
Journal Pre-proof

Advances in Tropical Cyclone Prediction on Subseasonal Time Scales during 2019–
2022

Carl J. Schreck, III, Frédéric Vitart, Suzana J. Camargo, Joanne Camp, James
Darlow, Russell Elsberry, Jon Gottschalck, Paul Gregory, Kurt Hansen, Justyn
Jackson, Matthew Janiga, Philip J. Klotzbach, Chia-Ying Lee, Lindsey Long, Masuo
Nakano, Kazuto Takemura, Yuhei Takaya, Michael J. Ventrice, Zhuo Wang

PII: S2225-6032(23)00025-5

DOI: https://doi.org/10.1016/j.tcrr.2023.06.004

Reference: TCRR 96

To appear in: Tropical Cyclone Research and Review

Please cite this article as: Schreck III., C.J., Vitart, F., Camargo, S.J., Camp, J., Darlow, J., Elsberry,
R., Gottschalck, J., Gregory, P., Hansen, K., Jackson, J., Janiga, M., Klotzbach, P.J., Lee, C.-Y., Long,
L., Nakano, M., Takemura, K., Takaya, Y., Ventrice, M.J., Wang, Z., Advances in Tropical Cyclone
Prediction on Subseasonal Time Scales during 2019–2022, Tropical Cyclone Research and Review,
https://doi.org/10.1016/j.tcrr.2023.06.004.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2023 The Shanghai Typhoon Institute of China Meteorological Administration. Publishing services by
Elsevier B.V. on behalf of KeAi Communication Co. Ltd.

https://doi.org/10.1016/j.tcrr.2023.06.004
https://doi.org/10.1016/j.tcrr.2023.06.004


1 

Advances in Tropical Cyclone Prediction on 1 

Subseasonal Time Scales during 2019–2022 2 
 3 

Carl J. Schreck III*1, Frédéric Vitart2,  4 
Suzana J. Camargo3, Joanne Camp4, James Darlow5, Russell Elsberry6,  5 

Jon Gottschalck7, Paul Gregory4, Kurt Hansen8, Justyn Jackson9,  6 
Matthew Janiga10, Philip J. Klotzbach11, Chia-Ying Lee3,  7 

Lindsey Long7, 12, Masuo Nakano13, Kazuto Takemura14, Yuhei Takaya15,  8 
Michael J. Ventrice16, Zhuo Wang17 9 

 10 
1Cooperative Institute for Satellite Earth System Studies,  11 

North Carolina State University, USA 12 
2 European Centre for Medium-Range Weather Forecasts, UK 13 

3 Lamont-Doherty Earth Observatory, Columbia University, USA 14 
4Bureau of Meteorology, Australia 15 

5Joint Typhoon Warning Center, USA 16 
6Naval Postgraduate School, USA 17 

7Climate Prediction Center, NOAA, USA 18 
8National Research Council, USA 19 

9U.S. Air Force, USA 20 
10Naval Research Laboratory, USA 21 
11Colorado State University, USA 22 

12ERT, Inc., USA 23 
13Japan Agency for Marine-Earth Science and Technology, Japan 24 

14Climate Prediction Division, Japan Meteorological Agency, Japan 25 
15Meteorological Research Institute, Japan Meteorological Agency, Japan 26 

16DRW Holdings, USA 27 
17University of Illinois at Urbana-Champaign, USA 28 

 29 
 30 
 31 

32 

                                                 
* Corresponding author: Carl J. Schreck, III, E-mail: cjschrec@ncsu.edu  
 

Jo
urn

al 
Pre-

pro
of

mailto:cjschrec@ncsu.edu


2 

Abstract 33 

This review describes advances in understanding and forecasting tropical cyclone (TC) 34 

subseasonal variability during the past four years. A large effort by the scientific 35 

community has been in understanding the sources of predictability at subseasonal 36 

timescales beyond the well-known modulation of TC activity by the Madden-Julian 37 

Oscillation (MJO). In particular, the strong modulation of TC activity over the western 38 

North Pacific by the Boreal Summer Intra-Seasonal Oscillation (BSISO) has been 39 

documented. Progress has also been realized in understanding the role of tropical-40 

extratropical interactions in improving subseasonal forecasts. In addition, several recent 41 

publications have shown that extratropical wave breaking may have a role in the genesis 42 

and development of TCs. Analyses of multi-model ensemble data sets such as the 43 

Subseasonal to Seasonal (S2S) and Subseasonal Experiment (SubX) have shown that the 44 

skill of S2S models in predicting the genesis of TCs varies strongly among models and 45 

regions but is often tied to their ability to simulate the MJO and its impacts. The skill in 46 

select models has led to an increase over the past four years in the number of forecasting 47 

centers issuing subseasonal TC forecasts using various techniques (statistical, statistical-48 

dynamical and dynamical). More extensive verification studies have been published over 49 

the last four years, but often only for the North Atlantic and eastern North Pacific.  50 

 51 

Keywords: tropical cyclones, subseasonal, forecasts, hurricanes, MJO 52 
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 54 

1.    Introduction  55 

Camargo et al. (2019) reviewed the significant progress in our understanding and 56 

prediction of subseasonal tropical cyclone (TC) activity during 2015–2018. The current 57 

review provides a similar summary for the subsequent four years. A great advance in 58 

predicting subseasonal TC activity in the last four years has been the maturation of the 59 

Subseasonal Experiment (SubX; Pegion et al. 2019) and the World Meteorological 60 

Organization (WMO) Subseasonal-to-Seasonal (S2S; Vitart et al. 2017) model 61 

intercomparison projects. These models have produced increasingly skillful Madden–62 

Julian Oscillation (MJO) forecasts beyond three weeks. Hybrid statistical–dynamical 63 

models have been created to leverage these MJO forecasts and the known relationships 64 

between the MJO and TC activity (e.g., Hansen et al. 2022). Some dynamical models can 65 

even produce skillful forecasts of subseasonal TC activity with minimal post-processing 66 

(Camp et al. 2018). The increasing skill of these models has empowered several 67 

operational forecast centers to produce experimental and even operational TC forecasts 68 

for week 3 (see section 4). 69 

2.    Modulation of TC activity by subseasonal modes of 70 
variability 71 

2.1 Impact of tropical waves on tropical cyclone activity 72 

In the four years since Camargo et al. (2019), many studies have focused on the 73 

sub-basin scale and elucidating how the MJO/Boreal Season Intraseasonal Oscillation 74 

(BSISO) modulates TC activity in tandem with other shorter period phenomena (e.g., 75 
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tropical waves). Fowler and Pritchard (2020) showed that the South China Sea (100°E–76 

120°E) is the most sensitive region in the western North Pacific (WNP) to the 77 

MJO/BSISO. In this region, the favorable decrease in vertical wind shear coincides with 78 

an increase in mid-level moisture. On the other hand, the eastern WNP (160°E-180°) is 79 

less sensitive to the MJO/BSISO because these factors are out of phase with one another: 80 

the increase in moisture precedes the decrease in vertical wind shear (Fig. 1). Along with 81 

the MJO/BSISO and the quasi-biweekly oscillation (QBWO), other modes of variability 82 

such as equatorial Rossby waves (ERW), Kelvin waves (KW), and the combination of 83 

Mixed Rossby-gravity waves (MRG) and tropical depression-type disturbances 84 

(collectively MRGTD) also contribute to TC genesis in the Bay of Bengal (BoB; Landu 85 

et al. 2020) and the WNP (Zhao et al. 2019). Landu et al. (2020) showed that during 86 

simultaneous ERW and MJO events, more TCs formed in the BoB than during any other 87 

combination of waves. ERW increased low-level vorticity, and the MJO increased 88 

moisture. On the other hand, simultaneous MRGTD and KW were associated with fewer 89 

BoB TCs than any other combination of waves. The MRGTD reduced vertical shear and 90 

contributed to drying at mid-levels, and KW decreased low-level vorticity, which results 91 

in fewer TCs in the BoB. 92 

Understanding how TC tracks and thus landfall risk are modulated by the 93 

MJO/BSISO could potentially lead to better TC risk decision-making. In the WNP, TCs 94 

tend to move northwestward during the enhanced convective phases of the MJO/BSISO 95 

and QBWO, but during the suppressed convective phases recurving storms are more 96 

common (Wang et al. 2019; Ling et al. 2020; Nakano et al. 2021). A westward extension 97 

of the WNP subtropical high (Ling et al. 2020) or eastward extension of the monsoon 98 
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trough (Wang et al. 2019) lead to more northwestward-moving TCs during the 99 

convective phases. 100 

 101 

 102 

Figure 1: (a, c) Average 850-hPa (blue) and 250-hPa (green) winds for each MJO 103 
phase; dashed lines represent the Phase 1–8 mean. (b, d) Genesis Potential Index (GPI) 104 
decomposition for each MJO phase, defined using the OLR-only MJO Index (OMI, 105 
Kiladis et al., 2014). (from Fowler and Pritchard 2020) 106 

In addition to these sub-basin studies, significant progress has been made in 107 

examining nonlinear interactions between the MJO and the El Niño Southern Oscillation 108 

(ENSO). For example, Atlantic TC activity generally increases during La Niña episodes. 109 

However, Hansen et al. (2020) found that the most favorable MJO phase for Atlantic TC 110 

activity also shifts with the ENSO state. During neutral ENSO states, MJO phases 1 and 111 

2 were associated with the highest level of TC activity in the Atlantic. During strong La 112 

Niña states, MJO phases 4 and 5 were most likely to have above-average accumulated 113 
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cyclone energy (ACE; Bell et al. 2000). To investigate other potential factors that 114 

influence subseasonal TC activity, Hansen et al. (2020) developed a compositing 115 

technique that isolated subseasonal signals of environmental conditions in association 116 

with TC activity, which were referred to as ACE By Year (ABY). The most important 117 

predictors of enhanced TC activity were negative vertical wind shear anomalies in the 118 

North Atlantic Main Development Region (MDR), and positive vertical shear anomalies 119 

in the subtropical North Atlantic (Fig. 2). The vertical shear pattern associated with MJO 120 

phases 1 and 2 was similar to, but distinct from, the shear pattern in the ABY composite. 121 

Both nonlinear MJO/ENSO interactions and the subseasonal vertical shear signals appear 122 

to be linked to potential vorticity streamers, which suggests mid-latitude interactions may 123 

contribute to a significant portion of the subseasonal variability of North Atlantic TC 124 

activity (Hansen et al. 2020). 125 

2.2. Impact of extratropical wave breaking on tropical cyclones 126 

Several recent studies (Zhang et al. 2016, 2017; Li et al. 2018; Papin 2017; Papin 127 

et al. 2020; Jones et al. 2020) demonstrated that occurrence of extratropical Rossby wave 128 

breaking (RWB) events tend to reduce TC activity on subseasonal and longer time scales 129 

through larger vertical wind shear and mid-tropospheric dryness. Using semi-idealized 130 

numerical model simulations, Chang and Wang (2018) showed that these negative 131 

extratropical impacts on Atlantic TC activity may exceed the positive impacts of local 132 

sea-surface temperature (SST) anomalies in some years. Jones et al. (2022) showed that 133 

the dynamical impacts of RWB on vertical wind shear are predictable through the link 134 

between the North Atlantic Oscillation (NAO) and the RWB event. Thus, including such 135 

dynamical impacts may improve seasonal TC predictions. Zhang et al. (2021) analyzed a 136 
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large ensemble of climate simulations forced by observed SSTs and demonstrated that 137 

seasonal variations of RWB events are potentially predictable owing to SST forcing in 138 

both the tropics and extratropics. 139 

 140 

Figure 2: Vertical wind shear anomalies associated with subseasonal active TC periods 141 
in the North Atlantic using the ABY composite technique (from Hansen et al. 2020). 142 

The tropical and extratropical impacts on TC activity can be integrated in the 143 

framework of summertime stationary waves. In particular, tropical upper-tropospheric 144 

troughs (TUTTs), interpreted here as stationary waves, are the preferred regions of RWB 145 

(e.g., Postel and Hitchman 1999), and become the regions of active interaction between 146 

the tropics and extratropics. These TUTTs are subject to the modulation by diabatic 147 

heating, which leads to variability of the North Pacific TUTT and the North Atlantic 148 

TUTT. This variability of large-scale environmental conditions thus contributes to the 149 
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variability of TC activity (Fig. 3). In addition, the anti-correlation of TUTTs between the 150 

North Atlantic and North Pacific leads to the TC activities in the two basins tending to 151 

compensate each other. Thus, the Northern Hemisphere TC activity may be less variable 152 

than it would be if these two TUTTs were independent.  153 

 154 

 155 

Figure 3: Composites of tropical cyclone track density function (TDF, number of TCs per 156 
month within a 10°×10° grid box) based on (a) the North Atlantic TUTT index and (b) 157 
the North Pacific TUTT index. Dashed contours depict anomalies exceeding the 95% 158 
confidence level. The TUTT index is defined based on the equatorward extension of 159 
upper-level westerly flow over a subtropical ocean (adapted from Wang et al. 2020). 160 

While most recent studies have focused on RWB and North Atlantic TC activity, 161 

Takemura and Mukougawa (2021) investigated tropical cyclogenesis over the WNP 162 

triggered by RWB to the east of the Asian coast. A composite observational analysis 163 

indicated that approximately 55% of the detected RWB events were accompanied by the 164 

genesis and development of TCs to the southwest of the wave breaking center (Fig. 4). A 165 
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RWB event leads to an intrusion of the upper-level positive potential vorticity toward the 166 

southwest and consequently enhanced convection over the subtropical WNP. This 167 

enhanced convection is a favorable condition for TC genesis and development. It is 168 

noteworthy that Takemura and Mukougawa (2021) showed that no TC genesis occurred 169 

after the peak day of a RWB event. 170 

 171 

 172 

Figure 4: (a) Daily time series for the total numbers of TCs (black line; right axis) and 173 
TC genesis (gray bars; left axis) detected in 24 RWB cases during a period from 10 days 174 
before (day −10) to 10 days after (day +10) the peaks of RWB. (b) Scatter diagram 175 
between area-averaged monthly RWB frequency over 25°N–45°N, 140°E–180° and the 176 
monthly numbers of TCs detected from 15°N to 45°N and from 120°E to 180°E in July 177 
and August during the period from 1958 to 2018. (from Takemura and Mukougawa 178 
2021). 179 

3.    Simulation of subseasonal TC activity in S2S and SubX 180 
models 181 

3.1 Model description 182 

Research on subseasonal-to-seasonal prediction of TCs has been accelerated by 183 

the maturation of multi-model datasets. There have been expansions and updates to the 184 

WMO S2S (Vitart et al. 2017) and the SubX (contains only North American models; 185 

Pegion et al. 2019) datasets. There are also new global model simulations and 186 
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10 

improvements in global models that can potentially lead to advances in subseasonal TC 187 

predictions. Some examples of these models are the GFDL SPEAR global coupled model 188 

(Xiang et al. 2022a), the new version of the NASA GMAO GEOS S2S system (Molod et 189 

al. 2020) and the Australia Bureau of Meteorology (BoM) ACCESS-S1 with an ensemble 190 

Kalman filter (ACCESS-GE2, Gregory et al. 2020). Additionally, Richter et al. (2022) 191 

showed that the CESM2 can be used as a community resource for research on 192 

subseasonal predictability (see Table 1 for details). 193 

 194 

Table 1 List of available subseasonal TC reforecast datasets. V01 refers to the tracker 195 
from Vitart and Stockdale (2001). Other than S2S TCs, data availability requires further 196 
confirmation from each research group. (Table prepared by Dr. Jorge Garcia-Franco) 197 

Model Native 
resolution 

Coverage 
period 
(most 
updated) 

Ensemble 
size 

frequency TC tracker data 
availability 

BoM 2°, L17 1981–2013 33 6/month V01 S2S 
CNRM 1.4°, L91 1993–2014 15 4/month V01 S2S 
CNR-ISAC 0.75°, L54 1981–2010 5 5 days V01 S2S 
CMA 0.5°, L56 2006–2020 4 2/week V01 S2S 
ECCC 0.35°, L45 1998–2017 4 weekly V01 S2S 
ECMWF 0.15°; 0.3° 

L137 
2000–2020 11 2/week V01 S2S 

HMCR 1.2°, L28 1985–2010 10 weekly V01 S2S 
JMA 0.5°, L60 1981–2012 5 3/month V01 S2S 
KMA 0.75°, L85 1991–2016 3 4/month V01 S2S 
NCEP 1°, L64 1999–2010 4 daily V01 S2S 
UKMO 0.75°, L85 1993–2016 7 4/month V01 S2S 
CESM2 
(CAM6) 

1°, L32 1999–2020 11 weekly Tempest 
Extremes 

Climate 
Data 
Gateway 

CESM2 
(WACCM6) 

1°, L70 1999–2020 5 weekly N/A N/A 

GEOS-S2S-2 0.5°, L72 1999–2015 1 5 days Tempest 
Extremes 

Unk 

SPEAR 0.5°, L33 2000–2019 10 5 days Unk Unk 
 198 
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Lee et al. (2020) evaluated regional TC events (genesis and subsequent track) in 199 

20° longitude and 15° latitude boxes in the WMO S2S database models’ reforecasts and 200 

found that the European Centre for Medium-range Weather Forecasts (ECMWF) model 201 

had one of the best performances in simulating the TC climatology as well as higher 202 

prediction skill. Lee et al. (2020) found that a key limitation in prediction skill of regional 203 

TC activity is genesis prediction, and the ECMWF model had the smallest errors in 204 

genesis climatology when compared to other WMO S2S models (Lee et al. 2018). 205 

Camargo et al. (2021) reported that North Atlantic TC tracks in the ECMWF 206 

subseasonal reforecasts had clusters with similar characteristics to the observed. 207 

However, the ECMWF model had an additional cluster of recurving North Atlantic 208 

hurricane tracks near the coast of Africa with characteristics that do not correspond to the 209 

observed track clusters in that region, which may be due to some systematic biases in 210 

low-level winds and geopotential heights in the ECMWF model. When evaluating the 211 

climatology of TC intensity, model resolution was found to play an important role 212 

(Camargo et al. 2021; Gao et al. 2019). Gregory et al. (2020) compared subseasonal 213 

forecasts for the Southern Hemisphere among the ACCESS-S1, ACCESS-GE2, and 214 

ECMWF models and concluded that the superior performance of the ECMWF system 215 

was due to a larger ensemble size, higher spatial resolution, and an improved data 216 

assimilation scheme. 217 

The MJO modulation of TC activity in these subseasonal forecast models has also 218 

been examined (Lee et al. 2020; Camargo et al. 2021). With the improvement of the MJO 219 

representation in models (Vitart 2017), the MJO–TC relationship is also simulated more 220 

realistically. Recently, Xiang et al. (2022b) suggested that landfalling TCs near the U.S. 221 
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coast can be influenced by three localized atmospheric circulation modes with significant 222 

subseasonal (10–30 day) variability that is distinct from the MJO: (1) an anomalous low 223 

pressure center in the eastern U.S.; (2) a zonal dipole pattern with a low pressure centered 224 

in the western U.S. and a trough extending southeastward to the Gulf of Mexico; and (3) 225 

a meridional dipole pattern with a low centered over the Caribbean Sea and a high over 226 

central-eastern North America. There are more U.S. landfall TCs during the positive 227 

phases of these modes. The GFDL SPEAR model can simulate these landfall track 228 

modulations.  229 

3.2. Model verification 230 

Whereas the ECMWF model has the highest prediction skill among the WMO 231 

S2S models (Lee et al. 2020; Fig. 5a), the skill analysis is sensitive to what validation 232 

metrics are used as well as how the forecast is defined. Results from Lee et al. (2020) are 233 

based on the verification of probabilistic predictions of regional TC activity measured by 234 

the Brier Skill Score (BSS). When verified against a total seasonal climatological forecast 235 

(BSSc), reforecasts from ECMWF and Météo-France/Centre National de Recherche 236 

Météorologiques models are skillful for most TC basins with lead times up to week 3 or 237 

longer. The BoM model is skillful for Southern Hemisphere TC basins. However, when 238 

validated versus weekly climatology activity (BSSm), only the ECMWF model shows 239 

skill in predicting TC occurrence anomalies beyond one week. In the Southern 240 

Hemisphere, Gregory et al. (2020) showed that ACCESS-S1 is skillful in predicting TC 241 

occurrence (not TC anomalies) at up to 3 week lead times. Regional BSS is not always 242 

consistent with basin-wide mean BSS values, and the week 2 BSS for the ECMWF 243 

system is shown in Fig. 5b. 244 
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In terms of TC ACE, the WMO S2S models have low prediction skill when 245 

measured by the Ranked Probability Skill Score (RPSS), which may be attributed to 246 

insufficient horizontal grid resolution to simulate either the TC’s core structure or the 247 

occurrence of the most intense TCs (Lee et al. 2020; Camargo et al. 2021). Using the 248 

Heidke Skill Score (HSS) in reference to a random forecast, Gao et al. (2019) showed 249 

that the HiRAM model with a 8-km inner nested domain was skillful in predicting basin-250 

wide (not regional) ACE associated with hurricanes and major hurricanes in the North 251 

Atlantic.  252 

 253 

 254 

Figure 5: Brier Skill Score (BSS) of (a) regional TC occurrence predictions from six 255 
WMO S2S models, listed in the middle-row right and (b) global map of TC occurrence 256 
from the ECMWF model. BSSc and BSSm indicate seasonal-total and weekly-varying 257 
climatology references. BSSm|linear is the BSSm for a bias-corrected forecast with a linear-258 
regression bias-correction scheme. The TC basins are as follows: Atlantic (ATL), 259 
northern Indian Ocean (NI), western North Pacific (WNP), eastern North Pacific (ENP), 260 
southern Indian Ocean (SIN, 0°–90°E), Australia (AUS, 90°–160°E), and southern 261 
Pacific (SPC, east of 160°E) (from Lee et al., 2020). 262 
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Prediction skill of regional TC occurrence predictions can be improved via post-263 

processing calibrations such as removing model mean biases (Camp et al. 2018; Gregory 264 

et al. 2020). Lee et al. (2020) showed that while removing mean biases works in some 265 

cases, it does not guarantee a positive impact globally. To improve a probabilistic 266 

forecast skill (often measured by BSS), one needs to increase the correlation between 267 

forecasts and observations and/or reduce the conditional and unconditional biases. 268 

Removing the mean TC occurrence biases reduces the unconditional bias to zero, but 269 

does not always guarantee a smaller conditional bias even in the training data. Thus, Lee 270 

et al. (2020) suggested a linear regression method (van den Dool et al. 2017) that 271 

removes the unconditional biases and minimizes the conditional biases. In addition, 272 

Gregory et al. (2020) showed that improved forecast skill could be obtained by using 273 

multi-model ensemble prediction, and including lag-averaged forecasts at t-12 h, t-24 h, 274 

etc. to increase the number of ensemble members. 275 

Several recent case studies with deterministic or ensemble models have extended 276 

TC forecasts into the subseasonal TC range. For example, the landfall of Cyclone Hilda 277 

(2017) in northwestern Australia was predicted 2-3 weeks in advance by the ACCESS-S1 278 

model, and the multi-model ensemble with the ACCESS-S1 and the ECMWF predicted 279 

cyclones Gebile and Gita (2018) two weeks in advance (Gregory et al. 2020). Domeisen 280 

et al. (2022) showed successful ECMWF ensemble week 3 or 4 forecasts for TCs Belna 281 

(2019, southern Indian Ocean), Claudia (2020, Australia), and Chan-Hom (2015, western 282 

North Pacific), which Domeisen et al. (2022) attributed to the occurrence of a strong 283 

MJO coinciding with the occurrence of these storms. This is consistent to findings from 284 
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Lee et al., which demonstrated that the WMO S2S models were more skillful when the 285 

convectively-enhanced phase of the MJO was active in that basin.   286 

In addition to use direct TC forecasts from dynamic models, Kolstad (2021) 287 

suggested the inclusion of large-scale variables as predictors in a hybrid statistical–288 

dynamical forecasting system could potentially extend the prediction time of 289 

potential precursor, and thus allow early detection of possible tropical cyclones. 290 

The hybrid model from Qian et al. (2020) indeed had superior forecast skills for 291 

predicting basin-wide tropical cyclone genesis count over the western-north Pacific, 292 

compared to the dynamical model that provided input to the hybrid model. Similarly, 293 

Maier-Gerber et al. demonstrated in 2021 that their hybrid model for subseasonal tropical 294 

cyclone activity in the North Atlantic Main Development Region and Gulf of Mexico had 295 

comparable skill to numerical weather prediction systems. 296 

Lee et al. (2020) had earlier demonstrated that the WMO S2S models were more 297 

skillful when the convectively-enhanced phase of the MJO was active in that basin. 298 

However, the impact of the MJO on TC prediction skill varies by basin and by model. 299 

Kolstad (2021) recently suggested the inclusion of large-scale variables as predictors in a 300 

hybrid statistical–dynamical forecasting system could potentially extend the MJO 301 

subseasonal prediction time, and thus allow early detection of possible tropical cyclones. 302 

To that end, Maier-Gerber et al. (2021) showed that a hybrid model for subseasonal TC 303 

activity in the North Atlantic Main Development Region and Gulf of Mexico had 304 

comparable skill to numerical weather prediction systems.  305 
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4.    Operational subseasonal forecasts of tropical cyclones 306 

4.1. NOAA products 307 

The NOAA Climate Prediction Center (CPC) provides the once-a-week Global 308 

Tropics Hazards (GTH) Outlook. An important component of informing the operational 309 

CPC GTH outlook is global TC identification and tracking utilizing S2S model data for 310 

the Weeks 1–4 target forecast period. The CFS, ECMWF, ECCC, and GEFSv12 311 

operational ensemble model systems are utilized as forecast guidance for the GTH, and 312 

the TC activity is identified and tracked using the methods outlined in Camargo and 313 

Zebiak (2002). The forecasts are bias-corrected using a false alarm climatology based on 314 

model reforecasts and the National Hurricane Center (NHC) and the Joint Typhoon 315 

Warning Center (JTWC) best track datasets (Long et al. 2020). In addition to this model 316 

guidance, the GTH TC outlook includes (i) the state of ENSO and the MJO; (ii) coherent 317 

subseasonal tropical variability such as atmospheric KW, ERW, and African easterly 318 

waves (AEW); and (iii) interactions with the extratropical circulation (i.e., low-latitude 319 

fronts, wave breaking).  320 

The Symmetric Extreme Dependency Score (SEDS)—a metric that focuses on 321 

relatively rare events—for TC tracks at Weeks 1–3 is shown in Fig. 6 for the CFS and 322 

ECMWF deterministic models, and for the GEFSv12 and the ECCC ensemble prediction 323 

systems for their respective reforecast periods. The contingency table for the SEDS 324 

calculations defines a hit when a forecastTC track point comes within a 3° box of a 325 

verifying TC track point within the same weekly interval. For clarity and to show better 326 

results, only the North Atlantic (ATL) and the eastern North Pacific (ENP) basins are 327 

shown. Note that the ENP has better skill than the ATL for both Week 2 and Week 3, and 328 
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the ECMWF has the best scores among the four models shown. Although forecast skill in 329 

Week 3 is lower than in Week 2, it is noteworthy that substantial areas of skill have been 330 

found for Week 3, and especially with all four models in the ENP basin. 331 

4.2. ECMWF forecasts 332 

ECMWF has issued week 1–4 forecasts of TC activity for each TC region since 333 

2010 (Vitart et al. 2010). The TC forecast products include: (1) the predicted number of 334 

tropical storms/hurricanes or ACE over a TC basin for a weekly period (calendar week 1–335 

4); and (2) a TC strike probability map: the probability of a tropical depression/ 336 

storm/intense storm (hurricane intensity) passing within 300 km (see example in Fig. 7). 337 

Maps of TC strike probability anomaly relative to model climatology are also available. 338 

These forecasts produced with the ECMWF TC tracker (Vitart and Stockdale, 2001) are 339 

issued twice a week and are now publicly available. Tropical cyclone tracks predicted by 340 

the ECMWF ensemble model during the 46-day integrations are available from the S2S 341 

database, but with a 3-week delay (more information at www.s2sprediction.net). The 342 

forecast skill of these forecasts has been evaluated in Camargo et al. (2021) for the North 343 

Atlantic and by Lee et al. (2020) for the entire globe . It is planned in mid 2023 to 344 

increase the frequency of these forecasts from twice weekly to daily and to increase the 345 

ensemble size from 51 to 101 ensemble members. The objective is to provide more 346 

frequent updates and more accurate probabilistic distribution functions of TC activity.  347 
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 348 

Figure 6: Spatial maps of SEDS for TC tracks during Weeks 1-3 in the left, middle, and 349 
right columns for the (a-c) CFS, (d-f) ECMWF, (g-i) GEFSv12 and (j-l) ECCC for the 350 
ATL and ENP basins. 351 

The Elsberry et al. (2022) TC high-wind lifecycle guidance product based on the 352 

ECMWF ensemble (ECEPS) could improve decision-making related to ENP TCs 353 

compared to presently available probabilistic genesis or TC activity products. This 354 

technique provides time-to-formation (T2F) and time-to-hurricane (T2H) to the nearest 355 

six-hour synoptic time and at a position along generally highly accurate ECEPS track 356 

forecasts of up to 15 days in length. In addition, the technique provides the ending time as 357 

a hurricane (TEHU) and ending time as a tropical storm (TETS) along that up to the 15-358 

day ECEPS track forecast. For the first six hurricanes of the 2021 ENP season, the first 359 
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detections in the ECEPS were 8–12 days in advance of the T2F, and 9–13 days in 360 

advance of the T2H. 361 

A summary diagram is provided in Fig. 8 for both the pre-formation and the 362 

ending of Hurricane Linda’s track forecasts (panel b and panel a, respectively) and the 363 

timing errors for these two variables (panels c and d, respectively). Whereas the first 364 

NHC advisory forecast of pre-TS Linda was only 12 hours before the T2F in panel b, 19 365 

ECEPS forecasts at 12-hour intervals were available prior to that T2F. Although there is 366 

substantial track spread due to the variations in the initial positions, the cross-track spread 367 

among these ECEPS forecasts that included both a TEHU and a TETS, the track spread 368 

was reasonable considering that these forecasts started as early as 14 days before the 369 

TEHU (panel b). The very small timing errors for the T2F and the T2H along these pre-370 

T2F tracks in panel (b) are presented in panel (c), and the generally small timing errors in 371 

TEHU and TETS timing errors are presented in panel (d). This 15-day TC high-wind 372 

guidance product in the ENP was in operational testing during the 2022 season and could 373 

be extended longer in the subseasonal timeframe in the future if ECEPS forecasts are 374 

extended.  375 Jo
urn
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 376 

Figure 7: Probability of a tropical storm strike within 300 km for the period 12 to 19 377 
September 2022 from the ECMWF subseasonal forecast issued on 1 September (lead time 378 
is day 12-18). 379 
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380 
  381 

Figure 8: Summary of the ECEPS pre-formation and ending-stage predictions of the 382 
Hurricane Linda (2021) lifecycle. Track forecast initial times (MMDDHH) are indicated 383 
in the insets for the (a) ending stage and (b) pre-formation stage, and the T2F and T2H 384 
timing errors for the pre-formation and the ending-stage are displayed in panels (c) and 385 
(d). (from Elsberry et al. 2022) 386 
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4.3. Australian Bureau of Meteorology forecasts 387 

The Bureau of Meteorology (BoM) makes available multi-week TC strike 388 

probability forecasts for use by National Meteorological Services and the public (see 389 

http://www.bom.gov.au/climate/pacific/outlooks/). Operational forecasts are currently 390 

available for the South Pacific for weeks 2 and 3, and the WNP for weeks 2, 3 and 4. 391 

Forecasts are updated daily during a region's TC season and a 2-week archive is also 392 

made available. Three products are provided: (i) raw model probabilities of TC 393 

occurrence; (ii) calibrated probabilities (following Camp et al 2018) and (iii) calibrated 394 

probabilities relative to observed climatology.  395 

Multi-week forecasts are produced using output from the ACCESS-S model, 396 

which is based on the UKMO GloSea5 (MacLachlan et al. 2015). Version 1 of this 397 

system (ACCESS-S1; Hudson et al. 2017) was operational during the period April 2018–398 

September 2021. This model showed impressive skill for predictions of the MJO out to a 399 

lead time of ∼30 days. These forecasts also showed skill over climatology for forecasts  400 

of TC occurrence over the Southern Hemisphere for lead time weeks 1–5, when a spatial 401 

and temporal calibration was applied (Camp et al. 2018). As indicated in section 3.2, 402 

ACCESS-S1 provided useful guidance for the development of severe TCs, including 403 

Cyclone Gita in the South Pacific and Cyclone Hilda off of the west coast of Australia, at 404 

more than two weeks lead time (Gregory et al. 2019). Applying a wind speed threshold to 405 

the model TCs also helped to reduce false alarm rates and improve forecast skill early on 406 

in the forecast period (Gregory et al. 2019). 407 

In 2020/21 ACCESS-S1 provided good guidance for severe TC Seroja, which 408 

became the strongest TC to make landfall in southern Western Australia since 1956 409 
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(WMO, 2021). This cyclone presented a major challenge for forecasters due to its 410 

Fujiwhara interaction with TC Odette from April 7-9. A tropical low that failed to 411 

intensify was also in the region, moving south-east across the Cocos Islands from April 412 

6-11. The uncertainty of the forecast was evident by the large spatial ensemble spread, 413 

and the associated low strike probabilities. Forecasts of the probability of TC occurrence 414 

for TC Seroja are shown for ACCESS-S1 for lead time weeks 2 and 3 in Fig. 9.  415 

Following the successful trials for the Southern Hemisphere, research was 416 

extended to the WNP basin, and skill was found over climatology for calibrated forecasts 417 

of TC occurrence out to week 4 (BoM, 2020). Skill of real-time forecasts using a lagged 418 

ensemble of 2–3 days was found to provide increased skill for both the WNP and 419 

Southern Hemisphere for the trial 2017/18 and 2018/19 TC seasons (BoM, 2020). 420 

Finally, combining forecasts from the ECMWF’s Medium- and Extended-Range 421 

Ensemble Integrated Forecasting System (IFS) and ACCESS-S1 to create a multi-model 422 

ensemble showed superior skill to the component models during the 2017/18 and 2018/19 423 

TC seasons (Gregory et al. 2020). 424 

In October 2021 the BoM operational system was upgraded to ACCESS-S2 425 

(Wedd et al. 2022). This system retains the skill of the MJO out to ~30 days and shows 426 

skill over climatology for multi-week forecasts of TC frequency over the Southern 427 

Hemisphere, western and eastern North Pacific, and North Atlantic out to week 5. 428 

However, the skill over climatology in the North Indian Ocean was only to week 2 429 

(Camp et al. 2023a,b). 430 

 431 
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432 

 433 

Figure 9: Probability of a TC passing within a 300 km radius for ACCESS-S1 forecasts 434 
valid in a) week 3 (initialized 23 March 2021) and b) week 2 (initialized 30 March 2021) 435 
for the period 7–13 April 2021. Corresponding observed tracks for TC Seroja, TC Odette 436 
and an invest area are overlain in black. Observed TC tracks are from the US Navy's 437 
Joint Typhoon Warning Center (JTWC; Chu et al 2002). TC Seroja made landfall on 11 438 
April 2021. 439 

4.4. Colorado State University forecasts 440 

Colorado State University (CSU) has been operationally issuing two-week 441 

Atlantic basin ACE forecasts since 2009. These forecasts are issued six times during 442 

August–October. Each forecast is for the probability of above-normal, normal, or below-443 

normal ACE terciles for the North Atlantic. These predictions are based on both 444 
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statistical and dynamical models and consider several different factors: (1) National 445 

Hurricane Center (NHC) current and forecast North Atlantic activity; (2) NHC Tropical 446 

Weather Outlooks; (3) Global model forecasts of North Atlantic TC development; (4) 447 

Current and projected state of the MJO; (5) Global model forecasts of key atmospheric 448 

circulation patterns; and (6) the current TC numbers relative to the CSU Atlantic seasonal 449 

hurricane forecast. 450 

For the sample of 78 two-week Atlantic TC forecasts since 2009, 64% have 451 

verified in the correct tercile, 28% missed by only one tercile, and 8% missed by two 452 

terciles. In general, these forecasts have shown improved skill in recent years, with only 453 

one two tercile miss (e.g., forecast bust) since 2013. 454 

4.5. Joint Typhoon Warning Center 455 

In 2018, JTWC began providing graphical two-week TC Formation Outlooks that 456 

depict geographic areas (boxes), timeframes, and forecaster-designated TC formation 457 

probabilities in the Indian, WNP, and South Pacific basins. JTWC will continue to 458 

generate and distribute these outlooks at least twice daily while exploring the viability of 459 

longer period forecasts. For example, the JTWC and the 14th Weather Squadron (14 WS) 460 

Climate Monitoring, Analysis and Prediction teams have conducted weekly collaboration 461 

calls to coordinate 14 WS Week 3 TC formation outlooks for the JTWC forecast basins. 462 

Although JTWC has no near-term plans to extend its two-week TC formation outlook to 463 

the week 3 period, the collaboration has infused new tools and perspectives from 14 WS 464 

climatology experts into the existing JTWC extended-range forecasting process.  465 

The JTWC development efforts also benefit from extensive collaboration with the 466 

NOAA CPC and U.S. Department of Defense (DOD) partner organizations. For example, 467 
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the 16th Weather Squadron (16 WS) numerical modeling team developed a suite of TC 468 

prediction guidance for DOD forecasters. Included in the new 16 WS guidance is a multi-469 

model ensemble forecast of large-scale probability of wind speed exceedance that 470 

effectively highlights geographic areas and timeframes in which TC formation may 471 

occur.  472 

4.6. U.S. Naval Research Laboratory 473 

Hansen et al. (2022) examined whether nonlinear MJO/ENSO influences and the 474 

subseasonal vertical shear pattern impacts on the North Atlantic ACE can be used to 475 

improve subseasonal predictions. Hansen et al. built a statistical-dynamical hybrid model 476 

using Navy-Earth System Prediction Capability (ESPC; Barton et al. 2020) reforecasts as 477 

part of the SubX project (Pegion et al. 2019). Persistence reforecasts of Niño 3.4 SSTs 478 

and MDR SSTs, and Navy-ESPC reforecasts of the first two principal components (PCs) 479 

of the MJO, were used as predictors for the basic model. Two shear index predictors 480 

evaluated from Navy-ESPC reforecasts were added in one option, and a second option 481 

was substituting a nonlinear MJO/ENSO predictor in place of the MJO PCs and Niño 3.4 482 

SST predictors. These predictors were fed into a logistic regression model, which adds 483 

and removes predictors to assess the skill contribution from each predictor. The North 484 

Atlantic SSTs and the MJO were found to be the most important factors contributing to 485 

subseasonal North Atlantic TC activity (Fig. 10). The shear pattern improved forecast 486 

skill at 5–10 day lead times before forecast shear errors became too large. Nonlinear 487 

MJO/ENSO interactions did not improve skill compared to separate linear considerations 488 

of these factors, but did improve the reliability of predictions for high-probability active 489 

TC periods.  490 
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 491 

Figure 10: Reliability diagrams for the “Total (-RH)” scheme, which includes the shear 492 
predictors, MJO PCs, Nino 3.4 SSTs and MDR SSTs but not relative humidity (RH) for a) 493 
5-day, b) 10-day, c) 15-day, and d) 20-day forecasts. The blue line indicates the observed 494 
frequency of an above-average normalized 5-day ACE period for each 5% forecast bin. 495 
The orange line indicates a one-to-one ratio of predicted probability and observed 496 
frequency representing a perfect model. The green line indicates climatological skill. 497 
Vertical and horizontal dashed red lines indicate the climatological rate of active 498 
normalized 5-day ACE periods in the North Atlantic. Gray bars indicate the number of 499 
forecasts that fall into each 5% bin. (from Hansen et al. 2022) 500 

4.7. Private sector forecasts 501 

It is well known that a TC strike across an economic point of interest will drive a 502 

chain of reactions across the global markets. These market reactions vary depending on 503 

the intensity of the TC, the risk of inundation, and even the amount of rainfall. 504 

Understanding these risks at longer lead times is always desired, which will require 505 

improved numerical weather prediction (NWP) model forecasts of TCs at these long lead 506 

times. At subseasonal forecast leads (i.e., forecast weeks 3+), private sector companies 507 
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often rely on a combination of NWP forecasts and tropical wave-based statistical 508 

forecasts of TC activity. While there have been incremental advances in NWP forecasts 509 

beyond 10 days, the prediction of TC impacts is still not reliable. This unreliability has 510 

resulted in little to no advancements in subseasonal outlooks of TC impacts across the 511 

private sector. 512 

In recent years, there has been more desire to utilize the full distribution of an 513 

NWP ensemble suite. As the private sector industry gains knowledge about medium-514 

range to subseasonal predictions of TCs, the community is shifting away from 515 

deterministic NWP forecasts and toward probabilistic forecasts. Questions often asked by 516 

decision makers are, “What is the range of outcomes that could happen?” or “What is the 517 

probability of wind speeds greater than 100 mph across this specific location?” As 518 

agencies continue to increase the number of ensemble members in their forecast models 519 

and improve the forecast skill beyond 7+ days, more private sector groups rely on 520 

ensemble probabilistic guidance to hedge risk in whatever TC decision they must make.  521 

5.    Summary and conclusions 522 

Progress has been made by the scientific community over the last four years to 523 

better understand the sources of predictability and the modulation of TC activity at 524 

subseasonal timescales. In particular, several recent publications have evaluated the 525 

impact of the BSISO on TC activity over the WNP. There has also been significant 526 

progress in the understanding of the impact of extratropical wave breaking on tropical 527 

storm development.  528 

The availability of large datasets of subseasonal forecasts (S2S and SubX) has 529 

been an opportunity to better understand the capability of S2S models to simulate and 530 

Jo
urn

al 
Pre-

pro
of



29 

predict the subseasonal variability of TCs. Guided by the observational studies, the model 531 

diagnostics and comparisons have focused on predicting the MJO and its modulation of 532 

TC activity. Most S2S models have difficulties predicting subseasonal TC activity 533 

beyond a seasonal varying climatology, although the skill can be improved by post-534 

process calibration.  535 

The improving availability and skill of subseasonal dynamical models has led to a 536 

surge in the number of operational subseasonal forecasts of TCs over the past four years. 537 

These forecasts are produced by both dynamical models and statistical methods. Given 538 

the increasing skill of these forecasts and the ever-present demand for them, we are very 539 

optimistic that these improvements will continue in the coming years. 540 

Appendix A – Acronyms: 541 

AEW African Easterly Wave 542 

ABY ACE by Year 543 

ACCESS-S Australian Community Climate Earth-System Simulator–Seasonal 544 

ACCESS-GE2 Australian Community Climate Earth-System Simulator–Global 545 

Ensemble version 2 546 

ACE Accumulated Cyclone Energy 547 

ATL Atlantic 548 

AUS Australia 549 

BoB Bay of Bengal 550 

BoM Australian Bureau of Meteorology 551 

BSISO Boreal Summer Intraseasonal Oscillation 552 

BSS Brier Skill Score 553 
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CAM6 Community Atmospheric Model version 6 554 

CESM2 Community Earth System Model version 2 555 

CFS Climate Forecast System 556 

CMA China Meteorological Agency 557 

CNR-ISAC Institute for Atmospheric Sciences and Climate, Italy 558 

CNRM National Center for Meteorological Research, Météo-France 559 

CPC Climate Prediction Center 560 

CSU Colorado State University 561 

DOD Department of Defense 562 

ECCC Environment and Climate Change Canada 563 

ECEPS ECMWF Ensemble Prediction System 564 

ECMWF European Center for Medium-range Weather Forecasts 565 

ENP Eastern North Pacific 566 

ENSO El Niño–Southern Oscillation 567 

ERW Equatorial Rossby Waves 568 

ESPC Earth System Prediction Capability 569 

GEFSv12 Global Ensemble Forecast System version 12 570 

GEOS-S2S-2 Goddard Earth Observing System Subseasonal-to-Seasonal Prediction 571 

System v2 572 

GFDL Geophysical Fluid Dynamics Laboratory 573 

GloSea5 Global Seasonal forecast system 574 

GMAO Global Modeling and Assimilation Office 575 

GPI Genesis Potential Index 576 
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GTH Global Tropical Hazards and Benefits Outlook 577 

HiRAM High Resolution Atmospheric Model 578 

HMCR Hydro-Meteorological Centre of Russia 579 

HSS Heidke Skill Score 580 

IFS Integrated Forecasting System 581 

JAMSTEC Japan Agency for Marine-Earth Science and Technology 582 

JMA Japan Meteorological Agency 583 

JTWC Joint Typhoon Warning Center 584 

KMA Korea Meteorological Agency 585 

KW Kelvin Waves 586 

MDR Main Development Region 587 

MetFr Météo-France 588 

MJO Madden–Julian Oscillation 589 

MRG Mixed Rossby–Gravity Waves 590 

MRGTD Mixed Rossby–Gravity Waves and Tropical Depressions 591 

NAO North Atlantic Oscillation 592 

NCEP National Centers for Environmental Prediction 593 

NHC National Hurricane Center 594 

NI North Indian Ocean 595 

NOAA National Oceanic and Atmospheric Administration 596 

NWP Numerical Weather Prediction 597 

OMI OLR-only MJO Index  598 

PC Principal Component 599 
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QBWO Quasi Bi-weekly Oscillation 600 

RH Relative Humidity  601 

RPSS Ranked Probability Skill Score 602 

RWB Rossby Wave Breaking 603 

S2S Subseasonal-to-seasonal 604 

SEDS Symmetric Extreme Dependency Score 605 

SIN South Indian Ocean 606 

SPC Southern Pacific Ocean 607 

SPEAR Seamless System for Prediction and Earth System Research  608 

SST Sea Surface Temperature 609 

SubX Subseasonal Experiment 610 

T2F Time-to-Formation 611 

T2H Time-to-Hurricane 612 

TDF Track Density Function 613 

TC Tropical Cyclone 614 

TEHU Time to Ending Hurricane 615 

TETS Time to Ending Tropical Storm 616 

TS Tropical Storm 617 

TUTT Tropical Upper Tropospheric Trough 618 

UKMO U.K. Met Office 619 

WACCM6 Whole Atmosphere Community Climate Model version 6 620 

WMO World Meteorological Organization 621 

WNP Western North Pacific 622 
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WS Weather Squadron 623 
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