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ABSTRACT

In a work by Raz (J. ACM and FOCS 16), it was proved that any
algorithm for parity learning on n bits requires either Q(n?) bits
of classical memory or an exponential number (in n) of random
samples. A line of recent works continued that research direction
and showed that for a large collection of classical learning tasks,
either super-linear classical memory size or super-polynomially
many samples are needed. All these works consider learning algo-
rithms as classical branching programs, which perform classical
computation within bounded memory.

However, these results do not capture all physical computational
models, remarkably, quantum computers and the use of quantum
memory. It leaves the possibility that a small piece of quantum
memory could significantly reduce the need for classical memory
or samples and thus completely change the nature of the classical
learning task. Despite the recent research on the necessity of quan-
tum memory for intrinsic quantum learning problems like shadow
tomography and purity testing, the role of quantum memory in
classical learning tasks remains obscure.

In this work, we study classical learning tasks in the presence
of quantum memory. We prove that any quantum algorithm with
both, classical memory and quantum memory, for parity learning
on n bits, requires either Q(n?) bits of classical memory or Q(n)
bits of quantum memory or an exponential number of samples. In
other words, the memory-sample lower bound for parity learning
remains qualitatively the same, even if the learning algorithm can
use, in addition to the classical memory, a quantum memory of size
cn (for some constant ¢ > 0).

Our result is more general and applies to many other classical
learning tasks. Following previous works, we represent by the
matrix M : AX X — {-1,1} the following learning task. An
unknown x is sampled uniformly at random from a concept class
X, and a learning algorithm tries to uncover x by seeing streaming
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of random samples (a;, b; = M(a;, x)) where for every i, a; € A
is chosen uniformly at random. Assume that k, £, r are integers
such that any submatrix of M of at least 27k . |A| rows and at
least 27 - |X| columns, has a bias of at most 27", We prove that
any algorithm with classical and quantum hybrid memory for the
learning problem corresponding to M needs either (1) Q(k - €) bits
of classical memory, or (2) Q(r) qubits of quantum memory, or
(3) 22" random samples, to achieve a success probability at least
270,

Our results refute the possibility that a small amount of quantum
memory significantly reduces the size of classical memory needed
for efficient learning on these problems. Our results also imply
improved security of several existing cryptographical protocols
in the bounded-storage model (protocols that are based on parity
learning on n bits), proving that security holds even in the presence
of a quantum adversary with at most cn? bits of classical memory
and cn bits of quantum memory (for some constant ¢ > 0).
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1 INTRODUCTION

Memory plays an important role in learning. Starting from the sem-
inal works by Shamir [39] and Steinhardt, Valiant and Wager [41], a
sequence of works initiates and deepens the study of lower bounds
for learning under memory constraints. Steinhardt, Valiant, and
Wager [41] conjectured that in order to learn an unknown n-bit
string from samples of random-subset parity, an algorithm needs
either memory-size quadratic in n or exponentially many random
samples (also in n). This conjecture was later on proved by Raz [37],
showing for the first time that for some learning problems, super-
linear memory size is required for efficient learning. This result
was then generalized to a broad class of learning problems [6, 21—
23, 29, 34, 36, 40].

Although we have a comprehensive understanding of the (in)-
feasibility of learning under limitations on particular computation
resource (memory), the previous works mentioned above do not
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capture all physical computational models; most notably, quantum
computation and the power of quantum memory. Many researchers
believe that large-scale quantum computers will eventually be-
come viable. Recent experiments demonstrated quantum advan-
tages, for example [3], and suggested that there are possibly no
fundamental barriers to achieving quantum memory and quantum
computers. Questions on the role of quantum memory in learning
were proposed by Wright in the context of general state tomog-
raphy [43] and by Aaronson for shadow tomography [1]. A line
of works [2, 8, 11, 12, 26, 28] pioneer the idea and show either
polynomial or exponential separations for learning with/without
quantum memory, but all for intrinsic quantum learning tasks like
state tomography, shadow tomography and purity testing.

In light of the above, it is appealing to consider classical learn-
ing tasks in the presence of quantum memory, as well as hybrid
classical-quantum memory. A direct implication of all aforemen-
tioned classical results only gives trivial results. As k qubits of
memory can always be efficiently simulated by ~ 2k classical bits,
we can only conclude (say, for parity learning) that either ~ 2 log n-
qubit quantum memory or exponentially many samples are needed.
Prior to our work, it could have been the case that even if only
a very small size quantum memory was available, it might have
significantly reduced the need for classical memory and led to an
efficient learning algorithm.

In this work, we prove memory-sample lower bounds in the
presence of hybrid memory for a wide collection of classical learn-
ing problems. As in [23, 36], we will represent a learning problem
by a matrix M : AX X — {-—1,1} whose columns correspond to
concepts in the concept class X and rows correspond to random
samples. In the learning task, an unknown concept x € X is sam-
pled uniformly at random and each random sample is given as
(ai, bi) = (ai, M(aj, x)) for a uniformly picked a; € A. The learner’s
goal is to uncover x. In [23], it is proved that when the underly-
ing matrix M is a (k, £)-Ly two source extractor' with error 277,
a learning algorithm requires either Q(k - ¢) bits of memory or
29(r) samples to achieve a success probability at least 279" for
the learning task.

1.1 Our Results

In this work, we model a quantum learning algorithm as a program
with hybrid memory consisting of g qubits of quantum memory
and m bits of classical memory. At each stage, a random sample
(ai,bi = M(a;,x)) is given to the algorithm. The quantum learn-
ing algorithm applies an arbitrary quantum channel to the hybrid
memory, controlled by the random sample. Although the channel
can be arbitrary, we impose the outcome to be a hybrid classical-
quantum state of at most g qubits and m bits. We stress that there
is no limitation on the complexity of the quantum channel (and
this only makes our results stronger as we are proving here lower
bounds for such algorithms).
With the above model, we give the following main theorem.

THEOREM 1 (MAIN THEOREM, INFORMAL). Let M : AX X —
{—1,1} be a matrix. If M is a (k, £)-Ly two source extractor with error
27", a quantum learning algorithm requires either

Roughly speaking, this means that every submatrix M’ of M with number of rows at
least 27% | A| and number of columns at least 2~ | X | has a relative bias at most 27"
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(1) Q(k - £) bits of classical memory; or,
(2) Q(r) qubits of quantum memory; or,
(3) 290 samples,

to succeed with a probability of at least 270

learning task.

in the corresponding

Our main theorem implies that for many learning problems,
the availability of a quantum memory of size up to Q(r), does
not reduce the size of classical memory or the number of samples
that are needed. As coherent quantum memory is challenging for
near-term intermediate-scale quantum computers and is probably
expensive even if and when quantum computers are widely viable,
the impact of quantum memory is further limited for these learning
problems.

To make the theorem more precise, let us take parity learning as
an example. The above theorem says that a quantum learning algo-
rithm needs either Q(n?) bits of memory, or Q(n) qubits of quantum
memory, to conduct efficient learning; otherwise, it requires 28(n)
random samples. At first glance, it seems that the constraint on
quantum memory is trivial: if the target is to learn an n-bit un-
known secret, a linear amount of memory always seems necessary
to store the secret. However, noticing that our main theorem ap-
plies to quantum learning algorithms with hybrid memory and
rules out algorithms with n? /1000 bits and /1000 qubits of hybrid
memory for parity learning, the main theorem yields non-trivial
and compelling memory-sample lower bounds. Note also that our
results (and previous results) are valid even if the goal is to output
only one bit of the secret. Currently, we do not know whether our
main theorem is tight. For parity learning, we are not aware of any
quantum learning algorithm that uses only O(n) qubits of quantum
memory. We leave closing the gap as a fascinating open question.

The main theorem naturally applies to other learning problems
considered in [23], including learning sparse parities, learning from
sparse linear equations, and many others. We do not present an
exhaustive list here but refer the readers to [23] for more details.

Along the way, we propose a new approach for proving the
classical memory-sample lower bounds. We call this approach, the
“badness levels” method. The approach is technically equivalent to
the previous approach in [23, 36] but is conceptually simpler to
work with and we are able to lift it to the quantum case.

We note that proving a linear lower bound on the size of the
quantum memory, without classical memory, is significantly sim-
pler (but to the best of our knowledge such a proof has not appeared
prior to our work). We present such a proof in the Appendix of the
full version of this paper.

Implications to Cryptography in the Bounded-Storage Model. Since
learning theory and cryptography can be viewed as two sides of
the same coin, our theorem also lifts the security of many existing
cryptographical protocols in the bounded-storage model (protocols
that are based on parity learning) to the quantum setting. To our best
knowledge, these are the first proofs of classical cryptographical
protocols being secure against space-bounded quantum attackers.?
We elaborate more below.

20n the other hand, there are known examples of classically-secure bounded-storage
protocols that are breakable with an exponentially smaller amount of quantum memory.
[24].
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Cryptography in the (classical) bounded storage model was first
proposed by Maurer [32]. In such a model, no computational as-
sumption is needed. Honest execution is performed through a long
streaming sequence of bits. Eavesdroppers have bounded storage
and limited capability of storing conversations, thus cannot break
the protocol. A line of works [4, 5, 9, 16-20, 27, 31, 33, ...] builds
efficient and secure protocols for key agreement, oblivious transfer,
bit commitment and time stamping in that model.

Based on the memory-sample lower bounds for parity learning
of n bits, [37] suggested an encryption scheme in the bounded-
storage model. Guan and Zhandry [25] proposed key agreement,
oblivious transfer and bit commitment with improved rounds and
better correctness, against attackers with up to O(n?) bits of mem-
ory. Following a similar idea, Liu and Vusirikala [30] showed that
semi-honest multiparty computation could be achieved against
attackers with up to O(n?) bits of memory. More recently, Dodis,
Quach, and Wichs [18] considered message authentication in the
bounded storage model based on parity learning. Our result on
parity learning gives a direct lift on all the results above. When
the cryptographic protocols are based on parity learning of n bits
(often treated as a security parameter), our result shows that se-
curity holds even in the presence of a quantum adversary with at
most O(n?) bits of classical memory and O(n) qubits of quantum
memory.

Despite many previous works on cryptography in the quantum
bounded storage model [7, 13-15, 35, 38, 42], they all rely on stream-
ing quantum states. Our memory-sample lower bounds give for
the first time a rich class of classical cryptographical schemes (key
agreement, oblivious transfer, and bit commitment) secure against
space-bounded quantum attackers.

2 PROOF OVERVIEW

2.1 Recap of Proofs for Classical Lower Bounds

Since our proof builds on the previous line of works on classical
memory-sample lower bounds for learning, specifically, on the
proof technique of [23, 36], we provide a brief review of these
proofs, using parity learning [37] as an example. In below, M(a, x)
denotes the inner product of a and x in Fa.

Consider a classical branching program that tries to learn an
unknown and uniformly random x € {0, 1}" from samples (a, b),
where a € {0,1}" is uniformly random and b = M(a, x). We can
associate every state v of the branching program with a distribution
Px |, over {0, 1}", indicating the distribution of x conditioned on
reaching that state. At the initial state, without any information
about x, the distribution is uniform (which has the smallest possible
{y-norm). Along a computational path on the branching program,
the distribution Py, evolves and eventually gets concentrated
(with large ¢2-norms) in order to output x correctly. Therefore,
during the evolution, Px |, should at some stage have mildly large
{o-norms (2¢" times larger than uniform for some small constant
e > 0). If we set such a distribution as a target, the distribution is
hard to achieve with random samples. Only with 2~%(") probabil-
ity, the branching program can make significant progress towards
the target; while most of the time a sample just splits the distribu-
tions (both the current and the target distribution) into two even
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parts, and that does not help much in getting closer to the target
distribution (with large {2 norm).

To put it more rigorously, we examine the evolution of the inner
product

(Pxjo:PY = D Pxpo(x): P(x)
x€{0,1}7

between the distribution Px|,, on the current state v, and a target
distribution P. Receiving a sample (g, b) implies that M(a, x) = b,
hence only the part of Px|,, supported on such x proceeds. If this
part is close to % probability, we say that a divides Px|,, evenly.

P(a,b)

Denoting the new distribution as
X|v

, after proper normalization
the new inner product is

GO Py = Y P P() /
xe{0,1}"
M(a,x)=b

D, Pxp®). (1)
x€{0,1}"
M(a,x)=b
Ideally, both Px|,, and the point-wise product vector Px|,, - P should
have reasonably small £3-norms. Due to the extractor property of
M, most of a € {0,1}" should divide both vectors evenly, and
thus the denominator is close to % while the enumerator is close
to %(wa, P). That means, given a uniformly random a, we get
limited progress on the inner product. On the other hand, from
(U, P) = 27" with uniform distribution U to (P, P) = 22" . 27",
the branching program needs to make multiple steps of progression.
Therefore it happens with an extremely small probability.

To ensure that the above statement goes smoothly, we require
the following properties for every state v in the branching program:

e The {3-norm ||PX|v||2 is small.
e The {7-norm ”PX|U ~P||2 is small, which is implied when the
{e-norm “PXIUHoo is small.
o The denominator in Eq. (1) is bounded away from 0 for every
sample (a, b).
These properties do not hold by themselves. Instead, we execute
a truncation procedure on the branching program before choosing
a target distribution. More specifically, the branching program is
modified so that it stops whenever it:

o ({» truncation): Reaches a state v with large ||Px|u| 95
® ({s truncation): Reaches a state v with large Py, (x) when
the unknown concept is x;
e (Sample truncation): Or, for the next sample (g, b), a does
not divide Py, evenly.
It turns out that after £ truncation, the other two truncation steps
add 279 error in each stage of the branching program. Therefore
the proof boils down to proving a 279("") bound on the probability
of reaching a state with large “PX|u| ,» from which by a standard
union bound, we can prove the memory-sample lower bounds for
parity learning: either 2241 samples or Q(n?) bits of memory are
necessary.

2.2 Badness Levels

As mentioned above, to bound the probability of reaching a state
with a large {3-norm, the basic idea is to fix its distribution as
the target distribution P, and bound the increment of the inner
product (Px |, P). This was done in [23, 36] by designing a potential
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function that tracks the average of (Px|,, PY¥ for some k = O(n),
where the average is over states v in the same stage of the branching
program. Here we propose another approach using the concept of
badness levels. Although it is technically equivalent to the potential
function approach in the classical case, it is more pliable and easier
to be adapted to the quantum case. We view this approach as a
separate contribution of our work.

We first define a bad event to be a pair (v, a) of the state v and
the upcoming part of the sample a, such that (Px|,, P) > 27", and
for one of the two possible outcomes b,

D, Pxjp®) - Px) 2
x€{0,1}"
M(a,x)=b

(% + 2‘5") PxjpP) @

with some small constant §. In other words, the inner product
(Px|vs P) is large enough, while not being divided evenly by a.
From Eq. (1) we know that the inner product gets at most roughly
doubled through a bad event. In contrast, in the good case, the inner
product either gets a mere (1 + 2707y multiplicative factor or is
already smaller than the baseline 27". Also, the extractor property
of M ensures that for every state v, over uniformly random q, the
bad event happens with at most 279n) probability.

Now, the badness level f(v) of a state v keeps track of how
many times the computational path went through bad events before
reaching v.®> The above observations on the bad events imply that
(omitting the smaller factors):

e For every state v, (Px|y, P) is bounded by 2P(@) . g=n,

e Heading to the next stage, f(v) increases by 1 with probabil-
ity 279(n),

Therefore at each stage, the total weight of states with badness level

B is at most 2~F")_ Thus any state with (Px|0, P) 2 2%en . p=n

Q(n?)

must have 27 probability.

2.3 Obstacles for Proving Quantum Lower
Bounds

In this section, we present an attempt to prove the same 28n)._
sample or Q(n?)-quantum-memory lower bound for the pure quan-
tum case. Along the way we identify some obstacles to proving
memory-sample lower bounds for quantum learning algorithms,
and in the next section we show how to overcome these obstacles
while proving lower bounds for hybrid learning algorithms, with
quadratic-size classical-memory and linear-size quantum-memory.

Following the same framework as the above described proof
for the classical case, we first need to transfer all the notions to a
quantum algorithms:

e The state v is a quantum state in the Hilbert space of quantum
memory;

e The distribution Py, is still well-defined: It is the distribu-
tion of x when the quantum memory is measured to v (see
Section 3.4 and Eq. (3));

e We are still able to implement ¢, truncation: If Py, has
large {2-norm, project the entire system to the orthogonal

3For now we think of () as a natural number. In the actual proof, B(v) is a distribu-
tion on natural numbers, as for different computational paths reaching the same state,
the count of bad events can be different.
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subspace v' of v and repeat, until there is no such state v
(see Section 4.1 for details).

We are also able to implement sample truncation, in a similar
manner to {p truncation. As the criteria here depends on
a, we separately create a copy of the current system for
each a, truncate the states v using projection when Py, is
not evenly divided by a in each copy, and then merge them
back together. We prove that the error introduced by this
truncation is small.

Here comes the first major obstacle: £ truncation. In the clas-
sical case, £ truncation is implemented for each individual x, in
contrast to {3 truncation where the states are removed altogether.
Relying on the fact that it is already known that the £, norm of the
distribution is small, using Markov inequality, one can prove that
the error introduced by the £ truncation is small.

However, when we try to emulate the classical implementation
of £ truncation with quantum truncation, that is, to only project
to vt the system conditioned on the specific x where Px|o(x) is
large, instead of for every x, it may lead to huge changes to the
distributions Py, on states u non-orthogonal to v. The following
example illustrates such a scenario:

Example. Consider a quantum learning algorithm, and assume
that at some stage of the computation, for each x € {0,1}", the
quantum memory is in some pure state v(x). We pick each v(x)
uniformly at random in a Hilbert space of dimension d =~ 2n/2
and consider a typical configuration of v(x). Now the £,-norms
are bounded for every quantum state v: the worst ones happen
when v = v(x) for some x, where ||Px|y(x)ll2 is typically around
d-27" close to the {2-norm of uniform distribution. However, those
worst distributions also have £w-norms close to d - 27", which is
much larger than the {o-norm of the uniform distribution, and
needs to be truncated. But truncating v(x) off for x means that x is
completely erased, and we end up removing everything.

Moving on, we fix a target state v with a target distribution
Px |, which exceeds the {3-norm threshold, and the goal is again
to prove a 2-Q(n?) amplitude bound on v. The bad event should
still be defined as a pair (v, a) satisfying Eq. (2), with v now being
a quantum state. We then run into the second major obstacle: it is
not clear how to define badness levels.

If we define the badness level f(v) for each state v individually
by examining the bad events over the historical states, then it is
not clear how to measure the total weight of a badness level f. In
the classical case, we simply define the total weight as the total
probability of states with badness level . But here in the quantum
case, it turns out that such a definition either depends on the choice
of basis, which might have large increment in each stage, or com-
pletely fails to imply the desired amplitude bound on the target
state.

The other choice is to have a more operational definition of
badness levels, and it is indeed tempting to define § as another
register whose updates are controlled by the quantum memory.
The problem with such definitions is that the bad event (Eq. (2)) is
not linear in v. Therefore an operational definition of badness level,
which is a linear operator, inevitably introduces error that escalates
fast with the number of stages.
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2.4 Hybrid Memory Lower Bounds with Small
Quantum Memory

The obstacles in the previous section are for proving quadratic quan-
tum memory lower bound. We note that proving linear quantum
memory lower bound (without classical memory) is not hard: the
proof can be entirely information theoretical, as with very limited
memory, say, %n qubits, the information gained from each sample
is exponentially small, despite the memory being quantum. We
present such a proof in the Appendix of the full version of this
paper.

The lower bounds that we prove here are with hybrid memory:
To learn parity with both classical and quantum memory, an algo-
rithm needs either 22" samples, or Q(n?) classical memory, or
Q(n) quantum memory (Theorem 1). We now describe how we
overcome the previously mentioned obstacles.

{eo Truncation. When there is only small quantum memory and
no classical memory, the treatment for £« truncation is straightfor-
ward. We remove all quantum states v with distributions of large
{oo-norm, by projecting the system to the orthogonal subspace v+,
just like the process of {5 truncation. As the overall distribution
on x is uniform, any state v with ||Px | [lec > 291 . 27" must have

weight at most 2-6n, Therefore, as long as the dimension of the
Hilbert space is much smaller than dn, the error introduced in this
truncation is small.

With classical memory in presence, the actual {« truncation
step (see Section 4.2, Step 2) is more complicated. We first apply the
original classical { truncation on the classical memory W. Now
that || Px|y [l is bounded for each classical memory state w, we can
remove the quantum states v with large ||Px |y, leo by projection
as stated above. Since the classical £ truncation depends on x, it
could change the distributions Py, ,,. However, as in the classical
case, Px|,, will not change a lot. Thus, wherever Py, ,, changes
drastically, it must have a small weight and can also be removed
by projection. This removal corresponds to truncation by G; in
Section 4.2.

Badness Levels. Interestingly, we are able to avoid the problems
of defining the badness level on quantum memory altogether, by
keeping it a property on the classical memory only. To do so we
need to alter the definition of a bad event: it is now a pair (w, a) of
classical memory state w and sample a, such that there exists some
quantum memory state v with Py, ,, satisfying Eq. (2).

For each fixed classical memory state w, we still need to en-
sure that bad events happen with a small probability. We prove it
(Lemma 5.2) by showing that, if there are many different samples a,
each associated with some quantum state v, satisfying Eq. (2), then
there is some quantum state v that simultaneously satisfies Eq. (2)
with most of such a (which is impossible because of the extractor
property). This is ultimately due to the continuous nature of Eq. (2):
Under some proper congruent transformation, Eq. (2) becomes a
simple threshold inequality on quadratic forms over v. Now if it
is satisfied by some vy, it is going to be satisfied by most v for a
much smaller threshold parameter §, and hence the existence of a

4The example in the previous section that shows the infeasibility of treating £w
truncation the same way as €, truncation does not work here, as it requires n/2 qubits
of memory while here we have a smaller memory size.
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simultaneously satisfying v.” In this argument, we use Lemma 3.1,
which is derived from the anti-concentration bound for Gaussian
quadratic forms, and crucially relies on the fact that the dimension
is at most 2¢" for some small ¢.

Another technical problem is that to use the extractor property,
we need to ensure that (Px|, ,,, P) > 27" for the simultaneously
satisfying v. Thus, what we do in Lemma 5.2 is to first conceptually
remove the parts where (P ,,, P) is too small, using projection
similarly to the truncation steps. After the removal, we are left with
a subspace V' where (Px|y,. ,,, P) is always lower bounded, and
we show that for every state v that satisfies Eq. (2), the inequality
is still close to being satisfied after projecting v onto V’. Therefore
we could still apply the above argument and find a simultaneously
satisfying v within the subspace.

3 PRELIMINARIES
3.1 Vectors and Matrices

For a vector v € C¢ and p € [1, oo], we define the £, norm of v as

d 1/p
ol = (Z |vl-|P) :
i=1

For two vectors u,v € (Cd, define their inner product as (u,v) =
ufo = Z?zl u;v;. So ||v||§ = (v, v). We also view every distribution
P over a set X as a non-negative real vector with ||P||; = 1.

We specifically use Dirac notation to denote unit vectors, |v) €
€4 implies that |||o)||lz = 1. For a non-zero vector u € C¥, let
|v) ~ u be the normalization of u, that is, |v) = u/||ul|>.

For every vector v € C¢, let Diagv € C%*4 be the diagonal
matrix whose diagonal entries represent v. Conversely, for every
square matrix M, let diag M be the vector consisting of the diagonal
entries of M. For a matrix (or generally a linear operator) M, we
use ||M]|, and [|M]|z to denote its trace norm and spectral norm
respectively, that is,

Il = e [Vaana?) vl = mae Nasoil el

For an Hermitian M € C9%d

, we say it is a positive semi-definite
operator if for every v € cd oMo > 0.A (partial) density operator
is a positive semi-definite operator with its trace being 1 (or at most
1, respectively).

Viewing a Learning Problem as a Matrix. Let M : A x X — {-1,1}
be a matrix. The matrix M corresponds to the following learn-
ing problem. There is an unknown element x € X that was cho-
sen uniformly at random. A learner tries to learn x from sam-
ples (a, b), where a € A is chosen uniformly at random and b =
M(a, x). That is, the learning algorithm is given a stream of samples,
(a1, b1), (az, b2), . . ., where each a; is uniformly distributed and for
every t, by = M(ay, x). For each a € A, weuse M, : X — {-1,1}
to denote the vector corresponding to the a-th row of M.

Extractors. A matrix M : A x X — {-1,1} with n = log, |X|is a
(k, €)-Ly extractor with error 277, if for every distribution P over

SWe note that the error bound for sample truncation (Lemma 4.11) is also proved using
this argument.



STOC ’23, June 20-23, 2023, Orlando, FL, USA

X with ||P||2 < 2¢ - 27"/2, there are at most 27
such that

- |A| rows a € A
(Mg, P)| = 27".

3.2 Anti-Concentration Bound for Quadratic
Form on Unit Vectors

LEMMA 3.1. There exists an absolute constant ¢ such that following
holds. Let o be a Hermitian operator over the Hilbert spaceV = C4,
and let v be a uniformly random unit vector in V. Then for every
£ > 0, we have

ellollz

Pr [|’UTO"U| < ——"|<cVete

The proof is based on Carbery-Wright inequality [10] and can
be found in the full version of this paper.

3.3 Multipartite Quantum Systems

The state of g qubits can be represented in a Hilbert space V =
(€%)®4 =C?" Ina product of m Hilbert spaces V|, = V1 ®

“Vin, a multipartite partial system Vi, ..., V}, is represented by a
partial density operator Pl For a subset I C [m] of indices, the

subsystem on {V;};es (or V7 for short) is defined by tracing out
j ¢ 1, that is,

[Pv[m]]~

Now for any two disjoint subsets I, ] C [m], given some |v}) €
V=@ ier Vi the conditional system on V7 is defined as

Pv; = My

pVIl'U] = (HVI ® <U]|) 'DVIU] (]IVI ® |v]>) ’

which is a partial density operator on Vj. Note that the trace

Tr [ijlvj] = <U]|PV]|U]>

only depends on the system p and |vj), while being independent of
the choice of I.

Another simple fact that will be repeatedly used later on is that
for an orthogonal basis B of Vj, we have

Z 'DVI\UJ

|”UJ>EB

,0 _TrV] pVIUJ

3.4 Classical-Quantum Systems

In the underlying space ‘V; ® - - - ® Vy, of the multipartite system,
we say V; is classical if there is a fixed orthogonal basis B; of V;,
such that for every multipartite system PV EVETY pair of distinct
lo;) # |v]) € B; and every two states [0), [0") € &)
have

]¢1(VJ’ we

(vj, v|pV[m] [vl,v) = 0.
Without loss of generality, in the rest of the work we always assume
B,; is the set of computational basis states. We also identify V; with
the discrete set B;, and remove the Dirac brackets when we talk
about the classical elements in V;. In this case every multipartite

system Py, €A1 be written as a direct sum

@ me]\{z)lvz

v;€V;

PVim)
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The reader may find this direct sum viewpoint easier to handle in
some later scenarios.

When V; is classical, conditioned on any |v;) € Vj with J
disjoint from I, the system PVilo, is represented as a diagonal

matrix on V. If Tr[pVI o ] > 0, it induces a distribution over the

computation basis states of V7, defined as
©)

, it is

P o
PV oy = dlangI|U] /Tr[pVI‘v]].

In the rest of this paper, whenever we use this notation P

Viloy
always implicitly assumed that Tr[pVI Iz)]] > 0 and the dlstrlbution

exists.

In this work we typically consider the following scenario: There
is a quantum memory register V ranging in the Hilbert space V,
and a classical memory register W ranging in the set of memory
states ‘W, along with some classical information X € X (later in
the work, it is the concept to be learned) that is correlated with V'
and W. We will make use of the following fact:

Cramm 3.2. Let pxyw be a classical-quantum system over clas-
sical X, W and quantum V. For everyw € W, P |

Wfor some {|v)} € V.

is a convex

combination of PY X

Proor. Let B be an orthogonal basis of V, so that we have (from
the end of last section)
Z Px lo,w*

lv)yeB

lew:

Therefore Pp X|o. for lvy € B, with

non-negative coefficients. Since they are all dlstrlbutions, it must
be a convex combination. O

X | is a linear combination of Pp

Characterization of operators over classical-quantum hybrid sys-
tems. We identify all possible operators on the classical-quantum
hybrid memory space V ® ‘W. A priori to the assumption that
W is classical, we think of a quantum channel operating on the
system as working on the underlying space V ® clWI Now we
denote 7(1, ow © be the set of all such quantum channels ® that
satisfy the following: for every classical-quantum system p,,,, in
VW, W is still classical in ®(p,,,). That is, for every two states
|v), [v") € V and every pair of distinct w, w’ € W, we have

(0 wlR(py )0 ') = 0.
Note that not all channels in .7,

Veow
For instance, with one-bit classical memory and no quantum mem-
c a

ory, the channel
a o ic
c b —-ic b

is not a classical operator. However, since we are constrained to
classical quantum systems, this channel is effectively equivalent to
an identity channel on one-bit classical memory. Generally speak-
ing, every channel in .7, ., is equivalent to a channel controlled
by ‘W that maps V to V ® ‘W. This observation and the following

claim are proved in the full version of this paper:

are physically realizable.

CrLamm 3.3. Let pxyw bea classical-quantum system over classical
X, W and quantumV. Let ® € ‘7(V®(W’ and we use ®(p) to denote
the system after applying ® to VW and identity to X. Then for every



Memory-Sample Lower Bounds for Learning with Classical-Quantum Hybrid Memory

[v) €V andw e W, P;};(lf))w is a convex combination ofP§
for some {|v")} €V and {w'} C W.

|, w’

3.5 Branching Program with Hybrid Memory

For a learning problem that corresponds to the matrix M, a branch-
ing program of hybrid memory with m-bit classical memory, g-qubit
quantum memory and length T is specified as follows.

At each stage 0 < t < T, the memory state of the branching

(t)
vw
quantum memory space V = (C?)®9 and classical memory space

W = {0,1}™. The memory state evolves based on the samples
that the branching program receives, and therefore depends on
the unknown element x €, X. We can then interpret the overall

systems over XVW, in which X consists of an unknown concept

(2)
XVw:

program is described as a classical-quantum system p over

x, resulting in a classical-quantum system p
that the distribution of x is uniform, i.e.,

It always holds

o _ 0 G_1
px’ = Trywlexvwl = 57lx-

Initially the memory VW is independent of X and can be arbitrarily
initialized. We assume that
(0) 1 1 1
Pxvw = Znix @ 5qlv @ Snly-

At each stage 0 < t < T, the branching program receives a sample
(a,b), where a €, A and b = M(a, x), and applies an operation
Dt.a,b € T gqy OVer its memory state. Thus the evolution of the
entire system can be written as

(t+1) _ E

(t)
Xvw = acy A Z |x><x| ®q)t,a,M(a,x)(pVW|x)

xeX

Finally, at stage t = T, a measurement over the computational bases

is applied on p(VT‘zV

X € X as a function of the measurement result (v, w) € {0,1}9+™,
The success probability of the program is the probability that x = x
which can be formulated as

and the branching program outputs an element

(T)

XVW |x, v, w).

(x, v, wlp

xeX,ve{0,1}9,weW
x(v,w)=x

4 MAIN RESULT

THEOREM 2. Let X, A be two finite sets with n = log, |X|. Let
M: AxX — {-1,1} be a matrix which is a (k’,£")-Ly extractor
with error 27" for sufficiently large k', ¢’ and r’, where {’ < n. Let

1 1 11
r=min{-r’, = + -, (k' - 1)}.
4 26 6 2

Let p be a branching program for the learning problem corresponding

to M, described by classical-quantum systems pg?VW’ with q-qubit

quantum memory V, m-bit classical memory W and length T. If
m< (k" =1, q<r—7andT < 22, the success probability of
p is at most O(297T7).
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Fromnowonweletk =k’ —1and ¢ = %(f' —13r — 2). Then we
have the following inequalities to be used later:

qg+r+1-r" < -2r.
20+9r—n
(k=r)t = 2m+4r+ 1.

—
N
=

IA

—=r.

—_~ o~
[ )
= =

4.1 Truncated Classical-Quantum Systems

Here we describe how to truncate a partial classical-quantum sys-
tem p .y, according to some property G(v, w) of desire on PX o
The goal is to remove the parts of py,,,,, where G is not satisfied.
We execute the following procedure:
(1) Maintain a partial system p% ., initialized as py,,,, and
subspaces V,, C V initialized as V for each w € W.
(2) Pick w € W and |v) € V), such that Tr| > 0 and
G(v, w) is false.
(3) Change the partial system p’y,y,, into Iy, wp% i Ho,w by
the projection

!
pXIv,w]

My,w = ]IX ® (HVW = v, w){v, w|),
and change V), to its subspace orthogonal to |v), that is
{lv") € Vo | (vlo”) = 0}.

(4) Repeat from step 2 until there is no such w and |v). Denote
|G
the final system as py-,(.

In step 2 we pick w and |v) arbitrarily as long as it satisfies the
requirements, however we could always think of it as iterating over
w € W and processing each pxvy|,, separately. The choices of |v)

for each w do affect the final system p)l(GVW; Yet as we will see later,
these choices are irrelevant to our proof.

Below, we give two useful lemmas on truncated systems whose
proofs are omitted in this version of the paper:
IG
X|o,w
there exists |v”) in the remaining subspace V), such that

LEmMMA 4.1. Forevery|v) € V andw € ‘W with Tr[p ]>0,

_ ppl°

re
)
P T X, w

X|v,w

_ pP

- PX [0, w
A direct corollary of the above lemma is that if G(v, w) only

depends on the distribution P§|v ., then G(v, w) holds for every

vy € V and w € ‘W in the truncated system pXGVW, even when

|v) is not in the remaining subspace V,,.

LEMMA 4.2. Foreachw € W, let |v1), ..., |vg) be the states picked
in step 2 within V,,. Then

d
G
“pXVlw - pL(V|W||Tr < 321 \/Tr[pX\vi,w]Tr[pXWw]'
i=

Since Tr[pXVlW]
we get the following corollary:

< 1 always holds, by summing over allw € ‘W

COROLLARY 4.3. Let |v1, w1), ..., |vg, wg) be all of the memory
states picked in step 2. Then

d
lloxvw = 'DL(GVWHTr <3 Z \/Tr[pxwi,wi]'
=1
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4.2 Truncated Branching Program

The properties that we desire for the partial system py ., consist
of three parts:

e Small Ly norm: Let Go(v, w) be the property that

IPZ Wl < 26272,

e Small Lo, norm: Let Goo(v, w) be the property that
2049 -
|| X|v W” <2 r‘2 n'
e Even division: For every a € A, let G4(v, w) be the property
that

(Mg, P |<27".

a X |v, w> =
Now we define the truncated branching program, by specify-

ing the truncated partial classical-quantum system 7 B for each

Xvw
stage t. Initially let }(?‘)/W = pg(())v . For each stage 0 < t < T,

the truncation consists of three ingredients (below we ignore the
superscripts on P for convenience):

%) _

(1) Remove parts where HPX\U WHz is large. That is, let 7,1/, =

()G,
XVw-
Remove parts where ”PX o, w ||Do is large. This is done by two

steps.
- First, let g € {0,1}*®W be an indicator vector such that
g(x,w) = 1if and only if

@

Tr[ §(t|*)] dPT( ( ) < 22€+5r o
Let 7+ = (99" ®1 ) ( T ®1,,), where gg' is the
xvw = Y9 @ly VW 99 @ly), 99

projection operator acting on X ® W.

- To make sure that the distributions did not change a lot
after the projection gg', for each 0 < t < T, let G¢(v, w)
be the property that

(&, %)

Trlrygjo) 12 (1= 27Tz .
(t,00) (t,0)|Geo AG,
Let 7oy vy = Txyw "

(3) For each a € A, remove (only for this a) parts where Px |, 1

is not evenly divided by a. That is, for each a € A, let
e (£,0)|Gq
xvw = xvw -

Then, if t < T, for each a €, A we evolve the system by applying

the sample operations ®, , 5, as the original branching program on

T}((tVW’ so that we have
(t+1) _ (t,a)
xvw — a Z |x><x| ®(I:'t‘,a,M(a,x)( VW|x)
xeX

4.3 Bounding the Truncation Difference

In order to show that the success probability of the original branch-
ing program p(?) is low, the plan is to prove an upper bound on the
success probability of the truncated branching program r(*), and
bound the difference between the two probabilities.

Here we bound the difference by the trace distance between the
two systems pgg/w . We will show that the contribution
to the trace distance from each one of the truncation ingredients is
small, and in addition the evolution preserves the trace distance.
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4.3.1 Truncation by G;.

LEMMA 4.4. Forevery0 <t < T, |v) €V andw € W such that
Gay(v, w) is violated (that is, ”PT( : ||Z > 20 . 271/2) e must have

() —2m | 9—4r
Tr[z o, W] <2 2747,

The lemma says, for any direction |v, w) picked by the truncation
procedure, the weight will be small and the truncation will not
change the state significantly.

Proor. This is our main technical lemma and we defer the proof
to Section 5. O

Since there are at most 29*™ such directions picked in the trun-
cation procedure, we conclude the following corollary.

COROLLARY 4.5. Forevery0 <t < T, we have
(£,%)

o))
lexcirw -

. 9d-2r
xvw =32 ’
4.3.2 Truncation by Goo

”Tr

LEMMA 4.6. Forevery0 <t < T andw € ‘W we have

«
>, Pw sz
xeX
g(x,w)=0

Proor. By Claim 3.2, PT(| is a convex combination of PT(| *

From Lemma 4.1 we know that Gz(PT( ) ) holds for every |v) and

w, and thus by convexity of £2-norms we know that G (PT<
holds. That means

|7
NPT([‘*>

X|w

) also

prto
X|w

r"’ *)

X |w ”3 <2200

@) =lp

Therefore, by Markov’s inequality we have

r(tx [ (> 20+5r  o5—n —5r
= . <
§X Py (x PPrr(M) Po () > 2 27" <2
xe ~Pyiy
g(x,w)=0 X

O

COROLLARY 4.7. Forevery0 <t < T and everyw € ‘W, we have
(t,0) (¢,%)

Xviw = Xviw’ and
t,o — t, %
Trlriey ] 2 (1= 277 Telr ) ]
Moreover, we have ||T)((tvc>€v )((tv*‘z/“Tr <275,

LEMMA 4.8. Forevery0 <t < T |v) € V and w € W such that
Geo(v, W) is violated (that is, PT(| H > 220497 1971 or Gy (v, w)

(#:0) ] <(1-27 r)Tr[ ([ *) ]) we must have

is violated (that is, Tr[

X[o,
Tr[r “l") l<2 274 . Te[r (‘l")]

PRrROOF. If Goo(v, w) is violated, let x € X be the one such that

PR () > 226497 27 1f g(x, w) = O then PY ) (x) = 0, while
if g(x, w) = 1 then by Corollary 4.7,
(2, %)
Tr[z
£(89) X _ o B
X\w( x) < %.ZZHW.Z m<(1-27) 1, 920451 o-n
Trlzy ), ]
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Hence we always have

P ()

(t.0) Xlw (t.0) 4 (t,0)
X|vw = pr(to) ()'Tr[X|w]<2 27 Tr[X|w]

Xl|v,w

Tr([t

where the first inequality comes from the fact that (tl ) )((t |Z)w

and Equation (3).
If G;(v, w) is violated, since we know from Corollary 4.7 that

(2,0) ( ) (t,0) (2,%)
TI’[ Xt|v w] Xt|:w | = ” XtV|w XtV*\'w”Tr

<27 T ]

<27 (1-275ry7! -Tr[r)((t";l)w],
Z_r)Tr[rgl’:,)W] we deduce that

1= el )

X|v,w

250 TG )

—4r (¢,0)
<227 Tr[r Xlw] O

therefore from Tr[ ;;l °) ] <(1-

Teleo) 1< 27 = 1) (Trle; )

Xl‘uw W

<@ -1)-277.(1-

COROLLARY 4.9. Forevery0 <t < T, we have

H (t,00) (t,0)

Tevw ~ Txpwll <5297

4.3.3 Truncation by G,. Notice that in the truncation step from

(%) 0 £(8:°) the distribution PT(|

isfy G, anymore. However, with the truncation by G;, any such
distribution that changes too much is eliminated, and we have the
following guarantee.

might change and not sat-

LEMMA 4.10. Forevery0 <t <T,|v) € V andw € ‘W, we have

IPL o lly < (=277 2l el

PrOOF. By Lemma 4.1, there exists [v”) € V such that PT(
(t,0)

(2,00)

P)TQv/ w P)TQz/ .- The truncation by G; ensures that
Trlryjo) ] = (=27l ) )
and therefore
| diag ;o) |
L(t0) L(t0) A8 Tx |0, wll2
1P% oellz = 1P o aoll2 = i —
Tr [ Xl‘u w]
| diag ;20

<(1-27")l.ol.gm/2 g

JCRERS L N

LEmMMA 4.11. For every partial classical-quantum system t
X ® V such that ||P},
have

XV over

Xlo ||2 < 20" 2712 holds for every [v) € V, we

V=2 <27,

Pr_[3lo) € V.M. P,

R

Proor. Notice that we can think of 7}, = Try[r, ] to be I,.
This is because we can first assume that 7, is full rank (otherwise

change V to its subspace and the conclusion in this lemma still
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holds), and if we have diagonalization QTTVQ = [, for some non-
singular Q, then consider the new system
T)’(V = (]IX ® QT)Txv(HX ® Q),
XJo } and {
X| , for [v') ~ Qlv). With Ty = I, we
have Tr[ Xlo 1=1 for every |v) € V, and thus P | = diag o

Let A’ C A be the set of a € A such that there exists |[v) € V
with |(Ma,P)T(|v)| > 27" Foreacha € A’, let

and the set of dlstrlbutlons { | } over |v) € V are

the same, since P

oq = Try[(Diag M, ® I, )75y ]

which is a Hermitian operator on V. There exists [v) € V such
that

[(vloalv)| = [(Ma, diag 7y, )| = [(Ma, Py )] 2 277,

which means that ||og||2 = 27". Now let |u) be a uniformly random
unit vector in V, and by Lemma 3.1 we know that for some absolute
constant c,

X|v

Kuloalu)| > 277" | > 1 - 2@+r="")/2¢ _ o=27

>1-2"c—e1>1/2.

The second last inequality comes from Eq. (4), while the last in-
equality is because of the assumption that r is sufficiently large.
Since the above holds for every a € A’, it implies that
Pr [|(uloalu)] 2771 2 1/2.
acA,|u)
It means that there exists some |u) € V such that |[(u|og|u)| > 27"
for at least half of a € ﬂ' On the other hand, since M is a (k’, £’)-
extractor with error 27" ,and || < 20" . 271/2 there are at

lull2

most 2= fraction of a € A such that [(ulogqluy| = [{Mg, X|u>|

27", That means
Pr [aeA| <2 27K <272,
acpA
Here k’ — 1 > 2r, by the definition of r. O

COROLLARY 4.12. Forevery0 <t < T, we have E r(t @)

Y ac A “ xXvw ~
%) ” < g=2r
XVW Tr .

4.3.4  Evolution preserves trace distance.

LEMMA 4.13. Forevery0 <t <T, we have

” (t,a) (t)

” ) st xvw pXVW”'I‘r'

Sevw ~ Pxvwlh <

The proof is by triangle inequality and contractivity of quantum
channels under trace norms, and thus omitted.

4.4 Proof of Theorem 2

Proor. First, combining Corollaries 4.5, 4.7, 4.9 and 4.12 and
Lemma 4.13 we have
“ (t+1) (¢+1) ”
xvw ~ PxvwllTe

<] (2) (2)

—2r =5r —2r
xvw ~ Pxvwll +8- 27 27 27
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: o _ (0
Since 7y vy = Py

(T) (T)
I vw = Pxvw
and thus
(T,00) _ (T)
I3y w = Pl
This bounds the difference between the measurement probabilities
of rg‘}o‘zg and pg‘),w under any measurement, specifically the dif-

ference between the success probability of the branching program
p and the following value on 7:

by triangle inequality we know that

| < T-10-297%" <10 2977,

<10-2977 482972 4 277,

(x,v, WIT;((T‘}O{)V) |x, v, w)
xeX,ve{0,1}9, weW
x(v,w)=x
T,c0 (T,e0) _
- Tr[g(qv’gv] P o (0, W)).
vef{0,1}9,weW
: (T,e) 20+9 - (T,00)
Since HP)T(‘U,WHoc < 279777 - 27" and Tr[ry ] < 1, the above

value is at most 22+9" . 27" Therefore the success probability of

the branching program p is at most (recall that 2 + 9r —n < —r)

102977 482972 4 275 4 220H9r pmn — 0(297T). O
5 PROOF OF LEMMA 4.4
The first step towards proving Lemma 4.4 is to analyze how P}T(( |tz); v

evolves according to the rule

(¢+1) _
XVw T,

(t,a)
Ywx

D O @Dy g m(a) (7))
xeX

We introduce the following notations. For every a € A and b €
{-1,1}, let

E
€A

1 -
Lo = 50 +b-Ma)

which is a 0-1 vector that indicates whether M(a, x) = b. Let

t,a,b . t,
) = (Diag 1, 5 ® Ly )T ()
so that we can write
1 ,a,1
G = B |G © 2ran (i)
acpA (8)

(t,a,~1)
Txvw

)|

(¢+41) . .
PT is a convex combination of
X|v,w

+ (I[X ® <I)t,a,fl)(

Thus Claim 3.3 implies that

PT(r.a.b)

X |0 for some a, b, w’ and |v’).
,

5.1 Target Distribution and Badness
Before considering the target distribution, let us first establish that

the £2-norms of P)T(( " cannot be too large, using Lemma 4.1 and

|o,w
Lemma 4.10:

LEMMA 5.1. Forevery0 <t <T,|v) € V,w € W, we have

From now on we use P to denote a fixed target distribution
(which we will later choose to be the distribution in Lemma 4.4),
such that

pr®

Xl|v,w

[, <4-20 272,

2022 < Py < 420272
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1)

We want to bound the progress of <P)T((|v w P), which starts off as

pr?

X|o,w

2™ at t = 0, and becomes at least 22¢ - 27" when = P. Note

that by Cauchy-Schwarz we always have
( pr®

X|v,w’

Py <P,

X|v,w

el < 16-22¢ -2 )

In order to bound the progress, we introduce some new notations.
For any superscript (such as (¢, a)) on the partial systems, we use
vw to denote 7, (Diag P ® I ;). Notice that

] =Tr[r Diag P] = Tr[ry |, ] <P§|U’W,P>-

X|v,w
can be deduced from P?,
X|v,w

Ox

Tr[

UX|v,w

Similarly, P§ [o.w via

. Tr[rxlv’w]
PX\v,w(x) = Trlo ]

X|v,w

. P;‘v’w(x) - P(x)
Py o, w ) P(x) = W
B

Therefore we can bound the £3 norm of P; as

lo,w
1
Pl g5 Pl Il

Now we can identity the places where (P)T(( lt z))
lot, which happens when the inner product is not evenly divided by
some a € A (we will see the reason in the analysis later). Formally,

at stage 0 < t < T, we say (w, a) is bad if

.+ ) increases by a

(t,a)
o
PX o, w

.a 1
o) € V, s.t. (Ma, ) > 27" and (PT" Py » S

X|v,w’
(11)
LEMMA 5.2. Forevery0 <t <T andw € ‘W, we have
Pr [(w,a) is bad] < 27k,
acp A

. (t,a) . (t,00)
Proor. Since Ty i truncated from T vw Lemma 4.1 shows

that for every |v) € V,w € ‘W and a € A there is |[v’) € V such
that

@) ()
PX|v,w T X|,w
and by Eq. (10) it also implies that
P R )
PX|‘u,w - PX|‘U’,w'

Now fix some w € ‘W, and let A’ C A be the set of of a € A such
that

o) €V, st. [(Mg, PI"

X|v,w

) > 27" and (PT

1 —n
le’W,P) > 3 27
Then A’ contains all a such that (w, a) is bad, and our goal is to
bound the fraction of A’ in A.

In the rest of the proof we temporarily omit the super script and
write 7(£-%) and ¢{*-%) simply as 7 and ¢. For the same reason as

in Lemma 4.11 we can assume that 7. =1,,, and thus
Viw |
<v|O-V|w|v> = Tr[O-X|U,w] = <P)T(|‘U,W’P>’

and Tif PL, Py <16-220. 27,

Ox Vlw] = |w?
where the last inequality is by Lemma 4.10 and Cauchy-Schwarz,
in the same way as Eq. (9).

Suppose that we have diagonalization Ty = U'DU, where U
is unitary and D is diagonal and non-negative. Let V'’ C V be the

subspace spanned by U |e) over the computational basis vectors
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le) € V such that {e|Dle) > 274 .272.27" So for every |v) € V’
we have

1> 941, 2—2[ .o n

P) = Tr[aX'v’W >

< X|o,w’

We claim that for every a € A’, there exists [v) € V’ such that
[{Mgq, PS. Yo, W)| > % -27".To prove the claim, let I be the projection
operator from V to V’, and then (I, ® H)O’XV' (I ® II) can

|G
XV|w

]> 27472 . 277 for the fixed w. By

be conceptually seen as a truncated partial system o where

G(v, w) holds when Tr[
Lemma 4.2 we have

||")|(GV|W_“XV|W||T <3-29. \/2 —Ar=2ton . Trlo Ty |l

<12.2972r .71,

Since a € A’, assume for |u) € V we have |(Mg, PS

-r
X|u,w>| >2

and Tr[o TX |, W= (P Xluw’ ,P) > % - 27" Let |v) ~ II|u), then we
have
le3 o O'lG
||PX|u,w - PX|‘u,w” ” X|u,w PX|u w”
\G
0X|u,w Xlu w
Trlo 1 |G
X|u w Tr[ Xlu W] Tr
&G oG oG
O-X|u,w X|u,w X|u wo X\u w
Tr T Tr Tr, |G
[ X|u W] [ Xlu, ] Tr Lo X|u W] Trlo X|u w] Tr
|G |G
_ ||GX|u w GX|u,w||Tr Tr[ X|u, ] Trlo Xlu w])
Tr[ X|u w] Tr[ X\u,w]
|G
- 2”"x|u w X|u e 2”‘7xv|w - "XV|w”Tr
TI'[ X|u w] Tr[ X|u w]
< 48297 < % 2,
where the last step is due to ¢ < r — 7. Thus
1 -r
(M. PG, D12 [MaPY D=(IPF =Pl > 527

Similarly to the proof for Lemma 4.11, for each a € A’ let
7a = Try [(Diag M, ® UTD7Y2U) - Txyiw Ix ® ufp~?u))

which is a Hermitian operator on V. For each [v) € V, let [v”) ~
UTD1/2U|’U>. Recall that o = U'DU, and therefore

Viw
o ~ diag (I, ® (v|)0'XV|W(I[X ® |v))
X|o,w —

loy o)

diag (I, ® (v’lUTD’l/ZU)Jxvlw(I[X ® UTD™12u|vy)

<’U'|UTD_1/2UUVIWU*D—1/2U|UI>
= diag (Iy ® (' [U'D™* U)oy, Ly ® UDT2U ")),
And that means
(V' |malv”) = <Ma, diag (]IX ® (U’|U'I'D—1/2U)

Oy wlly ®UT D20 ))>—(Ma, 7 o)
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We showed above that there exists |[v) € V’, and thus [v”) € V'’
such that
1

—.27r

(@’ |7al0")] = [(Mas PR, )] 2 5

which means that for ITn,I1, the restriction of 7, on V’, we have
[Tz, IOy > % - 27". Now consider a uniformly random unit vector
[v") in V’, and by Lemma 3.1 we know that for some absolute
constant c,
’ ’ 1

Pr [|(v'|aa|v'>| >27" ] > 1= larrei=rjz, _ =2t 5 —

[v)’ 2
Therefore, for the random vector [v) ~ UTD™1/2U|v’) where |v”)
is uniform in V’, we conclude that

1

Pr [l(Ma, Tl 227 | 2 2

On the other hand, as |0’y € V’, it also holds that [v) € V’,
therefore (P; w Py > 2747 . 2720 . 977 j5 always true. Thus there

exists a [v) € V that simultaneously satisfies

’

(Pyloae Py 2274277027 and [(Ma, P, ) 227
for at least 1/2 of a € A’. Since
1PZ 0, llz < (PT P WP ol - IPI < 22772,

and M is a (k’, £’)-extractor with error 277, there are at most 2%’
fraction of a € A such that [(Mg, P$ N[0 w
that

)| > 27", which means

r [(w,a)isbad] < Pr [ac A']<2- 27K =97k g

aER aER

5.2 Badness Levels

At stage t, for each classical memory state w € ‘W we count how
many times the path to it has been bad, which is a random variable
depending on the previous random choices of a € ‘A. This is stored
in another classical register B, which we call badness level and takes
values f§ € {0, ..., T}. It is initially set to be 0, that is, we let
Kvws = Xvw © 0)0lp.
We ensure that the distribution of B always only depends on W and
is independent of X and V conditioned on W, using the following
updating rules on the combined system 7., for each stage
0<t<T:
o The truncation steps are executed independently of B. There-
fore, for each a € A we let
S T)(j’v“l)w ® [w){w| ® Diangl‘L (12)
weW
o The value of B updates before the evolution step, where for
eacha € Aand b € {-1,1} we let
) = (Diag Ly ® Iy ® Ua)ri, 5Ly ® UD).

(¢,a)

Here U, is a permutation operator, depending on 7.,

acting on W ® {0, ..., T} such that

|[w)|(B + 1) mod(T + 1))

Ualw)|) = { M if (w. ) is bad,

otherwise.
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e Tor the evolution step, we apply the channels ®; , 3, on the
memories W and V to get

(t,a,1)
TXVWB

)

(t+1)  _
XVwB = aeE.?{ [(Hx ® Dr0,1 ®Ip)(

(t,a,-1)

+(Iy ® Dt a,-1 ® Ig) Ty 17y

).

Notice that the evolution step might introduce dependencies be-
tween X, V and B. However, such dependencies are eliminated later
due to how we handle the truncation steps (12), and thus do not
affect our proof.

1')(; €/W B defined

that we discussed

_ (1)
1= 13vw

We can check that the combined partial system

(t)
xvw

in previous sections, in the sense that Tr B[T)(g,w B
ways holds:

above is consistent with the partial system

al-
e For the truncation step, it is straightforward to check that

Trglesl =

XVWB
weW

@)

(t,a)
XV |w T

® [w){w| = 7y

o The permutation operator U, acts on ‘W as identity since

Trg | Ualw. B o, BIUJ | = 1w (o,

. ,a,b . ,
Recalling Eq. (713 that T)((tVaM[/)) = (Diagl,; ®1 r)((t‘fev,
have TrB[f)(;{f‘;w)s] = T)(;{/a‘;v).

e The evolution step can be checked directly from the formula

without B (Eq. (8)):

v) we

(¢,a,1)

(¢+1) _
E}[ (]IX®(I)t’a’l)(TXVW

Xvw T e

)

+(]IX ® (I)t,a,—l)(f)((t{/a‘;gl)

)|
A0

So all previously proved properties about 7y, are preserved. In
addition, we prove the following two properties about badness
levels.

LEMMA 5.3. Forevery0 <t <T,|v) €V andw € W, we have

T
py<>

=0

pr®

ey By 2P 2 -2

X|v,w’

Proor. We prove it by induction on t. For t = 0 the lemma is
true as (PT(t) ,Py=2""and PIT;(«L(O) =1

X|v,w

Suppose the lemma holds true for some ¢t < T. By a similar
argument as in Lemma 4.10 and applying Lemma 4.1 multiple times,
we know that for every |v) € V,w € W and a € A, there exists

|[v"Yand |v”") € V such that

(t.a) _ £(t.0) e ()
<PX|‘U,W’P> - <PXl‘U’,w’P> <(1-2 ) <PX|v’,w’P>
o (t)
=(1-277) 1<P)T(|v”,w’P>’

and therefore

T

(2)

Py < ) PE
p=0

<PT(z’a) (ﬁ) . 2‘5 Lo, (1 _ 2—}”)—31‘—1'

X|v,w

(13)
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(t,a)
T
PX|v,w

<27,

Also, the truncation step by G, implies that [(Mg,
That is, for both b € {-1, 1},

(t,a)
T
PX\v,w

1-27" <21, [, <1+27".

Therefore we have, unconditionally

(t,a)
Mgp - Py o P)
(t.a,b a, X e (t.a
P? py = low’ T o — o7yt py.
Xl|v,w 1 PT(t,a) Xl|v,w
H a,b”’ Xlz)’w”l
(14)
When the inner product is evenly divided, i.e. [(Mg, P?<(|:;a;;>| <
27", we further have
(t,a) 1 _ (t,a)
(Lap - Py P) < 5427 0PE (L P)
1 —r\=1,p79
< 5(1 -2 (Ple’w,P),
which means that
(t,a)
<]1a b - PY >
,a,b > X e sa
eLt Py = o <2y ey P
X|o,w ”]l .Pr(t,a) ” X|v,w
a,b Xl|o,will
(15)
Now there are three cases to discuss:
. (t.a.b) 0
e If (w, a) is bad, we have Pg‘w B) = P}§|w(ﬂ — 1) for every

B > 0. Notice that PE(IQV(T) =0ast < T, and thus Eq. (13)
and Eq. (14) imply that
T-1
Py< ) Pg((v)v
B=

(t,a,b)
T
<Ple,w ’

(ﬂ) . 2ﬂ+1 Lo, (1 _ z—r)—3t—2

0
£(t.a.b) B o—n —r\=3(¢+1)
P B)-2F.2m.1-27") .

0

T
2. P

<
B
e If (w,a) is not bad and |(Ma,P“'(t’a)

Xl|v,w
Pg(lt‘:’b)(ﬁ) = Pg(lt‘ll(ﬂ) for every f§ > 0. Then Eq. (13) and

Eq. (15) imply that

Y < 277, we have

T
(2)
py<> P
5=

T
=2
B=0

e If (w, a) is not bad and |{M,,

(t,a,b)
T
<PX|‘U,W ’

B)-2F 2 (-2

PT(t,a,b)

Bl (,B) . zﬁ Lo, (1 _ 2—r)—3(t+1).

(t,a)
o
Ple,w

Y| > 277, by the defi-
t,a

) 1 -n
|U,W’P> <z 2

nition of badness (11) we must have (P)T((
Thus by Eq. (14),

(t,a,b)
T
<PX|‘U,W ’

Py<(1-2"")yl.27n
I (t,a,b)
'
DI
p=0

The last inequality follows from };

(ﬁ) ) zﬁ Lo (1 _ z—r)—3(t+1).

T PL gy 2P a1

2")_3(”1) >27"(1 - Z_r)_B(”l). Hence we obtain the same con-
clusion from all three cases.



Memory-Sample Lower Bounds for Learning with Classical-Quantum Hybrid Memory

For the evolution step, since B is classical we can view X and

. (¢+1 .
B as a whole and apply Claim 3.3 on P)T( BI , which asserts that
(z+1) . . . (t,a, b)
T T ,
PXB|v ., 15 @ convex combination of PXB|v W for some a, b, w

and |v”). Then by linearity we conclude that °

T
(2+1) (2+1)
(Pijons PY < D PRy B)-2F 277 (1 -
=0

—r)—3(t+l). O

LEMMA 5.4. Forevery0 < ff <t <T we have
_ t
(Bl 1p) < 27*F ( ﬁ).

ProoF. We prove it by induction on ¢. For ¢t = 0 the lemma holds
0 _ = 10){0| 5. Also notice that the lemma is trivially true for
every t when f = 0.

Now suppose the lemma holds for some ¢. By definition we have

asr

D = aEEﬂ[Tg’a’l) + e = o Trwllaryy AU,
R

Therefore
Bl g = 3, B | pllan 0w )
wew ?

By Lemma 5.2 we know that for every w € ‘W, the probability that
(w, a) is bad for a €, A is at most 27k In other words, for every

B >0,
w, ), wp. >1- 2"‘
Ui lw.py = P b
lw,f—1), wp. <27k

where the probability is taken over the random choice of a. It means
that

Bleg 1By < > (w, Blryyg lw, B)
weW
w278 3w p- 1y |w. f - 1)

weW
= (Bl gy + 27K (-1 - ).

Notice that
Tl(;’a) = Z e[ ). Diag Py, pr”

XV| Blw
weWw
t . (2) t
< Z Tr| }(ﬁ)” ]- Diag P, = ),
weW

and thus we conclude that

BleLV18) < Bl 1py + 27K (-1 1p - 1)

sonf)ers o) o )

With the lemmas above in hand, we can finally prove Lemma 4.4.

6Tt should be noted that in 7!+, X and B are not independent. (In 7(t.a.b) they are
independent (conditioned on ©’, w’)). Nevertheless, independence of X, B (in (1)
is not needed or used here and we can conclude the final inequality by linearity by
taking the corresponding convex combination of all inequalities.
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PRrOOF FOR LEMMA 4.4. For the target distribution P = P)Tg[)
o, w

we have (PT( ) ,P) > 220 .97 oo by Lemma 5.3,

L (t)
D PhB) 2 (-
p=0

Since t < T < 2”2, we have (1 — 277)73*

Z T“)(ﬁ) 21‘3>1 22l _ 3. Zzﬁ > 2L
p=t p=0

On the other hand, for every f > ¢, by Lemma 5.4,
kiyf < o=(k=r)f

7r)73t > 225.

< 2, and thus

Tele!) 1Py () < (Ble1B) < (27

and thus by Eq. (6),
T
] < 2_5 Z 2—(k—r)ﬁ . zﬁ

p=t
<2. 2—(k—r)[’ < 2—2m . 2—4r. o

Ty 0] < T,
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