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Abstract

This review describes advances in understanding and forecasting tropical cyclone (TC)
subseasonal variability during the past four years. A large effort by the scientific
community has been in understanding the sources of predictability at subseasonal
timescales beyond the well-known modulation of TC activity by the Madden-Julian
Oscillation (MJO). In particular, the strong modulation of TC activity over the western
North Pacific by the Boreal Summer Intra-Seasonal Oscillation (BSISO) has been
documented. Progress has also been realized in understanding the role of tropical-
extratropical interactions in improving subseasonal forecasts. In addition, several recent
publications have shown that extratropical wave breaking may have a role in the genesis
and development of TCs. Analyses of multi-model ensemble data sets such as the
Subseasonal to Seasonal (S2S) and Subseasonal Experiment (SubX) have shown that the
skill of S2S models in predicting the genesis of TCs varies strongly among models and
regions but is often tied to their ability to simulate the MJO and its impacts. The skill in
select models has led to an increase over the past four years in the number of forecasting
centers issuing subseasonal TC forecasts using various techniques (statistical, statistical-
dynamical and dynamical). More extensive verification studies have been published over

the last four years, but often only for the North Atlantic and eastern North Pacific.

Keywords: tropical cyclones, subseasonal, forecasts, hurricanes, MJO
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1. Introduction

Camargo et al. (2019) reviewed the significant progress in our understanding and
prediction of subseasonal tropical cyclone (TC) activity during 2015-2018. The current
review provides a similar summary for the subsequent four years. A great advance in
predicting subseasonal TC activity in the last four years has been the maturation of the
Subseasonal Experiment (SubX; Pegion et al. 2019) and the World Meteorological
Organization (WMO) Subseasonal-to-Seasonal (S2S; Vitart et al. 2017) model
intercomparison projects. These models have produced increasingly skillful Madden—
Julian Oscillation (MJO) forecasts beyond three weeks. Hybrid statistical-dynamical
models have been created to leverage these MJO forecasts and the known relationships
between the MJO and TC activity (e.g., Hansen et al. 2022). Some dynamical models can
even produce skillful forecasts of subseasonal TC activity with minimal post-processing
(Camp et al. 2018). The increasing skill of these models has empowered several
operational forecast centers to produce experimental and even operational TC forecasts

for week 3 (see section 4).

2. Modulation of TC activity by subseasonal modes of
variability
2.1 Impact of tropical waves on tropical cyclone activity

In the four years since Camargo et al. (2019), many studies have focused on the
sub-basin scale and elucidating how the MJO/Boreal Season Intraseasonal Oscillation

(BSISO) modulates TC activity in tandem with other shorter period phenomena (e.g.,



76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

tropical waves). Fowler and Pritchard (2020) showed that the South China Sea (100°E—
120°E) is the most sensitive region in the western North Pacific (WNP) to the
MIJO/BSISO. In this region, the favorable decrease in vertical wind shear coincides with
an increase in mid-level moisture. On the other hand, the eastern WNP (160°E-180°) is
less sensitive to the MJO/BSISO because these factors are out of phase with one another:
the increase in moisture precedes the decrease in vertical wind shear (Fig. 1). Along with
the MJO/BSISO and the quasi-biweekly oscillation (QBWO), other modes of variability
such as equatorial Rossby waves (ERW), Kelvin waves (KW), and the combination of
Mixed Rossby-gravity waves (MRG) and tropical depression-type disturbances
(collectively MRGTD) also contribute to TC genesis in the Bay of Bengal (BoB; Landu
et al. 2020) and the WNP (Zhao et al. 2019). Landu et al. (2020) showed that during
simultaneous ERW and MJO events, more TCs formed in the BoB than during any other
combination of waves. ERW increased low-level vorticity, and the MJO increased
moisture. On the other hand, simultaneous MRGTD and KW were associated with fewer
BoB TCs than any other combination of waves. The MRGTD reduced vertical shear and
contributed to drying at mid-levels, and KW decreased low-level vorticity, which results
in fewer TCs in the BoB.

Understanding how TC tracks and thus landfall risk are modulated by the
MIJO/BSISO could potentially lead to better TC risk decision-making. In the WNP, TCs
tend to move northwestward during the enhanced convective phases of the MJO/BSISO
and QBWO, but during the suppressed convective phases recurving storms are more
common (Wang et al. 2019; Ling et al. 2020; Nakano et al. 2021). A westward extension

of the WNP subtropical high (Ling et al. 2020) or eastward extension of the monsoon
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trough (Wang et al. 2019) lead to more northwestward-moving TCs during the

convective phases.
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Figure 1: (a, c¢) Average 850-hPa (blue) and 250-hPa (green) winds for each MJO
phase; dashed lines represent the Phase 1-8 mean. (b, d) Genesis Potential Index (GPI)
decomposition for each MJO phase, defined using the OLR-only MJO Index (OMI,
Kiladis et al., 2014). (from Fowler and Pritchard 2020)

In addition to these sub-basin studies, significant progress has been made in
examining nonlinear interactions between the MJO and the El Nifio Southern Oscillation
(ENSO). For example, Atlantic TC activity generally increases during La Nifia episodes.
However, Hansen et al. (2020) found that the most favorable MJO phase for Atlantic TC
activity also shifts with the ENSO state. During neutral ENSO states, MJO phases 1 and
2 were associated with the highest level of TC activity in the Atlantic. During strong La

Nifia states, MJO phases 4 and 5 were most likely to have above-average accumulated
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cyclone energy (ACE; Bell et al. 2000). To investigate other potential factors that
influence subseasonal TC activity, Hansen et al. (2020) developed a compositing
technique that isolated subseasonal signals of environmental conditions in association
with TC activity, which were referred to as ACE By Year (ABY). The most important
predictors of enhanced TC activity were negative vertical wind shear anomalies in the
North Atlantic Main Development Region (MDR), and positive vertical shear anomalies
in the subtropical North Atlantic (Fig. 2). The vertical shear pattern associated with MJO
phases 1 and 2 was similar to, but distinct from, the shear pattern in the ABY composite.
Both nonlinear MJO/ENSO interactions and the subseasonal vertical shear signals appear
to be linked to potential vorticity streamers, which suggests mid-latitude interactions may
contribute to a significant portion of the subseasonal variability of North Atlantic TC

activity (Hansen et al. 2020).

2.2. Impact of extratropical wave breaking on tropical cyclones

Several recent studies (Zhang et al. 2016, 2017; Li et al. 2018; Papin 2017; Papin
et al. 2020; Jones et al. 2020) demonstrated that occurrence of extratropical Rossby wave
breaking (RWB) events tend to reduce TC activity on subseasonal and longer time scales
through larger vertical wind shear and mid-tropospheric dryness. Using semi-idealized
numerical model simulations, Chang and Wang (2018) showed that these negative
extratropical impacts on Atlantic TC activity may exceed the positive impacts of local
sea-surface temperature (SST) anomalies in some years. Jones et al. (2022) showed that
the dynamical impacts of RWB on vertical wind shear are predictable through the link
between the North Atlantic Oscillation (NAO) and the RWB event. Thus, including such

dynamical impacts may improve seasonal TC predictions. Zhang et al. (2021) analyzed a



137

138

139

140

141
142

143

144

145

146

147

148

149

large ensemble of climate simulations forced by observed SSTs and demonstrated that
seasonal variations of RWB events are potentially predictable owing to SST forcing in

both the tropics and extratropics.
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Figure 2: Vertical wind shear anomalies associated with subseasonal active TC periods
in the North Atlantic using the ABY composite technique (from Hansen et al. 2020).

The tropical and extratropical impacts on TC activity can be integrated in the
framework of summertime stationary waves. In particular, tropical upper-tropospheric
troughs (TUTTs), interpreted here as stationary waves, are the preferred regions of RWB
(e.g., Postel and Hitchman 1999), and become the regions of active interaction between
the tropics and extratropics. These TUTTs are subject to the modulation by diabatic
heating, which leads to variability of the North Pacific TUTT and the North Atlantic

TUTT. This variability of large-scale environmental conditions thus contributes to the



150  variability of TC activity (Fig. 3). In addition, the anti-correlation of TUTTSs between the
151  North Atlantic and North Pacific leads to the TC activities in the two basins tending to
152  compensate each other. Thus, the Northern Hemisphere TC activity may be less variable

153  than it would be if these two TUTTs were independent.
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156  Figure 3: Composites of tropical cyclone track density function (TDF, number of TCs per
157  month within a 10°x10° grid box) based on (a) the North Atlantic TUTT index and (b)
158  the North Pacific TUTT index. Dashed contours depict anomalies exceeding the 95%
159  confidence level. The TUTT index is defined based on the equatorward extension of
160 upper-level westerly flow over a subtropical ocean (adapted from Wang et al. 2020).

161 While most recent studies have focused on RWB and North Atlantic TC activity,
162  Takemura and Mukougawa (2021) investigated tropical cyclogenesis over the WNP
163  triggered by RWB to the east of the Asian coast. A composite observational analysis
164  indicated that approximately 55% of the detected RWB events were accompanied by the

165  genesis and development of TCs to the southwest of the wave breaking center (Fig. 4). A
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RWRB event leads to an intrusion of the upper-level positive potential vorticity toward the
southwest and consequently enhanced convection over the subtropical WNP. This
enhanced convection is a favorable condition for TC genesis and development. It is
noteworthy that Takemura and Mukougawa (2021) showed that no TC genesis occurred

after the peak day of a RWB event.
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Figure 4: (a) Daily time series for the total numbers of TCs (black line; right axis) and
TC genesis (gray bars, left axis) detected in 24 RWB cases during a period from 10 days
before (day —10) to 10 days after (day +10) the peaks of RWB. (b) Scatter diagram
between area-averaged monthly RWB frequency over 25°N-45°N, 140°E—180° and the
monthly numbers of TCs detected from 15°N to 45°N and from 120°E to 180°F in July
and August during the period from 1958 to 2018. (from Takemura and Mukougawa
2021).

3. Simulation of subseasonal TC activity in S2S and SubX
models

3.1 Model description

Research on subseasonal-to-seasonal prediction of TCs has been accelerated by
the maturation of multi-model datasets. There have been expansions and updates to the
WMO S2S (Vitart et al. 2017) and the SubX (contains only North American models;

Pegion et al. 2019) datasets. There are also new global model simulations and



187

188

189

190

191

192

193

194

195

196
197

198

10

improvements in global models that can potentially lead to advances in subseasonal TC

predictions. Some examples of these models are the GFDL SPEAR global coupled model

(Xiang et al. 2022a), the new version of the NASA GMAO GEOS S2S system (Molod et

al. 2020) and the Australia Bureau of Meteorology (BoM) ACCESS-S1 with an ensemble

Kalman filter (ACCESS-GE2, Gregory et al. 2020). Additionally, Richter et al. (2022)

showed that the CESM2 can be used as a community resource for research on

subseasonal predictability (see Table 1 for details).

Table 1 List of available subseasonal TC reforecast datasets. V01 refers to the tracker
from Vitart and Stockdale (2001). Other than S2S TCs, data availability requires further

confirmation from each research group. (Table prepared by Dr. Jorge Garcia-Franco)
Model Native Coverage Ensemble frequency TC tracker data
resolution period size availability
(most
updated)
BoM 2°, L17 1981-2013 33 6/month V01 S2S
CNRM 1.4°, L91 1993-2014 15 4/month V01 S2S
CNR-ISAC 0.75°,L54  1981-2010 5 5 days V01 S2S
CMA 0.5°, L56 2006-2020 4 2/week V01 S2S
ECCC 0.35°%, L45 1998-2017 4 weekly V01 S2S
ECMWEF 0.15° 0.3° 2000-2020 11 2/week V01 S2S
L137
HMCR 1.2°,L28 1985-2010 10 weekly V01 S2S
JMA 0.5°, L60 1981-2012 5 3/month V01 S2S
KMA 0.75°,L85 1991-2016 3 4/month V01 S2S
NCEP 1°, L64 1999-2010 4 daily V01 S2S
UKMO 0.75°,L85  1993-2016 7 4/month V01 S2S
CESM2 1°, L32 1999-2020 11 weekly Tempest Climate
(CAMb) Extremes Data
Gateway
CESM2 1°, L70 1999-2020 5 weekly N/A N/A
(WACCM6)
GEOS-S2S-2 | 0.5°,L72 1999-2015 1 5 days Tempest Unk
Extremes
SPEAR 0.5°, L33 2000-2019 10 5 days Unk Unk
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Lee et al. (2020) evaluated regional TC events (genesis and subsequent track) in
20° longitude and 15° latitude boxes in the WMO S2S database models’ reforecasts and
found that the European Centre for Medium-range Weather Forecasts (ECMWF) model
had one of the best performances in simulating the TC climatology as well as higher
prediction skill. Lee et al. (2020) found that a key limitation in prediction skill of regional
TC activity is genesis prediction, and the ECMWF model had the smallest errors in
genesis climatology when compared to other WMO S2S models (Lee et al. 2018).

Camargo et al. (2021) reported that North Atlantic TC tracks in the ECMWF
subseasonal reforecasts had clusters with similar characteristics to the observed.
However, the ECMWF model had an additional cluster of recurving North Atlantic
hurricane tracks near the coast of Africa with characteristics that do not correspond to the
observed track clusters in that region, which may be due to some systematic biases in
low-level winds and geopotential heights in the ECMWF model. When evaluating the
climatology of TC intensity, model resolution was found to play an important role
(Camargo et al. 2021; Gao et al. 2019). Gregory et al. (2020) compared subseasonal
forecasts for the Southern Hemisphere among the ACCESS-S1, ACCESS-GE2, and
ECMWF models and concluded that the superior performance of the ECMWF system
was due to a larger ensemble size, higher spatial resolution, and an improved data
assimilation scheme.

The MJO modulation of TC activity in these subseasonal forecast models has also
been examined (Lee et al. 2020; Camargo et al. 2021). With the improvement of the MJO
representation in models (Vitart 2017), the MJO-TC relationship is also simulated more

realistically. Recently, Xiang et al. (2022b) suggested that landfalling TCs near the U.S.
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coast can be influenced by three localized atmospheric circulation modes with significant
subseasonal (10-30 day) variability that is distinct from the MJO: (1) an anomalous low
pressure center in the eastern U.S.; (2) a zonal dipole pattern with a low pressure centered
in the western U.S. and a trough extending southeastward to the Gulf of Mexico; and (3)
a meridional dipole pattern with a low centered over the Caribbean Sea and a high over
central-eastern North America. There are more U.S. landfall TCs during the positive
phases of these modes. The GFDL SPEAR model can simulate these landfall track

modulations.

3.2. Model verification

Whereas the ECMWF model has the highest prediction skill among the WMO
S2S models (Lee et al. 2020; Fig. 5a), the skill analysis is sensitive to what validation
metrics are used as well as how the forecast is defined. Results from Lee et al. (2020) are
based on the verification of probabilistic predictions of regional TC activity measured by
the Brier Skill Score (BSS). When verified against a total seasonal climatological forecast
(BSS.), reforecasts from ECMWF and Météo-France/Centre National de Recherche
Meétéorologiques models are skillful for most TC basins with lead times up to week 3 or
longer. The BoM model is skillful for Southern Hemisphere TC basins. However, when
validated versus weekly climatology activity (BSSn), only the ECMWF model shows
skill in predicting TC occurrence anomalies beyond one week. In the Southern
Hemisphere, Gregory et al. (2020) showed that ACCESS-SI1 is skillful in predicting TC
occurrence (not TC anomalies) at up to 3 week lead times. Regional BSS is not always
consistent with basin-wide mean BSS values, and the week 2 BSS for the ECMWF

system is shown in Fig. 5b.



245

246

247

248

249

250

251

252

253

254

255
256
257
258
259
260
261
262

13

In terms of TC ACE, the WMO S2S models have low prediction skill when
measured by the Ranked Probability Skill Score (RPSS), which may be attributed to
insufficient horizontal grid resolution to simulate either the TC’s core structure or the
occurrence of the most intense TCs (Lee et al. 2020; Camargo et al. 2021). Using the
Heidke Skill Score (HSS) in reference to a random forecast, Gao et al. (2019) showed
that the HHRAM model with a 8-km inner nested domain was skillful in predicting basin-

wide (not regional) ACE associated with hurricanes and major hurricanes in the North

Atlantic.
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Figure 5: Brier Skill Score (BSS) of (a) regional TC occurrence predictions from six
WMO S2S models, listed in the middle-row right and (b) global map of TC occurrence
from the ECMWF model. BSS: and BSSy indicate seasonal-total and weekly-varying
climatology references. BSSmjiinear is the BSSy for a bias-corrected forecast with a linear-
regression bias-correction scheme. The TC basins are as follows: Atlantic (ATL),
northern Indian Ocean (NI), western North Pacific (WNP), eastern North Pacific (ENP),
southern Indian Ocean (SIN, 0°-90°E), Australia (AUS, 90°—160°E), and southern
Pacific (SPC, east of 160°E) (from Lee et al., 2020).
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Prediction skill of regional TC occurrence predictions can be improved via post-
processing calibrations such as removing model mean biases (Camp et al. 2018; Gregory
et al. 2020). Lee et al. (2020) showed that while removing mean biases works in some
cases, it does not guarantee a positive impact globally. To improve a probabilistic
forecast skill (often measured by BSS), one needs to increase the correlation between
forecasts and observations and/or reduce the conditional and unconditional biases.
Removing the mean TC occurrence biases reduces the unconditional bias to zero, but
does not always guarantee a smaller conditional bias even in the training data. Thus, Lee
et al. (2020) suggested a linear regression method (van den Dool et al. 2017) that
removes the unconditional biases and minimizes the conditional biases. In addition,
Gregory et al. (2020) showed that improved forecast skill could be obtained by using
multi-model ensemble prediction, and including lag-averaged forecasts at t-12 h, t-24 h,
etc. to increase the number of ensemble members.

Several recent case studies with deterministic or ensemble models have extended
TC forecasts into the subseasonal TC range. For example, the landfall of Cyclone Hilda
(2017) in northwestern Australia was predicted 2-3 weeks in advance by the ACCESS-S1
model, and the multi-model ensemble with the ACCESS-S1 and the ECMWF predicted
cyclones Gebile and Gita (2018) two weeks in advance (Gregory et al. 2020). Domeisen
et al. (2022) showed successful ECMWF ensemble week 3 or 4 forecasts for TCs Belna
(2019, southern Indian Ocean), Claudia (2020, Australia), and Chan-Hom (2015, western
North Pacific), which Domeisen et al. (2022) attributed to the occurrence of a strong

MJO coinciding with the occurrence of these storms. This is consistent to findings from
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Lee et al., which demonstrated that the WMO S2S models were more skillful when the
convectively-enhanced phase of the MJO was active in that basin.

In addition to use direct TC forecasts from dynamic models, Kolstad (2021)
suggested the inclusion of large-scale variables as predictors in a hybrid statistical—
dynamical forecasting system could potentially extend the prediction time of
potential precursor, and thus allow early detection of possible tropical cyclones.
The hybrid model from Qian et al. (2020) indeed had superior forecast skills for
predicting basin-wide tropical cyclone genesis count over the western-north Pacific,
compared to the dynamical model that provided input to the hybrid model. Similarly,
Maier-Gerber et al. demonstrated in 2021 that their hybrid model for subseasonal tropical
cyclone activity in the North Atlantic Main Development Region and Gulf of Mexico had
comparable skill to numerical weather prediction systems.

Lee et al. (2020) had earlier demonstrated that the WMO S2S models were more
skillful when the convectively-enhanced phase of the MJO was active in that basin.
However, the impact of the MJO on TC prediction skill varies by basin and by model.
Kolstad (2021) recently suggested the inclusion of large-scale variables as predictors in a
hybrid statistical-dynamical forecasting system could potentially extend the MJO
subseasonal prediction time, and thus allow early detection of possible tropical cyclones.
To that end, Maier-Gerber et al. (2021) showed that a hybrid model for subseasonal TC
activity in the North Atlantic Main Development Region and Gulf of Mexico had

comparable skill to numerical weather prediction systems.



306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

10

4.  Operational subseasonal forecasts of tropical cyclones

4.1. NOAA products

The NOAA Climate Prediction Center (CPC) provides the once-a-week Global
Tropics Hazards (GTH) Outlook. An important component of informing the operational
CPC GTH outlook is global TC identification and tracking utilizing S2S model data for
the Weeks 1-4 target forecast period. The CFS, ECMWF, ECCC, and GEFSv12
operational ensemble model systems are utilized as forecast guidance for the GTH, and
the TC activity is identified and tracked using the methods outlined in Camargo and
Zebiak (2002). The forecasts are bias-corrected using a false alarm climatology based on
model reforecasts and the National Hurricane Center (NHC) and the Joint Typhoon
Warning Center (JTWC) best track datasets (Long et al. 2020). In addition to this model
guidance, the GTH TC outlook includes (i) the state of ENSO and the MJO; (i1) coherent
subseasonal tropical variability such as atmospheric KW, ERW, and African easterly
waves (AEW); and (ii1) interactions with the extratropical circulation (i.e., low-latitude
fronts, wave breaking).

The Symmetric Extreme Dependency Score (SEDS)—a metric that focuses on
relatively rare events—for TC tracks at Weeks 1-3 is shown in Fig. 6 for the CFS and
ECMWEF deterministic models, and for the GEFSv12 and the ECCC ensemble prediction
systems for their respective reforecast periods. The contingency table for the SEDS
calculations defines a hit when a forecastTC track point comes within a 3° box of a
verifying TC track point within the same weekly interval. For clarity and to show better
results, only the North Atlantic (ATL) and the eastern North Pacific (ENP) basins are

shown. Note that the ENP has better skill than the ATL for both Week 2 and Week 3, and
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the ECMWF has the best scores among the four models shown. Although forecast skill in
Week 3 is lower than in Week 2, it is noteworthy that substantial areas of skill have been

found for Week 3, and especially with all four models in the ENP basin.

4.2. ECMWF forecasts

ECMWEF has issued week 14 forecasts of TC activity for each TC region since
2010 (Vitart et al. 2010). The TC forecast products include: (1) the predicted number of
tropical storms/hurricanes or ACE over a TC basin for a weekly period (calendar week 1—
4); and (2) a TC strike probability map: the probability of a tropical depression/
storm/intense storm (hurricane intensity) passing within 300 km (see example in Fig. 7).
Maps of TC strike probability anomaly relative to model climatology are also available.
These forecasts produced with the ECMWF TC tracker (Vitart and Stockdale, 2001) are
issued twice a week and are now publicly available. Tropical cyclone tracks predicted by
the ECMWF ensemble model during the 46-day integrations are available from the S2S
database, but with a 3-week delay (more information at www.s2sprediction.net). The
forecast skill of these forecasts has been evaluated in Camargo et al. (2021) for the North
Atlantic and by Lee et al. (2020) for the entire globe . It is planned in mid 2023 to
increase the frequency of these forecasts from twice weekly to daily and to increase the
ensemble size from 51 to 101 ensemble members. The objective is to provide more

frequent updates and more accurate probabilistic distribution functions of TC activity.
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Figure 6: Spatial maps of SEDS for TC tracks during Weeks 1-3 in the left, middle, and
right columns for the (a-c) CFS, (d-f) ECMWF, (g-i) GEFSvi2 and (j-1) ECCC for the
ATL and ENP basins.

The Elsberry et al. (2022) TC high-wind lifecycle guidance product based on the
ECMWF ensemble (ECEPS) could improve decision-making related to ENP TCs
compared to presently available probabilistic genesis or TC activity products. This
technique provides time-to-formation (T2F) and time-to-hurricane (T2H) to the nearest
six-hour synoptic time and at a position along generally highly accurate ECEPS track
forecasts of up to 15 days in length. In addition, the technique provides the ending time as
a hurricane (TEHU) and ending time as a tropical storm (TETS) along that up to the 15-

day ECEPS track forecast. For the first six hurricanes of the 2021 ENP season, the first
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detections in the ECEPS were 8-12 days in advance of the T2F, and 9-13 days in
advance of the T2H.

A summary diagram is provided in Fig. 8 for both the pre-formation and the
ending of Hurricane Linda’s track forecasts (panel b and panel a, respectively) and the
timing errors for these two variables (panels ¢ and d, respectively). Whereas the first
NHC advisory forecast of pre-TS Linda was only 12 hours before the T2F in panel b, 19
ECEPS forecasts at 12-hour intervals were available prior to that T2F. Although there is
substantial track spread due to the variations in the initial positions, the cross-track spread
among these ECEPS forecasts that included both a TEHU and a TETS, the track spread
was reasonable considering that these forecasts started as early as 14 days before the
TEHU (panel b). The very small timing errors for the T2F and the T2H along these pre-
T2F tracks in panel (b) are presented in panel (c), and the generally small timing errors in
TEHU and TETS timing errors are presented in panel (d). This 15-day TC high-wind
guidance product in the ENP was in operational testing during the 2022 season and could
be extended longer in the subseasonal timeframe in the future if ECEPS forecasts are

extended.
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Figure 7: Probability of a tropical storm strike within 300 km for the period 12 to 19
September 2022 from the ECMWF subseasonal forecast issued on 1 September (lead time
is day 12-18).
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Figure 8: Summary of the ECEPS pre-formation and ending-stage predictions of the
Hurricane Linda (2021) lifecycle. Track forecast initial times (MMDDHH) are indicated
in the insets for the (a) ending stage and (b) pre-formation stage, and the T2F and T2H
timing errors for the pre-formation and the ending-stage are displayed in panels (c) and
(d). (from Elsberry et al. 2022)
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4.3. Australian Bureau of Meteorology forecasts

The Bureau of Meteorology (BoM) makes available multi-week TC strike
probability forecasts for use by National Meteorological Services and the public (see

http://www.bom.gov.au/climate/pacific/outlooks/). Operational forecasts are currently

available for the South Pacific for weeks 2 and 3, and the WNP for weeks 2, 3 and 4.
Forecasts are updated daily during a region's TC season and a 2-week archive is also
made available. Three products are provided: (i) raw model probabilities of TC
occurrence; (ii) calibrated probabilities (following Camp et al 2018) and (iii) calibrated
probabilities relative to observed climatology.

Multi-week forecasts are produced using output from the ACCESS-S model,
which is based on the UKMO GloSea5 (MacLachlan et al. 2015). Version 1 of this
system (ACCESS-S1; Hudson et al. 2017) was operational during the period April 2018—
September 2021. This model showed impressive skill for predictions of the MJO out to a
lead time of ~30 days. These forecasts also showed skill over climatology for forecasts
of TC occurrence over the Southern Hemisphere for lead time weeks 1-5, when a spatial
and temporal calibration was applied (Camp et al. 2018). As indicated in section 3.2,
ACCESS-S1 provided useful guidance for the development of severe TCs, including
Cyclone Gita in the South Pacific and Cyclone Hilda off of the west coast of Australia, at
more than two weeks lead time (Gregory et al. 2019). Applying a wind speed threshold to
the model TCs also helped to reduce false alarm rates and improve forecast skill early on
in the forecast period (Gregory et al. 2019).

In 2020/21 ACCESS-S1 provided good guidance for severe TC Seroja, which

became the strongest TC to make landfall in southern Western Australia since 1956
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(WMO, 2021). This cyclone presented a major challenge for forecasters due to its
Fujiwhara interaction with TC Odette from April 7-9. A tropical low that failed to
intensify was also in the region, moving south-east across the Cocos Islands from April
6-11. The uncertainty of the forecast was evident by the large spatial ensemble spread,
and the associated low strike probabilities. Forecasts of the probability of TC occurrence
for TC Seroja are shown for ACCESS-S1 for lead time weeks 2 and 3 in Fig. 9.

Following the successful trials for the Southern Hemisphere, research was
extended to the WNP basin, and skill was found over climatology for calibrated forecasts
of TC occurrence out to week 4 (BoM, 2020). Skill of real-time forecasts using a lagged
ensemble of 2-3 days was found to provide increased skill for both the WNP and
Southern Hemisphere for the trial 2017/18 and 2018/19 TC seasons (BoM, 2020).
Finally, combining forecasts from the ECMWEF’s Medium- and Extended-Range
Ensemble Integrated Forecasting System (IFS) and ACCESS-S1 to create a multi-model
ensemble showed superior skill to the component models during the 2017/18 and 2018/19
TC seasons (Gregory et al. 2020).

In October 2021 the BoM operational system was upgraded to ACCESS-S2
(Wedd et al. 2022). This system retains the skill of the MJO out to ~30 days and shows
skill over climatology for multi-week forecasts of TC frequency over the Southern
Hemisphere, western and eastern North Pacific, and North Atlantic out to week 5.
However, the skill over climatology in the North Indian Ocean was only to week 2

(Camp et al. 2023a,b).
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ACCESS-S1: Forecast tropical storm activity (existing and forming storms) in Australian Region
Initialised date 20210323: Valid between 20210407 - 20210413. Lead time: 21 days

>
SN
LY
i
105 =Y
%
205
AN
305 —— SEROJA
——- ODETTE
----- INVEST
405
80E 100E 120E 140E 160E
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Figure 9: Probability of a TC passing within a 300 km radius for ACCESS-SI forecasts
valid in a) week 3 (initialized 23 March 2021) and b) week 2 (initialized 30 March 2021)
for the period 7-13 April 2021. Corresponding observed tracks for TC Seroja, TC Odette
and an invest area are overlain in black. Observed TC tracks are from the US Navy's
Joint Typhoon Warning Center (JTWC,; Chu et al 2002). TC Seroja made landfall on 11
April 2021.

4.4. Colorado State University forecasts

Colorado State University (CSU) has been operationally issuing two-week
Atlantic basin ACE forecasts since 2009. These forecasts are issued six times during
August—October. Each forecast is for the probability of above-normal, normal, or below-

normal ACE terciles for the North Atlantic. These predictions are based on both
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statistical and dynamical models and consider several different factors: (1) National
Hurricane Center (NHC) current and forecast North Atlantic activity; (2) NHC Tropical
Weather Outlooks; (3) Global model forecasts of North Atlantic TC development; (4)
Current and projected state of the MJO; (5) Global model forecasts of key atmospheric
circulation patterns; and (6) the current TC numbers relative to the CSU Atlantic seasonal
hurricane forecast.

For the sample of 78 two-week Atlantic TC forecasts since 2009, 64% have
verified in the correct tercile, 28% missed by only one tercile, and 8% missed by two
terciles. In general, these forecasts have shown improved skill in recent years, with only

one two tercile miss (e.g., forecast bust) since 2013.

4.5. Joint Typhoon Warning Center

In 2018, JTWC began providing graphical two-week TC Formation Outlooks that
depict geographic areas (boxes), timeframes, and forecaster-designated TC formation
probabilities in the Indian, WNP, and South Pacific basins. JTWC will continue to
generate and distribute these outlooks at least twice daily while exploring the viability of
longer period forecasts. For example, the JTWC and the 14th Weather Squadron (14 WS)
Climate Monitoring, Analysis and Prediction teams have conducted weekly collaboration
calls to coordinate 14 WS Week 3 TC formation outlooks for the JTWC forecast basins.
Although JTWC has no near-term plans to extend its two-week TC formation outlook to
the week 3 period, the collaboration has infused new tools and perspectives from 14 WS
climatology experts into the existing JTWC extended-range forecasting process.

The JTWC development efforts also benefit from extensive collaboration with the

NOAA CPC and U.S. Department of Defense (DOD) partner organizations. For example,
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the 16th Weather Squadron (16 WS) numerical modeling team developed a suite of TC
prediction guidance for DOD forecasters. Included in the new 16 WS guidance is a multi-
model ensemble forecast of large-scale probability of wind speed exceedance that
effectively highlights geographic areas and timeframes in which TC formation may

ocCcur.

4.6. U.S. Naval Research Laboratory

Hansen et al. (2022) examined whether nonlinear MJO/ENSO influences and the
subseasonal vertical shear pattern impacts on the North Atlantic ACE can be used to
improve subseasonal predictions. Hansen et al. built a statistical-dynamical hybrid model
using Navy-Earth System Prediction Capability (ESPC; Barton et al. 2020) reforecasts as
part of the SubX project (Pegion et al. 2019). Persistence reforecasts of Nifio 3.4 SSTs
and MDR SSTs, and Navy-ESPC reforecasts of the first two principal components (PCs)
of the MJO, were used as predictors for the basic model. Two shear index predictors
evaluated from Navy-ESPC reforecasts were added in one option, and a second option
was substituting a nonlinear MJO/ENSO predictor in place of the MJO PCs and Nifio 3.4
SST predictors. These predictors were fed into a logistic regression model, which adds
and removes predictors to assess the skill contribution from each predictor. The North
Atlantic SSTs and the MJO were found to be the most important factors contributing to
subseasonal North Atlantic TC activity (Fig. 10). The shear pattern improved forecast
skill at 5-10 day lead times before forecast shear errors became too large. Nonlinear
MIJO/ENSO interactions did not improve skill compared to separate linear considerations
of these factors, but did improve the reliability of predictions for high-probability active

TC periods.
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Figure 10: Reliability diagrams for the “Total (-RH)” scheme, which includes the shear
predictors, MJO PCs, Nino 3.4 SSTs and MDR SSTs but not relative humidity (RH) for a)
S-day, b) 10-day, c) 15-day, and d) 20-day forecasts. The blue line indicates the observed
frequency of an above-average normalized 5-day ACE period for each 5% forecast bin.
The orange line indicates a one-to-one ratio of predicted probability and observed
frequency representing a perfect model. The green line indicates climatological skill.
Vertical and horizontal dashed red lines indicate the climatological rate of active
normalized 5-day ACE periods in the North Atlantic. Gray bars indicate the number of
forecasts that fall into each 5% bin. (from Hansen et al. 2022)

4.7. Private sector forecasts

It is well known that a TC strike across an economic point of interest will drive a
chain of reactions across the global markets. These market reactions vary depending on
the intensity of the TC, the risk of inundation, and even the amount of rainfall.
Understanding these risks at longer lead times is always desired, which will require
improved numerical weather prediction (NWP) model forecasts of TCs at these long lead

times. At subseasonal forecast leads (i.e., forecast weeks 3+), private sector companies
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often rely on a combination of NWP forecasts and tropical wave-based statistical
forecasts of TC activity. While there have been incremental advances in NWP forecasts
beyond 10 days, the prediction of TC impacts is still not reliable. This unreliability has
resulted in little to no advancements in subseasonal outlooks of TC impacts across the
private sector.

In recent years, there has been more desire to utilize the full distribution of an
NWP ensemble suite. As the private sector industry gains knowledge about medium-
range to subseasonal predictions of TCs, the community is shifting away from
deterministic NWP forecasts and toward probabilistic forecasts. Questions often asked by
decision makers are, “What is the range of outcomes that could happen?” or “What is the
probability of wind speeds greater than 100 mph across this specific location?” As
agencies continue to increase the number of ensemble members in their forecast models
and improve the forecast skill beyond 7+ days, more private sector groups rely on

ensemble probabilistic guidance to hedge risk in whatever TC decision they must make.

5. Summary and conclusions

Progress has been made by the scientific community over the last four years to
better understand the sources of predictability and the modulation of TC activity at
subseasonal timescales. In particular, several recent publications have evaluated the
impact of the BSISO on TC activity over the WNP. There has also been significant
progress in the understanding of the impact of extratropical wave breaking on tropical
storm development.

The availability of large datasets of subseasonal forecasts (S2S and SubX) has

been an opportunity to better understand the capability of S2S models to simulate and
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predict the subseasonal variability of TCs. Guided by the observational studies, the model
diagnostics and comparisons have focused on predicting the MJO and its modulation of
TC activity. Most S2S models have difficulties predicting subseasonal TC activity
beyond a seasonal varying climatology, although the skill can be improved by post-
process calibration.

The improving availability and skill of subseasonal dynamical models has led to a
surge in the number of operational subseasonal forecasts of TCs over the past four years.
These forecasts are produced by both dynamical models and statistical methods. Given
the increasing skill of these forecasts and the ever-present demand for them, we are very

optimistic that these improvements will continue in the coming years.

Appendix A — Acronyms:

AEW African Easterly Wave
ABY ACE by Year
ACCESS-S Australian Community Climate Earth-System Simulator—Seasonal

ACCESS-GE2  Australian Community Climate Earth-System Simulator—Global

Ensemble version 2

ACE Accumulated Cyclone Energy

ATL Atlantic

AUS Australia

BoB Bay of Bengal

BoM Australian Bureau of Meteorology
BSISO Boreal Summer Intraseasonal Oscillation
BSS Brier Skill Score
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575

576

CAMb6

CESM2

CFS

CMA

CNR-ISAC

CNRM

CPC

CSU

DOD

ECCC

ECEPS

ECMWF

ENP

ENSO

ERW

ESPC

GEFSv12

GEOS-S2S8-2

GFDL

GloSea5

GMAO

GPI

3V

Community Atmospheric Model version 6
Community Earth System Model version 2

Climate Forecast System

China Meteorological Agency

Institute for Atmospheric Sciences and Climate, Italy
National Center for Meteorological Research, Météo-France
Climate Prediction Center

Colorado State University

Department of Defense

Environment and Climate Change Canada

ECMWF Ensemble Prediction System

European Center for Medium-range Weather Forecasts
Eastern North Pacific

El Nifio—Southern Oscillation

Equatorial Rossby Waves

Earth System Prediction Capability

Global Ensemble Forecast System version 12

Goddard Earth Observing System Subseasonal-to-Seasonal Prediction
System v2

Geophysical Fluid Dynamics Laboratory

Global Seasonal forecast system

Global Modeling and Assimilation Office

Genesis Potential Index
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GTH

HiRAM

HMCR

HSS

IFS

JAMSTEC

IMA

JTWC

KMA

KW

MDR

MetFr

MJO

MRG

MRGTD

NAO

NCEP

NHC

NI

NOAA

NWP

OMI

PC
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Global Tropical Hazards and Benefits Outlook
High Resolution Atmospheric Model
Hydro-Meteorological Centre of Russia

Heidke Skill Score

Integrated Forecasting System

Japan Agency for Marine-Earth Science and Technology
Japan Meteorological Agency

Joint Typhoon Warning Center

Korea Meteorological Agency

Kelvin Waves

Main Development Region

Meétéo-France

Madden—Julian Oscillation

Mixed Rossby—Gravity Waves

Mixed Rossby—Gravity Waves and Tropical Depressions
North Atlantic Oscillation

National Centers for Environmental Prediction
National Hurricane Center

North Indian Ocean

National Oceanic and Atmospheric Administration
Numerical Weather Prediction

OLR-only MJO Index

Principal Component



600 QBWO Quasi Bi-weekly Oscillation

601 RH Relative Humidity

602 RPSS Ranked Probability Skill Score

603 RWB Rossby Wave Breaking

604  S2S Subseasonal-to-seasonal

605 SEDS Symmetric Extreme Dependency Score
606 SIN South Indian Ocean

607  SPC Southern Pacific Ocean

608 SPEAR Seamless System for Prediction and Earth System Research
609  SST Sea Surface Temperature

610  SubX Subseasonal Experiment

611 T2F Time-to-Formation

612 T2H Time-to-Hurricane

613 TDF Track Density Function

614 TC Tropical Cyclone

615 TEHU Time to Ending Hurricane

616 TETS Time to Ending Tropical Storm

617 TS Tropical Storm

618 TUTT Tropical Upper Tropospheric Trough
619 UKMO U.K. Met Office

620 WACCM6 Whole Atmosphere Community Climate Model version 6
621 WMO World Meteorological Organization

622 WNP Western North Pacific



623

624

625

626

627

628

629

630

631

632

33

WS Weather Squadron

Acknowledgments. Schreck was supported by NOAA through the Cooperative Institute
for Satellite Earth System Studies under Cooperative Agreement NA19NES4320002.
Janiga acknowledges the support of the Chief of Naval Research through the NRL Base
Program PE 62435N. Camargo and Lee acknowledge support from the NASA MAP
program (80NSSC21K1495). Camargo also acknowledges support from NOAA
(NA220OAR4310610) and the Vetlesen Foundation. Wang was supported by the National

Science Foundation under Grant No. 2116804



633

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

34

References

Barton, N., and Coauthors, 2020: The Navy’s Earth System Prediction Capability: A New
Global Coupled Atmosphere-Ocean-Sea Ice Prediction System Designed for
Daily to Subseasonal Forecasting. Earth and Space Science, 8, €2020EA001199,
https://doi.org/10.1029/2020EA001199.

Bell, G. D., and Coauthors, 2000: Climate Assessment for 1999. Bull. Amer. Meteor.
Soc., 81, 1328, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO:2.

BoM, 2020: Bureau of Meteorology ACCESS-S Multi-Week Tropical Cyclone Guidance:
Extended Skill. http://access-
s.clide.cloud/files/guidance _documents/About_weekly ACCESS-
S_TC_forecasts_extended_skill.pdf (Accessed September 22, 2022).

Camargo, S. J., and S. E. Zebiak, 2002: Improving the Detection and Tracking of
Tropical Cyclones in Atmospheric General Circulation Models. Weather and
Forecasting, 17, 1152-1162, https://doi.org/10.1175/1520-
0434(2002)017<1152:ITDATO>2.0.CO;2.

Camargo, S. J., and Coauthors, 2019: Tropical Cyclone Prediction on Subseasonal Time-
Scales. Tropical Cyclone Research and Review, 8, 16,
https://doi.org/10.6057/2019TCRR03.04.

Camargo, S.J., F. Vitart, C.-Y. Lee, and M. K. Tippett, 2021: Skill, Predictability, and
Cluster Analysis of Atlantic Tropical Storms and Hurricanes in the ECMWF
Monthly Forecasts. Monthly Weather Review, 149, 3781-3802,
https://doi.org/10.1175/MWR-D-21-0075.1.

Camp, J., and Coauthors, 2018: Skilful multiweek tropical cyclone prediction in
ACCESS-S1 and the role of the MJO. Quarterly Journal of the Royal
Meteorological Society, 144, 1337-1351,_https://doi.org/10.1002/qj.3260.

Camp, J, Gregpry P, Marshall AG, Wheeler MC. (2023a) Multi-week tropical cyclone
prediction for the Southern Hemisphere in ACCESS-S2: maintaining operational
skill and continuity of service. In revision.

Camp, J, Gregpry P, Marshall AG, Wheeler MC. (2023b) Skilful multi-week predictions
of tropical cyclone frequency in the Northern Hemisphere using ACCESS-S2. In
revision.

Chang, C.-C., and Z. Wang, 2018: Relative Impacts of Local and Remote Forcing on
Tropical Cyclone Frequency in Numerical Model Simulations. Geophysical
Research Letters, 45, 7843—7850, https://doi.org/10.1029/2018GL078606.

Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The joint typhoon
warning center tropical cyclone best-tracks, 1945-2000. Naval Research
Laboratory, Reference Number NRL/MR/7540-02-16, 22.

Domeisen, D. I. V., and Coauthors, 2022: Advances in the Subseasonal Prediction of
Extreme Events: Relevant Case Studies across the Globe. Bulletin of the
American Meteorological Society, 103, E1473—-E1501,
https://doi.org/10.1175/BAMS-D-20-0221.1.

van den Dool, H., E. Becker, L.-C. Chen, and Q. Zhang, 2017: The Probability Anomaly
Correlation and Calibration of Probabilistic Forecasts. Weather and Forecasting,
32, 199-206, https://doi.org/10.1175/WAF-D-16-0115.1.



https://doi.org/10.1029/2020EA001199
https://doi.org/10.1029/2020EA001199
https://doi.org/10.1029/2020EA001199
https://doi.org/10.1175/1520-0477(2000)81%5bs1:CAF%5d2.0.CO;2
http://access-s.clide.cloud/files/guidance_documents/About_weekly_ACCESS-S_TC_forecasts_extended_skill.pdf
http://access-s.clide.cloud/files/guidance_documents/About_weekly_ACCESS-S_TC_forecasts_extended_skill.pdf
http://access-s.clide.cloud/files/guidance_documents/About_weekly_ACCESS-S_TC_forecasts_extended_skill.pdf
http://access-s.clide.cloud/files/guidance_documents/About_weekly_ACCESS-S_TC_forecasts_extended_skill.pdf
https://doi.org/10.1175/1520-0434(2002)017%3c1152:ITDATO%3e2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017%3c1152:ITDATO%3e2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017%3c1152:ITDATO%3e2.0.CO;2
https://doi.org/10.6057/2019TCRR03.04
https://doi.org/10.6057/2019TCRR03.04
https://doi.org/10.6057/2019TCRR03.04
https://doi.org/10.1175/MWR-D-21-0075.1
https://doi.org/10.1175/MWR-D-21-0075.1
https://doi.org/10.1175/MWR-D-21-0075.1
https://doi.org/10.1002/qj.3260
https://doi.org/10.1002/qj.3260
https://doi.org/10.1029/2018GL078606
https://doi.org/10.1029/2018GL078606
https://doi.org/10.1175/BAMS-D-20-0221.1
https://doi.org/10.1175/BAMS-D-20-0221.1
https://doi.org/10.1175/BAMS-D-20-0221.1
https://doi.org/10.1175/WAF-D-16-0115.1
https://doi.org/10.1175/WAF-D-16-0115.1

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

33

Elsberry, R. L., H.-C. Tsai, C. Capalbo, W.-C. Chin, and T. P. Marchok, 2022:
Opportunity for Tropical Cyclone Lifecycle Predictions from Pre-Formation to
Ending Stage: Eastern North Pacific 2021 Season. Atmosphere, 13, 1008,
https://doi.org/10.3390/atmos13071008.

Fowler, M. D., and M. S. Pritchard, 2020: Regional MJO Modulation of Northwest
Pacific Tropical Cyclones Driven by Multiple Transient Controls. Geophysical
Research Letters, 47, €2020GL087148, https://doi.org/10.1029/2020GL087148.

Gao, K., J. Chen, L. Harris, Y. Sun, and S. Lin, 2019: Skillful Prediction of Monthly
Major Hurricane Activity in the North Atlantic with Two-way Nesting. Geophys.
Res. Lett., 46, 9222-9230, https://doi.org/10.1029/2019GL083526.

Gregory, P., F. Vitart, R. Rivett, A. Brown, and Y. Kuleshov, 2020: Subseasonal
Forecasts of Tropical Cyclones in the Southern Hemisphere Using a Dynamical
Multimodel Ensemble. Weather and Forecasting, 35, 1817-1829,
https://doi.org/10.1175/WAF-D-20-0050.1.

Gregory, P. A., J. Camp, K. Bigelow, and A. Brown, 2019: Sub-seasonal predictability of
the 2017-2018 Southern Hemisphere tropical cyclone season. Atmospheric
Science Letters, 20, €886, https://doi.org/10.1002/as].886.

Hansen, K. A., S. J. Majumdar, and B. P. Kirtman, 2020: Identifying Subseasonal
Variability Relevant to Atlantic Tropical Cyclone Activity. Weather and
Forecasting, 35, 2001-2024, https://doi.org/10.1175/WAF-D-19-0260.1.

, , , and M. A. Janiga, 2022: Testing Vertical Wind Shear and Nonlinear
MJO-ENSO Interactions as Predictors for Subseasonal Atlantic Tropical Cyclone
Forecasts. Weather and Forecasting, 37, 267281, https://doi.org/10.1175/WAF-
D-21-0107.1.

Hudson et. al., D., 2017: ACCESS-S1 The new Bureau of Meteorology multi-week to
seasonal prediction system. JSHESS, 67, 132—159,
https://doi.org/10.22499/3.6703.001.

Jones, J. J., M. M. Bell, and P. J. Klotzbach, 2020: Tropical and Subtropical North
Atlantic Vertical Wind Shear and Seasonal Tropical Cyclone Activity. Journal of
Climate, 33, 5413-5426, https://doi.org/10.1175/JCLI-D-19-0474.1.

, , ,and E. A. Barnes, 2022: Wintertime Rossby Wave Breaking
Persistence in Extended-Range Seasonal Forecasts of Atlantic Tropical Cyclone
Activity. Journal of Climate, 35, 2133-2147,_https://doi.org/10.1175/JCLI-D-21-
0213.1.

Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M.
Weickmann, and M. J. Ventrice, 2014: A Comparison of OLR and Circulation-
Based Indices for Tracking the MJO. Mon. Wea. Rev., 142, 16971715,
https://doi.org/10.1175/MWR-D-13-00301.1.

Kolstad, E. W., 2021: Prediction and precursors of Idai and 38 other tropical cyclones
and storms in the Mozambique Channel. Quarterly Journal of the Royal
Meteorological Society, 147, 45-57, https://doi.org/10.1002/qj.3903.

Landu, K., R. Goyal, and B. S. Keshav, 2020: Role of multiple equatorial waves on
cyclogenesis over Bay of Bengal. Clim Dyn, 54, 2287-2296,
https://doi.org/10.1007/s00382-019-05112-5.



https://doi.org/10.3390/atmos13071008
https://doi.org/10.3390/atmos13071008
https://doi.org/10.3390/atmos13071008
https://doi.org/10.1029/2020GL087148
https://doi.org/10.1029/2020GL087148
https://doi.org/10.1029/2019GL083526
https://doi.org/10.1029/2019GL083526
https://doi.org/10.1175/WAF-D-20-0050.1
https://doi.org/10.1175/WAF-D-20-0050.1
https://doi.org/10.1175/WAF-D-20-0050.1
https://doi.org/10.1002/asl.886
https://doi.org/10.1002/asl.886
https://doi.org/10.1175/WAF-D-19-0260.1
https://doi.org/10.1175/WAF-D-19-0260.1
https://doi.org/10.1175/WAF-D-21-0107.1
https://doi.org/10.1175/WAF-D-21-0107.1
https://doi.org/10.1175/WAF-D-21-0107.1
https://doi.org/10.22499/3.6703.001
https://doi.org/10.22499/3.6703.001
https://doi.org/10.22499/3.6703.001
https://doi.org/10.1175/JCLI-D-19-0474.1
https://doi.org/10.1175/JCLI-D-19-0474.1
https://doi.org/10.1175/JCLI-D-21-0213.1
https://doi.org/10.1175/JCLI-D-21-0213.1
https://doi.org/10.1175/JCLI-D-21-0213.1
https://doi.org/10.1175/MWR-D-13-00301.1
https://doi.org/10.1002/qj.3903
https://doi.org/10.1007/s00382-019-05112-5
https://doi.org/10.1007/s00382-019-05112-5
https://doi.org/10.1007/s00382-019-05112-5

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

30

Lee, C.-Y., S. J. Camargo, F. Vitart, A. H. Sobel, and M. K. Tippett, 2018: Subseasonal
Tropical Cyclone Genesis Prediction and MJO in the S2S Dataset. Wea.
Forecasting, 33, 967-988, https://doi.org/10.1175/WAF-D-17-0165.1.

, , , , J. Camp, S. Wang, M. K. Tippett, and Q. Yang, 2020:
Subseasonal Predictions of Tropical Cyclone Occurrence and ACE in the S2S
Dataset. Weather and Forecasting, 35, 921-938, https://doi.org/10.1175/WAF-D-
19-0217.1.

Li, W., Z. Wang, G. Zhang, M. S. Peng, S. G. Benjamin, and M. Zhao, 2018:
Subseasonal Variability of Rossby Wave Breaking and Impacts on Tropical
Cyclones during the North Atlantic Warm Season. Journal of Climate, 31, 9679—
9695, https://doi.org/10.1175/JCLI-D-17-0880.1.

Ling, Z., Y. Wang, G. Wang, and H. He, 2020: Impact of Intraseasonal Oscillations on
the Activity of Tropical Cyclones in Summer Over the South China Sea: Nonlocal
Tropical Cyclones. Frontiers in Earth Science, 8,
https://doi.org/10.3389/feart.2020.609776.

Long, L. N., N. Novella, and J. Gottschalck, 2020: The New Probabilistic Global Tropics
Hazards Outlook at CPC: Weeks 2 and 3. Science and Technology Infusion
Climate Bulletin, 45th NOAA Annual Climate Diagnostics and Prediction
Workshop, Virtual Online, NOAA’s National Weather Service.

MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5
(GloSea5): a high-resolution seasonal forecast system. Quarterly Journal of the
Royal Meteorological Society, 141, 1072—1084, https://doi.org/10.1002/9j.2396.

Maier-Gerber, M., A. H. Fink, M. Riemer, E. Schoemer, C. Fischer, and B. Schulz, 2021:
Statistical-Dynamical Forecasting of Subseasonal North Atlantic Tropical
Cyclone Occurrence. Weather and Forecasting, 36, 2127-2142,
https://doi.org/10.1175/WAF-D-21-0020.1.

Molod, A., and Coauthors, 2020: GEOS-S2S Version 2: The GMAO High-Resolution
Coupled Model and Assimilation System for Seasonal Prediction. Journal of
Geophysical Research: Atmospheres, 125, €2019JD031767,
https://doi.org/10.1029/2019JD031767.

Nakano, M., F. Vitart, and K. Kikuchi, 2021: Impact of the Boreal Summer Intraseasonal
Oscillation on Typhoon Tracks in the Western North Pacific and the Prediction
Skill of the ECMWF Model. Geophysical Research Letters, 48, €2020GL091505,
https://doi.org/10.1029/2020GL091505.

Papin, P. P., 2017: Variations in potential vorticity streamer activity: Development
pathways, environmental impacts, and links to tropical cyclone activity in the
North Atlantic basin. University at Albany, State University of New York, 225
pp-

——, L. F. Bosart, and R. D. Torn, 2020: A Feature-Based Approach to Classifying
Summertime Potential Vorticity Streamers Linked to Rossby Wave Breaking in
the North Atlantic Basin. Journal of Climate, 33, 5953-5969,
https://doi.org/10.1175/JCLI-D-19-0812.1.

Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A Multimodel
Subseasonal Prediction Experiment. Bulletin of the American Meteorological
Society, 100, 2043-2060,_https://doi.org/10.1175/BAMS-D-18-0270.1.



https://doi.org/10.1175/WAF-D-17-0165.1
https://doi.org/10.1175/WAF-D-17-0165.1
https://doi.org/10.1175/WAF-D-19-0217.1
https://doi.org/10.1175/WAF-D-19-0217.1
https://doi.org/10.1175/WAF-D-19-0217.1
https://doi.org/10.1175/JCLI-D-17-0880.1
https://doi.org/10.1175/JCLI-D-17-0880.1
https://doi.org/10.3389/feart.2020.609776
https://doi.org/10.3389/feart.2020.609776
https://doi.org/10.3389/feart.2020.609776
https://doi.org/10.1002/qj.2396
https://doi.org/10.1002/qj.2396
https://doi.org/10.1175/WAF-D-21-0020.1
https://doi.org/10.1175/WAF-D-21-0020.1
https://doi.org/10.1175/WAF-D-21-0020.1
https://doi.org/10.1029/2019JD031767
https://doi.org/10.1029/2019JD031767
https://doi.org/10.1029/2019JD031767
https://doi.org/10.1029/2020GL091505
https://doi.org/10.1029/2020GL091505
https://doi.org/10.1029/2020GL091505
https://doi.org/10.1175/JCLI-D-19-0812.1
https://doi.org/10.1175/JCLI-D-19-0812.1
https://doi.org/10.1175/JCLI-D-19-0812.1
https://doi.org/10.1175/BAMS-D-18-0270.1
https://doi.org/10.1175/BAMS-D-18-0270.1

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

3/

Postel, G. A., and M. H. Hitchman, 1999: A Climatology of Rossby Wave Breaking
along the Subtropical Tropopause. Journal of the Atmospheric Sciences, 56, 359—
373, https://doi.org/10.1175/1520-0469(1999)056<0359:ACORWB>2.0.CO:2.

Qian, Y., P.-C. Hsu, H. Murakami, B. Xiang, and L. You, 2020: A Hybrid Dynamical-
Statistical Model for Advancing Subseasonal Tropical Cyclone Prediction Over
the Western North Pacific. Geophysical Research Letters, 47, €2020GL090095,
https://doi.org/10.1029/2020GL090095.

Richter, J. H., and Coauthors, 2022: Subseasonal Earth System Prediction with CESM2.
Weather and Forecasting, 37, 797-815, https://doi.org/10.1175/WAF-D-21-
0163.1.

Takemura, K., and H. Mukougawa, 2021: Tropical Cyclogenesis Triggered by Rossby
Wave Breaking over the Western North Pacific. SOLA, 17, 164-169,
https://doi.org/10.2151/s0la.2021-029.

Vitart, F., 2017: Madden—Julian Oscillation prediction and teleconnections in the S2S
database. Quarterly Journal of the Royal Meteorological Society, 143, 2210—
2220, https://doi.org/10.1002/q1.3079.

,and T. N. Stockdale, 2001: Seasonal Forecasting of Tropical Storms Using
Coupled GCM Integrations. Monthly Weather Review, 129, 2521-2537,
https://doi.org/10.1175/1520-0493(2001)129<2521:SFOTSU>2.0.CO:2.

Vitart, F., A. Leroy, and M. C. Wheeler, 2010: A Comparison of Dynamical and
Statistical Predictions of Weekly Tropical Cyclone Activity in the Southern
Hemisphere. Mon. Wea. Rev., 138, 3671-3682,
https://doi.org/10.1175/2010MWR3343.1.

Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project
Database. Bulletin of the American Meteorological Society, 98, 163—173,
https://doi.org/10.1175/BAMS-D-16-0017.1.

Wang, S., A. H. Sobel, M. K. Tippett, and F. Vitart, 2019: Prediction and predictability of
tropical intraseasonal convection: seasonal dependence and the Maritime
Continent prediction barrier. Clim Dyn, 52, 6015-6031,
https://doi.org/10.1007/s00382-018-4492-9.

Wang, Z., G. Zhang, T. Dunkerton, F.-F. Jin, 2020: Summertime stationary waves
integrate tropical and extratropical impacts on tropical cyclone activity. PNAS,
117, 22720-22726, https://doi.org/10.1073/pnas.2010547117.

Wedd, R., and Coauthors, 2022: ACCESS-S2: the upgraded Bureau of Meteorology
multi-week to seasonal prediction system. JSHESS, 72, 218-242,
https://doi.org/10.1071/ES22026.

World Meteorological Organization (WMO), 2021: State of the Global Climate 2021 :
WMO Provisional report. WMO, 47 p. pp.

Xiang, B., and Coauthors, 2022a: S2S Prediction in GFDL SPEAR: MJO Diversity and
Teleconnections. Bulletin of the American Meteorological Society, 103, E463—
E484, https://doi.org/10.1175/BAMS-D-21-0124.1.

——, B. Wang, W. Zhang, L. Harris, T. L. Delworth, G. Zhang, and W. F. Cooke,
2022b: Subseasonal controls of U.S. landfalling tropical cyclones. npj Clim Atmos
Sci, 5, 1-9, https://doi.org/10.1038/s41612-022-00289-9.



https://doi.org/10.1175/1520-0469(1999)056%3c0359:ACORWB%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(1999)056%3c0359:ACORWB%3e2.0.CO;2
https://doi.org/10.1029/2020GL090095
https://doi.org/10.1175/WAF-D-21-0163.1
https://doi.org/10.1175/WAF-D-21-0163.1
https://doi.org/10.1175/WAF-D-21-0163.1
https://doi.org/10.2151/sola.2021-029
https://doi.org/10.2151/sola.2021-029
https://doi.org/10.2151/sola.2021-029
https://doi.org/10.1002/qj.3079
https://doi.org/10.1002/qj.3079
https://doi.org/10.1175/1520-0493(2001)129%3c2521:SFOTSU%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129%3c2521:SFOTSU%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129%3c2521:SFOTSU%3e2.0.CO;2
https://doi.org/10.1175/2010MWR3343.1
https://doi.org/10.1175/2010MWR3343.1
https://doi.org/10.1175/2010MWR3343.1
https://doi.org/10.1175/BAMS-D-16-0017.1
https://doi.org/10.1175/BAMS-D-16-0017.1
https://doi.org/10.1175/BAMS-D-16-0017.1
https://doi.org/10.1007/s00382-018-4492-9
https://doi.org/10.1007/s00382-018-4492-9
https://doi.org/10.1007/s00382-018-4492-9
https://doi.org/10.1073/pnas.2010547117
https://doi.org/10.1071/ES22026
https://doi.org/10.1175/BAMS-D-21-0124.1
https://doi.org/10.1175/BAMS-D-21-0124.1
https://doi.org/10.1038/s41612-022-00289-9
https://doi.org/10.1038/s41612-022-00289-9

810
811
812
813
814
815
816
817
818
819
820
821
822

3%

Zhang, G., Z. Wang, T. J. Dunkerton, M. S. Peng, and G. Magnusdottir, 2016:
Extratropical Impacts on Atlantic Tropical Cyclone Activity. J. Atmos. Sci., 73,
1401-1418, https://doi.org/10.1175/JAS-D-15-0154.1.

——,——, M. S. Peng, and G. Magnusdottir, 2017: Characteristics and Impacts of
Extratropical Rossby Wave Breaking during the Atlantic Hurricane Season.
Journal of Climate, 30, 23632379, https://doi.org/10.1175/JCLI-D-16-0425.1.

, and Coauthors, 2021: Seasonal predictability of baroclinic wave activity. npj Clim
Atmos Sci, 4, 1-11, https://doi.org/10.1038/s41612-021-00209-3.

Zhao, H., X. Jiang, L. Wu, and P. J. Klotzbach, 2019: Multi-scale interactions of

equatorial waves associated with tropical cyclogenesis over the western North
Pacific. Clim Dyn, 52, 3023-3038, https://doi.org/10.1007/s00382-018-4307-z.



https://doi.org/10.1175/JAS-D-15-0154.1
https://doi.org/10.1175/JAS-D-15-0154.1
https://doi.org/10.1175/JCLI-D-16-0425.1
https://doi.org/10.1175/JCLI-D-16-0425.1
https://doi.org/10.1038/s41612-021-00209-3
https://doi.org/10.1038/s41612-021-00209-3
https://doi.org/10.1007/s00382-018-4307-z
https://doi.org/10.1007/s00382-018-4307-z

Wind Speed [m/s]

GPI Decombposition

Region 1: 100°E-120°E

(@

I oricity [ Humidity Potential Intensity I Shear (I fulGP ! |

1 2 3 4 5 6 7 8

Wind Speed [m/s]

4 5 6 7 8
MJO Phase [OMI] MJO Phase [OMI]



Top 33° ARY Shear Anomaly
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Total Genesis Number
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a) CFS — Week 1 b} CFS — Week 2 =) GF5 — Week I
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Weekly mean Tropical Storm Strike Probability. Date: 20220901 0 UTC  t+(264-432)
Probaoiny or a 1 5 passing wiimin suukm radius
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(a) ENDING-HURRICANE LINDA TRACK

(b) PRE-HURRICANE LINDA TRACK
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ACCESS-S1: Forecast tropical storm activity (existing and forming storms) in Australian Region
Initialised date NMANTIADIND . A lalind lhabiasm AT NANTT
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Initialised date 20210330: Valid between 20210407 - 20210413. Lead time: 14 days
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