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ABSTRACT
We prove that for every 3-player (3-prover) game, with binary

questions and answers and value < 1, the value of the𝑛-fold parallel

repetition of the game decays polynomially fast to 0. That is, for

every such game, there exists a constant 𝑐 > 0, such that the value

of the 𝑛-fold parallel repetition of the game is at most 𝑛−𝑐 .
Along the way to proving this theorem, we prove two additional

parallel repetition theorems for multiplayer (multiprover) games,

that may be of independent interest:

Playerwise Connected Games (with any number of players and any
Alphabet size): We identify a large class of multiplayer games and

prove that for every game with value < 1 in that class, the value of

the 𝑛-fold parallel repetition of the game decays polynomially fast

to 0.

More precisely, our result applies for playerwise connected games,
with any number of players and any alphabet size: For each player

𝑖 , we define the graph𝐺𝑖 , whose vertices are the possible questions

for that player and two questions 𝑥, 𝑥 ′ are connected by an edge

if there exists a vector 𝑦 of questions for all other players, such

that both (𝑥,𝑦) and (𝑥 ′, 𝑦) are asked by the referee with non-zero

probability. We say that the game is playerwise connected if for

every 𝑖 , the graph 𝐺𝑖 is connected.

Our class of playerwise connected games is strictly larger than

the class of connected games that was defined by Dinur, Harsha,

Venkat and Yuen (ITCS 2017) and for which they proved exponential

decay bounds on the value of parallel repetition. For playerwise

connected games that are not connected, only inverse Ackermann

decay bounds were previously known (Verbitsky 1996).

∗
Uma Girish, Kunal Mittal, Ran Raz, and Wei Zhan were supported by the Simons

Collaboration on Algorithms and Geometry, by a Simons Investigator Award, and by

the National Science Foundation grants No. CCF-1714779, CCF-2007462. Uma Girish

was also supported by the IBM PhD Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’22, June 20–24, 2022, Rome, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00

https://doi.org/10.1145/3519935.3520071

Exponential Bounds for the Anti-Correlation Game: In the 3-player
anti-correlation game, two out of three players are given 1 as input,

and the remaining player is given 0. The two playerswhowere given

1must produce different outputs in {0, 1}. We prove that the value of

the 𝑛-fold parallel repetition of that game decays exponentially fast

to 0. That is, there exists a constant 𝑐 > 0, such that the value of the

𝑛-fold parallel repetition of the game is at most 2
−𝑐𝑛

. Only inverse

Ackermann decay bounds were previously known (Verbitsky 1996).

The 3-player anti-correlation game was studied and motivated

in several previous works. In particular, Holmgren and Yang (STOC

2019) gave it as an example for a 3-player gamewhose non-signaling

value (is smaller than 1 and yet) does not decrease at all under

parallel repetition.
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1 INTRODUCTION
We study multiplayer games and their behavior under parallel

repetition. In a 𝑘-player game G, a referee samples questions 𝑥 =

(𝑥1, . . . , 𝑥𝑘 ) from some distribution 𝑄 . Then, for each 𝑗 ∈ [𝑘], the
𝑗 th player is given the question 𝑥 𝑗 , based on which they give back

an answer 𝑎 𝑗 . The referee then declares if the players win or not

based on the evaluation of a predicate𝑉 (𝑥1, . . . , 𝑥𝑘 , 𝑎1, . . . , 𝑎𝑘 ). The
value val(G) of the game G is defined to be the maximum winning

probability for the players, where the maximum is over all possible

strategies (functions mapping questions to answers) of the players.

A very basic operation on a game G is to consider its parallel

repetition, in which the players are asked to play many independent

copies of the game in parallel. More formally, in the 𝑛-fold parallel

repetition G⊗𝑛 , the referee draws questions (𝑥1
𝑖
, . . . , 𝑥𝑘

𝑖
) from 𝑄 ,

independently for each 𝑖 ∈ [𝑛]. Then, for each 𝑗 ∈ [𝑘], the 𝑗 th
player is given the questions (𝑥 𝑗

1
, . . . , 𝑥

𝑗
𝑛), based on which they
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answer back (𝑎 𝑗
1
, . . . , 𝑎

𝑗
𝑛). The referee says that the players win if

for every 𝑖 ∈ [𝑛], the predicate 𝑉 (𝑥1
𝑖
, . . . , 𝑥𝑘

𝑖
, 𝑎1
𝑖
, . . . , 𝑎𝑘

𝑖
) evaluates

to win.

A natural question is to study how the value of the game G⊗𝑛
behaves as a function of 𝑛, the number of parallel repetitions [19].

It is not hard to see that val(G⊗𝑛) ≥ val(G)𝑛 , since the players
can achieve value val(G)𝑛 in the game G⊗𝑛 by simply repeating

an optimal strategy for the game G independently in all the 𝑛

coordinates. It also seems that this should be optimal, and that

val(G⊗𝑛) ≤ val(G)𝑛 . However, this turns out not to be the case,

and there are games such that val(G⊗𝑛) is exponentially larger

than val(G)𝑛 [12, 17, 18, 38]. Hence, it is interesting to study the

behavior of val(G⊗𝑛) for games G with val(G) < 1.

The special case of 2-player games is very well understood, and

it was proven by Raz [36] that if val(G) < 1, then the value of

G⊗𝑛 decays exponentially in 𝑛; that is, val(G⊗𝑛) ≤ 2
−Ω (𝑛)

, with

the constants depending on the base game G. There have been

improvements in the constants [3, 27, 35, 39], and we even know

tight results based on the value of the initial game [6, 11]. These

results on 2-player games have found many applications, in par-

ticular in the theory of interactive proofs [5], PCPs and hardness

of approximation [4, 13, 25], geometry of foams [1, 15, 30], quan-

tum information [9], and communication complexity [2, 7, 33]. The

reader is referred to this survey [37] for more details.

The case of general 𝑘-player multiplayer games is still open.

The only general result, by Verbitsky [40], says that if val(G) < 1,

then val(G⊗𝑛) → 0 as 𝑛 →∞. This result uses the density Hales-

Jewett theorem as a black box, and gives bounds of the form
1

𝛼 (𝑛) ,
where 𝛼 is an inverse Ackermann function [20, 34]. Apart from

being interesting in its own right, studying parallel repetition of

multiplayer games has some applications. For example, it is known

that a strong parallel repetition theorem for a particular class of

multiplayer games implies super-linear lower bounds for Turing

machines in the non-uniform model [31]. Also (as mentioned by

[10]), the technical limitations that arise when analyzing games

with more than two players seem very similar to the ones we

encounter when studying direct sum and direct product questions

for multiparty number-on-forehead communication complexity

(which is related to lower bounds in circuit complexity). Therefore,

studying parallel repetition for multiplayer games may lead to

progress in these areas.

Although we know very little about general multiplayer games,

there has been some recent progress on special classes of multi-

player games:

(1) Dinur, Harsha, Venkat and Yuen [10] extend the two player

techniques of [27, 36] and show that any connected game sat-
isfies an exponentially small bound on the value of parallel

repetition (and this includes all games for which exponen-

tially small bounds were previously known). The class of

connected games is defined as follows: Define the graphHG ,
whose vertices are the ordered 𝑘-tuples of questions to the

𝑘-players, and there is an edge between questions 𝑥 and 𝑥 ′

if they differ in the question to exactly one of the 𝑘 players,

and are the same for the remaining 𝑘 − 1 players. The game

is said to be connected if the graphHG is connected.

(2) The GHZ game [24] is defined as follows: The referee sam-

ples the questions (𝑥1, 𝑥2, 𝑥3) uniformly at random from

{0, 1}3 such that 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 = 0. The players answer back

with 𝑎1, 𝑎2, 𝑎3 ∈ {0, 1}, and are said to win if 𝑎1 ⊕ 𝑎2 ⊕ 𝑎3 =
𝑥1∨𝑥2∨𝑥3. It has been shown that any game with the same

distribution as the GHZ game satisfies an inverse polynomial

bound on the value of parallel repetition [21, 28].

1.1 Our Results
We prove that for every 3-player game, with binary questions and

answers and value < 1, the value of the 𝑛-fold parallel repetition of

the game decays polynomially fast to 0.

Theorem 1.1. Let G be a 3-player game such that val(G) < 1 and
each question and answer is in {0, 1}. Then, there exists a constant
𝑐 > 0, such that val(G⊗𝑛) ≤ 𝑛−𝑐 .

In the proof of Theorem 1.1, we show that from the perspective

of studying the behaviour of val(G⊗𝑛) as a function of 𝑛, every

3-player game G with binary questions and answers, is equivalent

to, or can be reduced to, a game in one of the following five classes:

(1) 2-Player Games: As mentioned above, exponentially small

bounds on the value of the parallel repetition of games in

this class have been known for a long time.

(2) Playerwise Connected Games: This is a new class of

games that we define and study in this work and we prove

polynomially small bounds on the value of the parallel repe-

tition of games in this class.

(3) The GHZ Game: (and other games with the same query dis-

tribution): As mentioned above, polynomially small bounds

on the value of the parallel repetition of games in this class

were recently proved.

(4) The Anti-Correlation Game: (and other games with the

same query distribution and binary answers): The 3-player

anti-correlation game is defined as follows: The referee sam-

ples the questions (𝑥1, 𝑥2, 𝑥3) uniformly at random from

{0, 1}3 such that 𝑥1 + 𝑥2 + 𝑥3 = 2 (that is, two out of three

players are given 1 as input, and the remaining player is

given 0). The two players who were given 1 must produce

different outputs in {0, 1}. We prove exponentially small

bounds on the value of the parallel repetition of that game

(and all other games with the same query distribution and

binary answers).

(5) Games over the Set of Questions
{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}:We prove polynomially

small bounds on the value of the parallel repetition of games

in this class.

We note that the reduction to these five classes of games works

more generally for all 3-player games with binary questions and

arbitrary length of answers, except that we need to extend Class 4

so that it contains games with arbitrary length of answers. Note

also that for all other classes, the bounds that we have hold more

generally for games with arbitrary length of answers. This means

that improving the bounds that we prove for Class 4 so that they

hold for arbitrary length of answers (or even proving weaker, poly-

nomially small, bounds for that case) would imply that Theorem 1.1

holds more generally, for games with arbitrary answer length.
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We note also that the three new bounds that we prove in this

work, the bounds for Class 2, Class 4 and Class 5, are each proved

by a completely different proof method. Next we elaborate on each

of these three classes.

1.1.1 The Anti-Correlation Game (Class 4). In the hilarious essay

“Test Your Telepathic Skills”, Uri Feige tells the fictional story of

the “amazing Tachman family”, who astonished the team at FEXI

(the Foolproof Experiments Institute) with their telepathic skills, by

playing incredibly well the 3-fold parallel repetition of the 3-player

anti-correlation game [Uri Feige, 1995]
1
. Feige showed that the

value of the 3-player anti-correlation game, played in parallel 3

times, is
2

3
, exactly the same as the value of the original game.

More than two decades later, Holmgren and Yang proved that

while the, so called, non-signaling value, of the 3-player anti-correla-
tion game is strictly smaller than 1, it does not decrease at all under

parallel repetition [29]. This gave a surprising first example for a

total failure of parallel repetition in reducing the value of a game,

in any model of multiplayer games.

Hazla, Holenstein and Rao studied games with the same query

distribution as the anti-correlation game [26] and showed barriers

on proving parallel repetition theorems for such games using a

technique known as the forbidden subgraph bounds [17].
The anti-correlation game can also be presented as a “pigeonhole-

principle” game, where 2 out of 3 pigeons are chosen randomly

and each of them needs to choose 1 out of 2 pigeonholes, without

communicating between them, so that the two chosen pigeons

end in 2 different pigeonholes. This may occur in situations when

3 players share 2 identical resources (such as 2 communication

channels to an external party): Two (randomly chosen) players

(out of the three players) need to use one of the two resources

each and there is no communication between the players. Another

description of the game, the one that was presented by Feige, can be

viewed as a matching game: The 3 players try to output 3 different

answers 𝑋,𝑌, 𝑍 , where two of the players, chosen randomly, can

only output 𝑌 or 𝑍 and the remaining player can only output 𝑋 or

𝑍 .

Although the 3-player anti-correlation game has been around

for more than two and a half decades, no bound on the value of its

parallel repetition was previously known (other than Verbitsky’s

general inverse Ackermann bound on the value of the parallel

repetition of every game [40]). In this work, we prove that the value

of the𝑛-fold parallel repetition of the 3-player anti-correlation game

decays exponentially fast to 0. (We also extend this bound to all

other games with the same query distribution and binary answers).

Theorem 1.2. Let G be the 3-player anti-correlation game (or any
other game with the same query distribution and binary answers).
Then, there exists a constant 𝑐 > 0, such that val(G⊗𝑛) ≤ 2

−𝑐𝑛 .

In light of the abovementioned result byHolmgren and Yang [29],

Theorem 1.2 also implies an example for a 3-player game where

the value of the parallel repetition of the game behaves completely

differently for classical strategies versus non-signaling strategies.

Namely, while parallel repetition doesn’t decrease the non-signalling

1
https://www.wisdom.weizmann.ac.il/∼feige/tachman.html (Feige’s description of the

game is somewhat different than ours and is described below).

value of the game at all, it does decrease the classical value of the

game exponentially fast to 0.

Techniques: The techniques that we use for the proof of The-

orem 1.2 are, to the best of our knowledge, completely new in

the context of parallel repetition and are different than the tech-

niques used in all previous works. In particular, we don’t use here

the usual embedding paradigm, that is used in almost all previous

works, where one tries to embed a copy of the original game in the

set of success of the players on some set of coordinates. Instead,

our proof shows a local to global property of the strategy of each

player. Very roughly speaking, we prove that if the players win

the parallel repetition game with sufficiently high probability, then

there exists a fixed (large) set of coordinates and a fixed global con-

stant strategy for each of the players, that doesn’t depend on the

input for the player at all, and such that the global strategies win

the parallel repetition game with a sufficiently high probability, on

almost all the coordinates in the fixed set of coordinates. This leads

to a contradiction since fixed global strategies are, in particular,

independent between the different coordinates. We note also that

this is the first inverse exponential bound on the parallel repetition

of any 3-player game that is not connected (in the sense of [10])
2
.

1.1.2 Playerwise Connected Games (Class 2). We define the class

of playerwise connected games as follows: For each player 𝑗 , we

define the graph H 𝑗

G , whose vertices are the possible questions

for player 𝑗 , and two questions 𝑥 𝑗 and 𝑥 ′𝑗 are connected by an

edge if there exists a vector 𝑦 of questions for all other players,

such that both (𝑥 𝑗 , 𝑦) and (𝑥 ′𝑗 , 𝑦) are asked by the referee with

non-zero probability. We say that the game is playerwise connected
if for every 𝑗 , the graphH 𝑗

G is connected.

We prove polynomially small bounds on the value of the parallel

repetition of any game in this class:

Theorem 1.3. Let G be a playerwise connected game such that
val(G) < 1 (with any number of players and any Alphabet size).
Then, there exists a constant 𝑐 > 0, such that val(G⊗𝑛) ≤ 𝑛−𝑐 .

Theorem 1.3 gives an inverse polynomial bound on the value of

parallel repetition for many games for which the previously best

known bound was inverse Ackerman.

Our class of playerwise connected games is related to the above

mentioned class of connected games that was studied by Dinur,

Harsha, Venkat and Yuen and for which exponentially small bounds

were established [10]. Observe that every connected game is also

playerwise connected (the graphH 𝑗

G is simply the projection of the

graphHG in the 𝑗 th direction). The vice-versa is however not true:

Example 1.4. The following 3-player game is playerwise con-
nected, but not connected: The referee samples (𝑥,𝑦, 𝑧) uniformly from
S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} and gives 𝑥,𝑦, 𝑧 to
the three players respectively. The players give answers 𝑎, 𝑏, 𝑐 ∈ {0, 1}
respectively. The players win if the following condition holds: 𝑎+𝑏+𝑐 =
1 ⇐⇒ 𝑥 + 𝑦 + 𝑧 ≠ 3.

We note that the set S of possible questions, from Example 1.4, is

the only set with 3 players and binary questions that gives a game

2
or reduces to a connected game
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that is playerwise connected but not connected (up to a change

of names). When the number of players is larger than 3, or the

question’s Alphabet size is larger than 2, there are many additional

examples.

Example 1.5. Fix a random 3-CNF formula 𝜑 = (𝐶1, . . . ,𝐶𝑚),
with 𝑚 clauses, over 𝑑 variables. This is generated by sampling 𝑚
times independently and uniformly from the set of all (2𝑑)3 = 8𝑑3

possible clauses.
A 3-player game G is defined by this formula 𝜑 as follows: The

referee samples 𝑟 ∈ [𝑚] uniformly and gives the variables correspond-
ing to the literals in 𝐶𝑟 to the 3 players respectively (with each player
getting one variable). The players answer back values for the variables
they get, and the referee declares that the players win if these values
satisfy the clause 𝐶𝑟 .

Then, it is not hard to show (see the full version for a proof) that
with high probability:

(1) If𝑚 = 𝜔 (𝑑), the value of the game is close to 7/8, and hence
less than 1.

(2) If 𝑚 = 𝜔 (𝑑2 log𝑑), the graph HG is connected, and we get
val(G⊗𝑛) = 2

−Ω (𝑛) by [10]. Furthermore, if𝑚 = 𝑜 (𝑑2), the
graphHG is not connected, and [10] is not applicable.

(3) If 𝑚 = 𝜔 (𝑑1.5
√︁
log𝑑), the game G is playerwise connected,

and val(G⊗𝑛) = 𝑛−Ω (1) by Theorem 1.3. Furthermore, if𝑚 =

𝑜 (𝑑1.5), the game G is not playerwise connected.

Note that the 𝜔 and 𝑜 bounds on𝑚 are with respect to 𝑑 → ∞.
Once the formula 𝜑 is fixed, we think of𝑚 and 𝑑 as constants and
the Ω bounds on the value of parallel repetition are with respect to
𝑛 →∞.

Remark. The above example is also interesting when compared to
the works on refutation of random 3-CNFs, where different regimes of
the parameter𝑚 lead to different consequences. It is known that with
high probability:

(1) If 𝑚 = Ω(𝑑1.5), there is a polynomial time algorithm for
refuting the random 3-CNFs [16].

(2) If𝑚 = Ω(𝑑2/log𝑑), resolution provides polynomial size wit-
nesses for refutation. On the other hand, it fails to provide short
witnesses when𝑚 = 𝑂 (𝑑1.5−𝜖 ) [8].

(3) If𝑚 = Ω(𝑑1.4), there exist polynomial size witnesses for refu-
tation, based on spectral approach [14].

In both cases, there is a polynomial gap in 𝑑 between the base assump-
tion𝑚 = 𝜔 (𝑑) and the regime of best known results.

Techniques: Our proof of Theorem 1.3 relies on information-

theoretic techniques, extending the ideas of [10, 27, 36]. In particular,

we use here the usual embedding paradigm and condition on a

dependency breaking event, as in many previous works. However,

these techniques heavily rely on the game being connected and

thus the result of [10] applies only to connected games
3
and we

are not aware of any previous work that applies these techniques

to games that are not connected. We hence need to deviate from

these techniques at a crucial point. Very roughly speaking, at a

crucial place in the proof where the connectivity of the game is

necessary, our key idea is to replace the distribution of the game

3
or disjoint unions of connected games

with a connected distribution and we carefully analyze how this

change affects the rest of the proof.

1.1.3 Support {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)} (Class 5). We con-

sider 3-player games where the set of possible questions for the 3

players is: {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}, and we prove poly-

nomially small bounds on the value of the parallel repetition of any

game in this class:

Theorem 1.6. Let G be a 3-player game where the possible ques-
tions for the 3 players are: (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1), and such
that val(G) < 1 (with any length of answers). Then, there exists a
constant 𝑐 > 0, such that val(G⊗𝑛) ≤ 𝑛−𝑐 .

Theorem 1.6 is necessary for the proof of Theorem 1.1 and we

believe that the proof technique is interesting and might be useful

for other games.

Techniques: The techniques that we use for the proof of Theo-
rem 1.6 are, to the best of our knowledge, new. Very roughly speak-

ing, we consider the possible pairs of answers (𝑎, 𝑏) by Player 1 and
Player 2 on questions (1, 1) for these two players. We distinguish

between pairs (𝑎, 𝑏) for which Player 3 has an answer 𝑐 such that

the referee accepts the answers (𝑎, 𝑏, 𝑐) on questions (1, 1, 1) and
pairs (𝑎, 𝑏) for which Player 3 has no answer 𝑐 such that the referee

accepts the answers (𝑎, 𝑏, 𝑐) on questions (1, 1, 1). Intuitively, if the
pair (𝑎, 𝑏) is of the second type, that is, no answer 𝑐 causes the

referee to accept on (1, 1, 1), the pair (𝑎, 𝑏) cannot be used too often
by Player 1 and Player 2, and we are able to make this intuition

precise by conditioning on a carefully and inductively defined, but

possibly exponentially small, product event between the inputs of

Player 1 and Player 2. Very roughly speaking, when all pairs (𝑎, 𝑏)
of the second type are used with negligible (polynomially small)

probability when conditioning on our product event, we are able to

essentially reduce the parallel repetition game to parallel repetition

of a 2-player game with value < 1, played by Player 1 and Player 2

on a subset of the coordinates and conditioned on the product event

between the inputs of Player 1 and Player 2 that we defined. We

then rely on the fact that bounds for 2-player games also hold when

conditioning the inputs of the two players on a product event be-

tween the two players. The final bound that we obtain is inverse

polynomial, rather than inverse exponential, because we must take

into account the answers (𝑎, 𝑏) of the second type that are still

used with polynomially small probability. We do that using a union

bound and it’s crucial here that the 2-player game that we reduce

to is only played on a small subset of the coordinates so that we

can apply a union bound over these coordinates.

Subsequent Work. In further work, [23] extend our result by

proving a polynomial decay bound on the value of parallel repetition

for all games with binary inputs and arbitrary length answers.

This is done by proving a parallel repetition theorem for all games

described in Definition 8.2, which was left as an open problem in

this work.

Organization. In Section 2, we give an overview of the main

technical results of the paper. In Section 3, we formally define the

various concepts relevant to this paper, and in the sections following

it, we formally state our main results and some important lemmas.
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Most of the technical proofs are deferred to the full version of this

paper [22].

2 OVERVIEW
2.1 Organization
For the problem of parallel repetition for all three-player games on

binary alphabets, the following results were known prior to our

work (Section 3.4).

(1) For three-player games in which there are some two players

whose inputs are in a bijective correspondence, we may treat

these players as identical, and thus reduce the problem to

showing parallel repetition for two-player games. The Paral-

lel Repetition Theorem of [36] shows that parallel repetition

decreases the value of two-player games exponentially fast

(Theorem 3.11).

(2) There is a class of games known as connected (or expanding)
games for which [10] showed an exponential decay on the

parallel repetition value (Theorem 3.12). A 𝑘-player game

is said to be connected if the (𝑘 − 1)-connection graph is

connected. This graph is defined as follows: the vertices are

the elements in the support of the query distribution and the

edges are between every pair of elements that agree on the

questions to all but one player (Definition 3.9).

(3) For any game (with value less than one) for which the query

distribution has support

{(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, [21, 28] showed that par-

allel repetition decreases the value at least polynomially fast

(Theorem 3.13).

In this work, we study all three-player binary-alphabet games

that do not fall into the above categories. In Section 8, we classify

all such games. It turns out that there are essentially three such

classes of games.

(1) Games whose query distribution has support

{(0, 1, 1), (1, 0, 1), (1, 1, 0)}. Of these games, the anti-correla-

tion game is the most interesting one. In this game, the

players who receive one need to output distinct bits (Defi-

nition 4.1). We prove an exponential decay on the parallel

repetition value of this game in Section 4 (Theorem 4.2). In

Section 7, we show that this implies a similar result for all

games with binary outputs whose query distribution has the

same support as the anti-correlation game (Theorem 7.1).

(2) Games whose query distribution has support

{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. We refer to the uniform

distribution on these four points as the four-point AND

distribution. In Section 5, we show that parallel repetition

for such games decreases the value at least polynomially fast

(Theorem 5.1). We remark that our result holds even if the

answers are from an arbitrary alphabet.

(3) Games whose query distribution has support

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. Such games fall

into an even more general class of games which we call

playerwise connected games; these are 𝑘-player games in

which the projection of the (𝑘−1)-connection graph on every
player is connected (Definition 3.10). We show in Section 6

that parallel repetition for this class of games decreases the

value at least polynomially fast (Theorem 6.1). We remark

that our result holds even if the answers are from an arbitrary

alphabet.

2.2 The Anti-Correlation Game
In the three-player anti-correlation game G, a random pair of play-

ers are given 1 as input, and the remaining player is given 0. To win,

the two players who are given 1 must produce different outputs in

{0, 1}, and the output of the player who is given 0 does not matter.

We present an overview of the proof of Theorem 4.2 which shows

that the parallel repetition of the anti-correlation game decreases

the value exponentially fast. The details are presented in Section 4.

Let𝑄 denote the joint input distribution for all the players in the

gameG, and let𝑋 ,𝑌 , and𝑍 respectively denote the first, second, and

third player’s inputs in the game G⊗𝑛 . Let 𝑓 , 𝑔, ℎ : {0, 1}𝑛 → {0, 1}𝑛
be any strategy that wins the 𝑛-wise repeated game G⊗𝑛 with

probability 𝛼 > 0. Our goal is to prove that 𝛼 ≤ 𝑒−Ω (𝑛) .
The players’ inputs are fully determined by the inputs of any

pair of players by the equation 𝑋𝑖 + 𝑌𝑖 + 𝑍𝑖 = 2 for all 𝑖 ∈ [𝑛]. We

will say “(𝑓 , 𝑔, ℎ) wins on (𝑥,𝑦)” as short-hand for “(𝑓 , 𝑔, ℎ) wins
on (𝑥,𝑦, 𝑧) where 𝑧𝑖 = 2 − 𝑥𝑖 − 𝑦𝑖 for each 𝑖”.

Winning Implies Self-Agreement on Correlated 𝑋 , 𝑋 ′: We first

consider a distribution in which 𝑋,𝑋 ′, 𝑌 are random variables with

both (𝑋,𝑌 ) and (𝑋 ′, 𝑌 ) distributed like 𝑄⊗𝑛
𝑋,𝑌

, and with 𝑋 and 𝑋 ′

conditionally independent given𝑌 . More explicitly, this distribution

is sampled as follows:

(1) Sample an 𝑛-bit string 𝑌 according to 𝑄⊗𝑛
𝑌

. That is, for each

𝑖 ∈ [𝑛] independently sample 𝑌𝑖 = 1 with probability 2/3,
and 𝑌𝑖 = 0 otherwise.

(2) Independently sample 𝑋 and 𝑋 ′ from the conditional dis-

tribution of the first player’s input in G⊗𝑛 given that the

second player’s input is 𝑌 . That is, for each 𝑖 ∈ [𝑛], if
𝑌𝑖 = 0, set 𝑋𝑖 = 𝑋 ′

𝑖
= 1. Otherwise, independently sam-

ple 𝑋𝑖 , 𝑋
′
𝑖
← {0, 1} uniformly at random.

By the assumption that (𝑓 , 𝑔, ℎ) winswith probability𝛼 , we know
that (𝑓 , 𝑔, ℎ) wins on (𝑋,𝑌 ) with probability 𝛼 , and (𝑓 , 𝑔, ℎ) wins
on (𝑋 ′, 𝑌 ) with probability 𝛼 . Because of how (𝑋,𝑌 ) and (𝑋 ′, 𝑌 )
are correlated, we show that (𝑓 , 𝑔, ℎ) must simultaneously win on

both (𝑋,𝑌 ) and (𝑋 ′, 𝑌 ) with probability at least 𝛼2. Thus,

Pr

𝑋,𝑋 ′

[
Pr

𝑌

[
(𝑓 , 𝑔, ℎ) wins on (𝑋,𝑌 ) and on (𝑋 ′, 𝑌 )

]
≥ 𝛼2/2

]
≥ 𝛼2/2.

Now suppose that 𝑋 and 𝑋 ′ are such that

Pr

𝑌
[(𝑓 , 𝑔, ℎ) wins on (𝑋,𝑌 ) and on (𝑋 ′, 𝑌 )] ≥ 𝛼2/2.

Then, we have Pr[𝑌𝑖 = 1|𝑋,𝑋 ′] = 1/3 for 𝑖 such that 𝑋𝑖 = 𝑋
′
𝑖
= 1,

and all such 𝑌𝑖 are conditionally independent given 𝑋 , 𝑋 ′. Also,
if 𝑋𝑖 = 𝑋 ′

𝑖
= 1 and 𝑓 (𝑋 )𝑖 ≠ 𝑓 (𝑋 ′)𝑖 , then the only way (𝑓 , 𝑔, ℎ)

can win on (𝑋,𝑌 ) and on (𝑋 ′, 𝑌 ) is if 𝑌𝑖 = 0, because if 𝑌𝑖 = 1

then the win conditions require that 𝑓 (𝑋 )𝑖 ≠ 𝑔(𝑌 )𝑖 ≠ 𝑓 (𝑋 ′)𝑖 .
Combining these two facts implies that 𝑓 (𝑋 )𝑖 ≠ 𝑓 (𝑋 ′)𝑖 for at most

log
2/3 (𝛼2/2) = 𝑂 (log 1/𝛼) coordinates 𝑖 with 𝑋𝑖 = 𝑋 ′𝑖 = 1.

This shows that when𝑋 ,𝑋 ′, and𝑌 are sampled as above, it holds

with poly(𝛼) probability that:

(1) (Approximate Self-Agreement): For all but atmost𝑂 (log 1/𝛼)
values of 𝑖 ∈ [𝑛], if 𝑋𝑖 = 𝑋 ′𝑖 = 1 then 𝑓 (𝑋 )𝑖 = 𝑓 (𝑋 ′)𝑖 .
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(2) (Winning): (𝑓 , 𝑔, ℎ) wins on (𝑋,𝑌 ) and on (𝑋 ′, 𝑌 ).
A similar argument gives an analogous statement, where the

Winning property is replaced by a property that we call Winning’,

requiring that (𝑓 , 𝑔, ℎ) has probability at least 𝛼/2 of winning in

G⊗𝑛 conditioned on the first player’s input being 𝑋 ′.
We say that (𝑋,𝑋 ′) is good if it satisfies Approximate Self-

Agreement and Winning’.

Constructing a strategy forG⊗𝑛′ : Wenext use the fact that (𝑋,𝑋 ′)
is good with poly(𝛼) probability to show that if there exists a strat-

egy (𝑓 , 𝑔, ℎ) that wins G⊗𝑛 with probability 𝛼 , then there exists a

strategy (𝑓 ′, 𝑔′, ℎ′) for G⊗𝑛′ (with 𝑛′ ≥ Ω(𝑛)) such that:

• 𝑓 ′ is a constant function, and
• (𝑓 ′, 𝑔′, ℎ′) wins in all but 𝑂 (log 1/𝛼) coordinates of G⊗𝑛′

with probability poly(𝛼).
The main idea is that (𝑋,𝑋 ′) can be equivalently sampled as fol-

lows:

(1) Sample each bit of 𝑋𝑖 independently such that 𝑋𝑖 = 1 with

probability 2/3.
(2) Sample a set 𝑆 ⊆ [𝑛] by independently including each 𝑖 ∈ [𝑛]

with probability 1/4.
(3) For 𝑖 ∈ 𝑆 , set 𝑋 ′

𝑖
= 𝑋𝑖 . For all other 𝑖 , sample 𝑋 ′

𝑖
such that

𝑋 ′
𝑖
= 1 with probability 2/3.

The point of this alternative sampling process is that conditioned

on any value of 𝑋 and 𝑆 , the distribution of 𝑋 ′−𝑆 is 𝑄
⊗𝑛−|𝑆 |
𝑋

. In

contrast, the distribution of 𝑋 ′ given 𝑋 is not 𝑄⊗𝑛
𝑋

because of the

correlation between 𝑋 and 𝑋 ′.
We will first condition on random values of 𝑋 , 𝑆 , and 𝑋 ′

𝑇
, where

𝑇 = 𝑆 ∪ {𝑖 : 𝑋𝑖 = 0}. This ensures that

Pr

𝑋,𝑆,𝑋 ′
𝑇

[
Pr

𝑋 ′−𝑇

[
(𝑋,𝑋 ′) is good

]
≥ poly(𝛼)

]
≥ poly(𝛼) .

Also, the conditional distribution of 𝑋 ′−𝑇 given any values of 𝑋 , 𝑆 ,

and 𝑋 ′
𝑇
is just the first player’s input distribution in G⊗𝑛−|𝑇 | . This

means that we can view 𝑓 as inducing a first-player strategy 𝑓 ′ on
G𝑛′ for 𝑛′ = 𝑛 − |𝑇 | by fixing the appropriate part of 𝑓 ’s input to

𝑋 ′
𝑇
. Note that 𝑛′ = Ω(𝑛) with overwhelming probability.

Part of (𝑋,𝑋 ′) being good means that (𝑓 , 𝑔, ℎ) has poly(𝛼) prob-
ability of winning on (𝑋 ′, 𝑌 ′) when 𝑌 ′ is sampled from the dis-

tribution of the second player’s input in G⊗𝑛 conditioned on the

first player’s input being 𝑋 ′. We split the sampling of 𝑌 ′ into two

parts: 𝑌 ′
𝑇
and 𝑌 ′−𝑇 . We show that we can sample and fix 𝑌 ′

𝑇
, and use

it to define 𝑔′ and ℎ′ analogously to 𝑓 ′ (for ℎ′ implicitly defining

𝑍 ′
𝑇
such that (𝑍 ′

𝑇
)𝑖 = 2 − (𝑋 ′

𝑇
)𝑖 − (𝑌 ′𝑇 )𝑖 ), such that with poly(𝛼)

probability over the choice of (𝑋 ′−𝑇 , 𝑌
′
−𝑇 ):

• (𝑓 ′, 𝑔′, ℎ′) wins on (𝑋 ′−𝑇 , 𝑌
′
−𝑇 ), and

• (𝑋,𝑋 ′) is good. In particular, since𝑋−𝑇 is the all-ones string,

we have 𝑓 ′(𝑋 ′−𝑇 )𝑖 = 𝑓 (𝑋 ′)𝑖 = 𝑓 (𝑋 )𝑖 for all but 𝑂 (log 1/𝛼)
values of 𝑖 ∉ 𝑇 for which (𝑋 ′−𝑇 )𝑖 = 1.

This implies that up to a difference in its outputs for 𝑂 (log 1/𝛼)
coordinates, 𝑓 ′ might as well be the constant function that always

outputs 𝑓 (𝑋 )−𝑇 .
We could in principle continue onwards, eventually finding a

smaller 𝑛′′ (still Ω(𝑛)) such that G⊗𝑛′′ has a strategy (𝑓 ′′, 𝑔′′, ℎ′′)
that wins in all but𝑂 (log 1/𝛼) coordinates with probability poly(𝛼),

but consists only of constant functions. This is a contradiction

unless 𝛼 ≤ 𝑒−Ω (𝑛) . For simplicity, however, we instead directly

show that when 𝑓 ′ is a constant function, the strategy (𝑓 ′, 𝑔′, ℎ′)
must lose in a constant fraction of the coordinates with all but

exponentially small probability. This implies that 𝛼 is 𝑒−Ω (𝑛) .

2.3 Four-Point AND Distribution
We present a technical overview of the proof of Theorem 5.1 which

shows an inverse polynomial bound for the parallel repetition value

for the four-point AND distribution. The details can be found in

Section 5.

We first note the following observation about the set of points

S := {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}. Let G be any game on S
with value less than one and fix any strategy (𝑓 , 𝑔, ℎ) for the players
for one copy of the game G. Observe that whenever Charlie receives
1, he knows that the inputs of Alice and Bob are 1. Consider the

following two cases.

• Case A: Suppose the answers of Alice and Bob on input 1 are

such that there is no answer that Charlie can give to satisfy

the predicate, then the strategy loses on the input (1, 1, 1).
• Case B: On the other hand, suppose the answers of Al-

ice and Bob on input 1 are such that there exists an an-
swer for Charlie that satisfies the predicate, then we can

assume that Charlie answers this on input 1. Since the value

of the game is less than one and this strategy succeeds

on (1, 1, 1), the strategy must fail on one of the remain-

ing three points {(0, 0, 0), (0, 1, 0), (1, 0, 0)}. For these points,
Charlie’s input is fixed to zero and in particular, his answer

is also fixed. Therefore, the predicate 𝑉 when restricted to

these inputs, induces a predicate 𝑉̃ which depends only

on the inputs and outputs of Alice and Bob. The game G
thus defines a two-player game on the uniform distribution

˜S := {(0, 0), (0, 1), (1, 0)} with predicate 𝑉̃ .

Next, we consider the 𝑛-fold parallel repetition of the game.

Pre-processing the game. Let 𝑄 be the uniform distribution over

S and let 𝑃 = 𝑄⊗𝑛 . We will always maintain a product event of

the form 𝐸 = 𝐸1 × 𝐸2 × {0, 1}𝑛 on the players inputs where 𝐸1 is

a subset of Alice’s inputs and 𝐸2 is a subset of Bob’s inputs. We

begin by showing that we can assume without loss of generality

that conditioned on a large product event across Alice’s and Bob’s

inputs, all coordinates satisfy a property similar to case B with

high probability, otherwise, we would get exponential decay of

the parallel repetition value. For each 𝑖 ∈ [𝑛], let 𝐿̃𝑖 denote the

event that Alice and Bob receive 1 in the 𝑖-th coordinate and their

answers are such that there is no answer for Charlie that satisfies
the predicate. Let 𝑊̃𝑖 denote the complement of 𝐿̃𝑖 . For 𝑆 ⊆ [𝑛], let
𝑊𝑆 denote the event that the players win the game in coordinate

𝑖 for all 𝑖 ∈ 𝑆 . Note that whenever 𝐿̃𝑖 happens, the players lose in
the 𝑖-th coordinate. Thus,

Pr[𝑊[𝑛] ] ≤ Pr[𝑊̃1] · Pr[𝑊̃2 |𝑊̃1] · · · Pr[𝑊̃𝑛 |𝑊̃1, . . . ,𝑊̃𝑛−1] . (1)

While there exists a coordinate 𝑖 ∈ [𝑛] such that Pr[𝐿̃𝑖 |𝐸] is signifi-
cant, i.e., Pr[𝐿̃𝑖 |𝐸] ≥ 1/𝑛4𝛿 for some small constant 𝛿 > 0, we will

try to condition on 𝑊̃𝑖 and proceed. (To ensure that we maintain a

product event across Alice and Bob, we will also randomly fix their
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inputs and answers in the 𝑖-th coordinate and update 𝐸 based on

this fixing and proceed.
4
) If this conditioning process happens more

than 𝑛5𝛿 times, then Equation (1) implies that the probability of

winning all coordinates is at most (1 − 1/𝑛4𝛿 )𝑛5𝛿 ≤ exp(−Ω(𝑛𝛿 )).
It suffices to study the other case, that is, this conditioning process

happens at most 𝑛5𝛿 times.

Reduction to a two-player game. We are left with a product event

𝐸 of the form 𝐸1 × 𝐸2 × {0, 1}𝑛 of measure at least exp(−Ω(𝑛5𝛿 ))
such that for all 𝑖 ∈ [𝑛], we have Pr[𝐿̃𝑖 |𝐸] ≤ 1/𝑛4𝛿 andwewill show
that the probability of winning all coordinates when the inputs are

drawn from 𝑃 |𝐸 is at most 𝑛−Ω (𝛿) . Let A𝑖 be the set of answers
𝑎𝑖 such that with significant probability (namely, more than 1/𝑛2𝛿
probability over 𝑃 |𝐸 ), Alice’s input in 𝑖-th coordinate is 1 and her

output in the 𝑖-th coordinate is 𝑎𝑖 . Define B𝑖 for Bob similarly. Since

Alice’s and Bob’s inputs are independent under 𝑃 and 𝐸 is a product

event across Alice and Bob, and Pr[𝐿̃𝑖 |𝐸] ≤ 1/𝑛4𝛿 , it follows that
for every pair of answers of Alice and Bob in A𝑖 × B𝑖 , there is an
answer that Charlie can give so that the predicate is satisfied when

all players get 1. Define a product event 𝐺𝑖 across Alice and Bob

which is true if and only if whenever Alice and Bob get input 1

in the 𝑖-th coordinate, they answer from A𝑖 × B𝑖 . A union bound

implies that

Pr[𝐺𝑖 |𝐸] ≥ 1 − |A|
𝑛2𝛿
− |B|
𝑛2𝛿
≥ 1 −𝑂 (𝑛−𝛿 ). (2)

We now randomly fix an input 𝑧 ∈ {0, 1}𝑛 to Charlie. Let 𝐾

denote the set of coordinates that are zero in 𝑧, and let𝑚 denote |𝐾 |.
With all but exponentially small probability,𝑚 = Ω(𝑛). We also

randomly fix the inputs 𝑥−𝐾 , 𝑦−𝐾 to Alice and Bob in coordinates

outside𝐾 . Pick a random subset 𝑆 ⊆ 𝐾 of size𝑚𝜖 for some constant

0 < 𝜖 < 𝛿 . We have (in expectation over 𝑧, 𝑥−𝐾 , 𝑦−𝐾 ):

Pr[𝑊𝑆 |𝐸] ≤ Pr[∨𝑖∈𝑆¬𝐺𝑖 |𝐸]
+ Pr[∧𝑖∈𝑆𝐺𝑖 ∧𝑊𝑆 |𝐸, 𝑧, 𝑥−𝐾 , 𝑦−𝐾 ]

(3)

The first term Pr[∨𝑖∈𝑆¬𝐺𝑖 |𝐸] is at most 𝑂 (𝑛−𝛿+𝜖 ) by Equation (2)

and a union bound. To analyze the second term, we will define

a two-player game
˜G such that the probability of winning the

coordinates in 𝑆 in the𝑚-fold parallel repetition of
˜G is exactly the

second term in the R.H.S. of Equation (3). For now, we will define a

game
˜G𝑖 for each 𝑖 ∈ [𝑛]. Although these games can be different

for different 𝑖 ∈ [𝑛], there are only finitely many possibilities for

˜G𝑖 and we simply restrict our attention to the game that appears in

most number of coordinates. The query distribution for
˜G𝑖 is the

uniform distribution on
˜S = {(0, 0), (1, 0), (1, 1)}. The predicate 𝑉̃𝑖

is 𝑉̃𝑖 (𝑥,𝑦, 𝑎, 𝑏) := 𝑉 (𝑥,𝑦, 0, 𝑎, 𝑏, ℎ(𝑧)𝑖 ) ∧ (𝑥 = 1 =⇒ 𝑎 ∈ A𝑖 ) ∧ (𝑦 =

1 =⇒ 𝑏 ∈ B𝑖 ). Note that the value of ˜G𝑖 is less than one. To see

this, given any strategy ( ˜𝑓 , 𝑔) for ˜G with value one, there is a

strategy
˜ℎ for Charlie on input 1 such ( ˜𝑓 , 𝑔, ˜ℎ) succeeds on (1, 1, 1),

since when Alice answers from A𝑖 on input 1 and Bob from B𝑖 on
input 1, there is an answer Charlie can give on input 1 to satisfy

the predicate. Define the strategy
˜ℎ to output ℎ(𝑧)𝑖 when Charlie

receives 0. We know that ( ˜𝑓 , 𝑔, ˜ℎ) must fail on one of the remaining

points in {(0, 0, 0), (0, 1, 0), (1, 0, 0)}. This implies that ( ˜𝑓 , 𝑔) falsifies

4
This can be done since 𝑊̃𝑖 and 𝐿̃𝑖 depend only on the inputs and answers to Alice

and Bob in the 𝑖-th coordinate.

the predicate 𝑉̃𝑖 at the corresponding point in ˜S. We use two-player

parallel repetition techniques and show that for a random 𝑆 ⊆ 𝐾 of

size𝑚𝜖 , the probability of winning the𝑚-fold parallel repetition of

the two-player game in coordinates in 𝑆 is at most exp(−Ω(𝑚𝜖 )).
We remark that we are able to apply two-player parallel repetition

techniques even though the measure of 𝐸 could be smaller than

exp(−Ω( |𝑆 |)), and this is because the set 𝑆 was chosen randomly.

Thus, the second term in the R.H.S. of Equation (3) is bounded by

exp(−Ω(𝑚𝜖 )) = exp(−Ω(𝑛𝜖 )). This completes the proof overview.

2.4 Playerwise Connected Games
We present an overview of the proof of Theorem 6.1 which shows

an inverse polynomial bound on the parallel repetition value of all

playerwise connected games. The details are in Section 6. We focus

on the case of the uniform distribution 𝑄 over

S := {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}. Let 𝑃 = 𝑄⊗𝑛 . For
a random variable𝑊 , we use 𝑃𝑊 to denote the distribution of𝑊

where the probability space is 𝑃 . We use (𝑋,𝑌, 𝑍 ) to denote inputs

of the three players for the game G⊗𝑛 .
Our proof builds on the framework of the Parallel Repetition

Theorem from [10, 27, 36]. We now describe this framework. Let G
be a game whose query distribution is 𝑄 and whose value is less

than one. Consider its 𝑛-fold parallel repetition. Using an inductive

argument, it suffices to show that for every large product event
𝐸 = 𝐸1 × 𝐸2 × 𝐸3 across the players’ inputs to the 𝑛-fold game

G⊗𝑛 , when the inputs are drawn from the distribution 𝑃 |𝐸, there
exists some hard coordinate 𝑖 ∈ [𝑛], meaning that the probability

of winning the game in the 𝑖-th coordinate is 1 − 𝜖 for some con-

stant 𝜖 > 0. Since the event 𝐸 has large measure, it cannot reveal

too much information about too many coordinates, and hence the

distribution of the marginal of 𝑃 |𝐸 on the 𝑖-th coordinate is similar

to the original distribution 𝑄 for most 𝑖 ∈ [𝑛]. It then suffices to

show a way for the players to approximately embed the inputs

they receive for the original game G, into the 𝑖-th coordinate of the

inputs to the 𝑛-fold game drawn according to the distribution 𝑃 |𝐸.
In order to do this, they need to be able to sample the remaining

𝑛 − 1 coordinates of the inputs according to the correct distribu-

tion. To do this, as in [10, 27, 36], we define a dependency breaking

random variable 𝑅 as follows. The random variable 𝑅 for each copy

𝑖 ∈ [𝑛] of the game, independently, chooses two players uniformly

at random and samples the inputs to those players according to

the distribution induced by 𝑃 |𝐸. Let (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) ∈ supp(𝑄). If the
players can jointly sample from 𝑃𝑅−𝑖 |𝐸,𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖 , then since 𝑅 breaks

the correlation between the player’s inputs, any player can indepen-

dently sample the rest of their own input given 𝑅−𝑖 . Note that each
player only knows one of 𝑥𝑖 , 𝑦𝑖 and 𝑧𝑖 and it is not evident how the

players can jointly sample from 𝑃𝑅−𝑖 |𝐸,𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖 . Ideally, one would
like to show that 𝑃𝑅−𝑖 |𝐸,𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖 is close to some global distribution

for all (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) ∈ supp(𝑄); in such a case, the global distribution

would be 𝑃𝑅−𝑖 |𝐸 . We denote this by 𝑃𝑅−𝑖 |𝐸 ≈ 𝑃𝑅−𝑖 |𝐸,𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖 . This
would mean that the players only need to sample from a global

distribution 𝑃𝑅−𝑖 |𝐸 and this can be done using shared randomness.

Prior works [10, 27, 36] showed that 𝑃𝑅−𝑖 |𝐸,𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖 ≈ 𝑃𝑅−𝑖 |𝐸,𝑥𝑖 ,𝑦𝑖 ,
but it is not clear if this suffices to prove the desired result.

In our work, we show that for the query distribution𝑄 , we have

𝑃𝑅−𝑖 |𝐸 ≈ 𝑃𝑅−𝑖 |𝐸,𝑥𝑖 ,𝑦𝑖 ,𝑧𝑖 for all (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) ∈ supp(𝑄). (We prove a
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similar result for all playerwise connected games.) By choosing

parameters appropriately and by Bayes’ Rule, it will suffice to show

that

𝑃𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝑟−𝑖 ,𝐸 ≈ 𝑃𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝐸 for most 𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸 . (4)

The key idea we use is to modify the distribution of 𝑃 in the 𝑖-th

coordinate as follows. Let Γ be a product distribution over {0, 1}3
such that the marginal on each player’s input agrees with that of𝑄 .

The idea is to consider the distribution 𝑃−𝑖Γ, which is a product of

𝑛 independent distributions, where the distribution in the 𝑖-th coor-

dinate is Γ and the distribution in every other coordinate is 𝑄 . We

can recover the original distribution 𝑃 from 𝑃−𝑖Γ by conditioning

on some event that depends on the 𝑖-th coordinate (and possibly

on some additional randomness).

Note that (𝑃−𝑖Γ)𝑋,𝑌,𝑍 |𝑟−𝑖 is a product distribution across the

inputs of the players, since 𝑅 is a correlation breaking random

variable and since the distribution of 𝑃−𝑖Γ in the 𝑖-th coordinate

was a product distribution to begin with. Since 𝐸 = 𝐸1 × 𝐸2 × 𝐸3
is a product event, the 𝑖-th coordinate of (𝑃−𝑖Γ)𝑋,𝑌,𝑍 |𝑟−𝑖 ,𝐸 has a

product distribution across the players. Finally, since the marginal

of Γ on any player’s input agrees with that of 𝑄 , we have

(𝑃−𝑖Γ)𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝑟−𝑖 ,𝐸
= (𝑃−𝑖Γ)𝑋𝑖 |𝑟−𝑖 ,𝐸1 × (𝑃−𝑖Γ)𝑌𝑖 |𝑟−𝑖 ,𝐸2 × (𝑃−𝑖Γ)𝑍𝑖 |𝑟−𝑖 ,𝐸3
= 𝑃𝑋𝑖 |𝑟−𝑖 ,𝐸1 × 𝑃𝑌𝑖 |𝑟−𝑖 ,𝐸2 × 𝑃𝑍𝑖 |𝑟−𝑖 ,𝐸3 for all 𝑟−𝑖 .

(5)

To study the distribution 𝑃𝑋𝑖 |𝑟−𝑖 ,𝐸1 , we will study the distribution

𝑃𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝑟−𝑖 ,𝐸1 and show that it is close to 𝑄 . The support of the

latter distribution is contained in S. Observe that the distribution
𝑃𝑌𝑖 ,𝑍𝑖 |𝑟−𝑖 ,𝐸1,𝑋𝑖=𝑥𝑖

is exactly the uniform distribution over {(𝑦𝑖 , 𝑧𝑖 ) ∈
{0, 1}2 : (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) ∈ supp(𝑄)} for all 𝑥𝑖 ∈ {0, 1}.5 This implies that

the probabilities assigned by 𝑃𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝑟−𝑖 ,𝐸1 to all points in S of the

form (1, ∗, ∗) are identical, and similarly, the probabilities assigned

to all points in S of the form (0, ∗, ∗) are identical. To conclude that
the probabilities assigned to (0, 0, 0) and (1, 0, 0) are close for most

𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸1 , we use techniques similar to [10, 27, 36]. We thus

show that the probabilities assigned to all points in S are similar

and hence the distribution of 𝑃𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝑟−𝑖 ,𝐸1 is close to 𝑄 for most

𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸1 . This along with a similar argument for the second

and third terms in the R.H.S. of Equation (5) (and the fact that the

marginals of Γ on any player agree with that of 𝑄) implies that

𝑃𝑋𝑖 |𝑟−𝑖 ,𝐸1 ≈ (𝑃−𝑖Γ)𝑋𝑖
for most 𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸1

𝑃𝑌𝑖 |𝑟−𝑖 ,𝐸2 ≈ (𝑃−𝑖Γ)𝑌𝑖 for most 𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸2
𝑃𝑍𝑖 |𝑟−𝑖 ,𝐸3 ≈ (𝑃−𝑖Γ)𝑍𝑖 for most 𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸3

(6)

Let us pretend for now that Equation (6) actually holds for most

𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸 . If so, this, along with Equation (5) would imply that

(𝑃−𝑖Γ)𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝑟−𝑖 ,𝐸 ≈ (𝑃−𝑖Γ)𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 for most 𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸 .

We now condition both sides of the above equation on an event 𝑇𝑖
such Γ |𝑇𝑖 = 𝑄 . Note that𝑇𝑖 depends only on the inputs in coordinate

5
To see this, note that the distribution 𝑃𝑋𝑌𝑍 |𝑟−𝑖 is a product distribution across coordi-
nates where the marginal in the 𝑖-th coordinate is simply the uniform distribution over

S. Once we condition on𝑋𝑖 = 𝑥𝑖 for any 𝑥𝑖 ∈ {0, 1}, the distribution 𝑃𝑌,𝑍 |𝑟−𝑖 ,𝑋𝑖=𝑥𝑖
is still a product distribution across coordinates and in the 𝑖-th coordinate is exactly

the uniform distribution over {(𝑦𝑖 , 𝑧𝑖 ) ∈ {0, 1}2 : (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) ∈ S}. If we further
condition on 𝐸1 , it only affects the distribution of inputs in coordinates other than 𝑖 .

𝑖 and some additional shared randomness (see the full version for

details.) This implies that

𝑃𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝑟−𝑖 ,𝐸 ≈ 𝑃𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 for most 𝑟−𝑖 ∼ 𝑃𝑅−𝑖 |𝐸 .

This along with the fact that the distribution of 𝑃𝑋𝑖 ,𝑌𝑖 ,𝑍𝑖 |𝐸 is close to

𝑄 for most coordinates 𝑖 ∈ [𝑛] completes the proof of Equation (4),

under the incorrect assumption that the distribution of 𝑟−𝑖 in Equa-

tion (6) was 𝑃𝑅−𝑖 |𝐸 . To fix this, we use the property that for any

random variable 𝐺 , we have 𝑃 [𝐺 = 𝑔 |𝐸] ≤ 𝑃 [𝐺 = 𝑔|𝐸1] · 𝑃 [𝐸
1 ]

𝑃 [𝐸 ] ≤
𝑃 [𝐺 = 𝑔|𝐸1] · 1

𝑃 [𝐸 ] . This allows us to connect probabilities over 𝑃 |𝐸
and probabilities over 𝑃 |𝐸1, 𝑃 |𝐸2 and 𝑃 |𝐸3. This is the place where
we incur a loss of

1

𝑃 (𝐸) and as a result, our bound only holds for

polynomially large events.

3 PRELIMINARIES
Let N = {1, 2, . . .} be the set of all natural numbers. For each 𝑛 ∈ N,
we use [𝑛] to denote the set {1, 2, . . . , 𝑛}.

We will mostly follow [10, 27, 28] for notation.

3.1 Probability Distributions
We will use calligraphic letters to denote sets, capital letters to

denote random variables and small letters to denote values.

Let 𝑃 be a distribution (with the underlying finite set clear from
context). For a random variable 𝑋 , we use 𝑃𝑋 to denote the distri-

bution of 𝑋 , that is, 𝑃𝑋 (𝑥) = 𝑃 (𝑋 = 𝑥). For random variables 𝑋

and 𝑌 , we use 𝑃𝑋𝑌 to denote the joint distribution of 𝑋 and 𝑌 . For

an event 𝐸 with 𝑃 (𝐸) > 0, we use 𝑃𝑋 |𝐸 to denote the distribution

of 𝑋 conditioned on the event 𝐸, given by

𝑃𝑋 |𝐸 (𝑥) =
𝑃 (𝑋 = 𝑥 ∧ 𝐸)

𝑃 (𝐸) .

Suppose 𝑅 is a random variable, and 𝑟 is such that 𝑃𝑅 (𝑟 ) > 0. We

will frequently use the shorthand 𝑃𝑋 |𝑟 to denote the distribution
𝑃𝑋 |𝑅=𝑟 .

Let 𝑃𝑋 and 𝑄𝑋 be distributions over a set X. The 𝐿1-distance
(or ℓ1-norm) between 𝑃𝑋 and 𝑄𝑋 is defined as ∥𝑃𝑋 −𝑄𝑋 ∥1 =∑
𝑥 ∈X |𝑃𝑋 (𝑥) −𝑄𝑋 (𝑥) |.
We will also be using the following facts:

Fact 3.1. (Chernoff Bounds, see [32] for reference) Let𝑋1, . . . , 𝑋𝑛 ∈
{0, 1} be independent random variables each with mean 𝜇, and let
𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 . Then, for all 𝛿 ∈ (0, 1), it holds that

Pr [𝑋 ≤ (1 − 𝛿)𝜇𝑛] ≤ 𝑒−
𝛿2𝜇𝑛

2 ,

Pr [𝑋 ≥ (1 + 𝛿)𝜇𝑛] ≤ 𝑒−
𝛿2𝜇𝑛

3 .

Pr [𝑋 − 𝜇𝑛 ≥ 𝛿𝑛] ≤ 𝑒−2𝛿
2𝑛 .

Fact 3.2. Let 𝑃𝑋 and 𝑄𝑋 be probability distributions over a set
X, and let𝑊 ⊆ X be an event such that 𝑃𝑋 (𝑊 ), 𝑄𝑋 (𝑊 ) > 0. Then,

𝑃𝑋 |𝑊 −𝑄𝑋 |𝑊 



1
≤ 2

𝑄𝑋 (𝑊 )
· ∥𝑃𝑋 −𝑄𝑋 ∥1

Proof. The proof is deferred to the full version of this paper. □
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Fact 3.3. Let 𝑃 be a probability distribution, and let𝑋 be a random
variable over a setX, and let 𝐸 be any event with 𝑃 (𝐸) > 0. Let 𝛼 > 0

be arbitrary, and let T = {𝑥 ∈ X : 𝑃 (𝐸 | 𝑥) ≥ 𝛼 · 𝑃 (𝐸)} . Then, it
holds that

𝑃 (𝑋 ∈ T | 𝐸) > 1 − 𝛼.

Proof. The proof is deferred to the full version of this paper. □

Fact 3.4. Let 𝑃 be a probability distribution, and let𝑋 be a random
variable over a set X, and let 𝐸 be any event. Then, there exists 𝑥 ∈ X
such that 𝑃 (𝐸 |𝑋 = 𝑥) ≥ 𝑃 (𝐸).

3.2 Multiplayer Games
Definition 3.5. (Multiplayer Game) A 𝑘-player game G is a tuple

G = (X,A, 𝑄,𝑉 ), where the question set X = X1 × · · · × X𝑘 , and
the answer set A = A1 × · · · × A𝑘 are finite sets, 𝑄 is a probability
distribution over X, and 𝑉 : X × A → {0, 1} is a predicate.

Definition 3.6. (Game Value) LetG = (X,A, 𝑄,𝑉 ) be a𝑘-player
game.

For a sequence
(
𝑓 𝑗 : X 𝑗 → A 𝑗

)
𝑗 ∈[𝑘 ] of functions, define the func-

tion 𝑓 = 𝑓 1 × · · · × 𝑓 𝑘 : X → A by

𝑓

(
𝑥1, . . . , 𝑥𝑘

)
=

(
𝑓 1 (𝑥1), . . . , 𝑓 𝑘 (𝑥𝑘 )

)
.

We use the term product functions to denote functions 𝑓 defined in
this manner.

The value val(G) of the game G is defined as

val(G) = max

𝑓 =𝑓 1×···×𝑓 𝑘
Pr

𝑋∼𝑄
[𝑉 (𝑋, 𝑓 (𝑋 )) = 1] ,

where the maximum is over all product functions 𝑓 = 𝑓 1 × · · · × 𝑓 𝑘 .
The functions (𝑓 𝑗 ) 𝑗 ∈[𝑘 ] are called player strategies.

Fact 3.7. The value of the game is unchanged even if we allow
the player strategies to be randomized, that is, we allow the strategies
to depend on some additional shared and private randomness.

Definition 3.8. (Parallel Repetition of a game)
Let G = (X,A, 𝑄,𝑉 ) be a 𝑘-player game. We define its 𝑛-fold rep-
etition as G⊗𝑛 = (X⊗𝑛,A⊗𝑛, 𝑃,𝑉 ⊗𝑛). The sets X⊗𝑛 and A⊗𝑛 are
defined to be the 𝑛-fold product of the sets X and A with themselves
respectively. The distribution 𝑃 is the 𝑛-fold product of the distribu-
tion 𝑄 with itself, that is, 𝑃 (𝑥) = ∏𝑛

𝑖=1𝑄 (𝑥𝑖 ). The predicate 𝑉 ⊗𝑛 is
defined as 𝑉 ⊗𝑛 (𝑥, 𝑎) = ∧𝑛

𝑖=1𝑉 (𝑥𝑖 , 𝑎𝑖 ).
Note that we use the notationX⊗𝑛 instead of the standard notation

X𝑛 so as to avoid confusion with the sets X1, . . . ,X𝑘 .

Following the notation in [10], we use subscripts to denote the

coordinates in the parallel repetition, and superscripts to denote the

players. For example, for 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘], we will use 𝑥 𝑗
𝑖
to refer

to the question to the 𝑗 th player in the 𝑖th repetition of the game.

Similarly, 𝑥𝑖 will refer to the vector of questions to the 𝑘 players

in the 𝑖th repetition, and 𝑥 𝑗 will refer to the vector of questions

received by the 𝑗 th player over all repetitions. We use 𝑥−𝑗 to refer

to the questions to all players except the 𝑗 th player, and use 𝑥−𝑖 to
refer to the questions in all coordinates except the 𝑖th coordinate.

When we are dealing with 3 player games, we will not be using

superscripts to refer to different players, and rather use the notation

G = (X × Y ×Z, A × B × C, 𝑄,𝑉 ). That is, we use X,Y,Z in

place of X1,X2,X3
and A,B, C in place of A1,A2,A3

.

We will use the notation 𝐴 ≲ 𝐵 (resp. ≳) to mean that 𝐴 ≤ 𝑐 · 𝐵
(resp. 𝐴 ≥ 𝑐 · 𝐵) for some constant 𝑐 > 0. For our purposes, we will

allow the constant to depend on the size of the (initial) game being

considered, but not on the number of repetitions.

3.3 Playerwise Connected Games
We will particularly be interested in a special class of games, which

we refer to as playerwise connected games. Before we define this

class, we recall the following definition:

Definition 3.9. ((𝑘 − 1)-connection graph [10])
Let G = (X,A, 𝑄,𝑉 ) be a 𝑘-player game, and let S ⊆ X be the
support of𝑄 . We define its (undirected) (𝑘 − 1)-connection graph 𝐻G
as follows. The vertex set of 𝐻G is S, and there is an edge between
𝑥,𝑦 ∈ S if and only if they differ in the question to exactly one of the
players. That is, {𝑥,𝑦} is an edge if and only if there exists 𝑗 ∈ [𝑘]
such that 𝑥−𝑗 = 𝑦−𝑗 and 𝑥 𝑗 ≠ 𝑦 𝑗 .

We say that a game G is connected if the graphHG is connected.

Wewill define a game to be playerwise connected if the projection
of the above graph with respect to each of the players is connected.

This is formally defined as follows:

Definition 3.10. (Playerwise Connected Game)
Let G = (X,A, 𝑄,𝑉 ) be a 𝑘-player game, and let S ⊆ X be the
support of𝑄 . We assume that for all 𝑗 ∈ [𝑘], and for all 𝑥 𝑗 ∈ X 𝑗 , the
𝑗
th

player is given the question 𝑥 𝑗 with positive probability.
For every 𝑗 ∈ [𝑘], we define the graph𝐻 𝑗

G as the graph with vertex

set X 𝑗 , with an edge between 𝑥 𝑗 , 𝑦 𝑗 ∈ X 𝑗 if and only if there exists
𝑥−𝑗 ∈ X−𝑗 such that both (𝑥−𝑗 , 𝑥 𝑗 ) ∈ S and (𝑥−𝑗 , 𝑦 𝑗 ) ∈ S. We say
that the game G is playerwise connected if 𝐻 𝑗

G is connected for each
𝑗 ∈ [𝑘].

Note that the assumption on G in the above definition is without
loss of generality, because we can simply remove each 𝑥 𝑗 which occurs
with zero probability, without affecting the game in any meaningful
way.

3.4 Previously Known Results
We state the known results on parallel repetition that will be useful

for us.

Theorem 3.11. (Parallel Repetition for 2-Player Games [36]) Let
G = (X × Y,A × B, 𝑄,𝑉 ) be a 2-player game such that val(G) < 1.
Then, there exists a constant 𝑐 = 𝑐 (G) > 0 such that for every 𝑛 ∈ N,
it holds that val(G⊗𝑛) ≤ 2

−𝑐𝑛 .

Theorem 3.12. (Parallel Repetition for Connected Games [10])
Let G be a connected 𝑘-player game (see Definition 3.9) such that
val(G) < 1. Then, there exists a constant 𝑐 = 𝑐 (G) > 0 such that for
every 𝑛 ∈ N, it holds that val(G⊗𝑛) ≤ 2

−𝑐𝑛 .

Theorem 3.13. (Parallel Repetition for The GHZ Game [21, 28])
Let G = (X × Y × Z, A × B × C, 𝑄,𝑉 ) be a 3-player game
with X = Y = Z = {0, 1}, and 𝑄 the uniform distribution over
S = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}, and such that val(G) < 1.
Then, there exists a constant 𝑐 = 𝑐 (G) > 0, such that for every 𝑛 ∈ N,
it holds that val(G⊗𝑛) ≤ 𝑛−𝑐 .
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3.5 Some Results on Multiplayer Games
3.5.1 Restriction to Uniform Distributions. We state a lemma from

[17], which shows that it suffices to prove parallel repetition in the

case when the game’s distribution is the uniform distribution over

its support. For the sake of completeness, we also include a short

proof.

Lemma 3.14. Let G = (X,A, 𝑄,𝑉 ) be a 𝑘-player game such that
val(G) < 1, and letS ⊆ X be the support of𝑄 . Let ˜G = (X,A,𝑈 ,𝑉 ),
where𝑈 is the uniform distribution over S. Let 𝑣 : N ∪ {0} → [0, 1]
be the function defined by 𝑣 (𝑛) = val( ˜G⊗𝑛), for every 𝑛 ∈ N ∪ {0},
with the convention 𝑣 (0) = 1. Then,

(a) 𝑣 (1) = val( ˜G) < 1.
(b) There exists a constant 𝛽 > 0 such that val(G⊗𝑛) ≤ 2𝑣 (⌊𝛽𝑛⌋)

for all 𝑛 ∈ N.

Proof. The proof is deferred to the full version of this paper. □

3.5.2 A Restriction on Predicates. We show that to prove parallel

repetition, it suffices to assume that the game has the following

property: If some input 𝑦 𝑗 for the 𝑗 th player completely determines

the input 𝑦 to all the players, then on input 𝑦, the game’s predicate

does not depend on the answer 𝑎 𝑗 given by the 𝑗 th player.

A recursive application of the next lemma shows that we can

assume the aforementioned property.

Lemma 3.15. Let G = (X,A, 𝑄,𝑉 ) be a 𝑘-player game. Suppose
𝑦 ∈ X, 𝑗 ∈ [𝑘] are such that 𝑦 is the unique input with𝑄 (𝑦) > 0 that
has 𝑦 𝑗 as the input to the 𝑗 th player. Then, there exists a predicate 𝑉 ′

such that the game G′ = (X,A, 𝑄,𝑉 ′) satisfies:
(a) For every 𝑎, 𝑏 ∈ A with 𝑎−𝑗 = 𝑏−𝑗 , it holds that 𝑉 ′(𝑦, 𝑎) =

𝑉 ′(𝑦,𝑏).
(b) For every 𝑛 ∈ N, it holds that val(G⊗𝑛) ≤ val(G′⊗𝑛).
(c) val(G′) = val(G).

Proof. The proof is deferred to the full version of this paper. □

3.5.3 An Inductive Parallel Repetition Criterion. We state a parallel

repetition criterion from [28, 36]. For the sake of completeness, we

also include a proof.

Definition 3.16. Let G = (X,A, 𝑄,𝑉 ) be a 𝑘-player game, and
let 𝑄 ′ be some distribution over X. We define G |𝑄 ′ to be the game
G |𝑄 ′ = (X,A, 𝑄 ′,𝑉 ).

Definition 3.17. Let G = (X,A, 𝑄,𝑉 ) be a 𝑘-player game, and
G⊗𝑛 = (X⊗𝑛,A⊗𝑛, 𝑃,𝑉 ⊗𝑛) be its 𝑛-fold repetition. For each 𝑖 ∈
[𝑛], we define the value of the 𝑖th coordinate of G⊗𝑛 , denoted by
val𝑖 (G⊗𝑛), to be the value of the game (X⊗𝑛,A⊗𝑛, 𝑃,𝑉 ′), where
𝑉 ′(𝑥, 𝑎) = 𝑉 (𝑥𝑖 , 𝑎𝑖 ).

Lemma 3.18. Let G = (X,A, 𝑄,𝑉 ) be a 𝑘-player game, and
G⊗𝑛 = (X⊗𝑛,A⊗𝑛, 𝑃,𝑉 ⊗𝑛) be its 𝑛-fold repetition. Suppose that
there exists a constant 𝜖 > 0, and a non-increasing function 𝜌 : N→
[0, 1] such that 𝜌 (𝑛) ≥ 2

−𝑂 (𝑛) , and for every 𝑛 ∈ N, and every prod-
uct event 𝐸 = 𝐸1 × · · · × 𝐸𝑘 ⊆ (X1)⊗𝑛 × · · · × (X𝑘 )⊗𝑛 = X⊗𝑛
with 𝑃 (𝐸) ≥ 𝜌 (𝑛), there exists a coordinate 𝑖 ∈ [𝑛] such that
val𝑖 (G⊗𝑛 | (𝑃 |𝐸)) ≤ 1 − 𝜖 . Then, there exists a constant 𝑐 > 0 such
that val(G⊗𝑛) ≤ 𝜌 (𝑛)𝑐 for every 𝑛 ∈ N.

Proof. The proof is deferred to the full version of this paper. □

4 THE ANTI-CORRELATION GAME
In this section, we will focus on the following game.

Definition 4.1. (The Anti-Correlation Game) The anti-correlation
game, which we denote as G = ({0, 1}3 , {0, 1}3 , 𝑄,𝑉 ), is a 3-player
game in which the query distribution 𝑄 is uniform over the set
{(0, 1, 1), (1, 0, 1), (1, 1, 0)} of strings of hamming-weight 2, and the
win predicate 𝑉 : {0, 1}3 × {0, 1}3 → {0, 1} is defined so that
𝑉 ((𝑥,𝑦, 𝑧), (𝑎, 𝑏, 𝑐)) = 1 if and only if ⟨(𝑥,𝑦, 𝑧), (𝑎, 𝑏, 𝑐)⟩ = 𝑥𝑎 +
𝑦𝑏 + 𝑧𝑐 = 1.

In words, a random pair of players receive 1, and these players
must produce different bits.

If 𝑉 ((𝑥,𝑦, 𝑧), (𝑎, 𝑏, 𝑐)) = 1, we say that (𝑎, 𝑏, 𝑐) wins on (𝑥,𝑦, 𝑧).

We will denote this game by G, and denote its query distribution
by 𝑄 (i.e. the uniform distribution on

{
(0, 1, 1), (1, 0, 1), (1, 1, 0)

}
.

Observe that the value of this game is 2/3. We will show that

parallel repetition exponentially decays the value of this game.

Theorem 4.2. Let G be the anti-correlation game as in Defini-
tion 4.1. Then, there exists a constant 𝑐 > 0 such that for every 𝑛 ∈ N,
it holds that val(G⊗𝑛) ≤ exp(−𝑐 · 𝑛).

The proof of this theorem is deferred to the full version of this

paper.

5 FOUR POINT AND DISTRIBUTION
This section is devoted to the proof of the following theorem:

Theorem 5.1. LetG = (X×Y×Z, A×B×C, 𝑄,𝑉 ) be a 3-player
game with X = Y = Z = {0, 1}, and𝑄 the uniform distribution over

S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}
=
{
(𝑥,𝑦, 𝑧) ∈ {0, 1}3 : 𝑧 = 𝑥 ∧ 𝑦

}
,

and such that val(G) < 1. Then, there exists a constant 𝑐 = 𝑐 (G) > 0,
such that for every 𝑛 ∈ N, it holds that val(G⊗𝑛) ≤ 𝑛−𝑐 .

The proof of this theorem is deferred to the full version of this

paper.

6 PLAYERWISE CONNECTED GAMES
In this section, we will prove the following theorem:

Theorem 6.1. (Parallel Repetition for Playerwise Connected Games)
Let G be a playerwise connected 𝑘-player game such that val(G) < 1.
Then, there exists a constant 𝑐 = 𝑐 (G) > 0 such that for every 𝑛 ∈ N,
it holds that val(G⊗𝑛) ≤ 𝑛−𝑐 .

The proof of this theorem is deferred to the full version of this

paper.

7 HAMMINGWEIGHT ONE DISTRIBUTION
WITH BINARY OUTPUTS

In this section, we analyze parallel repetition for three-player games

with inputs drawn uniformly from the set

S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of hamming-weight one inputs, and

having binary outputs. Formally, we prove the following theorem:

Theorem 7.1. Let G = (X × Y × Z,A × B × C, 𝑄,𝑉 ) be a 3-
player game with X = Y = Z = A = B = C = {0, 1}, and 𝑄 the
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uniform distribution over S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and such
that val(G) < 1. Then, there exists a constant 𝑐 = 𝑐 (G) > 0, such
that for every 𝑛 ∈ N, it holds that val(G⊗𝑛) ≤ 2

−𝑐𝑛 .

The proof of this theorem is deferred to the full version of this

paper.

8 THREE PLAYER GAMES OVER BINARY
ALPHABET

8.1 The Main Theorem
In this section, we prove the following main result:

Theorem 8.1. Let G = (X × Y × Z,A × B × C, 𝑄,𝑉 ) be a 3-
player game with X = Y = Z = A = B = C = {0, 1}, and such that
val(G) < 1. Then, there exists a constant 𝑐 = 𝑐 (G) > 0, such that for
every 𝑛 ∈ N, it holds that val(G⊗𝑛) ≤ 𝑛−𝑐 .

Proof. By Lemma 3.14, it suffices to only consider the case

when the distribution𝑄 is the uniform distribution over its support

S ⊆ {0, 1}3. Also notice that we only need to analyze S up to

symmetry among the 3 players, and up to symmetry of the inputs

0 and 1 (that is, up to symmetries of the cube {0, 1}3).
When G is connected, Theorem 3.12 provides an inverse ex-

ponential bound val(G⊗𝑛) = 2
−Ω (𝑛)

. Therefore we only need to

consider the case when G is not connected, or equivalently, the

graph HG (see Definition 3.9) is not connected. Notice that the

graphHG is the subgraph of the cubical graph {0, 1}3 induced by

S. SinceHG is not connected, there must be a smallest connected

component S′ ⊆ S inHG of size 1 or 2.

If |S′ | = 2, by symmetry assume that 𝑆 ′ = {(1, 1, 0), (1, 1, 1)}.
Then 𝑆 \ 𝑆 ′ is contained in {(0, 0, 0), (0, 0, 1)}, which implies that

the input (𝑥,𝑦, 𝑧) always satisfies 𝑥 = 𝑦. This means that the game

G is essentially a two-player game, where an inverse exponential

decay bound is known by Theorem 3.11.

If |S′ | = 1, by symmetry assume that 𝑆 ′ = {(1, 1, 1)}. Then 𝑆 \𝑆 ′
is contained in {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, and we perform

a case analysis in below:

(1) |𝑆 | ≤ 2. Then G always degenerates to a two-player game,

similar to the case of |S′ | = 2 above.

(2) |𝑆 | = 3. To avoid degeneracy it must hold that (0, 0, 0) ∉ 𝑆 , so
by symmetrywe only consider 𝑆 = {(1, 0, 0), (0, 1, 0), (1, 1, 1)},
or equivalently, 𝑆 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The specific
game of interest, the anti-correlation game, was studied in

Section 4. The general game with binary outputs was ana-

lyzed in Section 7, where we proved an inverse exponential

decay bound (see Theorem 7.1).

(3) |𝑆 | = 4 and (0, 0, 0) ∈ 𝑆 . By symmetry we consider 𝑆 =

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.We proved an inverse poly-

nomial decay bound for this four-point AND distribution in

Section 5 (see Theorem 5.1).

(4) |𝑆 | = 4 and (0, 0, 0) ∉ 𝑆 :
Then, 𝑆 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}. This is equiv-
alent to the support of the GHZ game, and and an inverse

polynomial decay bound is known (see Theorem 3.13)

(5) |𝑆 | = 5, that is, 𝑆 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}.
In particular, the game G is playerwise connected (see Defini-

tion 3.10), and we proved inverse polynomial decay bounds

for all playerwise connected games in Section 6 (see Theo-

rem 6.1). □

8.2 A General Game on Hamming Weight One
Input

We observe that Theorem 8.1 works for arbitrary answer lengths

in all cases except when the support S has |S| = 3 with all disjoint

points, for example, S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Next, we describe a very simple family of 3-player games {G𝑘 }𝑘∈N,

such that proving a bound on the value of parallel repetition for

games in this family will extend Theorem 8.1 to all games with

X = Y = Z = {0, 1}, and arbitrary answer sets A,B, C.

Definition 8.2. For every 𝑘 ∈ N, we define a 3-player game
G𝑘 = (X ×Y ×Z,A𝑘 ×B𝑘 ×C𝑘 , 𝑄,𝑉𝑘 ), with X = Y = Z = {0, 1},
and 𝑄 the uniform distribution over S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
as follows:

(a) A𝑘 = B𝑘 = {0, 1}𝑘 , and C𝑘 = [𝑘].
(b) For all (𝑥,𝑦, 𝑧) ∈ S, and (𝑎, 𝑏, 𝑐) ∈ A × B × C,

𝑉𝑘 ((𝑥,𝑦, 𝑧), (𝑎, 𝑏, 𝑐)) =


(𝑎𝑖 ∧ 𝑏𝑖 )𝑖∈[𝑘 ] = 0

𝑘 , if (𝑥,𝑦, 𝑧) = (0, 0, 1)
𝑎𝑐 = 1, if (𝑥,𝑦, 𝑧) = (0, 1, 0)
𝑏𝑐 = 1, if (𝑥,𝑦, 𝑧) = (1, 0, 0)

.

It is an easy check that val(G𝑘 ) = 2/3. For every 𝑛 ∈ N, we define
𝜌𝑘 (𝑛) = val(G⊗𝑛

𝑘
).

Proposition 8.3. Let G = (X × Y ×Z,A × B × C, 𝑄,𝑉 ) be a
3-player game withX = Y = Z = {0, 1}, and𝑄 the uniform distribu-
tion over S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, and such that val(G) < 1.
Then, for every 𝑛 ∈ N, it holds that val(G⊗𝑛) ≤ 𝜌𝑘 (𝑛), where
𝑘 = max {|A| , |B| , |C|}.

Proof. Let G be a game as specified. Without loss of generality,

we assume thatA = B = C = [𝑘]. By Lemma 3.15, it also suffices to

assume that the predicate𝑉 only depends on the answers of the two

players that get input 0. We observe that since val(G) < 1, for every

𝑎, 𝑏 ∈ [𝑘], if it holds that 𝑉 ((0, 0, 1), (𝑎, 𝑏, ∗)) = 1, then for every

𝑐 ∈ [𝑘], it holds that𝑉 ((0, 1, 0), (𝑎, ∗, 𝑐)) ∧𝑉 ((1, 0, 0), (∗, 𝑏, 𝑐)) = 0

We considerG⊗𝑛 = ((X × Y ×Z)⊗𝑛 , (A × B × C)⊗𝑛 , 𝑃,𝑉 ⊗𝑛).
Let 𝑓 , 𝑔, ℎ : {0, 1}𝑛 → [𝑘]𝑛 be optimal strategies for the game G⊗𝑛 .

We define strategies 𝑓𝑘 : {0, 1}𝑛 → A⊗𝑛
𝑘
, 𝑔𝑘 : {0, 1}𝑛 →

B⊗𝑛
𝑘
, ℎ𝑘 : {0, 1}𝑛 → C⊗𝑛

𝑘
, for the game G⊗𝑛

𝑘
, as follows: For

every 𝑥,𝑦, 𝑧 ∈ {0, 1}𝑛 , and every 𝑖 ∈ [𝑛], we define

𝑓𝑘 (𝑥)𝑖 = (𝑉 ((0, 1, 0), (𝑓 (𝑥)𝑖 , ∗, 𝑐)))𝑐∈[𝑘 ] ,

𝑔𝑘 (𝑦)𝑖 = (𝑉 ((1, 0, 0), (∗, 𝑔(𝑦)𝑖 , 𝑐)))𝑐∈[𝑘 ] ,

ℎ𝑘 (𝑧)𝑖 = ℎ(𝑧)𝑖 .
It is clear (from the above observation about G) that if the strategies
𝑓 , 𝑔, ℎ win the game G⊗𝑛 on an input (𝑥,𝑦, 𝑧), then the strategies

𝑓𝑘 , 𝑔𝑘 , ℎ𝑘 also win the game G⊗𝑛
𝑘

on input (𝑥,𝑦, 𝑧). This shows that
𝜌𝑘 (𝑛) = val(G⊗𝑛

𝑘
) ≥ val(G⊗𝑛). □

REFERENCES
[1] Noga Alon and Bo’az Klartag. 2009. Economical toric spines via Cheeger’s

inequality. J. Topol. Anal. 1, 2 (2009), 101–111. https://doi.org/doi/10.1142/

S1793525309000096

1008

https://doi.org/doi/10.1142/S1793525309000096
https://doi.org/doi/10.1142/S1793525309000096


STOC ’22, June 20–24, 2022, Rome, Italy Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan

[2] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. 2013. How to compress

interactive communication. SIAM J. Comput. 42, 3 (2013), 1327–1363. https:

//doi.org/10.1137/100811969 (also in STOC 2010).

[3] Boaz Barak, Anup Rao, Ran Raz, Ricky Rosen, and Ronen Shaltiel. 2009. Strong

parallel repetition theorem for free projection games. In APPROX-RANDOM.

352–365. https://doi.org/10.1007/978-3-642-03685-9_27

[4] Mihir Bellare, Oded Goldreich, and Madhu Sudan. 1998. Free bits, PCPs, and

nonapproximability—towards tight results. SIAM J. Comput. 27, 3 (1998), 804–915.
https://doi.org/10.1137/S0097539796302531 (also in FOCS 1995).

[5] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. 1988. Multi-

Prover Interactive Proofs: How to Remove Intractability Assumptions. In STOC.
113–131. https://doi.org/10.1145/62212.62223

[6] Mark Braverman and Ankit Garg. 2015. Small value parallel repetition for general

games. In STOC. 335–340. https://doi.org/10.1145/2746539.2746565

[7] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. 2013. Direct

products in communication complexity. In FOCS. 746–755. https://doi.org/10.

1109/FOCS.2013.85

[8] Vašek Chvátal and Endre Szemerédi. 1988. Many hard examples for resolution. J.
Assoc. Comput. Mach. 35, 4 (1988), 759–768. https://doi.org/10.1145/48014.48016

[9] Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. 2004. Conse-

quences and Limits of Nonlocal Strategies. In CCC. 236–249. https://doi.org/10.

1109/CCC.2004.1313847

[10] Irit Dinur, Prahladh Harsha, Rakesh Venkat, and Henry Yuen. 2017. Multiplayer

parallel repetition for expanding games. In ITCS (LIPIcs, Vol. 67). Art. No. 37, 16.
https://doi.org/10.4230/LIPIcs.ITCS.2017.37

[11] Irit Dinur and David Steurer. 2014. Analytical approach to parallel repetition. In

STOC. 624–633. https://doi.org/10.1145/2591796.2591884

[12] Uriel Feige. 1991. On the Success Probability of the Two Provers in One-Round

Proof Systems. In Structure in Complexity Theory Conference. 116–123. https:

//doi.org/10.1109/SCT.1991.160251

[13] Uriel Feige. 1998. A threshold of ln𝑛 for approximating set cover. J. ACM 45, 4

(1998), 634–652. https://doi.org/10.1145/285055.285059 (also in STOC 1996).

[14] Uriel Feige, Jeong Han Kim, and Eran Ofek. 2006. Witnesses for non-satisfiability

of dense random 3CNF formulas. In FOCS. 497–508. https://doi.org/10.1109/

FOCS.2006.78

[15] Uriel Feige, Guy Kindler, and Ryan O’Donnell. 2007. Understanding Parallel

Repetition Requires Understanding Foams. In CCC. 179–192. https://doi.org/10.

1109/CCC.2007.39

[16] Uriel Feige and Eran Ofek. 2007. Easily refutable subformulas of large random

3CNF formulas. Theory Comput. 3 (2007), 25–43. https://doi.org/10.4086/toc.

2007.v003a002 (also in ICALP 2004).

[17] Uriel Feige and Oleg Verbitsky. 2002. Error reduction by parallel repetition—a

negative result. Combinatorica 22, 4 (2002), 461–478. https://doi.org/10.1007/

s00493-002-0001-0

[18] Lance Fortnow. 1989. Complexity theoretic aspects of interactive proof systems.
Ph. D. Dissertation. MIT.

[19] Lance Fortnow, John Rompel, and Michael Sipser. 1994. On the power of multi-

prover interactive protocols. Theoret. Comput. Sci. 134, 2 (1994), 545–557. https:

//doi.org/10.1016/0304-3975(94)90251-8

[20] H. Furstenberg and Y. Katznelson. 1991. A density version of the Hales-Jewett

theorem. J. Anal. Math. 57 (1991), 64–119. https://doi.org/10.1007/BF03041066

[21] Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, andWei Zhan. 2021. Parallel

Repetition for the GHZ Game: A Simpler Proof. InAPPROX-RANDOM. 62:1–62:19.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.62

[22] Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, andWei Zhan. 2022. Parallel

Repetition For All 3-Player Games Over Binary Alphabet. CoRR abs/2202.06826

(2022). https://arxiv.org/abs/2202.06826

[23] Uma Girish, Kunal Mittal, Ran Raz, and Wei Zhan. 2022. Polynomial Bounds

On Parallel Repetition For All 3-Player Games With Binary Inputs. Electron.
Colloquium Comput. Complex. 43 (2022). https://eccc.weizmann.ac.il/report/

2022/043/

[24] Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. 1989. Going

Beyond Bell’s Theorem. In Bell’s Theorem, Quantum Theory and Conceptions of
the Universe. Springer Netherlands, 69–72. https://doi.org/10.1007/978-94-017-

0849-4_10

[25] Johan Håstad. 2001. Some optimal inapproximability results. J. ACM 48, 4 (2001),

798–859. https://doi.org/doi/10.1145/502090.502098 (also in STOC 1997).

[26] Jan Hazla, Thomas Holenstein, and Anup Rao. 2016. Forbidden Subgraph

Bounds for Parallel Repetition and the Density Hales-Jewett Theorem. CoRR
abs/1604.05757 (2016). http://arxiv.org/abs/1604.05757

[27] Thomas Holenstein. 2009. Parallel repetition: simplifications and the no-signaling

case. Theory Comput. 5 (2009), 141–172. https://doi.org/10.4086/toc.2009.v005a008
(also in STOC 2007).

[28] Justin Holmgren and Ran Raz. 2020. A Parallel Repetition Theorem for the GHZ

Game. CoRR abs/2008.05059 (2020). https://arxiv.org/abs/2008.05059

[29] Justin Holmgren and Lisa Yang. 2019. The parallel repetition of non-signaling

games: counterexamples and dichotomy. In STOC. 185–192. https://doi.org/10.

1145/3313276.3316367

[30] Guy Kindler, Ryan O’Donnell, Anup Rao, and Avi Wigderson. 2008. Spherical

Cubes and Rounding in High Dimensions. In FOCS. 189–198. https://doi.org/10.

1109/FOCS.2008.50

[31] Kunal Mittal and Ran Raz. 2021. Block rigidity: strong multiplayer parallel

repetition implies super-linear lower bounds for Turing machines. In ITCS. Art.
No. 71, 15. https://doi.org/10.4230/LIPIcs.ITCS.2021.71

[32] Michael Mitzenmacher and Eli Upfal. 2005. Probability and computing. Cam-

bridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511813603

Randomized algorithms and probabilistic analysis.

[33] Itzhak Parnafes, Ran Raz, and Avi Wigderson. 1997. Direct product results and

the GCD problem, in old and new communication models. In STOC. 363–372.
https://doi.org/10.1145/258533.258620

[34] D. H. J. Polymath. 2012. A new proof of the density Hales-Jewett theorem. Ann.
of Math. (2) 175, 3 (2012), 1283–1327. https://doi.org/10.4007/annals.2012.175.3.6

[35] Anup Rao. 2011. Parallel repetition in projection games and a concentration

bound. SIAM J. Comput. 40, 6 (2011), 1871–1891. https://doi.org/10.1145/1374376.

1374378 (also in STOC 2008).

[36] Ran Raz. 1998. A parallel repetition theorem. SIAM J. Comput. 27, 3 (1998),

763–803. https://doi.org/10.1137/S0097539795280895 (also in STOC 1995).

[37] Ran Raz. 2010. Parallel repetition of two prover games. In CCC. 3–6. https:

//doi.org/10.1109/CCC.2010.9

[38] Ran Raz. 2011. A counterexample to strong parallel repetition. SIAM J. Comput.
40, 3 (2011), 771–777. https://doi.org/doi/10.1137/090747270 (also in FOCS 2008).

[39] Ran Raz and Ricky Rosen. 2012. A strong parallel repetition theorem for projection

games on expanders. In CCC. 247–257. https://doi.org/10.1109/CCC.2012.11

[40] Oleg Verbitsky. 1996. Towards the parallel repetition conjecture. Theoret. Comput.
Sci. 157, 2 (1996), 277–282. https://doi.org/10.1016/0304-3975(95)00165-4

1009

https://doi.org/10.1137/100811969
https://doi.org/10.1137/100811969
https://doi.org/10.1007/978-3-642-03685-9_27
https://doi.org/10.1137/S0097539796302531
https://doi.org/10.1145/62212.62223
https://doi.org/10.1145/2746539.2746565
https://doi.org/10.1109/FOCS.2013.85
https://doi.org/10.1109/FOCS.2013.85
https://doi.org/10.1145/48014.48016
https://doi.org/10.1109/CCC.2004.1313847
https://doi.org/10.1109/CCC.2004.1313847
https://doi.org/10.4230/LIPIcs.ITCS.2017.37
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1109/SCT.1991.160251
https://doi.org/10.1109/SCT.1991.160251
https://doi.org/10.1145/285055.285059
https://doi.org/10.1109/FOCS.2006.78
https://doi.org/10.1109/FOCS.2006.78
https://doi.org/10.1109/CCC.2007.39
https://doi.org/10.1109/CCC.2007.39
https://doi.org/10.4086/toc.2007.v003a002
https://doi.org/10.4086/toc.2007.v003a002
https://doi.org/10.1007/s00493-002-0001-0
https://doi.org/10.1007/s00493-002-0001-0
https://doi.org/10.1016/0304-3975(94)90251-8
https://doi.org/10.1016/0304-3975(94)90251-8
https://doi.org/10.1007/BF03041066
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.62
https://arxiv.org/abs/2202.06826
https://eccc.weizmann.ac.il/report/2022/043/
https://eccc.weizmann.ac.il/report/2022/043/
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/10.1007/978-94-017-0849-4_10
https://doi.org/doi/10.1145/502090.502098
http://arxiv.org/abs/1604.05757
https://doi.org/10.4086/toc.2009.v005a008
https://arxiv.org/abs/2008.05059
https://doi.org/10.1145/3313276.3316367
https://doi.org/10.1145/3313276.3316367
https://doi.org/10.1109/FOCS.2008.50
https://doi.org/10.1109/FOCS.2008.50
https://doi.org/10.4230/LIPIcs.ITCS.2021.71
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1145/258533.258620
https://doi.org/10.4007/annals.2012.175.3.6
https://doi.org/10.1145/1374376.1374378
https://doi.org/10.1145/1374376.1374378
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1109/CCC.2010.9
https://doi.org/10.1109/CCC.2010.9
https://doi.org/doi/10.1137/090747270
https://doi.org/10.1109/CCC.2012.11
https://doi.org/10.1016/0304-3975(95)00165-4

	Abstract
	1 Introduction
	1.1 Our Results

	2 Overview
	2.1 Organization
	2.2 The Anti-Correlation Game
	2.3 Four-Point AND Distribution
	2.4 Playerwise Connected Games

	3 Preliminaries
	3.1 Probability Distributions
	3.2 Multiplayer Games
	3.3 Playerwise Connected Games
	3.4 Previously Known Results
	3.5 Some Results on Multiplayer Games

	4 The Anti-Correlation Game
	5 Four Point AND Distribution
	6 Playerwise Connected Games
	7 Hamming Weight One Distribution with Binary Outputs
	8 Three Player Games over Binary Alphabet
	8.1 The Main Theorem
	8.2 A General Game on Hamming Weight One Input

	References

