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ABSTRACT
The maximum weighted matching (mwm) problem is one of the
mostwell-studied combinatorial optimization problems in distributed
graph algorithms. Despite a long development on the problem,
and the recent progress of Fischer, Mitrovic, and Uitto [16] who
gave a poly(1/𝜖, log𝑛)-round algorithm for obtaining a (1 − 𝜖)-
approximate solution for unweighted maximum matching, it had
been an open problem whether a (1 − 𝜖)-approximate mwm can
be obtained in poly(1/𝜖, log𝑛) rounds in the CONGEST model. Al-
gorithms with such running times were only known for special
graph classes such as bipartite graphs [1] and minor-free graphs
[8]. For general graphs, the previously known algorithms require
exponential in (1/𝜖) rounds for obtaining a (1 − 𝜖)-approximate
solution [13] or achieve an approximation factor of at most 2/3
[1]. In this work, we settle this open problem by giving a deter-
ministic poly(1/𝜖, log𝑛)-round algorithm for computing a (1 − 𝜖)-
approximate mwm for general graphs in the CONGESTmodel. Our
proposed solution extends the algorithm of Fischer, Mitrovic, and
Uitto [16], blends in the sequential algorithm from Duan and Pet-
tie [11] and the work of Faour, Fuchs, and Kuhn [13]. Interest-
ingly, this solution also implies a CREW PRAM algorithm with
poly(1/𝜖, log𝑛) span using only𝑂 (𝑚) processors, and a poly(1/𝜖)-
passes algorithm in the semi-streaming model.
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1 INTRODUCTION
Matching problems are central problems in the study of both se-
quential and distributed graph algorithms. A matching is a set
of edges that do not share endpoints. Given a weighted graph
𝐺 = (𝑉 , 𝐸,𝑤), where 𝑤 : 𝐸 → {1, . . . ,𝑊 }, the maximum weight
matching (mwm) problem is to compute a matching 𝑀 with the
maximum weight, where the weight of𝑀 is defined as

∑
𝑒∈𝑀 𝑤 (𝑒).

Given an unweighted graph 𝐺 = (𝑉 , 𝐸), the maximum cardinality
matching (mcm) problem is to compute a matching 𝑀 such that
|𝑀 | is maximized. Clearly, the mcm problem is a special case of
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the mwm problem. For 0 < 𝜖 < 1, a (1 − 𝜖)-mwm (or (1 − 𝜖)-mcm)
is a (1 − 𝜖)-approximate solution to the mwm (or mcm) problem.
Throughout the paper, we let 𝑛 = |𝑉 | and𝑚 = |𝐸 |.

In distributed computing, the mcm and mwm problems have been
studied extensively in the CONGESTmodel and the LOCALmodel.
In these models, nodes host processors and operate in synchronized
rounds. In each round, each node sends a message to its neighbors,
receives messages from its neighbors, and performs local compu-
tations. The time complexity of an algorithm is defined to be the
number of rounds used. In the LOCAL model, there are no limits
on the message size, while the CONGEST model is a more realistic
model where the message size is limited by 𝑂 (log𝑛) bits per link
per round.

Computing an exact mwm requires Ω(𝑛) rounds in both the
CONGEST model and the LOCAL model (e.g., consider the graph
𝐺 to be a unit-weight even cycle.) Thus, the focus has been on
developing efficient approximate algorithms. In fact, the approx-
imate mwm problem is also one of the few classic combinatorial
optimization problems where it is possible to bypass the notorious
CONGEST model lower bound of Ω̃(𝐷 +

√
𝑛) by [36], where 𝐷 de-

notes the diameter of the graph. For (1− 𝜖)-mwm in the CONGEST
model, the lower bounds of [1, 29] imply that polynomial depen-
dencies on (log𝑛) and (1/𝜖) are needed. Whether matching upper
bounds can be achieved is an intriguing and important problem, as
also mentioned in [13]:

“Obtaining a (1 − 𝜖)-approximation (for mwm)
in poly(log𝑛/𝜖) CONGEST rounds is one of
the key open questions in understanding the
distributed complexity of maximum matching.”

A long line of studies has been pushing progress toward the
goal. Below, we summarize the current fronts made by the existing
results (also see Table 1).

• 𝑐-mwm algorithms for 𝑐 < 2/3. Wattenhofer and Wattenhofer
[38] were among the first to study the mwm problem in the
CONGESTmodel. They gave an algorithm for computing a (1/5)-
mwm that runs in 𝑂 (log2 𝑛) rounds. Then Lotker, Patt-Shamir,
and Rosén [31] developed an algorithm that computes a (1/4 −
𝜖)-mwm in 𝑂 ((1/𝜖) log(1/𝜖) log𝑛) rounds. Later, Lotker, Patt-
Shamir, and Pettie [30] improved the approximation ratio and the
number of rounds to 1/2− 𝜖 and𝑂 (log(1/𝜖) · log𝑛) respectively.
[5] gave a (1/2)-mwm algorithm that runs in 𝑂 (𝑇MIS (𝑛) · log𝑊 )
rounds, where 𝑇MIS (𝑛) is the time needed to compute a maxi-
mal independent set (MIS) in an 𝑛-node graph. Fischer [14] gave
a deterministic algorithm that computes a (1/2 − 𝜖)-mwm in
𝑂 (log2 Δ · log 𝜖−1 + log∗ 𝑛) rounds by using a rounding approach,
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Table 1: Previous results on mcm and mwm in the CONGEST
model. Deterministic algorithms are marked with “Det.”
†Bipartite graphs. ‡Minor-free graphs.

Citation Problem Ratio Running Time
[28] mcm 1

2 𝑂 (log𝑛)
[4] mcm 1

2 𝑂 (log𝑛)
[32] mcm 1

2 𝑂 (log𝑛)
[23] mcm 1

2 𝑂 (log4 𝑛) Det.
[38] mwm 1

5 𝑂 (log2 𝑛)
[31] mwm 1

4 − 𝜖 𝑂 (𝜖−1 log 𝜖−1 log𝑛)

[30]
mcm† 1 − 𝜖 𝑂 (log𝑛/𝜖3)
mcm 1 − 𝜖 2𝑂 (1/𝜖 ) ·𝑂 (𝜖−4 log 𝜖−1 · log𝑛)
mwm 1

2 − 𝜖 𝑂 (log(1/𝜖) · log𝑛)

[5]

mwm 1
2 𝑂 (𝑇MIS (𝑛) · log𝑊 )

mwm 1
2 𝑂 (Δ + log𝑛) Det.

mwm 1
2 − 𝜖 𝑂 (logΔ/log logΔ)

mcm 1 − 𝜖 2𝑂 (1/𝜖 ) ·𝑂 (logΔ/log logΔ)

[14] mcm 1
2 𝑂 (log2 Δ · log𝑛) Det.

mwm 1
2 − 𝜖 𝑂 (log2 Δ · log 𝜖−1 + log∗ 𝑛) Det.

[1] mwm† 1 − 𝜖 𝑂 ( log(Δ𝑊 )
𝜖2

+ log2 Δ+log∗ 𝑛
𝜖 ) Det.

mwm 2
3 − 𝜖 𝑂 ( log(Δ𝑊 )

𝜖2
+ log2 Δ+log∗ 𝑛

𝜖 ) Det.
[13] mwm 1 − 𝜖 2𝑂 (1/𝜖 ) · polylog(𝑛) Det.
[16] mcm 1 − 𝜖 poly(log𝑛, 1/𝜖) Det.
[8] mwm‡ 1 − 𝜖 poly(log𝑛, 1/𝜖)
new mwm 1 − 𝜖 poly(log𝑛, 1/𝜖) Det.

where Δ is the maximum degree. Then Ahmadi, Khun, and Osh-
man [1] gave another rounding approach for (2/3 − 𝜖)-mwm
that runs in 𝑂 ( log(Δ𝑊 )

𝜖2
+ log2 Δ+log∗ 𝑛

𝜖 ) rounds deterministically.
The rounding approaches of [14] and [1] inherently induce a 2/3
approximation ratio because the linear programs they consider
have an integrality gap of 2/3 in general graphs.
• Exponential-in-(1/𝜖) algorithms. [30] showed that the random
bipartition technique can be applied to get a randomized 2𝑂 (1/𝜖 ) ·
𝑂 (log𝑛)-round (1 − 𝜖)-mcm algorithm. Such a technique was
later also applied by [13], who gave a deterministic 2𝑂 (1/𝜖 ) ·
poly(log𝑛)-round algorithm for (1 − 𝜖)-mwm.
• Bipartite graphs and other special graphs. For bipartite graphs,
Lotker et al. [30] gave an algorithm for (1 − 𝜖)-mcm that runs in
𝑂 (log𝑛/𝜖3) rounds. Ahmadi et al. [1] showed that (1 − 𝜖)-mwm
in bipartite graphs can be computed in𝑂 (log(Δ𝑊 )/𝜖2+(log2 Δ+
log∗ 𝑛)/𝜖) rounds deterministically. Recently, Chang and Su [8]
showed that a (1 − 𝜖)-mwm can be obtained in poly(1/𝜖, log𝑛)
rounds in minor-free graphs with randomization by using ex-
pander decompositions.
• Algorithms using larger messages. It was shown in [15] that the
(1 − 𝜖)-mwm problem can be reduced to hypergraph maximal
matching problems, which are known to be solvable efficiently
in the LOCAL model. A number of poly(1/𝜖, log𝑛)-round algo-
rithms are known for obtaining (1 − 𝜖)-mwm [20, 25, 34]. The
current fastest algorithms are by [25], who gave a𝑂 (𝜖−3 log(Δ +

log log𝑛) + 𝜖−2 (log log𝑛)2)-round randomized algorithm and a
𝑂 (𝜖−4 log2 Δ + 𝜖−1 log∗ 𝑛)-round deterministic algorithm.

Recently, Fischer,Mitrović, andUitto [16]made significant progress
by giving a poly(1/𝜖, log𝑛)-round algorithm for computing a (1−𝜖)-
mcm — the unweighted version of the problem. Despite the progress,
the complexity of (1− 𝜖)-mwm still remains unsettled. We close the
gap by giving the first poly(1/𝜖, log𝑛) round algorithm for comput-
ing (1−𝜖)-mwm in the CONGESTmodel. The result is summarized
as Theorem 1.1.

Theorem 1.1. There exists a deterministic CONGEST algorithm

that solves the (1 − 𝜖)-mwm problem in poly(1/𝜖, log𝑛) rounds.

In the parallel setting, Hougardy and Vinkemeier [26] gave a
CREW PRAM1 algorithm that solves the (1 − 𝜖)-mwm problem
in 𝑂 ( 1𝜖 log5 𝑛) span with 𝑛𝑂 (1/𝜖 ) processors. However, it is still
not clear whether a work-efficient algorithm with a poly(1/𝜖, log𝑛)-
span and 𝑂 (𝑚) processors exists. Our CONGEST algorithm can
be directly simulated in the CREW PRAM model, obtaining a
poly(1/𝜖, log𝑛) span algorithm that uses only 𝑂 (𝑚) processors.
The total work matches the best known sequential algorithm of
[11], up to poly(1/𝜖, log𝑛) factors.

Corollary 1.2. There exists a deterministic CREW PRAM algo-

rithm that solves the (1−𝜖)-mwm problem with poly(1/𝜖, log𝑛) span
and uses only 𝑂 (𝑚) processors.

1.1 Related Works

SequentialModel: For the sequential model, by the classical results
of [7, 17, 33], it was known that the exact mcm and mwm problems
can be solved in 𝑂̃ (𝑚

√
𝑛) time. For approximate matching, it is well-

known that a 1
2 -mwm can be computed in linear time by computing

a maximal matching. Although near-linear time algorithms for (1−
𝜖)-mcm were known in the 1980s [17, 33], it was a challenging task
to obtain a near-linear time 𝛼-mwm algorithm for the approximate
ratio 𝛼 > 1

2 . Several near-linear time algorithms were developed,
such as ( 23 − 𝜖)-mwm [9, 35] and ( 34 − 𝜖)-mwm [10, 24]. Duan and
Pettie [11] gave the first near-linear time algorithms for (1 − 𝜖)-
mwm, which runs in 𝑂 (𝜖−1 log(1/𝜖) ·𝑚) time.
Semi-Streaming Model: In the semi-streaming model, the cel-
ebrated results of (1 − 𝜖)-mwm with poly(1/𝜖, log𝑛) passes were
already known by Ahn and Guha [2, 3]. Thus, in the semi-streaming
model, the focus has been on obtaining algorithms with 𝑜 (log𝑛)
dependencies on 𝑛. The state of the art algorithms for (1 − 𝜖)-
mwm still have exponential dependencies on (1/𝜖) (see [18]). Re-
cently, Fischer, Mitrović, and Uitto [16] made a breakthrough in
the semi-streaming model, obtaining a poly(1/𝜖) passes algorithm
for the (1 − 𝜖)-mcm problem. Our CONGEST algorithm translates
to an poly(1/𝜖) · log𝑊 passes algorithm in the semi-streaming
model. Bernstein and Dudeja [6] pointed out that, with the re-
duction from Gupta and Peng [22], an input instance can be re-
duced into 𝑂 (log1/𝜖𝑊 ) instances of (1 − 𝑂 (𝜖))-mwm such that,
the largest weight𝑊 ′ in each instance can be upper bounded by
𝑊 ′ = (1/𝜖)𝑂 (1/𝜖 ) . Our algorithm extends to the first poly(1/𝜖)
1A parallel random access machine that allows concurrent reads but requires exclusive
writes.
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passes algorithm for the (1 − 𝜖)-mwm problem, see the full ver-
sion [27].

Theorem 1.3 ([27, Appendix D]). There exists a deterministic

algorithm that returns an (1 − 𝜖)-approximate maximum weighted

matching using poly(1/𝜖) passes in the semi-streaming model. The

algorithm requires 𝑂 (𝑛 · log𝑊 · poly(1/𝜖)) words of memory.

We remark that the results of Ahn and Guha [2, 3] do not trans-
late easily to a CONGEST algorithm within poly(1/𝜖, log𝑛) rounds.
In particular, in [2] the algorithm reduces to solving several in-
stances of minimum odd edge cut2. It seems hard to solve minimum
odd edge cut in CONGEST, given the fact that approximate min-
imum edge cut has a lower bound Ω̃(𝐷 +

√
𝑛) [19], where 𝐷 is

the diameter of the graph. On the other hand, in [3] the runtime
per pass could be as high as 𝑛𝑂 (1/𝜖 ) , so it would be inefficient in
CONGEST.

1.2 Technique Overview
Our approach is to parallelize Duan and Pettie’s [11] near-linear
time algorithm, which involves combining the recent approaches of
[8] and [16] as well as several new techniques. The algorithm of [11]
is a primal-dual based algorithm that utilizes Edmonds’ formulation
[12]. Roughly speaking, the algorithm maintains a matching𝑀 , a
set of active blossoms Ω ⊆ 2𝑉 , dual variables 𝑦 : 𝑉 → R and
𝑧 : 2𝑉 → R (see Section 2 for details of blossoms). It consists
of 𝑂 (log𝑊 ) scales with exponentially decreasing step sizes. Each
scale consists of multiple primal-dual iterations that operate on a
contracted unweighted subgraph,𝐺𝑒𝑙𝑖𝑔/Ω, which they referred to
as the eligible graph. For each iteration in scale 𝑖 , it tries to make
progress on both the primal variables (𝑀 , Ω) and the dual variables
(𝑦, 𝑧) by the step size of the scale.

Initially, Ω = ∅ so no blossoms are contracted. The first step in
adjusting the primal variable is to search for an (inclusion-wise)
maximal set of augmenting paths in the eligible graph and augment
along them. After the augmentation, their edges will disappear from
the eligible graph. Although [11] showed that such a step can be
performed in linear time in the sequential setting, it is unclear how
it can be done efficiently in poly(1/𝜖, log𝑛) time in the CONGEST
model or the PRAMmodel. Specifically, for example, it is impossible
to find the augmenting paths of length Θ(𝑛) in Figure 1a in such
time in the CONGEST model.

Our first ingredient is an idea from [8], where they introduced
the weight modifier Δ𝑤 and dummy free vertices to effectively
remove edges and free vertices from the eligible graph. They used
this technique to integrate the expander decomposition procedure
into the algorithm of [11] for minor-free graphs. As long as the
total number of edges and free vertices removed is small, one can
show that the final error can be bounded.

With this tool introduced, it becomes more plausible that a max-
imal set of augmenting paths can be found in poly(1/𝜖, log𝑛) time,
as we may remove edges to cut the long ones. Indeed, in bipartite

graphs, this can be done by partitioning matched edges into layers.
An edge is in the 𝑖-th layer if the shortest alternating path from
any free vertex that ends at it contains exactly 𝑖 matched edges.

2The goal is to return a mincut (𝑋,𝑉 \ 𝑋 ) among all subsets 𝑋 ⊆ 𝑉 with an odd
cardinality and |𝑋 | = 𝑂 (1/𝜖 ) .

Let 𝑀𝑖 be the set of matched edges of the 𝑖-th layer. It must be
that the removal of𝑀𝑖 disconnects all augmenting paths that con-
tain more than 𝑖 matched edges. Let 𝑖∗ = argmin1≤𝑖≤1/𝜖 |𝑀𝑖 | and
thus |𝑀𝑖∗ | ≤ 𝜖 |𝑀 |. The removal of𝑀𝑖∗ would cause all the leftover
augmenting paths to have lengths of 𝑂 (1/𝜖).

In general graphs, the above path-cutting technique no longer
works. The removal of 𝑀𝑖 would not necessarily disconnect aug-
menting paths that contain more than 𝑖 matched edges. Consider
the example in Figure 1b: for any matched edge 𝑒 , the shortest
alternating path from a free vertex that ends at 𝑒 contains at most
2 matched edges. There is a (unique) augmenting path from 𝛼 to 𝛽

with 12 matched edges. However, the removal of 𝑀5 (notice that
5 < 12) would not disconnect this augmenting path, since𝑀5 = ∅.
One of the technical challenges is to have an efficient procedure to
find a small fraction of edges whose removal cut all the remaining

long augmenting paths in general graphs.
Secondly, the second step of the primal-dual iterations of [11] is

to find a maximal set of full blossoms reachable from free vertices
and add them to Ω so they become contracted in the eligible graph.
The problem here is that such a blossom can have a size as large as
Θ(𝑛) (See Figure 1c), so contracting it would take Θ(𝑛) time in the
CONGESTmodel. So the other technical challenge is to ensure such
blossoms will not be formed, possibly by removing a small fraction of

edges and free vertices. In general, these technical challenges are to
remove a small fraction of edges and free vertices to achieve the
so-called primal blocking condition, which we formally define in
Property 3.2.

Note that the challenge may become more involved after the
first iteration, where Ω is not necessarily empty. It may be the case
that a blossom found in 𝐺𝑒𝑙𝑖𝑔/Ω contains a very small number of
vertices in the contracted graph 𝐺𝑒𝑙𝑖𝑔/Ω but is very large in the
original graph 𝐺 . In this case, we cannot add it to Ω either, as it
would take too much time to simulate algorithms on𝐺𝑒𝑙𝑖𝑔/Ω in the
CONGEST model if Ω has a blossom containing too many vertices
in 𝐺 . Therefore, we also need to ensure such a blossom is never
formed.

To overcome these challenges, our second ingredient is the par-
allel DFS algorithm of Fischer, Mitrovic, and Uitto [16]. In [16],
they developed a procedure for finding an almost maximal set of
𝑘-augmenting paths in poly(𝑘) rounds, where a 𝑘-augmenting path
is an augmenting path of length at most 𝑘 . We show that the path-
cutting technique for bipartite graphs can be combined seamlessly
with a tweaked, vertex-weighted version of [16] to overcome these
challenges for general graphs.

The central idea of [16] is parallel DFS [21]. A rough description
of the approach of [16] is the following: Start a bounded-depth
DFS from each free vertex where the depth is bounded by 𝑂 (𝑘)
and each search maintains a cluster of vertices. The clusters are
always vertex-disjoint. In each step, each search tries to enlarge
the cluster by adding the next edge from its active path. If there is
no such edge, the search will back up one edge on its active path.
If the search finds an augmenting path that goes from one cluster
to the other, then the two clusters are removed from the graph.
Note that this is a very high-level description for the purpose of
understanding our usage, the actual algorithm of [16] is much more
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(a) (b)

(c)

Figure 1: Note that in these examples, we have Ω = ∅ and so that 𝐺/Ω = 𝐺 .

involved. For example, it could be possible that the search from one
cluster overtakes some portion of another cluster.

The key property shown in [16] is that at any point of the search
all the remaining 𝑘-augmenting paths must pass one of the edges
on the active paths, so removing the edges on active paths of the
searches (in addition to the removal of clusters where augmenting
paths are found) would cut all 𝑘-augmenting paths. Moreover, after
searching for poly(𝑘) steps, it is shown at most 1/poly(𝑘) fraction
of searches remain active. Since each DFS will only search up to a
depth of 𝑂 (𝑘), the number of edges on the active paths is at most
𝑂 (𝑘) · 1/poly(𝑘) = 1/poly(𝑘) fraction of the searches. In addition,
we note that the process has an extra benefit that, roughly speaking,
if a blossom is ought to be contracted in the second step of [11], it
will lie entirely within a cluster or it will be far away from any free
vertices.

To better illustrate how we use [16] to overcome these chal-
lenges, we first describe our procedure for the first iteration of [11],
where Ω = ∅. In this case, we run several iterations [16] to find a
collection of 𝑘-augmenting paths, where 𝑘 = poly(1/𝜖, log𝑛), until
the number of 𝑘-augmenting paths found is relatively small. Then
remove (1) the clusters where augmenting paths have been found
and (2) the active paths in the still active searches. By removing a
structure, we meant using the weight modifier technique from [8]
to remove the matched edges and free vertices inside the structure.

At this point, all the 𝑘-augmenting paths either overlap within
the collection of 𝑘-augmenting paths or have been cut. The re-
maining augmenting paths must have lengths more than 𝑘 . To cut
them, we contract all the blossoms found within each cluster. As the
search only runs for poly(𝑘) steps, each cluster has at most poly(𝑘)
vertices so these blossoms can be contracted in each cluster on a
vertex locally by aggregating the topology to the vertex in poly(𝑘)
rounds. The key property we show is that after the contraction,
if we assign each blossom a weight proportional to its size, the
weighted𝑂 (𝑘)-neighborhood of the free vertices becomes bipartite.
The reason why this is correct is that the weighted distance is now
an overestimate of the actual distance, and there are no full blossoms
reachable within distance 𝑘 from the free vertices in the graph now.
Since the weighted 𝑂 (𝑘)-neighborhood from the free vertices are

bipartite, we can run the aforementioned, but a weighted version,
path-cutting technique on it to remove some edges augmenting
paths of weighted length more than 𝑘 . The weight assignment to
the blossoms ensures that we will only remove a small fraction of
the edges.

Starting from the second iteration of [11], the set of active blos-
soms Ω may not be empty anymore. We will need to be careful
to not form any large nested blossoms after the Fischer-Mitrovic-
Uitto parallel DFS algorithm (FMU-search), where the size of a
blossom is measured by the number of vertices it contains in the
original graph. To this end, when running the FMU-search, we run
a weighted version of it, where each contracted vertex in𝐺𝑒𝑙𝑖𝑔/Ω is
weighted proportional to the number of vertices it represents in the
original graph. This way we can ensure the weight of each cluster
is poly(𝑘) and so the largest blossom it can form will be poly(𝑘).

In order to generalize the properties guaranteed by FMU-search,
one may have to open up the black-box and redo the whole sophisti-
cated analysis of [16]. However, we show that the properties can be
guaranteed by a blossom-to-path simulation analysis, where each
weighted blossom is replaced by an unweighted path. The proper-
ties guaranteed by FMU-search from the transformed unweighted
graph can then be carried back to the blossom-weighted graph.
Organization: In Section 2, we define the basic notations and give
a brief overview of the scaling approach of [11] as well as the
modification of [8]. In Section 3, we describe our modified scaling
framework. In Section 4, we describe how [16] can be augmented to
run in contracted graphs where vertices are weighted. In Section 5,
we describe our Approx_Primal procedure for achieving the primal
blocking conditions.

2 PRELIMINARIES AND ASSUMPTIONS
Throughout the paper, we denote 𝐺 = (𝑉 , 𝐸, 𝑤̂) to be the input
weighted undirected graph, with an integer weight function 𝑤̂ :
𝐸 → {1, 2, . . . ,𝑊 }.
Matchings andAugmenting Paths: Given amatching𝑀 , a vertex
is free if it is not incident to any edge in𝑀 . An alternating path is a
path whose edges alternate between𝑀 and 𝐸 \𝑀 . An augmenting
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path 𝑃 is an alternating path that begins and ends with free vertices.
Given an augmenting path 𝑃 , let𝑀 ⊕ 𝑃 = (𝑀 \ 𝑃) ∪ (𝑃 \𝑀) denote
the resulting matching after we augment along 𝑃 . Note that we
must have |𝑀 ⊕ 𝑃 | = |𝑀 | + 1.
Linear Program for mwm: Edmonds [12] first formulated the
matching polytope for general graphs. On top of the bipartite
graph linear programs, there are additional exponentially many
constraints over V𝑜𝑑𝑑 — all odd sized subsets of vertices. In this
paper, we follow Edmonds’ [12] linear program formulation for
mwm for the graph (𝑉 , 𝐸,𝑤):

max
∑
𝑒∈𝐸 𝑤 (𝑒)𝑥 (𝑒)

st. ∀𝑢 ∈ 𝑉 , ∑
𝑣 𝑥 (𝑢𝑣) ≤ 1

∀𝐵 ∈ V𝑜𝑑𝑑 ,
∑
𝑢,𝑣∈𝐵 𝑥 (𝑢𝑣) ≤

|𝐵 |−1
2

𝑥 (𝑒) ≥ 0 ∀𝑒 ∈ 𝐸

(Primal)

Dual Variables: The variables 𝑦 (𝑢) and 𝑧 (𝐵) are called the dual
variables. For convenience, given an edge 𝑒 = 𝑢𝑣 , we define

𝑦𝑧 (𝑒) = 𝑦 (𝑢) + 𝑦 (𝑣) +
∑︁

𝐵∈V𝑜𝑑𝑑 :𝑒∈𝐸 (𝐵)
𝑧 (𝐵) .

min
∑
𝑢∈𝑉 𝑦 (𝑢) +∑𝐵∈V𝑜𝑑𝑑

|𝐵 |−1
2 𝑧 (𝐵)

st. ∀𝑢𝑣 ∈ 𝐸,
𝑦 (𝑢) + 𝑦 (𝑣) +∑𝐵∋𝑢,𝑣 𝑧 (𝐵) ≥ 𝑤 (𝑢𝑣)

𝑦 (𝑢) ≥ 0, 𝑧 (𝐵) ≥ 0

(Dual)

Blossoms: A blossom is specified with a vertex set 𝐵 and an edge
set 𝐸𝐵 . A trivial blossom is when 𝐵 = {𝑣} for some 𝑣 ∈ 𝑉 and
𝐸𝐵 = ∅. A non-trivial blossom is defined recursively: If there are
an odd number of blossoms 𝐵0 . . . 𝐵ℓ connected as an odd cycle
by 𝑒𝑖 ∈ 𝐵𝑖 × 𝐵 [ (𝑖+1) mod (ℓ+1) ] for 0 ≤ 𝑖 ≤ ℓ , then 𝐵 =

⋃ℓ
𝑖=0 𝐵𝑖

is a blossom with 𝐸𝐵 = {𝑒0 . . . , 𝑒ℓ } ∪
⋃ℓ

𝑖=0 𝐸𝐵𝑖
. It can be shown

inductively that |𝐵 | is odd and so 𝐵 ∈ V𝑜𝑑𝑑 . A blossom is full if
|𝑀 ∩ 𝐸𝐵 | = ( |𝐵 | − 1)/2. The only vertex that is not adjacent to the
matched edges in a full blossom is called the base of 𝐵. Note that
𝐸 (𝐵) = {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝐵} may contain edges not in 𝐸𝐵 .
Active Blossoms: A blossom is active whenever 𝑧 (𝐵) > 0. We use
Ω to denote the set of active blossoms throughout the execution of
the algorithm. Throughout the execution, we maintain the property
that only full blossoms will be contained in Ω. Moreover, the set of
active blossoms Ω forms a laminar (nested) family, which can be
represented by a set of rooted trees. The leaves of the trees are the
trivial blossoms. If a blossom 𝐵 is defined to be the cycle formed by
𝐵0, . . . , 𝐵ℓ , then 𝐵 is the parent of 𝐵0, . . . , 𝐵ℓ . The blossoms that are
represented by the roots are called the root blossoms.
Blossom-Contracted Graphs: Given Ω, let 𝐺/Ω denote the un-
weighted simple graph obtained by contracting all the root blossoms
in Ω. A vertex in𝐺/Ω is free if the vertices it represents in𝐺 contain
a (unique) free vertex. The following lemma guarantees that the
contraction of the blossoms does not tuck away all augmenting
paths.

Lemma 2.1. ([11, Lemma 2.1]) Let Ω be a set of full blossoms with

respect to a matching𝑀 .

(1) If𝑀 is a matching in 𝐺 , then𝑀/Ω is a matching in 𝐺/Ω.

(2) Every augmenting path 𝑃 ′ w.r.t. 𝑀/Ω in 𝐺/Ω extends to an

augmenting path 𝑃 w.r.t.𝑀 in 𝐺 .

(3) Let 𝑃 ′ and 𝑃 be as in (2). Then Ω remains a valid set of full

blossoms after the augmentation𝑀 ← 𝑀 ⊕ 𝑃 .

Definition 2.2. Let 𝑣 be a vertex in 𝐺/Ω, we use 𝑣 to denote the
set of vertices in 𝐺 that contract to 𝑣 . Also, given a set of vertices
𝑆 , define 𝑆 =

⋃
𝑣∈𝑆 𝑣 . For a free vertex 𝑓 in 𝐺/Ω, we define ¤𝑓 to be

the unique free vertex in 𝑓 . Given a matched edge 𝑒 ∈ 𝑀/Ω, we
use 𝑒 to denote its corresponding matched edge in𝑀 .

Conversely, given a set of vertices 𝑆 ∈ Ω, let 𝑣Ω
𝑆
be the vertex

in 𝐺/Ω obtained by contracting 𝑆 in 𝐺 . Given a free vertex in 𝐺 ,
let 𝑓 Ω denote the unique free vertex in𝐺/Ω that contains 𝑓 . Given
a set of free vertices 𝐹 of 𝐺 , define 𝐹Ω = {𝑓 Ω | 𝑓 ∈ 𝐹 }. Similarly,
given a matched edge 𝑒 ∈ 𝑀 , if both endpoints belong to different
blossoms in Ω, then we define 𝑒Ω to be the corresponding matched
edge in𝑀/Ω.

Definition 2.3. Let 𝐻 be a subgraph of𝐺 with a matching𝑀 . We
denote the set of free vertices in 𝐻 by 𝐹 (𝐻 ) and the set of matched
edges in 𝐻 by𝑀 (𝐻 ).

Definition 2.4 (Inner, outer, and reachable vertices). Let 𝐹 be a set
of free vertices in a graph 𝐻 with matching 𝑀 . Let 𝑉𝐻,𝑀

𝑖𝑛
(𝐹 ) and

𝑉
𝐻,𝑀
𝑜𝑢𝑡 (𝐹 ) denote the set of vertices that are reachable from 𝐹 with
odd-length augmenting paths and even-length augmenting paths
respectively. Define 𝑅𝐻,𝑀 (𝐹 ) = 𝑉

𝐻,𝑀
𝑖𝑛
(𝐹 ) ∪ 𝑉𝐻,𝑀

𝑜𝑢𝑡 (𝐹 ). When the
reference to 𝐻 and𝑀 are clear, we will omit the superscripts and
write 𝑅(𝐹 ), 𝑉𝑖𝑛 (𝐹 ), and 𝑉𝑜𝑢𝑡 (𝐹 ) respectively.

Notice that using Definition 2.2, we have 𝑉𝑖𝑛 (𝐹 ) =
⋃

𝑣∈𝑉𝑖𝑛 (𝐹 ) 𝑣
and 𝑉𝑜𝑢𝑡 (𝐹 ) =

⋃
𝑣∈𝑉𝑜𝑢𝑡 (𝐹 ) 𝑣 .

2.1 Assumptions on Edge Weights and
Approximation Ratio

Since we are looking for a (1 − 𝜖)-approximation, we can always
re-scale the edge weights to be 𝑂 (𝑛/𝜖) while introducing at most
(1−Θ(𝜖)) error (see [11, Section 2]). Therefore, we can assume that
𝜖 > 1/𝑛2 and so𝑊 ≤ 𝑛3 and 𝑂 (log𝑊 ) = 𝑂 (log𝑛); for otherwise
we may aggregate the whole network at a node in 𝑂 (1/𝜖) = 𝑂 (𝑛2)
rounds and have it compute a mwm locally. Let 𝜖′ = Θ(𝜖) be a
parameter that we will choose later. We also assume without loss
of generality that both𝑊 and 𝜖′ are powers of two.

2.2 Assumption of 𝑂 ((1/𝜖) log3 𝑛)Weak
Diameter

To begin, we process our input graph by applying a diameter re-
duction theorem developed by [13] to claim that we may assume
that the graph we are considering has a broadcast tree of depth
𝑂 ((1/𝜖) log3 𝑛) that can be used to aggregate and propagate infor-
mation.

Theorem 2.5 ([13], Theorem 7). Let 𝑇𝛼
SC (𝑛, 𝐷) be the time re-

quired for computing an 𝛼-approximation for the mwm problem in the

SUPPORTED CONGEST model with a communication graph of di-

ameter 𝐷 . Then, for every 𝜖 ∈ (0, 1], there is a poly(log𝑛, 1/𝜖) +
𝑂 (log𝑛 · 𝑇𝛼

SC (𝑛,𝑂 ((1/𝜖) log
3 𝑛)))-round CONGEST algorithm to

compute a (1−𝜖)𝛼-approximation ofmwm in theCONGESTmodel. If
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the given SUPPORTED CONGEST model algorithm is deterministic,

then the resulting CONGEST model algorithm is also deterministic.

The SUPPORTED CONGESTmodel is the same as theCONGEST
model except that the input graph can be a subgraph of the commu-
nication graph. The above theorem implies that we can focus on
solving the problem on𝐺 as if we were in the CONGESTmodel, ex-
cept that we have access to a broadcast tree (potentially outside 𝐺)
where an aggregation or a broadcast takes 𝑂 ((1/𝜖) log3 𝑛) rounds.
We slightly abuse the notation and say that 𝐺 has a weak diameter

of 𝑂 ((1/𝜖) log3 𝑛).
With Theorem 2.5, we may broadcast𝑊 (the upper bound on

edge weights) to every node in 𝑂 ((1/𝜖) log3 𝑛) rounds. We remark
that the assumption to the weak diameter is required not only in
our algorithm but also in the (1 − 𝜖)-mcm CONGEST algorithm
described in [16]3.

2.3 Duan and Pettie’s Scaling Framework
The scaling framework for solving mwm using the primal-dual ap-
proach was originally proposed by Gabow and Tarjan [17]. Let
𝐿 = ⌊log2𝑊 ⌋. A typical algorithm under this scaling framework
consists of 𝐿 + 1 scales. In each scale 𝑖 , such an algorithm puts
its attention to the graph with truncated weights (whose defini-
tion varies in different algorithms). As 𝑖 increases, these truncated
weights typically move toward the actual input weight.

Duan and Pettie [11] introduced a scaling algorithm to solve the
(1−𝜖)-mwm problem. They proposed a new relaxed complementary

slackness criterion (see Lemma 2.7). The criterion changes between
iterations. At the end of the algorithm, the criterion can be used
to certify the desired approximation guarantee of the maintained
solution. Unlike Gabow and Tarjan’s framework [17], Duan and
Pettie’s framework [11] allows the matching found in the previous
scale to be carried over to the next scale without violating the
feasibility, thereby improving the efficiency. In order to obtain this
carry-over feature, Duan and Pettie also introduce the type 𝑗 edges
in their complementary slackness criterion.

Definition 2.6 (Type 𝑗 Edges). A matched edge or a blossom edge
is of type 𝑗 if it was last made a matched edge or a blossom edge in
scale 𝑗 .

Let 𝛿0 = 𝜖′𝑊 and 𝛿𝑖 = 𝛿0/2𝑖 for all 𝑖 ∈ [0, 𝐿]. At each scale 𝑖 ,
the truncated weight of an edge 𝑒 is defined as𝑤𝑖 (𝑒) = 𝛿𝑖 ⌊𝑤̂ (𝑒)/𝛿𝑖 ⌋.
The relaxed complementary slackness criteria are based on the
truncated weight at each scale.

Lemma 2.7 (Relaxed Feasibility and Complementary Slack-
ness [11, Property 3.1]). After each iteration 𝑖 = [0, 𝐿], the al-
gorithm explicitly maintains the set of currently matched edges 𝑀 ,

the dual variables 𝑦 (𝑢) and 𝑧 (𝐵), and the set of active blossoms

Ω ⊆ V𝑜𝑑𝑑 . The following properties are guaranteed:
(1) Granularity. For all𝐵 ∈ V𝑜𝑑𝑑 , 𝑧 (𝐵) is a nonnegativemultiple

of 𝛿𝑖 . For all 𝑢 ∈ 𝑉 (𝐺), 𝑦 (𝑢) is a multiple of 𝛿𝑖/2.
3The application of Theorem 2.5 can also tie up loose ends left in [16], where they
presented a semi-streaming algorithm first and then described the adaption to other
models. One of the primitives, Storage in item (v) in Section 6 assumed a memory of
Ω (𝑛 poly 1/𝜖 ) is available to all nodes. This may be needed in some of their procedures,
e.g. counting |𝑀𝐻 | in Algorithm 7. The running time was not analyzed, but it may
take𝑂 (diameter ) rounds to implement in the CONGEST model.

(2) Active Blossoms. Ω contains all 𝐵 with 𝑧 (𝐵) > 0 and all

root blossoms 𝐵 have 𝑧 (𝐵) > 0.
(3) Near Domination. For all 𝑒 ∈ 𝐸, 𝑦𝑧 (𝑒) ≥ 𝑤𝑖 (𝑒) − 𝛿𝑖 .
(4) Near Tightness. If 𝑒 is a type 𝑗 edge, then 𝑦𝑧 (𝑒) ≤ 𝑤𝑖 (𝑒) +

2(𝛿 𝑗 − 𝛿𝑖 ).
(5) Free Vertex Duals. If 𝑢 ∈ 𝐹 (𝐺) and 𝑣 ∉ 𝐹 (𝐺) then 𝑦 (𝑢) ≤

𝑦 (𝑣).

Eligible Graph: To achieve Lemma 2.7 efficiently, at each scale
an eligible graph 𝐺𝑒𝑙𝑖𝑔 is defined. An edge 𝑒 is said to be eligible,
if (1) 𝑒 ∈ 𝐸𝐵 for some 𝐵 ∈ Ω, (2) 𝑒 ∉ 𝑀 and 𝑦𝑧 (𝑒) = 𝑤 (𝑒) − 𝛿𝑖 , or
(3) 𝑒 ∈ 𝑀 and 𝑦𝑧 (𝑒) −𝑤𝑖 (𝑒) is a nonnegative integer multiple of
𝛿𝑖 . 𝐺𝑒𝑙𝑖𝑔 is the graph that consists of all edges that are currently
eligible.

The algorithm initializes with an empty matching 𝑀 ← ∅, an
empty set of active blossoms Ω ← ∅, and high vertex duals 𝑦 (𝑢) ←
𝑊 /2 − 𝛿0/2 for all 𝑢 ∈ 𝑉 . Then, in each scale 𝑖 = 0, 1, . . . , 𝐿 the
algorithm repeatedly searches for a maximal set Ψ of vertex disjoint
augmenting paths in𝐺𝑒𝑙𝑖𝑔 , augments these paths, searches for new
blossoms, adjust dual variables, and dissolves zero-valued inactive
blossoms. These steps are iteratively applied for 𝑂 (1/𝜖′) times
until the free vertex duals 𝑦 (𝑣) reach 𝑊 /2𝑖+2 − 𝛿𝑖/2 whenever
𝑖 ∈ [0, 𝐿) or 0 whenever 𝑖 = 𝐿. At the end of scale 𝐿, Lemma 2.7
guarantees a matching with the desired approximate ratio. We
emphasize that the correctness of Lemma 2.7 relies on the fact
that Ψ is maximal in 𝐺𝑒𝑙𝑖𝑔 , and the subroutine that searches for Ψ
is a modified depth first search from Gabow and Tarjan [17] (see
also [33, 37].) Unfortunately, some returned augmenting paths in Ψ
could be very long. We do not immediately see an efficient parallel
or distributed implementation of this subroutine.

2.4 Chang and Su’s Scaling Framework
Chang and Su [8] noticed that it is possible to relaxDuan and Pettie’s
framework further, by introducing the weight modifiers Δ𝑤 (𝑒) that
satisfy the following new invariants (appended to Lemma 2.7 with
some changes to the other properties) after each iteration:

(6) Bounded Weight Change. The sum of |Δ𝑤 (𝑒) | is at most

𝜖′ · 𝑤̂ (𝑀∗), where 𝑀∗ is a maximum weight matching with

respect to 𝑤̂ .

Chang and Su showed that it is possible to efficiently obtain
a maximal set Ψ of augmenting paths from 𝐺𝑒𝑙𝑖𝑔 in an expander
decomposed 𝐻 -minor-free graph. By carefully tweaking the defini-
tion of the eligibility of an edge, their modified Duan-Pettie frame-
work fits well into the expander decomposition in the CONGEST
model. Notice that Chang and Su’s scaling algorithm depends on
a “center process” in each decomposed subgraph. The center pro-
cess in each subgraph can obtain the entire subgraph topology
within polylog(𝑛) rounds, with the assumption that the underlying
graph is 𝐻 -minor-free. Thus, a maximal set of augmenting paths in
each subgraph can then be computed sequentially in each center
process. This explains two non-trivial difficulties: First, it is not
clear if the same framework can be generalized to general graphs.
Furthermore, the sequential subroutine searching for augmenting
paths may return long augmenting paths. It is not clear how to
efficiently implement this subroutine in the PRAM model or the
semi-streaming model.
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Our scaling framework for general graphs is modified from both
Duan-Pettie [11] and Chang-Su [8]. In Section 3 we present our
modified scaling framework. With the adaption of [16], we believe
our framework is simpler compared with Chang and Su [8]. Ben-
efiting from [16] searching for short augmenting paths, the new
framework can now be efficiently implemented in the PRAMmodel
and the semi-streaming model.

3 OUR MODIFIED SCALING FRAMEWORK
Our modified scaling framework maintains the following variables
during the execution of the algorithm:
𝑀 : The set of matched edges.
𝑦 (𝑢): The dual variable defined on each vertex 𝑢 ∈ 𝑉 .
𝑧 (𝐵): The dual variable defined on each 𝐵 ∈ V𝑜𝑑𝑑 .
Ω: Ω ⊆ V𝑜𝑑𝑑 is the set of active blossoms.
Δ𝑤 (𝑒) : The weight modifier defined on each edge 𝑒 ∈ 𝐸.
Our algorithm runs for 𝐿 + 1 = ⌊log2𝑊 ⌋ + 1 scales. In each scale

𝑖 , the same granularity value 𝛿𝑖 = 𝛿0/2𝑖 is used, where 𝛿0 := 𝜖′𝑊 .
Moreover, the truncated weight𝑤𝑖 (𝑒) is now derived from the ef-
fective weight 𝑤 (𝑒) := 𝑤̂ (𝑒) + Δ𝑤 (𝑒), namely𝑤𝑖 (𝑒) = 𝛿𝑖 ⌊𝑤 (𝑒)/𝛿𝑖 ⌋.
There will be 𝑂 (1/𝜖′) iterations within each scale. Within each
iteration, the algorithm subsequently performs augmentations, up-
dates to weight modifiers, dual adjustments, and updates to active
blossoms (the details are described later in this section and in Fig. 2).

Similar to Chang and Su’s framework [8] but opposed to Duan
and Pettie’s framework [11], the 𝑦-values of free vertices are no
longer the same during the execution. To make sure that there are
still 𝑂 (1/𝜖′) iterations in each scale, a special quantity 𝜏 is intro-
duced. Within each scale 𝑖 , the quantity 𝜏 will be decreased from
𝑊 /2𝑖+1 − 𝛿𝑖+1/2 to a specified target value𝑊 /2𝑖+2 − 𝛿𝑖/2 (or 0
if 𝑖 = 𝐿). Intuitively, 𝜏 is the desired free vertex dual which gets
decreased by 𝛿𝑖/2 after every dual adjustment as in [11] (hence
𝑂 (1/𝜖′) iterations per scale). However, in both [8] and our frame-
work, some free vertices will be isolated from the eligible graph.
This isolation is achieved by increasing the𝑦-value of the free vertex
by 𝛿𝑖 . Therefore, 𝜏 can be seen as a lower bound to all free vertex du-
als. Our modified relaxed complementary slackness (Property 3.1)
guarantees that the sum of such gaps will be small.
Eligible Graph: The eligible graph 𝐺𝑒𝑙𝑖𝑔 is an unweighted sub-
graph of𝐺 defined dynamically throughout the algorithm execution.
The edges in𝐺𝑒𝑙𝑖𝑔 are eligible edges. Conceptually, eligible edges are
“tight”, which are either blossom edges or the ones that nearly vio-
late the complementary slackness condition. The precise definition
of such eligible edges is given in Definition 3.1.

Definition 3.1. At scale 𝑖 , an edge is eligible if at least one of the
following holds.

(1) 𝑒 ∈ 𝐸𝐵 for some 𝐵 ∈ Ω.
(2) 𝑒 ∉ 𝑀 and 𝑦𝑧 (𝑒) = 𝑤𝑖 (𝑒) − 𝛿𝑖 .
(3) 𝑒 ∈ 𝑀 is a type 𝑗 edge and 𝑦𝑧 (𝑒) = 𝑤𝑖 (𝑒) + 2(𝛿 𝑗 − 𝛿𝑖 ).

We remark that (3) is more constrained compared to the Duan-
Pettie framework [11]. With the new definition of (3), an eligible
edge can be made ineligible by adjusting its weight modifier Δ𝑤 (𝑒).
Now we describe the relaxed complementary slackness properties:

Property 3.1. (Relaxed Complementary Slackness) After scale 𝑖 :

(1) Granularity. 𝑧 (𝐵) and𝑤𝑖 (𝑒) are non-negative multiples of

𝛿𝑖 for all 𝐵 ∈ V𝑜𝑑𝑑 , 𝑒 ∈ 𝐸 and 𝑦 (𝑢) is a non-negative multiple

of 𝛿𝑖/2 for all 𝑢 ∈ 𝑉 .

(2) Active Blossoms. All blossoms in Ω are full. If 𝐵 ∈ Ω is a

root blossom then 𝑧 (𝐵) > 0; if 𝐵 ∉ Ω then 𝑧 (𝐵) = 0. Non-root
active blossoms may have zero 𝑧-values.

(3) Near Domination. For all edges 𝑒 ∈ 𝐸, 𝑦𝑧 (𝑒) ≥ 𝑤𝑖 (𝑒) − 𝛿𝑖 .
(4) Near Tightness. If 𝑒 is a type 𝑗 edge, then 𝑦𝑧 (𝑒) ≤ 𝑤𝑖 (𝑒) +

2(𝛿 𝑗 − 𝛿𝑖 ).
(5) Accumulated Free Vertex Duals. The 𝑦-values of all free

vertices have the same parity as multiples of 𝛿𝑖/2. Moreover,∑
𝑣∈𝐹 (𝐺 ) 𝑦 (𝑣) ≤ 𝜏 · |𝐹 (𝐺) | + 𝜖′ · 𝑤̂ (𝑀∗), where𝑀∗ is a max-

imum weight matching w.r.t. 𝑤̂ and 𝜏 is a variable where

𝑦 (𝑣) ≥ 𝜏 for every 𝑣 . Also, 𝜏 decreases to 0 when the algorithm

ends.

(6) Bounded Weight Change. The weight modifiers are non-

negative. Moreover, the sum of Δ𝑤 (𝑒) is at most 𝜖′ · 𝑤̂ (𝑀∗).

With the modified relaxed complementary slackness properties,
the following Lemma 3.2 guarantees the desired approximate ratio
of the matching at the end of the algorithm. As the proof technique
is similar to [11] and [8], we defer the proof of Lemma 3.2 to the
full version [27].

Lemma 3.2. Suppose that 𝑦, 𝑧,𝑀,Ω, and Δ𝑤 satisfy Property 3.1

at the end of scale 𝐿. Then 𝑤̂ (𝑀) ≥ (1 − 𝜖) · 𝑤̂ (𝑀∗).

Iterations in each Scale: There will be 𝑂 (1/𝜖′) iterations within
each scale. In each scale 𝑖 , the ultimate goal of the algorithm is to
make progress on primal (𝑀) and dual (𝑦, 𝑧) solutions such that
they meet the complementary slackness properties (Property 3.1).
This can be achieved by iteratively seeking for a set of augmenting
paths Ψ, updating the matching 𝑀 ← 𝑀 ⊕ ∪𝑃∈Ψ𝑃 , and then per-
forming dual adjustments on 𝑦 and 𝑧 variables. However, in order
to ensure that dual variables are adjusted properly, we enforce the
following primal blocking conditions for Ψ:

Property 3.2 (Primal Blocking Conditions).
(1) No augmenting paths exist in 𝐺𝑒𝑙𝑖𝑔/Ω.
(2) No full blossoms can be reached from any free vertices in

𝐺𝑒𝑙𝑖𝑔/Ω via alternating paths.

Here we briefly explain why Property 3.2 leads to satisfactory
dual adjustments. In a dual adjustment step, the algorithm decreases
the 𝑦-values of inner vertices in 𝑉𝑖𝑛 (𝐹 (𝐺𝑒𝑙𝑖𝑔/Ω)) by 𝛿𝑖/2 and in-
creases the 𝑦-values of outer vertices in 𝑉𝑜𝑢𝑡 (𝐹 (𝐺𝑒𝑙𝑖𝑔/Ω)) by 𝛿𝑖/2.
Property 3.2 ensures that𝑉𝑖𝑛 (𝐹 (𝐺𝑒𝑙𝑖𝑔/Ω)) ∩𝑉𝑜𝑢𝑡 (𝐹 (𝐺𝑒𝑙𝑖𝑔/Ω)) = ∅
and so the duals can be adjusted without ambiguity.

As mentioned in Section 1.1, it is difficult to achieve the primal
blocking conditions efficiently in CONGEST and PRAM due to
long augmenting paths and large blossoms. Fortunately, with the
weight modifiers Δ𝑤 introduced from [8], now we are allowed to
remove some matched edges and free vertices from𝐺𝑒𝑙𝑖𝑔/Ω, which
enables a trick of retrospective eligibility modification: after some

set of augmenting paths Ψ is returned, we modify 𝐺𝑒𝑙𝑖𝑔 such that
Ψ satisfies Property 3.2.

To remove a matched edge 𝑒 from 𝐺𝑒𝑙𝑖𝑔 , we simply add 𝛿𝑖 to
Δ𝑤 (𝑒) and so 𝑒 becomes ineligible. To remove a free vertex 𝑓 , we
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Initialize𝑀 ← ∅, Ω ← ∅, 𝛿0 ← 𝜖′𝑊 , 𝜏 =𝑊 /2 − 𝛿0/2,
𝑦 (𝑢 ) ← 𝜏 for all 𝑢 ∈ 𝑉 , 𝑧 (𝐵) ← 0 for all 𝐵 ∈ V𝑜𝑑𝑑 , and Δ𝑤 (𝑒 ) ← 0 for 𝑒 ∈ 𝐸.
Execute scales 𝑖 = 0, 1, . . . , 𝐿 = log2𝑊 and return the matching𝑀 .
Scale 𝑖:

– Repeat the following until 𝜏 =𝑊 /2𝑖+2 − 𝛿𝑖/2 if 𝑖 ∈ [0, 𝐿) , or until it reaches 0 if 𝑖 = 𝐿.

(1) Augmentation and Blossom Shrinking:

– Let 𝜆 = 𝜖′/(12(𝐿 + 1) ) . Invoke Approx_Primal(𝐺𝑒𝑙𝑖𝑔, 𝑀,Ω, 𝜆) to obtain:

(a) The set of edge-disjoint augmenting path Ψ.
(b) The set of free vertices 𝐹 ′ and the set of matched edges𝑀 ′ that are to be removed.
(c) The set of new blossoms Ω′ .

– Set𝑀 ← 𝑀 ⊕ ⋃
𝑃 ∈Ψ 𝑃 .

– Set Ω ← Ω ∪ Ω′

– For each 𝑒 ∈ 𝑀 ′ , set Δ𝑤 (𝑒 ) + 𝛿𝑖 .
– For each 𝑓 ∈ 𝐹 ′ , set 𝑦 (𝑢 ) ← 𝑦 (𝑢 ) + 𝛿𝑖 for 𝑢 ∈ 𝑓 Ω and 𝑧 (𝐵) ← 𝑧 (𝐵) − 2𝛿𝑖 for the root blossom 𝐵 ∋ 𝑓 if it exists. (Note that 𝑧 (𝐵) can be

as small as −𝛿𝑖 after this step, but it will become non-negative after the dual adjustment).

(2) Dual Adjustment:

– 𝜏 ← 𝜏 − 𝛿𝑖/2
– 𝑦 (𝑢 ) ← 𝑦 (𝑢 ) − 𝛿𝑖/2, if 𝑢 ∈ 𝑉̂𝑜𝑢𝑡 (𝐹 (𝐺𝑒𝑙𝑖𝑔/Ω) )

– 𝑦 (𝑢 ) ← 𝑦 (𝑢 ) + 𝛿𝑖/2, if 𝑢 ∈ 𝑉̂𝑖𝑛 (𝐹 (𝐺𝑒𝑙𝑖𝑔/Ω) )

– 𝑧 (𝐵) ← 𝑧 (𝐵) + 𝛿𝑖 , if 𝐵 ∈ Ω is a root blossom with 𝐵 ⊆ 𝑉̂𝑜𝑢𝑡 (𝐹 (𝐺𝑒𝑙𝑖𝑔/Ω) )

– 𝑧 (𝐵) ← 𝑧 (𝐵) − 𝛿𝑖 , if 𝐵 ∈ Ω is a root blossom with 𝐵 ⊆ 𝑉̂𝑖𝑛 (𝐹 (𝐺𝑒𝑙𝑖𝑔/Ω) )

(3) Blossom Dissolution:

– Some root blossoms may have zero 𝑧-values after the dual adjustment step. Dissolve them by removing them from Ω until there are no such
root blossoms. Update𝐺𝑒𝑙𝑖𝑔 with the new Ω.

– If 𝑖 ∈ [0, 𝐿) , set 𝛿𝑖+1 ← 𝛿𝑖/2, 𝜏 ← 𝜏 + 𝛿𝑖+1 and 𝑦 (𝑢 ) ← 𝑦 (𝑢 ) + 𝛿𝑖+1 for every 𝑢 ∈ 𝑉 .

Figure 2: The modified scaling framework.

add 𝛿𝑖 to the 𝑦-values of vertices in ˆ𝑓 Ω and decrease 𝑧 (𝐵) by 2𝛿𝑖
where 𝐵 is the root blossom containing 𝑓 . By doing so, the vertex
𝑓 Ω is isolated from all the other vertices in 𝐺𝑒𝑙𝑖𝑔/Ω since all the
edges incident to 𝑓 Ω become ineligible (note that all these edges
must be unmatched). Additionally, all the internal edges inside
𝑓 Ω will have their 𝑦𝑧-values unchanged. Note that the reason that
we increase the 𝑦-values by 𝛿𝑖 instead of 𝛿𝑖/2 is that we need to
synchronize the parity of the 𝑦-values (as a multiple of 𝛿𝑖/2) as a
technicality required for the analysis.

We present the details of the entire scaling algorithm in Figure 2.
The augmentation and blossom shrinking step is the step that
adjusts the primal variables 𝑀 (and also Ω) and removes some
matched edges and free vertices to achieve the primal blocking
conditions. It uses procedure Approx_Primal, which we describe
in Section 5, that runs in poly(1/𝜖, log𝑛) rounds and returns a set of
matched edges𝑀′ and free vertices 𝐹 ′ of sizes𝑂 ((𝜖/log𝑛) · |𝑀 |) as
well as a set of augmenting paths Ψ and a set of blossoms Ω′ such
that the primal blocking conditions hold in (𝐺𝑒𝑙𝑖𝑔−𝐹 ′−𝑀′−Ψ)/(Ω∪
Ω′). Assuming such a procedure exists, in the full version [27,
Appendix B] we prove that the algorithm runs in poly(1/𝜖, log𝑛)
rounds and outputs a (1 − 𝜖)-mwm.

Implementation in CONGEST model: In the CONGEST model,
all quantities 𝑀,𝑦 (𝑢), 𝑦 (𝐵),Ω, and Δ𝑤 (𝑒) shall be stored and ac-
cessed locally. We present one straightforward implementation
in [27, Appendix A]. We remark that there is no need to store 𝜏
as a variable since the number of iterations per scale can be pre-
computed at the beginning of the algorithm.
Implementation in PRAM and semi-streaming models: We
can simulate the CONGEST implementation mentioned above in
the CREW PRAM as well as in the semi-streaming model. A detailed
discussion is in the full version [27].

4 THE PARALLEL DEPTH-FIRST SEARCH
Fischer, Mitrovic, and Uitto [16] give a deterministic algorithm for
(1− 𝜖)-approximate mcm in the semi-streaming model as well as in
other models such as CONGEST and the massive parallel compu-
tation (MPC) model. The core of their algorithm is the procedure
Alg-Phase, which searches for an almost maximal set of (short)
augmenting paths. In particular, Alg-Phase runs a parallel DFS
from every free vertex and returns a set of augmenting paths Ψ and
two small-sized sets of vertices 𝑉 ′ and 𝑉𝐴 such that there exists no
augmenting paths of length 𝑂 (1/𝜖) on 𝐺 − Ψ −𝑉 ′ −𝑉𝐴 . The DFS
originating from a free vertex 𝛼 defines a search structure, denoted
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as 𝑆𝛼 . For the efficiency purpose, the algorithm imposes several
restrictions to the DFS on these structures which are parametrized
by a pass limit 𝜏max, a size limit limit, and a depth limit ℓmax. We
provide an overview of the Alg-Phase algorithm of [16] in [27,
Appendix B].

Unfortunately, directly running Alg-Phase on 𝐺 for an almost
maximal set of augmenting paths without considering the blossoms
would break the scaling framework. For example, the framework
does not allow the search to return two disjoint augmenting paths
that pass through the same blossom. We now describe the modified
Alg-Phase that works for the contracted graph 𝐺/Ω.
Vertex-Weighted-Alg-Phase on the Contracted Graph 𝐺/Ω:
Our goal of the modified Alg-Phase is clear: all we need to do is
to come up with an almost maximal set ΨΩ of short augmenting
paths on 𝐺/Ω. After ΨΩ is found, the algorithm recovers Ψ, the
actual corresponding augmenting paths on 𝐺 . Moreover, the algo-
rithm returns two small sets of vertices 𝑉 ′ and 𝑉𝐴 so that no short
augmenting path can be found in (𝐺 − Ψ −𝑉 ′ −𝑉𝐴)/Ω.

Observe that the lengths of the paths in Ψ on 𝐺 could be much
longer than the paths in ΨΩ on 𝐺/Ω, due to the size of blossoms
in Ω. This observation motivates us to consider a vertex-weighted
version of Alg-Phase. When computing lengths to an augmenting
path on 𝐺/Ω, each contracted root blossom now has a weight
corresponding to the number of matched edges inside the blossom.
Now we define the matching length and matching distance in a
contracted graph.

Definition 4.1. Given𝑢 ∈ 𝐺/Ω, define ∥𝑢∥ = |𝑢 | to be the number
of vertices represented by 𝑢 in the original graph 𝐺 . Given a set of
vertices 𝑆 , define ∥𝑆 ∥ = ∑

𝑢∈𝑆 ∥𝑢∥.

Definition 4.2. Let 𝑀 be a matching on 𝐺 and Ω be a set of
full blossoms with respect to 𝑀 on 𝐺 . Define 𝑀̃ := 𝑀/Ω to be
the set of corresponding matched edges of 𝑀 on 𝐺/Ω. Given an
alternating path 𝑃 = (𝑢1, . . . , 𝑢𝑘 ) in𝐺/Ω, define thematching length

of 𝑃 , ∥𝑃 ∥𝑀 = |𝑃 ∩ 𝑀̃ | +∑𝑘
𝑖=1 (∥𝑢𝑖 ∥ − 1)/2. For any matched edge

𝑒 = 𝑢𝑣 ∈ 𝑀̃ we define ∥𝑒 ∥𝑀 = (∥𝑢∥ + ∥𝑣 ∥)/2 which corresponds to
the total number of matched edges in the blossoms 𝑢 and 𝑣 as well
as the edge 𝑒 itself.

In the DFS algorithm searching for augmenting paths, a search
process may visit a matched edge 𝑒 in both directions. We distin-
guish these two situations by giving an orientation to 𝑒 , denoting
them as matched arcs ®𝑒 and ®𝑒 . Definition 4.3 defines the matching
distances in 𝐺/Ω:

Definition 4.3. Given a subgraph 𝐻 ⊆ 𝐺/Ω, a set of free vertices
𝐹 , a matching 𝑀 , and a matched arc ®𝑒 , the matching distance to
®𝑒 , 𝑑𝐻,𝑀 (𝐹, ®𝑒), is defined to be the shortest matching length of all
alternating paths in 𝐻 that start from a free vertex 𝐹 and end at
®𝑒 . When the first parameter is omitted, 𝑑𝐻,𝑀 (®𝑒) is the shortest
matching length among all alternating paths in 𝐻 that start from
any free vertex in 𝐻 and end at ®𝑒 .

Throughout this paper, if an alternating path starts with a free
vertex 𝑢0 but ends at a non-free vertex, we conveniently denote
this alternating path by (𝑢0, ®𝑒1, ®𝑒2, . . . , ®𝑒𝑡 ), where 𝑢0 is the starting
free vertex and 𝑒1, 𝑒2, . . . , 𝑒𝑡 is the sequence of the matched edges

along the path. Also for convenience we define ∥®𝑒 ∥𝑀 = ∥𝑒 ∥𝑀 for
each matched arc ®𝑒 .

Let 𝜆 be a parameter4. Similar to the Alg-Phase algorithm,
our Vertex-Weighted-Alg-Phase returns a collection of disjoint
augmenting paths P where each augmenting path has a match-
ing length at most 𝑂 (poly(1/𝜆)); two sets of vertices to be re-
moved 𝑉 ′ and 𝑉𝐴 with their total weight bounded by ∥𝑉 ′∥ =

poly(1/𝜆) |P| + poly(𝜆) |𝑀 | and ∥𝑉𝐴∥ = 𝑂 (𝜆 |𝑀 |); and the collec-
tion of search structures S where each search structure 𝑆𝛼 ∈ S has
weight ∥𝑆𝛼 ∥ = 𝑂 (poly(1/𝜆)). We summarize the vertex-weighted
FMU algorithm below:

Lemma 4.4. Let 𝜆 be a parameter. Let𝐺 be the network with weak

diameter poly(1/𝜆) and𝑀 be the current matching. Let Ω be a lami-

nar family of vertex subsets (e.g., the current collection of blossoms)

such that each set 𝐵 ∈ Ω contains at most 𝐶max = 𝑂 (1/𝜆7) vertices.
Define the DFS parameters 𝜏max := 1/𝜆4, limit := 1/𝜆2, and ℓmax :=
1/𝜆. Then, there exists a CONGEST algorithm Vertex-Weighted-

Alg-Phase such that in poly(1/𝜆) rounds, returns (P,𝑉 ′,𝑉𝐴,S) that
satisfies the following:

(1) ∥𝑆𝛼 ∥ ≤ 𝐶max for each structure 𝑆𝛼 ∈ S, where

𝐶max := 𝜏max · (ℓmax + 1) · limit.
(2) ∥𝑉 ′∥ ≤ 𝐶max · (ℓmax + 1) · (2|P | + 𝜆32𝜏max |𝑀 |).
(3) ∥𝑉𝐴∥ ≤ ℎ(𝜆) · (2ℓmax) · |𝑀 |, where ℎ(𝜆) := 4+2/𝜆

𝜆 ·𝜏max
+ 2

limit .
(4) No augmenting path 𝑃 with ∥𝑃 ∥𝑀 ≤ ℓmax exists in (𝐺/Ω) \
(𝑉 ′ ∪𝑉𝐴).

(5) For each matched arc ®𝑒 , if 𝑑 (𝐺/Ω)\(𝑉 ′∪𝑉𝐴 ),𝑀 (®𝑒) ≤ ℓmax, then
there exists a 𝑆𝛼 ∈ S such that ®𝑒 belongs to 𝑆𝛼 .

Furthermore, Vertex-Weighted-Alg-Phase can be simulated in

the CREW PRAM model in poly(1/𝜆) time with 𝑂 (𝑚) processors.

We defer the proof of Lemma 4.4 to the full version [27]. Specifi-
cally, we show that it is possible to apply a Vertex-Weighted-Alg-
Phase algorithm on 𝐺/Ω that can be simulated on the underlying
network 𝐺 with an additional 𝑂 (𝐶2

max ) factor in the round com-
plexity. Interestingly, the Vertex-Weighted-Alg-Phase itself is
implemented via a black-box reduction back to the unweighted
Alg-Phase procedure of [16].

5 AUGMENTATION AND BLOSSOM
SHRINKING

The main goal of this section is to prove the following theorem:

Theorem 5.1. Let 𝜆 be a parameter. Given a graph 𝐺 , a match-

ing 𝑀 , a collection of active blossoms Ω where each active blossom

𝐵 ∈ Ω has size at most 𝐶max = 𝑂 (1/𝜆7) vertices. There exists a
poly(1/𝜆, log𝑛)-time algorithm in the CONGEST model that identi-

fies the following:

(1) A set Ψ of vertex-disjoint augmenting paths with matching

lengths at most poly(1/𝜆).
(2) A set of new blossoms Ω′ in 𝐺/Ω, where the size of each blos-

som is at most 𝐶max .
(3) A set of 𝑂 (𝜆 · |𝑀 |) matched edges𝑀′ and free vertices 𝐹 ′.

4For the purpose of fitting this subroutine into the scaling framework shown in Fig-
ure 2 and not to be confused with the already-defined parameter 𝜖 , we introduce the
parameter 𝜆 for the error ratio.
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Let 𝐺̃ be the contracted graph 𝐺̃ := (𝐺 − Ψ − 𝑀′ − 𝐹 ′)/(Ω ∪ Ω′)
after new blossoms are found and 𝐹 := 𝐹 (𝐺̃) be the remaining free

vertices. Then, the algorithm also obtains:

(4) The sets 𝑉𝑖𝑛 (𝐹 ) and 𝑉𝑜𝑢𝑡 (𝐹 ).
These objects are marked locally in the network (see [27, Appendix

A]). Moreover, 𝑉𝑜𝑢𝑡 (𝐹 ) ∩𝑉𝑖𝑛 (𝐹 ) = ∅.

Notice that the last statement of Theorem 5.1 implies that no
blossoms can be detected in 𝐺̃ from a free vertex, and thus there is no
augmenting path from 𝐹 on 𝐺̃ . I.e., (𝐺𝑒𝑙𝑖𝑔−𝑀′−𝐹 ′)/(Ω∪Ω′) meets
the primal blocking conditions (Property 3.2) after augmenting all
the paths in Ψ.

Algorithm 1 Approx_Primal(𝐺,𝑀,Ω, 𝜆)

Require: Unweighted graph𝐺 with weak diameter𝑂 ( log
3 𝑛
𝜖
) , a matching

𝑀 , a collection of blossoms Ω, and 𝜆 (recall from Figure 2 we set
𝜆 = Θ( 𝜖′

log𝑊 )).
Ensure: Collection of augmenting paths Ψ, a set of blossoms Ω′, a set of

matched edges𝑀 ′ and a set of free vertices 𝐹 ′. These objects as well
as 𝑉̂𝑖𝑛 and 𝑉̂𝑜𝑢𝑡 are represented locally.

1: Compute |𝑀 | .
▼ Step 1: Repeatedly search for augmenting paths.

2: repeat
3: (P,𝑉 ′,𝑉𝐴, S) ← Vertex-Weighted-Alg-Phase(𝐺/Ω, 𝑀, 𝜆)
4: Ψ← P ∪ Ψ.
5: 𝐺 ← 𝐺 \ P.
6: until | P | ≤ 𝜆 · |𝑀 |/(𝐶max (ℓmax + 1) )
▼ Step 2: Remove matched edges and free vertices returned by the last
call to Alg-Phase.

7: Set𝑀 ′ ← 𝑀 (𝑉 ′ ) ∪𝑀 (𝑉𝐴 ) and 𝐹 ′ ← 𝐹 (𝑉 ′ ) ∪ 𝐹 (𝑉𝐴 ) .
▼ Step 3: Detect new blossoms.

8: for each 𝑆𝛼 ∈ S do
9: Detect all the (possibly nested) blossoms in 𝑆𝛼 and add them to Ω′ .
▼ Step 4: Remove some matched edges and free vertices such that all
long augmenting paths disappear.

10: Define 𝐺̃ := (𝐺 −Ψ−𝑀 ′ − 𝐹 ′ )/(Ω∪Ω′ ) , 𝐹 = 𝐹 (𝐺̃ ) , and 𝑀̃ := 𝑀 (𝐺̃ ) .
11: Use a Bellman-Ford style procedure to compute distance labels ℓ ( ®𝑒 ) ∈
{𝑑

𝐺̃,𝑀̃
(𝐹, ®𝑒 ),∞} for each matched arc ®𝑒 ∈ 𝑀̃ .

12: Let 𝐸𝑖 , 𝐹𝑖 ← ∅ for all 𝑖 ∈ 1, 2, . . . , ⌊ℓmax/2⌋.
13: for each matched arc ®𝑒 ∈ 𝑀̃ such that ℓ ( ®𝑒 ) ≠ ∞ do
14: Add the corresponding matched edge 𝑒 ∈ 𝑀 to 𝐸𝑖 for all 𝑖 ∈
[ℓ ( ®𝑒 ) − ∥𝑒 ∥𝑀 , ℓ ( ®𝑒 ) ] ∩ [1, ℓmax/2].

15: for each free vertex 𝑓 ∈ 𝐹 and for all 𝑖 ∈ [1, ( ∥ 𝑓 ∥ − 1)/2] do
16: Add the corresponding free vertex ¤𝑓 ∈ 𝐹 to 𝐹𝑖 .
17: Let 𝑖∗ = argmin1≤𝑖≤ℓmax/2{ |𝐸𝑖 | + |𝐹𝑖 | }.
18: Add all matched edges in 𝐸𝑖∗ to𝑀 ′ and all free vertices in 𝐹𝑖∗ to 𝐹 ′ .
19: return Ψ,Ω′, 𝑀 ′ , and 𝐹 ′ .

To prove Theorem 5.1, we propose the main algorithm Algo-
rithm 1. The algorithm consists of four steps. In the first step
(Line 2 to Line 6), the algorithm repeatedly invokes the Vertex-
Weighted-Alg-Phase procedure, obtains a collection P of (short)
augmenting paths, and temporarily removes the paths from the
graph. The loop ends once the number of newly found augment-
ing paths becomes no more than 𝜆 · |𝑀 |/𝐶max . The algorithm
then utilizes the output (P,𝑉 ′,𝑉𝐴,S) from the last execution of
Vertex-Weighted-Alg-Phase in the subsequent steps.

In step two (Line 7) the algorithm removes edges in 𝑀 (𝑉 ′) ∪
𝑀 (𝑉𝐴) and free vertices in 𝐹 (𝑉 ′)∪𝐹 (𝑉𝐴). This ensures that no short
augmenting paths can be found from the remaining free vertices.

In the third step (Line 8 to Line 9), the algorithm detects and
contracts Ω′ — the set of all blossoms within any part of S. Notice
that there could still be an edge 𝑒 connecting two outer vertices in
𝑉𝑜𝑢𝑡 (𝐺̃) after the contraction of the blossoms from Ω′, leading to
an undetected augmenting path. However, in this case, at least one
endpoint of 𝑒 must be far enough from any remaining free vertex,
so after the fourth step, such an outer-outer edge no longer belongs
to any augmenting path.

The fourth step (Line 11 to Line 18) of the algorithm assembles
the collection of matched edges {𝐸𝑖 }𝑖=1,2,...,⌊ℓmax/2⌋ and free vertices
{𝐹𝑖 }𝑖=1,2,...,⌊ℓmax/2⌋ . Each pair of sets (𝐸𝑖 , 𝐹𝑖 ) has the property that
after removing all matched edges in 𝐸𝑖 and free vertices in 𝐹𝑖 ,
there will be no more far-away outer-outer edges (and thus no
augmenting path). Therefore, the algorithm chooses an index 𝑖∗

with the smallest |𝐸𝑖∗ | + |𝐹𝑖∗ | and then removes all matched edges in
𝐸𝑖∗ and free vertices in 𝐹𝑖∗ . Intuitively, any long enough alternating
paths starting from a free vertex will be intercepted at the matching
distance 𝑖∗ by 𝐸𝑖∗ and 𝐹𝑖∗ .

Let 𝐺̃ be the current contracted graph (𝐺−Ψ−𝑀′−𝐹 ′)/(Ω∪Ω′)
after removing a set of augmenting paths Ψ, a set of matched edges
𝑀′ and a set of free vertices 𝐹 ′. To form the collection of matched
edges {𝐸𝑖 } and free vertices {𝐹𝑖 }, the algorithm runs a Bellman-
Ford style procedure that computes distance labels to each matched
arc ℓ (®𝑒). The goal is to obtain ℓ (®𝑒) = 𝑑

𝐺̃,𝑀̃
(𝐹, ®𝑒) whenever this

matching distance is no more than ℓmax + ∥𝑒 ∥𝑀 , and ℓ (®𝑒) = ∞
otherwise. We note that the labels can be computed efficiently
because the (weighted) vicinity of the free vertices, after the blossom
contractions, is now bipartite.

For each matched arc ®𝑒 with a computed matching length ℓ (®𝑒) =
𝑑
𝐺̃,𝑀̃
(𝐹, ®𝑒) ≤ ℓmax + ∥𝑒 ∥𝑀 , we add the corresponding matched edge

𝑒 ∈ 𝑀 to 𝐸𝑖 for all integers 𝑖 ∈ [ℓ (®𝑒) − ∥𝑒 ∥𝑀 , ℓ (®𝑒)] ∩ [1, ℓmax/2].
In addition, for each free vertex 𝑓 ∈ 𝐹 , its corresponding free
vertex ¤𝑓 ∈ 𝐹 is added to 𝐹𝑖 for all 𝑖 ∈ [1, (∥ 𝑓 ∥ − 1)/2]. Finally,
𝑖∗ = argmin𝑖 {|𝐸𝑖 | + |𝐹𝑖 |} can be computed and then 𝐸𝑖∗ and 𝐹𝑖∗ are
removed from 𝐺 .

The correctness proof and the analysis to Algorithm 1 are pre-
sented in the full version [27].
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