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ABSTRACT Exponential Bounds for the Anti-Correlation Game: In the 3-player
We prove that for every 3-player (3-prover) game, with binary anti-correlation game, two out of three players are given 1 as input,
questions and answers and value < 1, the value of the n-fold parallel and the remaining player is given 0. The two players who were given
repetition of the game decays polynomially fast to 0. That is, for 1 must produce different outputs in {0, 1}. We prove that the value of
every such game, there exists a constant ¢ > 0, such that the value the n-fold parallel repetition of that game decays exponentially fast
of the n-fold parallel repetition of the game is at most n ™. to 0. That is, there exists a constant ¢ > 0, such that the value of the

Along the way to proving this theorem, we prove two additional n-fold parallel repetition of the game is at most 27°". Only inverse
parallel repetition theorems for multiplayer (multiprover) games, Ackermann decay bounds were previously known (Verbitsky 1996).
that may be of independent interest: The 3-player anti-correlation game was studied and motivated

in several previous works. In particular, Holmgren and Yang (STOC

Playerwise Connected Games (with any number of players and any 2019) gave it as an example for a 3-player game whose non-signaling
Alphabet size): We identify a large class of multiplayer games and value (is smaller than 1 and yet) does not decrease at all under
prove that for every game with value < 1 in that class, the value of parallel repetition.
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Parallel Repetition, Multiplayer Games

Our class of playerwise connected games is strictly larger than
the class of connected games that was defined by Dinur, Harsha,
Venkat and Yuen (ITCS 2017) and for which they proved exponential
decay bounds on the value of parallel repetition. For playerwise
connected games that are not connected, only inverse Ackermann

decay bounds were previously known (Verbitsky 1996). 1 INTRODUCTION

We study multiplayer games and their behavior under parallel
repetition. In a k-player game G, a referee samples questions x =
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answer back (a{, RN a{,). The referee says that the players win if

k 1
I

for every i € [n], the predicate V(xil, . ,af) evaluates
to win.

A natural question is to study how the value of the game G®"
behaves as a function of n, the number of parallel repetitions [19].
It is not hard to see that val(G®") > val(G)", since the players
can achieve value val(G)" in the game G®" by simply repeating
an optimal strategy for the game G independently in all the n
coordinates. It also seems that this should be optimal, and that
val(G®™") < val(G)". However, this turns out not to be the case,
and there are games such that val(G®") is exponentially larger
than val(G)" [12, 17, 18, 38]. Hence, it is interesting to study the
behavior of val(G®™") for games G with val(G) < 1.

The special case of 2-player games is very well understood, and
it was proven by Raz [36] that if val(G) < 1, then the value of
G®" decays exponentially in n; that is, val(G®") < 272 with
the constants depending on the base game G. There have been
improvements in the constants [3, 27, 35, 39], and we even know
tight results based on the value of the initial game [6, 11]. These
results on 2-player games have found many applications, in par-
ticular in the theory of interactive proofs [5], PCPs and hardness
of approximation [4, 13, 25], geometry of foams [1, 15, 30], quan-
tum information [9], and communication complexity [2, 7, 33]. The
reader is referred to this survey [37] for more details.

The case of general k-player multiplayer games is still open.
The only general result, by Verbitsky [40], says that if val(G) < 1,
then val(G®") — 0 as n — oo. This result uses the density Hales-
Jewett theorem as a black box, and gives bounds of the form 1

a(n)’
where « is an inverse Ackermann function [20, 34]. Apart fr(or)n
being interesting in its own right, studying parallel repetition of
multiplayer games has some applications. For example, it is known
that a strong parallel repetition theorem for a particular class of
multiplayer games implies super-linear lower bounds for Turing
machines in the non-uniform model [31]. Also (as mentioned by
[10]), the technical limitations that arise when analyzing games
with more than two players seem very similar to the ones we
encounter when studying direct sum and direct product questions
for multiparty number-on-forehead communication complexity
(which is related to lower bounds in circuit complexity). Therefore,
studying parallel repetition for multiplayer games may lead to
progress in these areas.

Although we know very little about general multiplayer games,
there has been some recent progress on special classes of multi-
player games:

(1) Dinur, Harsha, Venkat and Yuen [10] extend the two player
techniques of [27, 36] and show that any connected game sat-
isfies an exponentially small bound on the value of parallel
repetition (and this includes all games for which exponen-
tially small bounds were previously known). The class of
connected games is defined as follows: Define the graph Hg,
whose vertices are the ordered k-tuples of questions to the
k-players, and there is an edge between questions x and x”
if they differ in the question to exactly one of the k players,
and are the same for the remaining k — 1 players. The game
is said to be connected if the graph Hg is connected.
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(2) The GHZ game [24] is defined as follows: The referee sam-
ples the questions (x!,x?,x®) uniformly at random from
{0,1}3 such that x! ® x% ® x® = 0. The players answer back
with al, a2, a® € {0, 1}, and are said to win if a! ® a® ® a3 =
x1 v x? v x3. It has been shown that any game with the same
distribution as the GHZ game satisfies an inverse polynomial
bound on the value of parallel repetition [21, 28].

1.1 Our Results

We prove that for every 3-player game, with binary questions and
answers and value < 1, the value of the n-fold parallel repetition of
the game decays polynomially fast to 0.

THEOREM 1.1. Let G be a 3-player game such thatval(G) < 1 and
each question and answer is in {0, 1}. Then, there exists a constant
¢ > 0, such that val(G®") < n~¢.

In the proof of Theorem 1.1, we show that from the perspective
of studying the behaviour of val(G®") as a function of n, every
3-player game G with binary questions and answers, is equivalent
to, or can be reduced to, a game in one of the following five classes:

(1) 2-Player Games: As mentioned above, exponentially small
bounds on the value of the parallel repetition of games in
this class have been known for a long time.

(2) Playerwise Connected Games: This is a new class of

games that we define and study in this work and we prove

polynomially small bounds on the value of the parallel repe-
tition of games in this class.

The GHZ Game: (and other games with the same query dis-

tribution): As mentioned above, polynomially small bounds

on the value of the parallel repetition of games in this class
were recently proved.

The Anti-Correlation Game: (and other games with the

same query distribution and binary answers): The 3-player

anti-correlation game is defined as follows: The referee sam-
ples the questions (x!,x?,x®) uniformly at random from

{0, 1} such that x! + x% + x3 = 2 (that is, two out of three

players are given 1 as input, and the remaining player is

given 0). The two players who were given 1 must produce
different outputs in {0,1}. We prove exponentially small
bounds on the value of the parallel repetition of that game

(and all other games with the same query distribution and

binary answers).

Games over the Set of Questions

{(0,0,0),(0,1,0), (1,0,0), (1,1, 1)}: We prove polynomially

small bounds on the value of the parallel repetition of games

in this class.

We note that the reduction to these five classes of games works
more generally for all 3-player games with binary questions and
arbitrary length of answers, except that we need to extend Class 4
so that it contains games with arbitrary length of answers. Note
also that for all other classes, the bounds that we have hold more
generally for games with arbitrary length of answers. This means
that improving the bounds that we prove for Class 4 so that they
hold for arbitrary length of answers (or even proving weaker, poly-
nomially small, bounds for that case) would imply that Theorem 1.1
holds more generally, for games with arbitrary answer length.
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We note also that the three new bounds that we prove in this
work, the bounds for Class 2, Class 4 and Class 5, are each proved
by a completely different proof method. Next we elaborate on each
of these three classes.

1.1.1  The Anti-Correlation Game (Class 4). In the hilarious essay
“Test Your Telepathic Skills”, Uri Feige tells the fictional story of
the “amazing Tachman family”, who astonished the team at FEXI
(the Foolproof Experiments Institute) with their telepathic skills, by
playing incredibly well the 3-fold parallel repetition of the 3-player
anti-correlation game [Uri Feige, 1995]. Feige showed that the
value of the 3-player anti-correlation game, played in parallel 3
times, is % exactly the same as the value of the original game.

More than two decades later, Holmgren and Yang proved that
while the, so called, non-signaling value, of the 3-player anti-correla-
tion game is strictly smaller than 1, it does not decrease at all under
parallel repetition [29]. This gave a surprising first example for a
total failure of parallel repetition in reducing the value of a game,
in any model of multiplayer games.

Hazla, Holenstein and Rao studied games with the same query
distribution as the anti-correlation game [26] and showed barriers
on proving parallel repetition theorems for such games using a
technique known as the forbidden subgraph bounds [17].

The anti-correlation game can also be presented as a “pigeonhole-
principle” game, where 2 out of 3 pigeons are chosen randomly
and each of them needs to choose 1 out of 2 pigeonholes, without
communicating between them, so that the two chosen pigeons
end in 2 different pigeonholes. This may occur in situations when
3 players share 2 identical resources (such as 2 communication
channels to an external party): Two (randomly chosen) players
(out of the three players) need to use one of the two resources
each and there is no communication between the players. Another
description of the game, the one that was presented by Feige, can be
viewed as a matching game: The 3 players try to output 3 different
answers X, Y, Z, where two of the players, chosen randomly, can
only output Y or Z and the remaining player can only output X or
Z.

Although the 3-player anti-correlation game has been around
for more than two and a half decades, no bound on the value of its
parallel repetition was previously known (other than Verbitsky’s
general inverse Ackermann bound on the value of the parallel
repetition of every game [40]). In this work, we prove that the value
of the n-fold parallel repetition of the 3-player anti-correlation game
decays exponentially fast to 0. (We also extend this bound to all
other games with the same query distribution and binary answers).

THEOREM 1.2. Let G be the 3-player anti-correlation game (or any
other game with the same query distribution and binary answers).
Then, there exists a constant ¢ > 0, such that val(G®") < 27",

In light of the above mentioned result by Holmgren and Yang [29],
Theorem 1.2 also implies an example for a 3-player game where
the value of the parallel repetition of the game behaves completely
differently for classical strategies versus non-signaling strategies.
Namely, while parallel repetition doesn’t decrease the non-signalling

!https://www.wisdom.weizmann.ac.il/~feige/tachman html (Feige’s description of the
game is somewhat different than ours and is described below).
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value of the game at all, it does decrease the classical value of the
game exponentially fast to 0.

Techniques: The techniques that we use for the proof of The-
orem 1.2 are, to the best of our knowledge, completely new in
the context of parallel repetition and are different than the tech-
niques used in all previous works. In particular, we don’t use here
the usual embedding paradigm, that is used in almost all previous
works, where one tries to embed a copy of the original game in the
set of success of the players on some set of coordinates. Instead,
our proof shows a local to global property of the strategy of each
player. Very roughly speaking, we prove that if the players win
the parallel repetition game with sufficiently high probability, then
there exists a fixed (large) set of coordinates and a fixed global con-
stant strategy for each of the players, that doesn’t depend on the
input for the player at all, and such that the global strategies win
the parallel repetition game with a sufficiently high probability, on
almost all the coordinates in the fixed set of coordinates. This leads
to a contradiction since fixed global strategies are, in particular,
independent between the different coordinates. We note also that
this is the first inverse exponential bound on the parallel repetition
of any 3-player game that is not connected (in the sense of [10])%.

1.1.2  Playerwise Connected Games (Class 2). We define the class
of playerwise connected games as follows: For each player j, we
define the graph H é whose vertices are the possible questions

for player j, and two questions x/ and x”/ are connected by an
edge if there exists a vector y of questions for all other players,
such that both (x/,y) and (x"/,y) are asked by the referee with
non-zero probability. We say that the game is playerwise connected
if for every j, the graph H, jg is connected.

We prove polynomially small bounds on the value of the parallel
repetition of any game in this class:

THEOREM 1.3. Let G be a playerwise connected game such that
val(G) < 1 (with any number of players and any Alphabet size).
Then, there exists a constant ¢ > 0, such that val(G®") < n™¢.

Theorem 1.3 gives an inverse polynomial bound on the value of
parallel repetition for many games for which the previously best
known bound was inverse Ackerman.

Our class of playerwise connected games is related to the above
mentioned class of connected games that was studied by Dinur,
Harsha, Venkat and Yuen and for which exponentially small bounds
were established [10]. Observe that every connected game is also
playerwise connected (the graph (ng is simply the projection of the

graph Hg in the j™ direction). The vice-versa is however not true:

EXAMPLE 1.4. The following 3-player game is playerwise con-
nected, but not connected: The referee samples (x, y, z) uniformly from
S ={(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,1)} and gives x,y, z to
the three players respectively. The players give answers a, b, ¢ € {0, 1}
respectively. The players win if the following condition holds: a+b+c =
1 & x+y+z+3.

We note that the set S of possible questions, from Example 1.4, is
the only set with 3 players and binary questions that gives a game

2or reduces to a connected game
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that is playerwise connected but not connected (up to a change
of names). When the number of players is larger than 3, or the
question’s Alphabet size is larger than 2, there are many additional
examples.

ExAMPLE 1.5. Fix a random 3-CNF formula ¢ = (Cy,...,Cp),
with m clauses, over d variables. This is generated by sampling m
times independently and uniformly from the set of all (2d)3 = 8d°
possible clauses.

A 3-player game G is defined by this formula ¢ as follows: The
referee samplesr € [m] uniformly and gives the variables correspond-
ing to the literals in Cy to the 3 players respectively (with each player
getting one variable). The players answer back values for the variables
they get, and the referee declares that the players win if these values
satisfy the clause Cy.

Then, it is not hard to show (see the full version for a proof) that
with high probability:

(1) If m = w(d), the value of the game is close to 7/8, and hence

less than 1.

(2) If m = w(d*logd), the graph Hg is connected, and we get
val(G®") = 27 by [10]. Furthermore, if m = o(d?), the
graph Hg is not connected, and [10] is not applicable.

(3) If m = w(d'+flogd), the game G is playerwise connected,
and val(G®") = n~ () by Theorem 1.3. Furthermore, if m =
o(d'®), the game G is not playerwise connected.

Note that the w and o bounds on m are with respect to d — oo.
Once the formula ¢ is fixed, we think of m and d as constants and
the Q bounds on the value of parallel repetition are with respect to
n— oo,

REMARK. The above example is also interesting when compared to
the works on refutation of random 3-CNFs, where different regimes of
the parameter m lead to different consequences. It is known that with
high probability:

(1) If m = Q(d">), there is a polynomial time algorithm for

refuting the random 3-CNFs [16].

(2) If m = Q(d?/log d), resolution provides polynomial size wit-
nesses for refutation. On the other hand, it fails to provide short
witnesses when m = O(d'->~€) [8].

(3) If m = Q(d'*), there exist polynomial size witnesses for refu-
tation, based on spectral approach [14].

In both cases, there is a polynomial gap in d between the base assump-
tion m = w(d) and the regime of best known results.

Techniques: Our proof of Theorem 1.3 relies on information-
theoretic techniques, extending the ideas of 10, 27, 36]. In particular,
we use here the usual embedding paradigm and condition on a
dependency breaking event, as in many previous works. However,
these techniques heavily rely on the game being connected and
thus the result of [10] applies only to connected games® and we
are not aware of any previous work that applies these techniques
to games that are not connected. We hence need to deviate from
these techniques at a crucial point. Very roughly speaking, at a
crucial place in the proof where the connectivity of the game is
necessary, our key idea is to replace the distribution of the game

3or disjoint unions of connected games
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with a connected distribution and we carefully analyze how this
change affects the rest of the proof.

1.1.3  Support{(0,0,0),(0,1,0),(1,0,0), (1,1,1)} (Class 5). We con-
sider 3-player games where the set of possible questions for the 3
players is: {(0,0,0), (0,1,0),(1,0,0), (1,1,1)}, and we prove poly-
nomially small bounds on the value of the parallel repetition of any
game in this class:

THEOREM 1.6. Let G be a 3-player game where the possible ques-
tions for the 3 players are: (0,0,0), (0,1,0), (1,0,0), (1,1, 1), and such
that val(G) < 1 (with any length of answers). Then, there exists a
constant ¢ > 0, such that val(G®") < n™¢.

Theorem 1.6 is necessary for the proof of Theorem 1.1 and we
believe that the proof technique is interesting and might be useful
for other games.

Techniques: The techniques that we use for the proof of Theo-
rem 1.6 are, to the best of our knowledge, new. Very roughly speak-
ing, we consider the possible pairs of answers (a, b) by Player 1 and
Player 2 on questions (1, 1) for these two players. We distinguish
between pairs (a, b) for which Player 3 has an answer ¢ such that
the referee accepts the answers (a, b, c) on questions (1,1,1) and
pairs (a, b) for which Player 3 has no answer c such that the referee
accepts the answers (a, b, ¢) on questions (1, 1, 1). Intuitively, if the
pair (a,b) is of the second type, that is, no answer c causes the
referee to accept on (1, 1, 1), the pair (a, b) cannot be used too often
by Player 1 and Player 2, and we are able to make this intuition
precise by conditioning on a carefully and inductively defined, but
possibly exponentially small, product event between the inputs of
Player 1 and Player 2. Very roughly speaking, when all pairs (g, b)
of the second type are used with negligible (polynomially small)
probability when conditioning on our product event, we are able to
essentially reduce the parallel repetition game to parallel repetition
of a 2-player game with value < 1, played by Player 1 and Player 2
on a subset of the coordinates and conditioned on the product event
between the inputs of Player 1 and Player 2 that we defined. We
then rely on the fact that bounds for 2-player games also hold when
conditioning the inputs of the two players on a product event be-
tween the two players. The final bound that we obtain is inverse
polynomial, rather than inverse exponential, because we must take
into account the answers (a, b) of the second type that are still
used with polynomially small probability. We do that using a union
bound and it’s crucial here that the 2-player game that we reduce
to is only played on a small subset of the coordinates so that we
can apply a union bound over these coordinates.

Subsequent Work. In further work, [23] extend our result by
proving a polynomial decay bound on the value of parallel repetition
for all games with binary inputs and arbitrary length answers.
This is done by proving a parallel repetition theorem for all games
described in Definition 8.2, which was left as an open problem in
this work.

Organization. In Section 2, we give an overview of the main
technical results of the paper. In Section 3, we formally define the
various concepts relevant to this paper, and in the sections following
it, we formally state our main results and some important lemmas.
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Most of the technical proofs are deferred to the full version of this
paper [22].

2 OVERVIEW

2.1 Organization

For the problem of parallel repetition for all three-player games on
binary alphabets, the following results were known prior to our
work (Section 3.4).

(1) For three-player games in which there are some two players
whose inputs are in a bijective correspondence, we may treat
these players as identical, and thus reduce the problem to
showing parallel repetition for two-player games. The Paral-
lel Repetition Theorem of [36] shows that parallel repetition
decreases the value of two-player games exponentially fast
(Theorem 3.11).

(2) There is a class of games known as connected (or expanding)
games for which [10] showed an exponential decay on the
parallel repetition value (Theorem 3.12). A k-player game
is said to be connected if the (k — 1)-connection graph is
connected. This graph is defined as follows: the vertices are
the elements in the support of the query distribution and the
edges are between every pair of elements that agree on the
questions to all but one player (Definition 3.9).

(3) For any game (with value less than one) for which the query
distribution has support
{(0,0,0), (1,1,0),(1,0,1),(0,1,1)}, [21, 28] showed that par-
allel repetition decreases the value at least polynomially fast
(Theorem 3.13).

In this work, we study all three-player binary-alphabet games
that do not fall into the above categories. In Section 8, we classify
all such games. It turns out that there are essentially three such
classes of games.

(1) Games whose query distribution has support
{(0,1,1),(1,0,1),(1,1,0) }. Of these games, the anti-correla-
tion game is the most interesting one. In this game, the
players who receive one need to output distinct bits (Defi-
nition 4.1). We prove an exponential decay on the parallel
repetition value of this game in Section 4 (Theorem 4.2). In
Section 7, we show that this implies a similar result for all
games with binary outputs whose query distribution has the
same support as the anti-correlation game (Theorem 7.1).
Games whose query distribution has support
{(0,0,0),(0,1,0),(1,0,0), (1,1,1)}. We refer to the uniform
distribution on these four points as the four-point AND
distribution. In Section 5, we show that parallel repetition
for such games decreases the value at least polynomially fast
(Theorem 5.1). We remark that our result holds even if the
answers are from an arbitrary alphabet.

Games whose query distribution has support

{(0,0,0), (0,0,1),(0,1,0),(1,0,0), (1,1,1)}. Such games fall
into an even more general class of games which we call
playerwise connected games; these are k-player games in
which the projection of the (k—1)-connection graph on every
player is connected (Definition 3.10). We show in Section 6
that parallel repetition for this class of games decreases the

@
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value at least polynomially fast (Theorem 6.1). We remark
that our result holds even if the answers are from an arbitrary
alphabet.

2.2 The Anti-Correlation Game

In the three-player anti-correlation game G, a random pair of play-
ers are given 1 as input, and the remaining player is given 0. To win,
the two players who are given 1 must produce different outputs in
{0, 1}, and the output of the player who is given 0 does not matter.
We present an overview of the proof of Theorem 4.2 which shows
that the parallel repetition of the anti-correlation game decreases
the value exponentially fast. The details are presented in Section 4.

Let Q denote the joint input distribution for all the players in the
game G, and let X, Y, and Z respectively denote the first, second, and
third player’s inputs in the game G®". Let f, ¢, h : {0,1}"™ — {0,1}"
be any strategy that wins the n-wise repeated game G®" with
probability & > 0. Our goal is to prove that a < e @),

The players’ inputs are fully determined by the inputs of any
pair of players by the equation X; + Y; + Z; = 2 for all i € [n]. We
will say “(f, g, h) wins on (x,y)” as short-hand for “(f, g, h) wins
on (x,y, z) where z; = 2 — x; — y; for each i”.

Winning Implies Self-Agreement on Correlated X, X’: We first
consider a distribution in which X, X’, Y are random variables with
both (X, Y) and (X’, Y) distributed like QSG;nY! and with X and X’
conditionally independent given Y. More exp’licitly, this distribution

is sampled as follows:

(1) Sample an n-bit string Y according to Q?;". That is, for each

i € [n] independently sample Y; = 1 with probability 2/3,
and Y; = 0 otherwise.

(2) Independently sample X and X’ from the conditional dis-
tribution of the first player’s input in G®* given that the
second player’s input is Y. That is, for each i € [n], if
Y; = 0, set X; = Xl.’ 1. Otherwise, independently sam-
ple X;, X! « {0, 1} uniformly at random.

By the assumption that (f, g, h) wins with probability &, we know
that (f, g, h) wins on (X, Y) with probability «, and (f, g, h) wins
on (X’,Y) with probability a. Because of how (X,Y) and (X’,Y)
are correlated, we show that (f, g, h) must simultaneously win on
both (X, Y) and (X', Y) with probability at least &?. Thus,

XI!’)r(l [I;r [(f.9,h) wins on (X, Y) and on (X", Y)] > az/Z] > a?/2.

Now suppose that X and X’ are such that
f;r[(f,g, h) wins on (X, Y) and on (X’,Y)] > a?/2.

Then, we have Pr[Y; = 1|1X, X'] = 1/3 for i such that X; = X] = 1,
and all such Y; are conditionally independent given X, X’. Also,
if X; = X] = 1and f(X); # f(X’);, then the only way (f,g, h)
can win on (X,Y) and on (X’,Y) is if ¥; = 0, because if ¥; = 1
then the win conditions require that f(X); # g(Y); # f(X');.
Combining these two facts implies that f(X); # f(X’); for at most
log2/3((x2/2) = O(log 1/a) coordinates i with X; = X] = 1.

This shows that when X, X’, and Y are sampled as above, it holds
with poly(a) probability that:

(1) (Approximate Self-Agreement): For all but at most O(log 1/)

values of i € [n], if X; = X] = 1 then f(X); = f(X');.
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(2) (Winning): (f, g, h) wins on (X, Y) and on (X', Y).

A similar argument gives an analogous statement, where the
Winning property is replaced by a property that we call Winning’,
requiring that (f, g, h) has probability at least «/2 of winning in
G®" conditioned on the first player’s input being X’.

We say that (X,X’) is good if it satisfies Approximate Self-
Agreement and Winning’.

Constructing a strategy for G®"': We next use the fact that (X, X”)
is good with poly(a) probability to show that if there exists a strat-
egy (f, g, h) that wins G®" with probability a, then there exists a
strategy (f’,g’, h’) for G®" (with n’ > Q(n)) such that:

e f’is a constant function, and
e (f’,g’,h’) wins in all but O(log 1/a) coordinates of G
with probability poly(«).
The main idea is that (X, X”) can be equivalently sampled as fol-
lows:

(1) Sample each bit of X; independently such that X; = 1 with
probability 2/3.
(2) SampleasetS C [n] by independently including eachi € [n]
with probability 1/4.
(3) For i € S, set X/ = X;. For all other i, sample X/ such that
X] = 1 with probability 2/3.
The point of this alternative sampling process is that conditioned

is 02"l In

contrast, the distribution of X’ given X is not Q;?" because of the
correlation between X and X’.

We will first condition on random values of X, S, and XJ’., where
T =S U {i:X; =0}. This ensures that

on any value of X and S, the distribution of X’ ¢

X,E,IX'T [}ng [(X,X") is good| > poly(a)] > poly(a).

Also, the conditional distribution of X’ . given any values of X, S,
and X7 is just the first player’s input distribution in G®"=ITl This
means that we can view f as inducing a first-player strategy f’ on
G" forn’ =n—|T| by fixing the appropriate part of f’s input to
X7 Note that n” = Q(n) with overwhelming probability.

Part of (X, X’) being good means that (f, g, k) has poly(a) prob-
ability of winning on (X’,Y’) when Y’ is sampled from the dis-
tribution of the second player’s input in G®" conditioned on the
first player’s input being X”. We split the sampling of Y’ into two
parts: Y] and Y’ .. We show that we can sample and fix Y7, and use
it to define g’ and h” analogously to f’ (for h’ implicitly defining
Zy such that (Z7); = 2 = (X7); — (Y7):), such that with poly(a)
probability over the choice of (X’ [, Y/ ):

e (f'.g’.h") wins on (X', Y’ ), and
e (X,X’)is good. In particular, since X_r is the all-ones string,
we have f'(X’ ;)i = f(X'); = f(X); for all but O(log 1/a)
values of i ¢ T for which (X’ ,); = 1.
This implies that up to a difference in its outputs for O(log 1/)
coordinates, f” might as well be the constant function that always
outputs f(X)_r.

We could in principle continue onwards, eventually finding a
smaller n”’ (still Q(n)) such that G®"" has a strategy (f",g”,h"")
that wins in all but O(log 1/«) coordinates with probability poly(a),
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but consists only of constant functions. This is a contradiction
unless @ < e~ For simplicity, however, we instead directly
show that when f” is a constant function, the strategy (f’,g’, h’)
must lose in a constant fraction of the coordinates with all but
exponentially small probability. This implies that « is e~ Q)

2.3 Four-Point AND Distribution

We present a technical overview of the proof of Theorem 5.1 which
shows an inverse polynomial bound for the parallel repetition value
for the four-point AND distribution. The details can be found in
Section 5.

We first note the following observation about the set of points
S = {(0,0,0), (0,1,0),(1,0,0),(1,1,1)}. Let G be any game on S
with value less than one and fix any strategy (f, g, h) for the players
for one copy of the game G. Observe that whenever Charlie receives
1, he knows that the inputs of Alice and Bob are 1. Consider the
following two cases.

e Case A: Suppose the answers of Alice and Bob on input 1 are
such that there is no answer that Charlie can give to satisfy
the predicate, then the strategy loses on the input (1, 1, 1).
Case B: On the other hand, suppose the answers of Al-
ice and Bob on input 1 are such that there exists an an-
swer for Charlie that satisfies the predicate, then we can
assume that Charlie answers this on input 1. Since the value
of the game is less than one and this strategy succeeds
on (1,1,1), the strategy must fail on one of the remain-
ing three points {(0,0,0), (0, 1,0), (1,0, 0)}. For these points,
Charlie’s input is fixed to zero and in particular, his answer
is also fixed. Therefore, the predicate V when restricted to
these inputs, induces a predicate V which depends only
on the inputs and outputs of Alice and Bob. The game G
thus defines a two-player game on the uniform distribution
8 = {(0,0), (0,1), (1,0)} with predicate V.

Next, we consider the n-fold parallel repetition of the game.

Pre-processing the game. Let Q be the uniform distribution over
S and let P = Q®". We will always maintain a product event of
the form E = E! x E? x {0,1}" on the players inputs where E! is
a subset of Alice’s inputs and E? is a subset of Bob’s inputs. We
begin by showing that we can assume without loss of generality
that conditioned on a large product event across Alice’s and Bob’s
inputs, all coordinates satisfy a property similar to case B with
high probability, otherwise, we would get exponential decay of
the parallel repetition value. For each i € [n], let L; denote the
event that Alice and Bob receive 1 in the i-th coordinate and their
answers are such that there is no answer for Charlie that satisfies
the predicate. Let W; denote the complement of L;. For S C [n], let
Ws denote the event that the players win the game in coordinate
i for all i € S. Note that whenever L; happens, the players lose in
the i-th coordinate. Thus,

Pr[Wn] < Pr[Wi] - Pr[Wp|Wi] - Pr[Wp Wi, ..., Wooq]. (1)

While there exists a coordinate i € [n] such that Pr[L;|E] is signifi-
cant, i.e., Pr[Li|E] > 1/n% for some small constant § > 0, we will
try to condition on W; and proceed. (To ensure that we maintain a
product event across Alice and Bob, we will also randomly fix their
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inputs and answers in the i-th coordinate and update E based on
this fixing and proceed.*) If this conditioning process happens more
than n%® times, then Equation (1) implies that the probability of
winning all coordinates is at most (1 — l/n45)"5(S < exp(—Q(n‘S)).
It suffices to study the other case, that is, this conditioning process
happens at most n%9 times.

Reduction to a two-player game. We are left with a product event
E of the form E! x E2 x {0, 1}" of measure at least exp(—Q(n55))
such that for all i € [n], we have Pr[L;|E] < 1/n*’ and we will show
that the probability of winning all coordinates when the inputs are
drawn from P|E is at most n~2®) Let A; be the set of answers
a; such that with significant probability (namely, more than 1/ n?é
probability over P|E ), Alice’s input in i-th coordinate is 1 and her
output in the i-th coordinate is a;. Define B; for Bob similarly. Since
Alice’s and Bob’s inputs are independent under P and E is a product
event across Alice and Bob, and Pr[L;|E] < 1/n%, it follows that
for every pair of answers of Alice and Bob in A; X B;, there is an
answer that Charlie can give so that the predicate is satisfied when
all players get 1. Define a product event G; across Alice and Bob
which is true if and only if whenever Alice and Bob get input 1
in the i-th coordinate, they answer from A; X B;. A union bound
implies that
A

>1-— -
28

18]

_ -5
n2521 o(n™°).

Pr[G;|E]

@

We now randomly fix an input z € {0,1}" to Charlie. Let K

denote the set of coordinates that are zero in z, and let m denote |K]|.

With all but exponentially small probability, m = Q(n). We also
randomly fix the inputs x_g, y_g to Alice and Bob in coordinates
outside K. Pick a random subset S C K of size m€ for some constant
0 < € < 8. We have (in expectation over z, x_g, Y_g):

Pr[Ws|E] < Pr[Vies—Gil|E]
+Pr[A;esGi A WSIE, z, x_k, y_k]

®)

The first term Pr[V;cs—G;|E] is at most O(n~%+€) by Equation (2)
and a union bound. To analyze the second term, we will define
a two-player game G such that the probability of winning the
coordinates in S in the m-fold parallel repetition of G is exactly the
second term in the RH.S. of Equation (3). For now, we will define a
game G; for each i € [n]. Although these games can be different
for different i € [n], there are only finitely many possibilities for
G; and we simply restrict our attention to the game that appears in
most number of coordinates. The query distribution for G; is the
uniform distribution on S = {(0,0), (1,0), (1,1)}. The predicate Vi
is Vi(x, y,a,b) =V(x,y,0,abh(z)) AN(x=1=acHA)AN(y=
1 = b € B;). Note that the value of Qi is less than one. To see
this, given any strategy (f,g) for G with value one, there is a
strategy h for Charlie on input 1 such (f g, fz) succeeds on (1,1, 1),
since when Alice answers from A; on input 1 and Bob from B; on
input 1, there is an answer Charlie can give on input 1 to satisfy
the predicate. Define the strategy hto output h(z); when Charlie
receives 0. We know that ( f . ;l) must fail on one of the remaining
points in {(0, 0, 0), (0, 1,0), (1,0,0)}. This implies that (f, g) falsifies

“This can be done since W; and L; depend only on the inputs and answers to Alice
and Bob in the i-th coordinate.
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the predicate V; at the corresponding point in S. We use two-player
parallel repetition techniques and show that for a random S C K of
size m€, the probability of winning the m-fold parallel repetition of
the two-player game in coordinates in S is at most exp(—Q(m¢)).
We remark that we are able to apply two-player parallel repetition
techniques even though the measure of E could be smaller than
exp(—Q(]S])), and this is because the set S was chosen randomly.
Thus, the second term in the R.H.S. of Equation (3) is bounded by
exp(—Q(m€)) = exp(—Q(n€)). This completes the proof overview.

2.4 Playerwise Connected Games

We present an overview of the proof of Theorem 6.1 which shows
an inverse polynomial bound on the parallel repetition value of all
playerwise connected games. The details are in Section 6. We focus
on the case of the uniform distribution Q over

S = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,1)}. Let P = Q®". For
a random variable W, we use Py to denote the distribution of W
where the probability space is P. We use (X, Y, Z) to denote inputs
of the three players for the game G®".

Our proof builds on the framework of the Parallel Repetition
Theorem from [10, 27, 36]. We now describe this framework. Let G
be a game whose query distribution is Q and whose value is less
than one. Consider its n-fold parallel repetition. Using an inductive
argument, it suffices to show that for every large product event
E = E' x E? x E3 across the players’ inputs to the n-fold game
G®", when the inputs are drawn from the distribution P|E, there
exists some hard coordinate i € [n], meaning that the probability
of winning the game in the i-th coordinate is 1 — € for some con-
stant € > 0. Since the event E has large measure, it cannot reveal
too much information about too many coordinates, and hence the
distribution of the marginal of P|E on the i-th coordinate is similar
to the original distribution Q for most i € [n]. It then suffices to
show a way for the players to approximately embed the inputs
they receive for the original game G, into the i-th coordinate of the
inputs to the n-fold game drawn according to the distribution P|E.
In order to do this, they need to be able to sample the remaining
n — 1 coordinates of the inputs according to the correct distribu-
tion. To do this, as in [10, 27, 36], we define a dependency breaking
random variable R as follows. The random variable R for each copy
i € [n] of the game, independently, chooses two players uniformly
at random and samples the inputs to those players according to
the distribution induced by P|E. Let (x;,yi,z;) € supp(Q). If the
players can jointly sample from Pg_,|E x;,y; z;» then since R breaks
the correlation between the player’s inputs, any player can indepen-
dently sample the rest of their own input given R_;. Note that each
player only knows one of x;, y; and z; and it is not evident how the
players can jointly sample from Pg_,|g.y, 4, z;- Ideally, one would
like to show that P ;| x; y;.2; is close to some global distribution
for all (x;,yi, zi) € supp(Q); in such a case, the global distribution
would be Pg_;|g. We denote this by Pr_;|g ® PR_;|Ex;,y;,z- This
would mean that the players only need to sample from a global
distribution Pg_,|g and this can be done using shared randomness.
Prior works [10, 27, 36] showed that Pr_|Ex; y;.z; ® PR |Exiys0
but it is not clear if this suffices to prove the desired result.

In our work, we show that for the query distribution Q, we have
PrE ® PR_;|Exi,ysz for all (xi,yi,zi) € supp(Q). (We prove a
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similar result for all playerwise connected games.) By choosing
parameters appropriately and by Bayes’ Rule, it will suffice to show
that

©

The key idea we use is to modify the distribution of P in the i-th
coordinate as follows. Let T be a product distribution over {0, 1}3
such that the marginal on each player’s input agrees with that of Q.
The idea is to consider the distribution P_;T, which is a product of
n independent distributions, where the distribution in the i-th coor-
dinate is T and the distribution in every other coordinate is Q. We
can recover the original distribution P from P_;T' by conditioning
on some event that depends on the i-th coordinate (and possibly
on some additional randomness).

Note that (P-;I')x y,z|r_, is a product distribution across the
inputs of the players, since R is a correlation breaking random
variable and since the distribution of P_;T" in the i-th coordinate
was a product distribution to begin with. Since E = E' x E? x E3
is a product event, the i-th coordinate of (P-;I')x y,z|,_, £ has a
product distribution across the players. Finally, since the marginal
of T on any player’s input agrees with that of Q, we have

Px,Yi.zi\riE ® Px, v, z; g formostr—; ~ Pg_p.

(P=iD)x,.v;,Z:|r_1.E
S (P—l'r)Xilr,,—,El X (P_ir)yilrii’EZ X (P—ir)Z,-IL,-,E3
for all r—;.

®)
=Pxilri bt X Pyifrp b2 X Pz B0

To study the distribution Py, |,_, g1, we will study the distribution
Py, v, z|r_.,5t and show that it is close to Q. The support of the
latter distribution is contained in S. Observe that the distribution
Py, 7,|r_., B' X;=x, 18 exactly the uniform distribution over {(y;, zi) €
{0,1}% : (x4,yi, z;) € supp(Q)} for all x; € {0, 1}.° This implies that
the probabilities assigned by Py, y, 7,|,_, g1 to all points in S of the
form (1, %, *) are identical, and similarly, the probabilities assigned
to all points in S of the form (0, », *) are identical. To conclude that
the probabilities assigned to (0,0, 0) and (1,0, 0) are close for most
r-i ~ Pp g1, we use techniques similar to [10, 27, 36]. We thus
show that the probabilities assigned to all points in S are similar
and hence the distribution of Py, y, 7,|._, 1 is close to Q for most
r—i ~ Pp_,|p1- This along with a similar argument for the second
and third terms in the R.H.S. of Equation (5) (and the fact that the
marginals of I' on any player agree with that of Q) implies that

PX,»|r,,»,E1 ~ (P_ir)Xi
PYiIr,i,EZ ~ (P_lr)Yl
PZ,-|r_,-,E3 ~ (P*l'r)Zi

Let us pretend for now that Equation (6) actually holds for most
r—i ~ Pg_, |- If so, this, along with Equation (5) would imply that

for most r—; ~ Pp_|p1

for most r—_; ~ Py _, |2

(6)

for most r—; ~ Pp_, |3

(P_ir)XisYi’Zilr—i,E = (P_,T)Xi,yi’zi for most r_; ~ PR_ilE‘

We now condition both sides of the above equation on an event T;
such T'|T; = Q. Note that T; depends only on the inputs in coordinate

5To see this, note that the distribution Pxyz|r_; is aproduct distribution across coordi-
nates where the marginal in the i-th coordinate is simply the uniform distribution over
S. Once we condition on X; = x; for any x; € {0, 1}, the distribution Py, 7|,_; x;=x;
is still a product distribution across coordinates and in the i-th coordinate is exactly
the uniform distribution over {(y;,z;) € {0,1}% : (x;, yi,z;) € S}. If we further
condition on E', it only affects the distribution of inputs in coordinates other than i.
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i and some additional shared randomness (see the full version for
details.) This implies that

Px. v, z:\roE ® Px;v,z; formostr_j ~ Pp_|g.

This along with the fact that the distribution of P, y, 7, | is close to
Q for most coordinates i € [n] completes the proof of Equation (4),
under the incorrect assumption that the distribution of r_; in Equa-
tion (6) was Pg_,|g- To fix this, we use the property that for any
1
random variable G, we have P[G = g|E] < P[G = g|E!] - % <
P[G =g|E']- ﬁ This allows us to connect probabilities over P|E
and probabilities over P|E!, P|E? and P|E3. This is the place where
we incur a loss of 1= and as a result, our bound only holds for

P(E)
polynomially large events.

3 PRELIMINARIES

Let N = {1, 2,...} be the set of all natural numbers. For each n € N,
we use [n] to denote the set {1,2,...,n}.
We will mostly follow [10, 27, 28] for notation.

3.1 Probability Distributions

We will use calligraphic letters to denote sets, capital letters to
denote random variables and small letters to denote values.

Let P be a distribution (with the underlying finite set clear from
context). For a random variable X, we use Px to denote the distri-
bution of X, that is, Px(x) = P(X = x). For random variables X
and Y, we use Pxy to denote the joint distribution of X and Y. For
an event E with P(E) > 0, we use Py to denote the distribution
of X conditioned on the event E, given by

P(X=xAE)

Pxip(x) = P(E)

Suppose R is a random variable, and r is such that Pr(r) > 0. We
will frequently use the shorthand Py, to denote the distribution
Px|R=r-

Let Px and Qx be distributions over a set X. The L!-distance
(or £1-norm) between Px and Qx is defined as ||Px — Qx|l; =
Yxex Px(x) = Ox (x)].

We will also be using the following facts:

Fact3.1. (Chernoff Bounds, see [32] for reference) Let X1, ..., X, €
{0, 1} be independent random variables each with mean i, and let

X =X, Xi. Then, for all § € (0, 1), it holds that

(‘Szun

PriX < (1-8)un] <e "z,

52;"1
3

Pr(X > (1+6)un] <e”
Pr[X —pun>én] < em20%n,

FacT 3.2. Let Px and Qx be probability distributions over a set
X, and let W C X be an event such that Px (W), Qx (W) > 0. Then,

2
|Pxcjw - QX|W||1 < oxw) IPx — Oxll;

Proor. The proofis deferred to the full version of this paper. O
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FacT 3.3. Let P be a probability distribution, and let X be a random
variable over a set X, and let E be any event with P(E) > 0. Leta > 0
be arbitrary, and let T = {x €e X : P(E|x) > a - P(E)}. Then, it
holds that

P(XeT|E)>1-a.

ProorF. The proofis deferred to the full version of this paper. O

FacT 3.4. Let P be a probability distribution, and let X be a random
variable over a set X, and let E be any event. Then, there exists x € X
such that P (E| X = x) > P(E).

3.2 Multiplayer Games

DEFINITION 3.5. (Multiplayer Game) A k-player game G is a tuple
G = (X, A,Q,V), where the question set X = XUx - x Xk and
the answer set A = Al x - - - x A¥ are finite sets, Q is a probability
distribution over X, andV : X X A — {0, 1} is a predicate.

DEFINITION 3.6. (Game Value) Let G =
game.

For a sequence (f] (X > ﬂj)je[k]
tion f=flx---xfk: X > Aby

f(xl,.,.,xk) - (fl(xl),...,fk(xk)).

We use the term product functions to denote functions f defined in
this manner.
The value val(G) of the game G is defined as

val(g) = Pr VX, f(X) =1],

(X, A,Q,V) be ak-player

of functions, define the func-

max

fofixexft X

where the maximum is over all product functions f = f! x
The functions (f7) je(k| are called player strategies.

--xfk‘

Fact 3.7. The value of the game is unchanged even if we allow
the player strategies to be randomized, that is, we allow the strategies
to depend on some additional shared and private randomness.

DEFINITION 3.8. (Parallel Repetition of a game)
Let G = (X, A,Q,V) be a k-player game. We define its n-fold rep-
etition as G®" = (X®", A®", P,V®"). The sets X®" and A®" are
defined to be the n-fold product of the sets X and A with themselves
respectively. The distribution P is the n-fold product of the distribu-
tion Q with itself; that is, P(x) = [1; Q(x;). The predicate Ven s
defined as V®"(x, a) = AL V(xi,ap).

Note that we use the notation X®" instead of the standard notation
X" so0 as to avoid confusion with the sets XL, Xk

Following the notation in [10], we use subscripts to denote the
coordinates in the parallel repetition, and superscripts to denote the
players. For example, for i € [n] and j € [k], we will use xlj to refer
to the question to the jth player in the ith repetition of the game.
Similarly, x; will refer to the vector of questions to the k players
in the it repetition, and x/ will refer to the vector of questions
received by the j™ player over all repetitions. We use x~/ to refer
to the questions to all players except the jth player, and use x_; to
refer to the questions in all coordinates except the it coordinate.

When we are dealing with 3 player games, we will not be using
superscripts to refer to different players, and rather use the notation
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G = XXYXZ, AXBXC,Q,V). That is, we use X, Y, Z in
place of X1, X2, X3 and A, B,C in place of A, A2, A3.

We will use the notation A < B (resp. 2) to mean that A < c¢- B
(resp. A > ¢ - B) for some constant ¢ > 0. For our purposes, we will
allow the constant to depend on the size of the (initial) game being
considered, but not on the number of repetitions.

3.3 Playerwise Connected Games

We will particularly be interested in a special class of games, which
we refer to as playerwise connected games. Before we define this
class, we recall the following definition:

DEFINITION 3.9. ((k — 1)-connection graph [10])
Let G = (X, A,Q,V) be a k-player game, and let S C X be the
support of Q. We define its (undirected) (k — 1)-connection graph Hg
as follows. The vertex set of Hg is S, and there is an edge between
x,y € S if and only if they differ in the question to exactly one of the
players. That is, {x,y} is an edge if and only if there exists j € [k]
such that x™J =y~ and x/ # y/.

We say that a game G is connected if the graph Hg is connected.

We will define a game to be playerwise connected if the projection
of the above graph with respect to each of the players is connected.
This is formally defined as follows:

DEFINITION 3.10. (Playerwise Connected Game)
Let G = (X, A,Q,V) be a k-player game, and let S C X be the
support of Q. We assume that for all j € [k], and for allx) € X7, the

] player is given the question xJ with positive probability.
For every j € [k], we define the graph HJ as the graph with vertex

set X/, with an edge between x/,y/ € X/ ifand only if there exists
x~J € X7J such that both (x™J,x7) € S and (x™/,y/) € S. We say
that the game G is playerwise connected if" H]g is connected for each
j € [k].

Note that the assumption on G in the above definition is without
loss of generality, because we can simply remove each xJ which occurs
with zero probability, without affecting the game in any meaningful
way.

3.4 Previously Known Results

We state the known results on parallel repetition that will be useful
for us.

THEOREM 3.11. (Parallel Repetition for 2-Player Games [36]) Let
G=(XXY,AXB,Q,V) bea 2-player game such that val(G) < 1.
Then, there exists a constant ¢ = ¢(G) > 0 such that for everyn € N,
it holds that val(G®™") < 27¢",

THEOREM 3.12. (Parallel Repetition for Connected Games [10])
Let G be a connected k-player game (see Definition 3.9) such that
val(G) < 1. Then, there exists a constant ¢ = ¢(G) > 0 such that for
everyn € N, it holds that val(G®") < 27",

THEOREM 3.13. (Parallel Repetition for The GHZ Game [21, 28])
Let G = (X XY XZ, AXBxC, QV) be a 3player game
with X = Y = Z = {0,1}, and Q the uniform distribution over
S ={(0,0,0),(1,1,0),(1,0,1),(0,1,1)}, and such that val(G) < 1.
Then, there exists a constant ¢ = ¢(G) > 0, such that for everyn € N,
it holds that val(G®™) < n™¢.
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3.5 Some Results on Multiplayer Games

3.5.1 Restriction to Uniform Distributions. We state a lemma from
[17], which shows that it suffices to prove parallel repetition in the
case when the game’s distribution is the uniform distribution over
its support. For the sake of completeness, we also include a short
proof.

LEMMA 3.14. Let G = (X, A, Q, V) be a k-player game such that
val(G) < 1,and let S C X be the support of Q. Letg~ =(X,A,U,V),
where U is the uniform distribution over S. Letv : N U {0} — [0,1]
be the function defined by v(n) = val(G®"), for everyn e NU {0},
with the convention v(0) = 1. Then,

(a) v(1) = val(G) < 1.

(b) There exists a constant 8 > 0 such that val(G®") < 2v(|Bn])

foralln e N.

Proor. The proofis deferred to the full version of this paper. O

3.5.2 A Restriction on Predicates. We show that to prove parallel
repetition, it suffices to assume that the game has the following
property: If some input 4/ for the jth player completely determines
the input y to all the players, then on input y, the game’s predicate
does not depend on the answer a/ given by the jth player.

A recursive application of the next lemma shows that we can
assume the aforementioned property.

LEMMA 3.15. Let G = (X, A, Q, V) be a k-player game. Suppose
y € X, j € [k] are such that y is the unique input with Q(y) > 0 that
hasy/ as the input to the j' player. Then, there exists a predicate V'
such that the game G’ = (X, A, Q, V') satisfies:

(a) For every a,b € A witha™ = b/, it holds that V' (y,a) =

V' (y,b).
(b) For everyn € N, it holds that val(G®") < val(G’®").
(c) val(G’) = val(G).

Proor. The proofis deferred to the full version of this paper. O

3.5.3  An Inductive Parallel Repetition Criterion. We state a parallel
repetition criterion from [28, 36]. For the sake of completeness, we
also include a proof.

DEFINITION 3.16. Let G = (X, A, Q,V) be a k-player game, and
let Q' be some distribution over X. We define G | Q' to be the game
Gl1Q" =(X,AQ"V).

DEFINITION 3.17. Let G = (X, A, Q,V) be a k-player game, and
g% = (X®n, A®", P, V®") be its n-fold repetition. For each i €
[n], we define the value of the i'" coordinate of G®", denoted by
val;(G®™"), to be the value of the game (X®", A®", P, V'), where
V'(x,a) = V(xi,ai).

LEmMMA 3.18. Let G = (X, A,Q,V) be a k-player game, and
G®" = (X®", A®", P, V®") be its n-fold repetition. Suppose that
there exists a constant € > 0, and a non-increasing function p : N —
[0, 1] such that p(n) > 270, and for every n € N, and every prod-
uct event E = E' x --- x EK € (X1)®" x ... x (Xk)®n = xen
with P(E) > p(n), there exists a coordinate i € [n] such that
val;(G®" | (P|E)) < 1 — €. Then, there exists a constant ¢ > 0 such
that val(G®") < p(n)¢ for everyn € N.

Proor. The proofis deferred to the full version of this paper. O
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4 THE ANTI-CORRELATION GAME

In this section, we will focus on the following game.

DEFINITION 4.1. (The Anti-Correlation Game) The anti-correlation
game, which we denote as G = ({0, 1}3, {0, 1}3 ,Q,V), is a 3-player
game in which the query distribution Q is uniform over the set
{(0,1,1),(1,0,1),(1,1,0)} of strings of hamming-weight 2, and the
win predicate V. : {0,1}% x {0,1}> — {0,1} is defined so that
V ((x,y,2), (a,b,¢)) = 1 if and only if ((x,y,2), (a,b,c)) = xa +
yb+zc=1.

In words, a random pair of players receive 1, and these players
must produce different bits.

IfV ((x,y,2), (a,b,c)) = 1, we say that (a, b, c) wins on (x,y, z).

We will denote this game by G, and denote its query distribution
by Q (i.e. the uniform distribution on {(O, 1,1),(1,0,1),(1,1, O)}.
Observe that the value of this game is 2/3. We will show that
parallel repetition exponentially decays the value of this game.

THEOREM 4.2. Let G be the anti-correlation game as in Defini-
tion 4.1. Then, there exists a constant ¢ > 0 such that for everyn € N,
it holds that val(G®") < exp(—c - n).

The proof of this theorem is deferred to the full version of this
paper.

5 FOUR POINT AND DISTRIBUTION
This section is devoted to the proof of the following theorem:
THEOREM 5.1. Let G = (XXYXZ, AXBXC, Q,V) be a 3-player
game with X =Y = Z = {0, 1}, and Q the uniform distribution over
S ={(0,0,0),(1,0,0),(0,1,0),(1,1,1)}

= {(x,y,z) € {0,1}3 : z:x/\y},
and such thatval(G) < 1. Then, there exists a constantc = ¢(G) > 0,
such that for every n € N, it holds that val(G®") < n™¢.

The proof of this theorem is deferred to the full version of this
paper.

6 PLAYERWISE CONNECTED GAMES

In this section, we will prove the following theorem:

THEOREM 6.1. (Parallel Repetition for Playerwise Connected Games)
Let G be a playerwise connected k-player game such that val(G) < 1.
Then, there exists a constant ¢ = ¢(G) > 0 such that for everyn € N,
it holds that val(G®™) < n™¢.

The proof of this theorem is deferred to the full version of this
paper.

7 HAMMING WEIGHT ONE DISTRIBUTION
WITH BINARY OUTPUTS

In this section, we analyze parallel repetition for three-player games

with inputs drawn uniformly from the set

S ={(1,0,0),(0,1,0), (0,0,1)} of hamming-weight one inputs, and

having binary outputs. Formally, we prove the following theorem:

THEOREM 7.1. Let G = (X XY X Z,AX B X C,Q,V) be a 3-
player game withX =Y = Z = A =B =C = {0,1}, and Q the
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uniform distribution over S = {(1,0,0), (0,1,0), (0,0,1)}, and such
that val(G) < 1. Then, there exists a constant ¢ = ¢(G) > 0, such
that for every n € N, it holds that val(G®™") < 27¢",

The proof of this theorem is deferred to the full version of this
paper.

8 THREE PLAYER GAMES OVER BINARY
ALPHABET

8.1 The Main Theorem

In this section, we prove the following main result:

THEOREM 8.1. Let G = (X XY X Z, A X B XC,Q,V) be a 3-
player game withX =Y = Z = A =8B =C ={0,1}, and such that
val(G) < 1. Then, there exists a constant ¢ = ¢(G) > 0, such that for
everyn € N, it holds that val(G®") < n™C.

Proor. By Lemma 3.14, it suffices to only consider the case
when the distribution Q is the uniform distribution over its support
S ¢ {0,1}3. Also notice that we only need to analyze S up to
symmetry among the 3 players, and up to symmetry of the inputs
0 and 1 (that is, up to symmetries of the cube {0,1}%).

When G is connected, Theorem 3.12 provides an inverse ex-
ponential bound val(G®") = 272" Therefore we only need to
consider the case when G is not connected, or equivalently, the
graph Hg (see Definition 3.9) is not connected. Notice that the
graph Hg is the subgraph of the cubical graph {0, 1}3 induced by
S. Since ‘Hg is not connected, there must be a smallest connected
component 8’ C S in Hg of size 1 or 2.

If |S’| = 2, by symmetry assume that S” = {(1,1,0), (1,1, 1)}.
Then S \ S’ is contained in {(0, 0,0), (0,0, 1)}, which implies that
the input (x, y, z) always satisfies x = y. This means that the game
G is essentially a two-player game, where an inverse exponential
decay bound is known by Theorem 3.11.

If |S’| = 1, by symmetry assume that S’ = {(1,1,1)}. Then S\ S’
is contained in {(0, 0,0), (1,0, 0), (0, 1,0), (0,0, 1) }, and we perform
a case analysis in below:

(1) IS| < 2. Then G always degenerates to a two-player game,
similar to the case of |S’| = 2 above.

(2) |S| = 3. To avoid degeneracy it must hold that (0, 0,0) ¢ S, so
by symmetry we only consider S = {(1,0,0), (0,1,0),(1,1,1)}
or equivalently, S = {(1,0,0), (0, 1,0), (0,0,1)}. The specific
game of interest, the anti-correlation game, was studied in
Section 4. The general game with binary outputs was ana-
lyzed in Section 7, where we proved an inverse exponential
decay bound (see Theorem 7.1).

(3) IS| = 4 and (0,0,0) € S. By symmetry we consider S =

5

{(0,0,0), (1,0,0), (0,1,0), (1,1,1)}. We proved an inverse poly-

nomial decay bound for this four-point AND distribution in
Section 5 (see Theorem 5.1).

(4) |S| =4 and (0,0,0) ¢ S:
Then, S = {(1,0,0), (0,1,0), (0,0,1), (1,1,1) }. This is equiv-
alent to the support of the GHZ game, and and an inverse
polynomial decay bound is known (see Theorem 3.13)

(5) |S| = 5,thatis, S = {(0,0,0), (1,0,0), (0,1,0),(0,0,1), (1,1, 1)}.

In particular, the game G is playerwise connected (see Defini-
tion 3.10), and we proved inverse polynomial decay bounds
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for all playerwise connected games in Section 6 (see Theo-
rem 6.1). O

8.2 A General Game on Hamming Weight One

Input
We observe that Theorem 8.1 works for arbitrary answer lengths
in all cases except when the support S has |S| = 3 with all disjoint
points, for example, S = {(1,0,0), (0,1,0), (0,0,1)}.

Next, we describe a very simple family of 3-player games { G } . e
such that proving a bound on the value of parallel repetition for
games in this family will extend Theorem 8.1 to all games with
X =Y = Z ={0,1}, and arbitrary answer sets A, B, C.

DEFINITION 8.2. For every k € N, we define a 3-player game
Gr = (XXYXZ, A X By XCr, Q, Vi), withX =Y = Z ={0,1},
and Q the uniform distribution over S = {(1,0,0), (0,1,0), (0,0,1)},
as follows:

(a) A = By = {0,1}*, and Cy. = [K].

(b) Forall (x,y,z) € S, and (a,b,c) € AX B XC,

(ai Abi)iepr) = 0%, if (x,4,2) = (0,0,1)
if (x,y,2z) = (0,1,0) .
if (x,y,2) = (1,0,0)

It is an easy check that val(Gy) = 2/3. For every n € N, we define
pr(n) = val(GE™).

PROPOSITION 8.3. Let G = (X XY X Z,AXxBxC,Q,V) bea
3-player game withX = Y = Z = {0, 1}, and Q the uniform distribu-
tion over S = {(1,0,0), (0,1,0), (0,0, 1)}, and such that val(G) < 1.
Then, for every n € N, it holds that val(G®") < pi(n), where
k = max {|A|,|8],|C|}.

Vi ((v.9.2). (a,b,0)) =

ac =1,
be =1,

PROOF. Let G be a game as specified. Without loss of generality,
we assume that A = B = C = [k]. By Lemma 3.15, it also suffices to
assume that the predicate V only depends on the answers of the two
players that get input 0. We observe that since val(G) < 1, for every
a,b € [k], if it holds that V' ((0,0,1), (a,b, %)) = 1, then for every
¢ € [k], it holds that V ((0,1,0), (a,*,¢)) AV ((1,0,0), (*,b,c)) =0

We consider G®" = (X x Y x Z)®", (A x B xC)®", P, V™),
Let f,g,h : {0,1}" — [k]" be optimal strategies for the game G®".

We define strategies f; : {0,1}" — ﬂf", gk : {0,1}" —
BI;@", he : {0,1}" — C];@", for the game QS", as follows: For
every x,y,z € {0,1}", and every i € [n], we define

e = (V (01,00, (Fi % O)eea]
gk W)i = (V ((1,0,0), (% 911 ) ec k]

hi(2)i = h(2);.
It is clear (from the above observation about G) that if the strategies
f>g, h win the game G®" on an input (x, y, z), then the strategies
fs 9k hie also win the game §]§’" on input (x,y, z). This shows that

pi(n) = val(GE™) = val(G®™). o
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