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Abstract

This paper proposes a novel kernel-based optimization scheme to handle tasks in the analysis, e.g.,
signal spectral estimation and single-channel source separation of 1D non-stationary oscillatory data. The
key insight of our optimization scheme for reconstructing the time-frequency information is that when
a nonparametric regression is applied on some input values, the output regressed points would lie near
the oscillatory pattern of the oscillatory 1D signal only if these input values are a good approximation
of the ground-truth phase function. In this work, Gaussian Process (GP) is chosen to conduct this
nonparametric regression: the oscillatory pattern is encoded as the Pattern-inducing Points (PiPs) which
act as the training data points in the GP regression; while the targeted phase function is fed in to
compute the correlation kernels, acting as the testing input. Better approximated phase function generates
more precise kernels, thus resulting in smaller optimization loss error when comparing the kernel-based
regression output with the original signals. To the best of our knowledge, this is the first algorithm that
can satisfactorily handle fully non-stationary oscillatory data, close and crossover frequencies, and general
oscillatory patterns. Even in the example of a signal produced by slow variation in the parameters of
a trigonometric expansion, we show that PiPs admits competitive or better performance in terms of
accuracy and robustness than existing state-of-the-art algorithms.

1 Introduction

This paper is concerned with 1D single-channel source separation and estimation for oscillatory signals.
Suppose a signal f(¢) is defined on a time domain [0,7] with K intrinsic components and non-constant
frequencies:

f@) =) fit)= ) ar(t)si(dx(t)), (1)

k=1 k=1

M=
M=

where ay(t) and ¢y (t) are smooth, slowly varying functions representing the latent amplitude and phase
functions of the kth component, f(t), for k = 1,..., K. The derivative of phase function ¢ (t) is called
the frequency function, denoted as wg(t) and is also assumed to be smooth. si(t) is a periodic shape (or
pattern) function for the kth component, describing a potentially complicated evolution pattern of the signal.
We assume sg(t) to be bounded, continuous, to have periodicity 1 and to satisfy fol sk (t)dt = 0, with unit
Lo-norm on [0, 1]. The variation of ay(t) and wg(t) are assumed to be sufficiently small and the magnitude of
wy () is assumed to be large enough such that the pattern is well defined.

One toy example of Model (1) are trigonometric functions. A more complicated example in (Figb:bottom))
is, e.g., a real Photoplethysmogram (PPG) signal in Figure a); the PPG signal describes the human
cardiac and respiratory cycles with K = 2 intrinsic components: the first component (Fig b:middle))
represents the beating of the heart and the second represents the cyclic respiratory behavior of the lungs



— Est mode 1

— Est mode 2

E—— D ek

=]

2 T Time® i " ' :
0 2 4 6 (sec) 8
(a) PPG measurement (b) Mode decomposition by PiPs

Figure 1: (a) Measurement and several explicitly handcrafted properties of Photoplethysmogram (PPG) signal as a motivating
example of non-stationary 1D signals. (b) Reconstructed components (top two figures for Fig 1(b)) of the PPG signal (bottom
figure of Fig 1(b)). These two components were reconstructed from only a small portion (100 points) of the samples of the
original PPG raw data as visualized in the bottom figure.

(Fig b:top)). Model includes a large family of approximately periodic signals in real applications
(L2131 (4} [51 (6] (71 [2] [8] [4] [9} [10} 31 11} [T2} [13] [141 [15].

Solving Equation (i.e., identifying amplitude, phase, and shape functions from f(t) in Equation ) is
a general task that involves several sub-problems: (i) spectral estimation when wy(¢) is linear; (ii) adaptive
time-frequency analysis[16] that aims to retrieve time-variant information ay(t), ¢ (t), w(¢); (iil) mode
decomposition that targets the extraction of fi(t); (iv) pattern recognition to reconstruct
si(t), etc. Generally, f(t) and K are fed as input information for the above-mentioned approaches.

Despite many successful algorithms for solving these sub-problems, to the best of our knowledge, no
algorithm in the literature satisfactorily fulfill the ultimate goal of estimating ay(t), ¢x(t) (or wg(t)), and
sk (t) when f(¢) is fully non-stationary with close and crossover frequencies, and general patterns. Moreover,
many existing algorithms require a high sampling rate, which is not always practical (e.g.) for oscillatory
data collected by mobile devices, such as portable health monitors (see Figure a)), due to the limit of
battery capacity.

This paper proposes a framework that can estimate ag(t), ¢r(t) (or wi(t)), and si(¢) simultaneously from
relatively few samples of f(¢). The algorithm requires a prior input of (1) the number of intrinsic components
K; (2) a rough estimate of the frequency and pattern functions. The estimate in (2) can be quite rough: for
instance, for the PPG signal in Figure we initialize the patterns for both components as a sine function,
with frequencies of 15 periods/min and 95 beats/min, which is out of common-knowledge rule-of-thumb
approximations; the output gives the respective shapes and frequencies for the heart and lung components
with the desired accuracy (Figureb)).

Our framework applies a two-stage iteration scheme until convergence: one stage to update phase functions
(and amplitudes) and the other stage to update oscillatory patterns. The phase updating stage is the core
part of the algorithm. There are four components for nonparametric regression: the input and output of the
training points and the input and output of the testing points. Our key intuition is that when a nonparametric
regression is applied on some input values, the output regressed points would lie near the oscillatory pattern
only if these input values are a good approximation of the ground-truth phase function. The nonparametric
regression here is implemented by the Gaussian Process (GP), since the GP-regression-based implementation



shows more robustness compared to several other standard nonparametric regression approaches [23].

In this stage, first, we encode the prior knowledge of the patterns using the Pattern-inducing Points (PiPs).
Then we formulate a GP-regression-based optimization problem to retrieve the phase functions by treating
the PiPs as training (input-output) points, while the phase functions as the latent testing input and the
original signal samples as the testing output respectively. As the input of a GP, the targeted phase function
is fed into the correlation kernels to compute the output values of the regression. Since better-approximated
phase function generates more precise kernels, thus resulting in a smaller difference between the point-wise
kernel-based regression output and the original signals, we design the optimization loss as the Lo distance
between regression output and the noisy measurement of the 1D signal. By optimizing this innovative
kernel-based loss function, the latent input phase function is retrieved. In this sense, this stage can also be
viewed as a latent GP regression problem that aims to recover the latent input of a GP given the output
values.

To enhance the performance of the kernel-based optimization, we transform the nonparametric setting to a
semi-parametric setup by deploying a divide-and-conquer strategy. We separate the long signals into multiple
localized signal chips. These chips are supported on continuous time intervals which can have intersections,
as long as the whole time span of the original signal is fully covered. In the phase-updating stage, since
each signal chip is time-localized and the variation of the time-instantaneous information is assumed to be
sufficiently small, we propose to use low-order polynomials to model the phase and amplitude functions for
each of these local chips. By transforming the original nonparametric model to the current semi-parametric
one, we can guarantee the local monotonicity and the smoothness of the time-instantaneous information, thus
largely enhancing the robustness of the optimization process. Then we summarize the time-instantaneous
information for all chips and feed it into the pattern-updating stage to update the oscillatory patterns.

In the pattern-updating stage, state-of-the-art 1D pattern recovery algorithms, e.g., Recursive Diffeomorphism-
Based Regression for Shape Functions (RDBR) [24], are applied to update the oscillatory patterns given the
renewed time-frequency information and the noisy measurement of the 1D oscillatory signal. This stage allows
us to handle oscillatory signals with a broad class of oscillatory patterns as long as a rough initialization is
provided, compared to the traditional methods that are mostly limited to trigonometric oscillatory patterns.

The first and second stages of the algorithm are introduced in Sections and Sectionsummarizes PiPs.
As we shall see in the numerical examples in Section [5| PiPs works for a wide range of signals in Model (1)
while existing methods fail for certain or all aspects. Moreover, for simple signals that can be handled by
super-resolution analysis, PiPs achieves better results compared to several state-of-the-art methods with only
reasonable initial values.

2 Estimation of Phase Functions

This section explains how to update the phase and amplitude functions in Model when exact or approxi-
mated knowledge of the pattern si(t) is provided.

To fix our thoughts, we start by introducing the concept of PiPs; these are on-grid auxiliary points that
play a role similar to training points in other learning processes. To be specific, we introduce a formal
definition as follows.

Definition 1 (PiPs) Let s(t) be a periodic function that satisfies the assumptions in Section We say that
the points (P;)l_,, with coordinates (z;,u;) € R? for all i € {0,...,1} are Pattern-inducing Points (or PiPs)
for s(t), with tolerance h on the interval [by,b] C R, where 1 < by — b < oo, if

b=bo ;
a) z = by + 520

b) the continuous affine functions § : [by,b] — R with breakpoints at the z;, and such that §(z;) = u,,
i=0,...,1, satisfies || (5 — 5)|jpy,p)llcc < P

Figurea) shows a cartoon for one component s (¢ (t)) in Model . Figureb) shows one corresponding
periodic pattern s (t), which is also the unwarping result of s;(¢x(t)) w.r.t. ¢(t). Figure C) is an example
of PiPs (green dots) for si(¢) on [0,4] with [ = 16.

Note that for standard signals with trigonometric patterns, the PiPs is considered to be already known.
In practise, we set by = 0 without loss of generality. The pattern resolution ! should be large enough to
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(b) Periodic pattern si(¢).

(¢) An example of PiPs (green dots) for s(¢).

Figure 2: The original oscillatory pattern and two non-oscillatory patterns with no approximation error.

describe the details of each pattern. Moreover, the left-hand bound b should be larger than the upper bound
of ¢ (t) to guarantee the optimization performance.

Next by fixing the PiPs as the training points, a nonparametric-regression-based optimization algorithm
is designed to retrieve the latent phase and amplitude functions by maximizing the posterior distribution of
the observed samples.

2.1 GP Regression
Suppose y € RY are observation of

K
y(t) = wk(t), where yi(t) = fu(t)+nsi(t),
k
sampled at time points t = [t,...,tx] € RV, Here we consider nsy(t) as GP with mean 0 and fixed point-wise

variance 0’,%. Thus y(t), being the sum of K independent GP’s, can also be modeled as a GP and tackled with
respective tools. In the rest of this section, we illustrate the key idea of this work, i.e., using PiPs (y(¢)) to
formulate this nonparametric regression problem, rather than modeling y(t) directly.

For each mode fi(t) = ap(t)si(dr(t)), denote ar = ax(t), ¢, = ¢r(t) and f, = ar © sk(t) as the
respective discretizatiorﬂ of ax(t), ¢x(t) and fi(t) at time samples ¢t. It’s easy to see that if we set ay(t)
to a constant say ag(t) = 1, the re-arranged mode points (¢, f1.) = (¢, sk(¢P;)) should lie exactly on the
oscillatory pattern sg(t). On the other hand, since ¢ (t) is a strictly monotonic function, for any ¢(t) that
deviates from ¢y (t) module 1, i.e., ¢(t) # ¢r(t) mod 1, (¢, ) should deviate from pattern si(¢). This is
illustrated in Figure (a)(b) respectively, where si(t) is has a triangular pattern and ¢ (t) = 2t, t € [0, 1].

As we know, there are four essential components for nonparametric regression: the input and output of
the training points, and the input and output of the testing points. Based on the aforementioned observation,

IWe will use bold font for vectors and (-); for the ith element of the respective vector.
20 is entry-wise product between vectors or matrix.
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(a) (¢, i) lies on si(t). (b) (¢, fy) lies off sg(t).

Figure 3: Phase-signal pairs (red points) that lies on or off the s (t) (green curve). (a) When the phase is set to the ground
truth value ¢, the signal points f, lie on si(¢). Hence non-parametric regression can be used to estimate the signal value (red
points) from the PiPs (z, uk) (green points). (b) When the phase deviates from ground truth, non-parametric regression can’t
be used to estimate signal value (red points) given the PiPs (green points).

if we set (zg,ug)’s as PiPs for fi(t), [min ¢, max ¢] € [bo, b], and treat them as training points of some
nonparametric regression, a plenty of existing non-parametric approaches can be applied to get a reasonable
approximation of f, (testing output) at ground truth locations ¢, (testing input). Figure a) shows that
if ¢, = 2t is correctly estimated, then (¢, f;) should lie on s (¢). In this case, non-parametric regression
can be applied to infer the signal tensity f, at phase position ¢, (red dots) using the PiPs (green curve).
Figure b) shows that if ¢ = 1.5t # ¢y, (¢, f;,) deviates from si(¢). In this case, standard nonparametric
methods fail to estimate f at ¢ (red dots) using PiPs (green curve) with a large marginal loss.

We use the GP regression with squared exponential (SE) kernel to implement this nonparametric regression
step directly on yx(¢y), as it shows robust performance under heavy noise for the stochastic formulation of
y(t). We remark here that identical formulation can be derived by performing nonparametric kernel estimator
on fi(t) and treating nsi(t) as white noise sampled on a continuous interval.

The SE kernel for GP is defined as

k(t,t') = B exp (—;aSE(t - t’)2> , (2)

with kernel parameters 55F and oE, and the posterior of y,, given ¢, (zx,u)) can be written as

P(Ygl b, zhur) = N(F 00 In) = N(EnauK g p e, oiln), 3)

according to [25], where the third equality is obtained by computing the marginal distribution of y,. In
Eq. , Knny is a N x N covariance matrix, (Kywnx)ij = k((dr)is (D1)5) E|for o1 € RY, and similarly
(Kararn)ij = k((zx)i, (21);) for 21 € R, (Karnv)ij = k((21)i, (01)5) = (Knark) si-

2.2 Optimization Loss

p(Yp|uk, @) is higher when ¢, are more accurately provided. Based on this fact and independence between dif-
ferent modes, a loss function measuring the differences between the joint probability model [ [, p(y|ux, ¢4, 2k)

3Denote (-); as the ith entry of a vector, and (+);; as the 4jth entry of a matrix.



and the ground truth signal y is derived to update the latent phase functions. To be specific, when a(t) = 1,
we have

K
PYldy, 21,01, b zr,uk) = p(ylyy, - - uy) [ p(Weldns 20, w)
k=1

K K
= N(Z KNM,kKJ\}lM’kukaZUIQgIN)- (4)
k=1 k=1
We recover the phase function ¢(t) by maximizing the conditional probability of the signal distribution
defined in Eq. . When ag(t) is not a constant, Eq. can be further modified as following,
E(y;Zh'ulh...,ZK7UK;¢1,G1,...,¢K,(1K)
= Ing(y|¢1a 21, UL, ¢Ka ZK, U'K) = log./\/ (ll’a 2) ) (5)

where

K
1
n= E ap © KN kK g W
k=1

K
=) oily.
k=1
We expect to update ¢ (t) and amplitudes ay(t) by maximizing £ given in Eq. .

2.3 Semi-parametric setting: Parameterization of Phases and Amplitudes

However, directly updating phase and amplitude functions by maximizing the loss function in Eq. is
highly unstable when no prior information is considered, e.g., ¢, (t) is smooth and monotone. Thus, we learn
the phase function ¢ (t) and amplitude function a(t) as sample points from a function, instead of treating
¢y, and ay, as independent variable. Among all possible choices, representing ¢ (t) as low-degree polynomials
with order D is effective in practice:

D D.
d)k = Z(B)kdtd7 and ap = Z(C)kdtd. (6)
d=0 d=0

Here ¢/ is the jth power of . B and C are N x (D + 1) and N x (Dc + 1) real matrices, with the kth
row (by, and c¢i) representing the polynomial coefficients of ¢ (t) and ay(t), respectively. Substituting the
parameterized forms of ¢, and aj into Eq. , we can get

‘C(yvzlaula-”azKauK;Bac):logN(u72)7 (7)
where

K /D.
p= Z <Z(C)kdtd> ©) KNAI,kKJ\_/jlj\Lkuk;
k

=1 \d=0
K

Y= § oily.
k=1

Note that parameters in ¢, are implicitly included in the kernel matrices Ky s and Ky k.

The nonparametric setting (Eq. ) thus transforms to a semi-parametric setting as Eq. . As a result,
the monotonicity and smoothness of ¢, is guaranteed, along with a more stabilized performance for this
highly non-convex optimization problem. Ignoring the constant terms, we end up with an equivalent MSE
loss between y and p

Lo(y;B,C,Zl,’LLl,...,ZK,’U,K):||y*/11‘|2, (8)
which will be directly optimized by gradient descent methods.



2.4 Divide-and-Conquer Strategy

In practice, setting D = 2 provides a reasonable approximation to signals localized in time, because both
or(t) and ag(t) vary slowly. For signals that can not be well approximated via lower degree polynomials,
a divide-and-conquer strategy is applied to obtain a global point estimation for the phase (and amplitude)
functions. This divide-and-conquer strategy involves three steps. (i) We separate the long signals into multiple
localized signal chips. These chips are supported on continuous time intervals which can have intersections, as
long as the whole time span of the original signal is fully covered. (ii) We update ¢ (t) (and ay(t)) for each
short chip using polynomial estimation as Eq. or Eq. . (791) A robust curve fitting algorithm [26] [27] is
applied to obtain the final global estimation from the previous steps.

If the oscillatory patterns are unknown and need to be updated, to improve the pattern estimate result,
Step (#ii) can be replaced by some more time-consuming variants. This is detailed in the following section.

3 Estimation of Oscillatory Patterns

In this section, we introduce the way of approximating the oscillating patterns si(t). The phase and amplitude
functions ¢, and aj estimated from the previous sections are fixed in this step. We do not aim at closed
formulas for sj(t). As introduced in Section it is sufficient to estimate the pattern inducing points (zg, uy)
to represent the non-oscillating pattern 8 (t)|(4,5. When amplitude and phase functions are given, shape
function estimation has been studied thoroughly in previous works, like [28] [24] 29] [30]. There are no
quantitative criteria to measure how well the shape function estimate performs when the amplitude and phase
function estimate is not very good. These methods achieve good performance when the inferred amplitude
and phase functions are close to the ground truth.

3.1 Summarize Output from Localized Chips

In this section, we illustrate two variants in Step (#ii) of Sectionthat can improve the accuracy of pattern
estimation.

First, since different signal chips generate instantaneous information estimates with distinct qualities and
these qualities of instantaneous information can be partially manifested by the final loss of Eq. or Eq. 7
we propose a loss-selective variant of Step (ii7). To be specific, instead of feeding all the chips’ output into a
smooth curve fitting module to generate the pattern estimate, we select chips with relatively low loss value
for the pattern estimation. For this end, two constants are prefixed: a threshold value 71 to admit all chips
that satisfies £ < 7; if all chips has loss larger than 71, then we use another quantile constant 5 to select a
portion of chips with the lower loss value. As a result, we can enhance the possibility that better estimated
instantaneous information is applied, while instantaneous information with lower qualities is discarded, to
update the oscillatory patterns.

However, empirical experiments show that lower loss value from Eq. or Eq. does not always
guarantee a better pattern recovery. We further propose a more expensive loss-selective variant of Step
(#i7) by computing and summarizing the distribution of the final losses generated by the chips in the next
iteration step for each chip in the current iteration step. In practice, we set the average of final losses in
the next iteration as our fresh chip quality indicator and then apply the identical chip selective scheme
work as illustrated in the aforementioned paragraph. Although it’s not always the case that this fresh
indicator guarantees a better guideline for pattern updating, this variant can guarantee a lower instantaneous
information loss in the next round of iteration. We note that this variant involves extensive computing of the
trial-and-errors for selecting ideal chips, thus is highly time-consuming compared to the first variant.

4 Overview of PiPs

In this section, an overview of the whole algorithm is presented. PiPs repeatedly applies alternatively updates
between spectral information and oscillatory patterns until convergence. The overall loss function of PiPs can



be written as:

L (y7 B» Cv 21, Sl(')? ce ey RK SK()) = IOgN(/JJ, 2) ) (9)
K /D, K
where p= Z (Z(C)dktd> ® KNM’;CKA}lM,ksk(zk), and X = ZUI%I.
k=1 \d=0 k=1
The goal is to maximize the conditional probability of p(y|z1,...,zK) with respect to the parameters in

phase, amplitude and shape functions, i.e.,

sup max L (y; B,C,z1,81(-),...,2K,5k (")), (10)
sp(-)es B:C

where S indicates the set of predefined non-oscillatory patterns supported on [0,1]. B and C are the matrix
form of phase and amplitude functions in Eq. (@ The pseudo-code of the proposed algorithm is given in
Algorithm We only put the most basic update procedure in the pseudo-code. We implement the gradient
descent using Adam [31] with learning rate set to 0.005.

For each outer loop, we first update the parameterized phase and amplitude functions for each component
using the GP based gradient descent method as introduced in Section Secondly, the oscillation patterns
are updated with RBDR as illustrated in Section |[3| For sparsely sampled signals (less than 1000 sample
points as with the sparse PPG example), PiPs usually converges with two or three outer loop iterations with
phase updating part converges within 3000 steps. An illustrative convergence pattern is shown in Figure|4]
whereas we can observe the pattern updating stage is effective and crucial to the overall optimization process.
Theoretical analysis of this alternative approach will be treated as a future work of this approach.

Algorithm 1 (PiPs) Note that an alternative is to initialize the phase {¢,} and amplitude {ax} as fixed,
while updating the oscillatory patterns first. The order of updating which component first depends on the
signal and prior knowledge. Note that if the initialization of oscillatory patterns is better than those of
amplitude and phase functions, we update oscillatory patterns first. Since the problem is not convex, the
global convergence analysis of the proposed algorithm would be interesting future work.

Input: N measurements of (,y), the number of components K, the polynomial degrees D, and D, input of
PIPs z; (k=1,...,K) and the accuracy parameter .
Initialization: Initialize the estimates of oscillatory patterns si(-), the phase and amplitude parametrized
matrices B and C, and set iter = 0. For long signals, divide the long signal into short chips (Section .
while iter < MaxIter and model not converge do
Compute u;, = s(zx) (k=1,---, K) for each component.
for each chip do

for i =1 to Itery , do

L Fix s;(-), compute Aby = &£ Yok Agy, = YL Ve for fp=1,---, K. (Section|2.3).

Var Vb’ Vor Veg
Update by, = by, + ’}/Abk, and ¢, = ¢, + ’yACk.

Compute ay = Zc?:() Byit? and ¢y, = ZdDzo Cunt?.
| Update oscillatory patterns si(-) for k =1,--- , K with selected chips. (Section.

Output: estimates of the pattern inducing variables wuy, representing si(t), and the latent variables ¢, and
ay, representing ¢ (t) and ax(t), respectively.

In many applications, e.g. ECG and PPG data analysis, heuristic properties of the physical system are
often available and we know the rough range of instantaneous frequencies wy(t). Hence, we can apply a
band-pass filter to f(t) = Zszl ar (t)sk(r(t)) = Zszl >, Sk(n)ag(t)e? () with Fourier expansion on the
shape function. Then, we estimate amplitude and phase of 5;(1)ax(t)e'®*®) in a certain frequency band
using traditional time-frequency analysis methods |17} [18]. Generally, 5;(1) is much larger than the rest
Fourier coefficients. Thus, by setting K to 1, Synchrosqueezed-based methods [32| can be directly applied
without a band filter. Another initialization method is to directly set u; = sin(zy). Since we adopt local
patch segmentation in Section components decomposed by Fourier series expansion become approximately
orthogonal to each other in a short time period ({3 (1)ay(t)e'**W 1 ). Hence, Algorithmcan recover the
amplitude and phase functions corresponding to {8 (1)}, since they usually have the largest K magnitude.
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Figure 4: Illustration for the convergence process of Algorithmfor the PPG sparse dataset.

5 Experiments

In this section, we provide numerical examples to demonstrate the performance of PiP especially in the case
of super-resolution and adaptive time-frequency analysis. Optimization problems in all examples are solved
by Adam [33] aiming at better local minimizers. We choose degree-1 (or degree-2 when specified) polynomials
to approximate local amplitude and phase functions in these optimization problems. The hyperparameters
of PiPs are set as follows: noise level 0 = 10798, oSF = 2 x 10, and 5P = 1. In the local patch analysis,
we generate signal patches such that each patch contains approximately 3 to 10 periods. In the tests for
super-resolution, we repeat the same test with 10 noise realizations to use the expectation and variance of
estimation error to measure the performance of different algorithms. Aw and A¢ denote the point-wise
estimation error. We also created a set of oscillation patterns with non-trigonometic shapes to facilitate
testing. Whenever appeared, we refer

By 4 when0<t<05
SO SR ’
Qflﬂ—(’f, when 0.5 <t <1,

s

and
—8t + 3, when 0.25 <t < 0.5,

s59(t) = ¢ 8t — 7, when 0.75 < t < 1,
1, otherwise.

These shape functions have been visualized in Fig. |§| (b) and (c).

5.1 Super-resolution spectral estimation

There has been substantial research for the super-resolution problem that aims at estimating time-invariant
amplitudes and frequencies in a signal f(t) = Zle ape™rt with ap > 0, wy, > 0, and {wy} are very close.
Among many possible choices, the baseline models might be MUSIC [34], ME [14} [35[36], and ESPRIT [15].
Hence, we will compare PiPs with these method to show the advantages of PiPs. Although the Fourier
transform usually fails to identify {ax} and {wy}, we use its results as the initialization for PiPs.

Accuracy and robustness with different spectral gaps In this experiment, we use f11}(t) = sy (27w, t)+
s2(2mwat) + N(0,02), where the two instantiations of s1(-) and sy(+) are chosen as follows:

4Code is available on https://github.com/JierenXu/PiPs)
5Code from http://people.ece.umn.edu/ georgiou/files/HRTSA/SpecAn.html,
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Figure 5: Frequency estimate (absolute) error of f{1}(¢) = cos(2mw1t)+sin(2mwat), where wy = 38.8/1024 and wa = (38.8480)/1024
with different 6y and white noise N(0, 0?).

o (i) s1(t) = cos(t) and so(t) = sin(t) for standard super resolution comparison to other baseline methods.
The estimation results by PiPs are denoted as PiPs-trig and are visualized as red lines in Fig.

o (ii) s1(t) = s79(t) and sa(t) = s57(¢) for super resolution comparison with special oscillation patterns.
The estimation results by PiPs are denoted as PiPs-shape and are visualized as pink lines in Fig.

In these two examples, wy = 38-8/1024 and wy = (38:8+d0)/1024; §y varies from 0.05/1024 to 10/1024; and the noise
variance is 02 = 10716, The sampling rate is 1 Hz and the number of samples is N = 100 in this example.
Fig. shows the frequency estimation accuracy of PiPs, MUSIC, ESPRIT, and ME.

As we can see, PiPs achieves machine accuracy in the noiseless case and is much more accurate than other
methods in all noisy cases. It also reaches almost the same accuracy for the trigonometric (red) and shaped
(pink) instantiations in (7) and (i¢). All baseline methods can not directly apply to instantiation (i) with
non-trigonometic oscillation patterns besides PiPs.

Accuracy and robustness with different sampling rates In this experiment, we set f{2}(t) =
Zizl ay sin(wgt) with a3 = 0.5,a2 = 1, w; = 0.1, and wy = 0.15. The sampling rate of this signal is
still 1Hz and the numbers of samples are N = 64, 128, 256, and 1024 to generate four sets of test data. There
are two different kinds of noise to generate noisy test data: 1) white Gaussian noise N'(0,0.35) is directly
added to f(t); 2) a stochastic process in ¢ with i.i.d. uniform distribution in [0, 27| is added to phase functions
{wrt}1<k<2. Fig. @summarizes the results of frequency estimates in this experiment. ESPRIT and MUSIC
lose accuracy in all tests. PiPs and ME achieve high accuracy when the number of samples is large and PiPs
is slightly better than ME in terms of accuracy and estimation bias.

5.2 Estimation of time-variant frequencies

In this section, we show the capacity of PiPs for estimating close and crossover time-varying instantaneous
frequencies. An adaptive time-frequency analysis algorithm, ConceFT [37]), is used as a comparison. And
local approximation degree is set to d = 2 in this section.

Close frequencies and phase estimation error We use f{3}(t) = s;(2m(10/10.24t + 230/10.242t2)) +
52(27((10/10.24 + 0g)t + 250/10.242¢2)), where the two instantiations of s;(-)/s2(-) are (i) s; = cos/sy = sin
(Fig. b)) and (ii) s; = s77/s2 = s57 as in Fig. c). do varies from —5/10.24 to 5/10.24. The white noise oq
has standard deviation {0,0.2,0.5,1}. We apply short-time Fourier transform to identify rough estimates
of instantaneous frequencies and use them as the initialization in this test. When instantaneous frequencies
are very close, the initialization is very poor; however, PiPs still can identify instantaneous frequencies and
phases with reasonably good accuracy. The result is summarized in Fig.

Fig. a) is the ground truth time-frequency representation of ten tested signals with different value of g
on ws(t). The difference between wo(t) (green line) and wy(t) (red line) are pretty difficult to be detected by
existing time-frequency methods. The log error of the point-wise averaged frequency estimate is shown in
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Figure 6: Left: results of {2} with different number of samples N = 64, 128, 256, and 1024 from top to bottom, and
by different methods in an order of PiPs, ME, ESPRIT, and MUSIC from left to right. The ground truth frequencies are
(2mw1, 27wa) = (0.1,0.15). 100 tests with different noise realization were performed and the estimated frequencies are visualized
in a 2D domain centered at the ground truth. Right: the expectation and variance of estimation errors for different methods and
numbers of samples.

the first row of Fig. (b) and (c) on different noise levels y. The log error of point-wise averaged phase
estimate (bottom row) is consistently small as §y changes. Under a large noise case with oy = 1, PiPs controls
the phase error approximate or below the level of 0.05. Existing time-frequency analysis methods usually
estimate instantaneous frequencies first and then integrate them to obtain instantaneous phases, which suffers
from accumulated error. However, PiPs has no accumulated error.

Close and crossover frequencies In this experiment, we generate a signal consisting of two components
with close instantaneous frequencies and a signal with two crossover instantaneous frequencies. Fig.
visualizes the ground truth instantaneous frequencies, the time-frequency distribution by ConceFT, the
initialization, and the estimation results of PiPs. ConceFT cannot visualize the instantaneous frequencies
even if in the noiseless case. We average out the energy distribution of ConceFT to obtain the initialization of
PiPs. Although the initialization is very poor, PiPs is still able to estimate the instantaneous frequencies with
a reasonably good accuracy no matter in clean or noisy cases. When the number of components K is known,
we generally can average out the energy band to obtain one instantaneous frequency function and initialize
all instantaneous frequencies in PiPs using this function from empirical observations. Similar initialization
strategy is used in the following examples.

5.3 Estimation of amplitudes, phases, and shapes simultaneously

Finally, we apply PiPs to estimate amplitudes, phases, and shapes simultaneously from a single record. First,
we generate a synthetic example f16}(t) = Zi:l 577 (wit) + N(0,0.2), where wy = 3-88/1.024, wy = 4-88/1.024,
and the shapes are visualized in Fig. [0] The sampling rate for this signal is 100 Hz and we sample it at 100
locations. The shape estimates are initialized as cos and sin for the first and second components, respectively.
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Figure 8: Instantaneous frequency estimates for signals with close and crossover frequencies. (a) ground truth instantaneous
frequencies and initialization of PiPs. (b) estimated instantaneous frequencies for clean signals. (c) estimated instantaneous
frequencies for noisy signals. (d) time-frequency distribution by ConceFT.

The frequency estimates are initialized as one constant centered in the peak spectrogram by ConceFT (see
Fig. |§| (a)). As we can see in Fig. |E| (b) and (c), PiPs is able to estimate shape functions with a reasonably
good accuracy and the reconstructed components match the ground truth components very well.

In Fig. and a similar initialization strategy is applied to two more examples, f{7}(t) =
S 59 (wpmeoth (1)) + N(0,0.2) and fI8 (1) = S0 s59(wpeer (1)) + N(0,0.2), respectively. Here

wimeOth () = 0.08¢(t — 10), ws™°"(t) = 0.08¢(t — 10) + 1,
Wi (t) =t +4, and Wi (t) = —t + 6.

In other words, signal f{7}(t) and f{®}(¢) both have more difficult frequency time-frequency representation
to resolve, on with non-linearity and one with contact frequency curves. The results in Fig. [I0]and[II] show
that PiPs can still obtain sharp mode decomposition results for both clean and noisy cases with sparsely
sampled data points in these challenging examples.

In the last example, we apply PiPs to a real signal from photoplethysmogram (PPG) (see Fig. . The
shape estimates are still initialized as cos and sin for the two components, and N = 100 samples are involved.
The PPG signal contains two components corresponding to the health condition of the heart and lungs in
the human body, where Fig. b) shows the mode decomposition result. As can be seen, two modes with
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Figure 9: PiPs is applied to estimate the amplitude, phase, and shapes of a synthetic signal f{G} (t) consisting of two components.
(a) the time-frequency distribution of f {6}(75) by ConceFT in two different frequency ranges. ConceFT cannot reveal the ground
truth instantaneous frequencies (in red and green). But we can initialize PiPs by averaging out the distribution (see the dash
pink line). (b) and (c) the ground truth shape functions and their estimates. (d) the noisy signal f{6}(¢) and the reconstructed
components by PiPs.

highly domain-specific patterns are accurately recovered under the naive cosine and sine oscillation pattern
initialization from these 100 samples.

6 Conclusion

This paper proposed a novel alternatively learning scheme (PiPs) between spectral information and periodical
patterns to address several oscillatory data analysis problems, including signal decomposition, super-resolution,
and signal sub-sampling. The method achieves state-of-the-art results for noisy and sparsely sampled cases on
several datasets, and demonstrates its potentials in real world applications. Though numerical convergence
of the proposed method has been observed, an interesting future direction is to analyze the convergence
theoretically, especially statistical analysis in the presence of noise.
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