be checked directly from the formula

without B (Eq. (8)):

τ
(t+1)
XVW = E

a∈RA

[
(IX ⊗ Φt ,a,1)

(
τ
(t ,a,1)
XVW

)
+(IX ⊗ Φt ,a,−1)

(
τ
(t ,a,−1)
XVW

) ]
.

So all previously proved properties about τ
(t )
XVW are preserved. In

addition, we prove the following two properties about badness

levels.

Lemma 5.3. For every 0 ≤ t ≤ T , |v⟩ ∈ V andw ∈ W, we have

⟨Pτ
(t )

X |v ,w , P⟩ ≤
T∑
β=0

Pτ
(t )

B |w (β) · 2β · 2−n · (1 − 2
−r )−3t .

Proof. We prove it by induction on t . For t = 0 the lemma is

true as ⟨Pτ
(t )

X |v ,w , P⟩ = 2
−n

and Pτ
(t )

B |w (0) = 1.

Suppose the lemma holds true for some t < T . By a similar

argument as in Lemma 4.10 and applying Lemma 4.1 multiple times,

we know that for every |v⟩ ∈ V,w ∈ W and a ∈ A, there exists

|v ′⟩and |v ′′⟩ ∈ V such that

⟨Pτ
(t ,a)

X |v ,w , P⟩ = ⟨Pτ
(t ,◦)

X |v ′,w , P⟩ ≤ (1 − 2
−r )−1⟨Pτ

(t ,⋆)

X |v ′,w , P⟩

= (1 − 2
−r )−1⟨Pτ

(t )

X |v ′′,w , P⟩,

and therefore

⟨Pτ
(t ,a)

X |v ,w , P⟩ ≤
T∑
β=0

Pτ
(t )

B |w (β) · 2β · 2−n · (1 − 2
−r )−3t−1. (13)

Also, the truncation step by Ga implies that |⟨Ma, P
τ (t ,a)

X |v ,w ⟩| ≤ 2
−r
.

That is, for both b ∈ {−1, 1},

1 − 2
−r ≤ 2



1a,b · Pτ
(t ,a)

X |v ,w




1
≤ 1 + 2−r .

Therefore we have, unconditionally

⟨Pτ
(t ,a,b)

X |v ,w , P⟩ =
⟨1a,b · Pτ

(t ,a)

X |v ,w , P⟩

1a,b · Pτ
(t ,a)

X |v ,w




1

≤ 2(1 − 2
−r )−1 · ⟨Pτ

(t ,a)

X |v ,w , P⟩.

(14)

When the inner product is evenly divided, i.e. |⟨Ma, P
σ (t ,a)

X |v ,w ⟩| ≤

2
−r
, we further have

⟨1a,b · Pτ
(t ,a)

X |v ,w , P⟩ ≤
1

2

(1 + 2−r )⟨Pτ
(t ,a)

X |v ,w , P⟩

≤
1

2

(1 − 2
−r )−1⟨Pτ

(t ,a)

X |v ,w , P⟩,

which means that

⟨Pτ
(t ,a,b)

X |v ,w , P⟩ =
⟨1a,b · Pτ

(t ,a)

X |v ,w , P⟩

1a,b · Pτ
(t ,a)

X |v ,w




1

≤ (1 − 2
−r )−2 · ⟨Pτ

(t ,a)

X |v ,w , P⟩.

(15)

Now there are three cases to discuss:

• If (w,a) is bad, we have Pτ
(t ,a,b)

B |w (β) = Pτ
(t )

B |w (β − 1) for every

β > 0. Notice that Pτ
(t )

B |w (T ) = 0 as t < T , and thus Eq. (13)

and Eq. (14) imply that

⟨Pτ
(t ,a,b)

X |v ,w , P⟩ ≤
T−1∑
β=0

Pτ
(t )

B |w (β) · 2β+1 · 2−n · (1 − 2
−r )−3t−2

≤

T∑
β=0

Pτ
(t ,a,b)

B |w (β) · 2β · 2−n · (1 − 2
−r )−3(t+1).

• If (w,a) is not bad and |⟨Ma, P
σ (t ,a)

X |v ,w ⟩| ≤ 2
−r
, we have

Pτ
(t ,a,b)

B |w (β) = Pτ
(t )

B |w (β) for every β ≥ 0. Then Eq. (13) and

Eq. (15) imply that

⟨Pτ
(t ,a,b)

X |v ,w , P⟩ ≤
T∑
β=0

Pτ
(t )

B |w (β) · 2β · 2−n · (1 − 2
−r )−3t−3

=

T∑
β=0

Pτ
(t ,a,b)

B |w (β) · 2β · 2−n · (1 − 2
−r )−3(t+1).

• If (w,a) is not bad and |⟨Ma, P
σ (t ,a)

X |v ,w ⟩| > 2
−r
, by the defi-

nition of badness (11) we must have ⟨Pτ
(t ,a)

X |v ,w , P⟩ <
1

2
· 2−n .

Thus by Eq. (14),

⟨Pτ
(t ,a,b)

X |v ,w , P⟩ < (1 − 2
−r )−1 · 2−n

≤

T∑
β=0

Pτ
(t ,a,b)

B |w (β) · 2β · 2−n · (1 − 2
−r )−3(t+1).

The last inequality follows from

∑T
β=0 P

τ (t ,a,b)

B |w (β) · 2β · 2−n · (1 −

2
−r )−3(t+1) ≥ 2

−n (1 − 2
−r )−3(t+1). Hence we obtain the same con-

clusion from all three cases.
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For the evolution step, since B is classical we can view X and

B as a whole and apply Claim 3.3 on Pτ
(t+1)

XB |v ,w , which asserts that

Pτ
(t+1)

XB |v ,w is a convex combination of Pτ
(t ,a,b)

XB |v ′,w ′ for some a,b,w ′

and |v ′⟩. Then by linearity we conclude that
6

⟨Pτ
(t+1)

X |v ,w , P⟩ ≤
T∑
β=0

Pτ
(t+1)

B |w (β) · 2β · 2−n · (1 − 2
−r )−3(t+1). □

Lemma 5.4. For every 0 ≤ β ≤ t ≤ T we have

⟨β |τ
(t )
B |β⟩ ≤ 2

−kβ
(
t

β

)
.

Proof. We prove it by induction on t . For t = 0 the lemma holds

as τ
(0)

B = |0⟩⟨0|B . Also notice that the lemma is trivially true for

every t when β = 0.

Now suppose the lemma holds for some t . By definition we have

τ
(t+1)
B = E

a∈RA
[τ

(t ,a,1)
B + τ

(t ,a,−1)
B ] = E

a∈RA
TrW [Uaτ

(t ,a)
WB U †

a ].

Therefore

⟨β |τ
(t+1)
B |β⟩ =

∑
w ∈W

E
a∈RA

[
⟨w, β |Uaτ

(t ,a)
WB U †

a |w, β⟩
]
.

By Lemma 5.2 we know that for everyw ∈ W, the probability that

(w,a) is bad for a ∈R A is at most 2
−k

. In other words, for every

β > 0,

U †
a |w, β⟩ =

{
|w, β⟩, w.p. ≥ 1 − 2

−k

|w, β − 1⟩, w.p. ≤ 2
−k

where the probability is taken over the random choice of a. It means

that

⟨β |τ
(t+1)
B |β⟩ ≤

∑
w ∈W

⟨w, β |τ
(t ,a)
WB |w, β⟩

+2−k
∑

w ∈W

⟨w, β − 1|τ
(t ,a)
WB |w, β − 1⟩

= ⟨β |τ
(t ,a)
B |β⟩ + 2−k · ⟨β − 1|τ

(t ,a)
B |β − 1⟩.

Notice that

τ
(t ,a)
B =

∑
w ∈W

Tr[τ
(t ,a)
XV |w ] · Diag Pτ

(t )

B |w

≤
∑

w ∈W

Tr[τ
(t )
XV |w ] · Diag Pτ

(t )

B |w = τ
(t )
B ,

and thus we conclude that

⟨β |τ
(t+1)
B |β⟩ ≤ ⟨β |τ

(t )
B |β⟩ + 2−k · ⟨β − 1|τ

(t )
B |β − 1⟩

≤ 2
−kβ

(
t

β

)
+ 2−k · 2−k(β−1)

(
t

β − 1

)
= 2

−kβ
(
t + 1

β

)
. □

With the lemmas above in hand, we can finally prove Lemma 4.4.

6
It should be noted that in τ (t+1)

, X and B are not independent. (In τ (t ,a,b)
they are

independent (conditioned on v ′,w ′
)). Nevertheless, independence of X , B (in τ (t+1)

)

is not needed or used here and we can conclude the final inequality by linearity by

taking the corresponding convex combination of all inequalities.

Proof for Lemma 4.4. For the target distribution P = Pτ
(t )

X |v ,w

we have ⟨Pτ
(t )

X |v ,w , P⟩ > 2
2ℓ · 2−n , so by Lemma 5.3,

T∑
β=0

Pτ
(t )

B |w (β) · 2β · (1 − 2
−r )−3t > 2

2ℓ .

Since t ≤ T ≤ 2
r−2

, we have (1 − 2
−r )−3t ≤ 2, and thus

T∑
β=ℓ

Pτ
(t )

B |w (β) · 2β >
1

2

©­«22ℓ − 2 ·

ℓ−1∑
β=0

2
β ª®¬ > 2

ℓ .

On the other hand, for every β ≥ ℓ, by Lemma 5.4,

Tr[τ
(t )
B |w ] · Pτ

(t )

B |w (β) ≤ ⟨β |τ
(t )
B |β⟩ ≤ (2−k t)β < 2

−(k−r )β ,

and thus by Eq. (6),

Tr[τ
(t )
X |v ,w ] ≤ Tr[τ

(t )
B |w ] < 2

−ℓ
T∑
β=ℓ

2
−(k−r )β · 2β

≤ 2 · 2−(k−r )ℓ ≤ 2
−2m · 2−4r . □
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