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Fig. 1: The simulation snapshots of a binary black hole merger of mass ratio 1:4 (q = 4) and extracted gravitational waves

using 4 NVIDIA A100 GPUs with a wall clock time of 5.3 days with 13 levels of refinement (i.e., coarsest level=3, finest

level=15, with finest resolution of 4.06e-3), and without assuming any spacetime symmetries.

Abstract—Simulations to calculate a single gravitational wave-
form (GW) can take several weeks. Yet, thousands of such
simulations are needed for the detection and interpretation of
gravitational waves. Future detectors will require even more
accurate waveforms than those currently used. We present
here the first large scale, adaptive mesh, multi-GPU numerical
relativity (NR) code together with performance analysis and
benchmarking. While comparisons are difficult to make, our
GPU extension of the DENDRO-GR NR code achieves a 6x
speedup over existing state-of-the-art codes. We achieve 800
GFlops/s on a single NVIDIA A100 GPU with an overall 2.5x
speedup over a two-socket, 128-core AMD EPYC 7763 CPU node
with an equivalent CPU implementation. We present detailed
performance analyses, parallel scalability results, and accuracy
assessments for GWs computed for mass ratios q=1,2,4. We also
present strong scalability up to 8 A100s and weak scaling up to

229,376 x86 cores on the Texas Advanced Computing Center’s
Frontera system.

Index Terms—High performance computing, Gravitational
waves, Astrophysics, Numerical simulation, Scientific computing

I. INTRODUCTION

Gravitational waves are generated in the merger of astro-

physical compact objects, such as black holes and neutron

stars. These waves carry information about the merging system

in the complicated pattern of the changing amplitude and

frequency of the wave. The first detection of gravitational

waves was made by the Laser Interferometer Gravitational-

Wave Observatory (LIGO) [1] in 2015 [2]. Since that time,
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over 80 additional detections have been made by the LIGO-

Virgo collaboration [3], [4].

The interaction of gravitational waves and matter is very

weak. For example, gravitational waves from compact object

mergers deflect the mirrors of LIGO and Virgo by distances on

the order of 10−19 m. These detectors produce an enormous

amount of data (approximately 800 TB/year) and require

advanced data analysis techniques to extract information from

GW events. Information about the progenitor binary systems

is extracted using templated waveforms that are parameterized

with 15 parameters. One key parameter is the ratio of the

masses of the two objects in the binary, q = m1/m2, where

m1 is the mass of the primary body, m1 ≥ m2. Solving the

full set of Einstein’s equations to generate model waveforms

using the techniques of numerical relativity (NR) requires

expensive, large-scale supercomputer simulations. Thus, the

library of candidate waveforms for the large parameter space

is primarily created using a combination of semi-analytical

and phenomenological approximate models [5]–[9], which can

be rapidly computed. However, these models must be tuned

and verified through comparison with full numerical relativity

solutions over different regions of the parameter space.

To enable such comparisons, among other types of gravita-

tional waveform analysis, catalogs of NR waveforms for bi-

nary black hole (BBH) mergers are being constructed, such as

the SXS [10], RIT [11], GaTech [12], and CoRe [13] catalogs.

Waveforms for BBHs with large mass ratios, q ≫ 10, cannot

be reliably computed from semi-analytical methods. The post-

Newtonian approximation, for example, diverges in this limit.

These systems are particularly difficult to calculate using NR

simulations. This is due to the extreme resolution requirements

needed to resolve the smaller black hole, the consequent

reduction in the size of the maximum allowable timestep, and

the resulting greater number of timesteps required to reach

the merger event. Figure 3 shows the computational grids for

a q = 8 binary, and Table I shows the estimated resolution

requirements and the number of timesteps for binary black

hole systems with different mass ratios. The largest mass ratios

in the SXS and GaTech catalogs are, for example, q = 10 and

q = 15, respectively; the RIT catalog has a few waveforms up

to q = 128. However, it is essential that waveforms for large q
binaries are available for a large region of the binary parameter

space, so that detected waveforms from these systems can be

properly analyzed and understood.

A further challenge for numerical relativity will come as

new detectors (such as LISA [15], the Einstein Telescope [16],

and Cosmic Explorer [14]) come online and existing detectors

are improved. As the signal-to-noise ratio (SNR) increases,

higher fidelity waveforms will be required to extract the full

scientific impact of the detected waveforms. For example,

Figure 2 shows simulated gravitational waveforms that could

be detected by the future A+ configuration for LIGO [17],

[18] and the proposed Cosmic Explorer detector. Gravitational

wave signals will be detected with both higher SNR and

for longer times. Generating comparable quality gravitational

waveforms using NR is currently beyond the capabilities of

Fig. 2: Simulated gravitational-wave detector strain measure-

ments for two merging black holes with simulated noise for

LIGO A+ noise (yellow) and Cosmic Explorer (blue). The

source is a GW150914-like black hole binary. Compare Ref [2]

for the measured signal by Advanced LIGO. The figure is

from [14].

most NR codes [19]–[21].

mass-ratio ∆xmin ∆xmin time timesteps
q = m1/m2 (BH1) (BH2) (M)

1 8.33e-03 8.33e-03 650 7.8e4
4 3.33e-03 1.33e-02 700 2.1e5
16 9.80e-04 1.57e-02 1 400 1.4e6
64 2.56e-04 1.64e-02 6 000 2.3e7

256 6.46e-05 1.65e-02 24 000 3.7e8
512 3.23e-05 1.65e-02 48 000 1.5e9

TABLE I: Approximate resolution requirements needed to

resolve the black holes in binaries with increasing mass ratio,

q, with fixed total mass M = 1. (Note that all quantities are

given in geometric units.) We assume ∼120 grid points across

event horizons and an initial separation of d = 8. Merger times

for q ≤ 16 are from simulations of the full Einstein equations.

Other times are approximated using evolutions of the post-

Newtonian 2.5 equations.

Fig. 3: Two-dimensional slices of the grid generated for a

binary merger of mass ratio q = 8. From left to right, the

grid is zoomed in on in order to show the refinement levels

surrounding the smaller black hole.

To overcome these challenges, we present an octree-based

adaptive multi-resolution scheme that enables efficient use

of GPUs for numerical relativity. Using the so-called BSSN

3D+t formulation of the Einstein equations (section III-A) and

an octree-based sixth-order in space and explicit fourth-order

in time discretization (section III-B), we study the efficient
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evaluation of the right hand side (RHS) of these PDEs. As we

will see, this involves 24 state variables and 210 derivatives,

thus generating tremendous memory pressure. This, in addition

to the need to use adaptive mesh refinement (AMR)—which

has long been considered a challenge on parallel architectures

due to the complex dynamic data structures [22]—makes

even small performance improvements extremely formidable.

Our implementation extends the open-source DENDRO-GR li-

brary [23]–[25], one of the state-of-the-art AMR NR codes

(section II). Our contributions are summarized below.

• To the best of our knowledge, this work is the first highly-

scalable, adaptive, multi-GPU numerical relativity code

performing binary black hole mergers;

• Algorithms for efficient use of GPUs for numerical sim-

ulations on adaptive octree grids (section IV);

• A detailed roofline analysis for complicated Einstein

equation evaluations;

• Novel code generation approach to reduce the register

pressure with additional GPU and CPU optimizations

(sections IV-A and IV-B);

• A 2.5× overall speedup using a single NVIDIA A100

GPU compared to a single CPU node consisting of two

AMD EPYC 7763 64-core processors (section V-A);

• Demonstration of strong and weak scalability using multi-

GPU and full Frontera system runs (section V-B); and

• Demonstration of accuracy and convergence of our algo-

rithms (section V-C).

In addition to the above, we also introduce several CPU per-

formance improvements in the DENDRO-GR implementation.

II. RELATED WORK

Adaptivity in numerical relativity codes: AMR or adaptive

coordinates are essential in numerical relativity for the simu-

lation of merging binaries and the extraction of gravitational

waves. We highlight a few examples here, while a more

complete listing can be found in Ref. [26]. Many relativity

codes use nested box-based adaptivity in which a sequence

of box-in-box regions with varying resolution is used for

spatial discretization. For example, the Einstein Toolkit [27]

is an open-source AMR code that is based on the Carpet [28]

and Cactus [29] frameworks. LAZEV [30], used in some of

our comparisons below, is also based on Carpet and Cactus.

Octree-based adaptive mesh resolution is widely used in many

computational applications. DENDRO-GR [25] and Athena++-

GR [31] use octree-based refinement in NR. As an alternative

approach, the spectral Einstein code (SpEC) [32] and the

NRPy+/SENR [33], [34] code use adaptive coordinates that

conform to the spacetime properties in place of, or in addition

to, AMR.

NR on GPUs: GPUs have had very limited use in NR. A

GPU extension of the SpEC code [35] has been implemented

for single black hole spacetimes. The authors presented an

overall runtime breakdown for two SpEC benchmarks but

did not include a detailed performance analysis for the GPU

code. An attempted GPU extension of DENDRO-GR [25]

is presented in Ref. [36] and relies on the asynchronous

movement of evolution vectors between host and device for

each timestep. This work also lacks detailed performance

evaluations.

In summary, despite the significance and computational

costs associated with numerical relativity, there has been little

work on GPU accelerated codes. To provide some context

relative to the scale of the problem, the LAZEV code (used

in the RIT catalog) requires approximately 30 and 50 days

for q = 2 and q = 4 BBH simulations, respectively. These

are for medium resolution runs without assumed symmetries

using 256 cores. Note, however, that comparisons between

different codes are difficult due to the use of different PDE

formulations, discretization schemes, and target accuracies.

Due to the complexity of the problem, finding studies that

report performance as a function of degrees of freedom and

accuracy is difficult. Nevertheless, using our estimates, we

believe our DENDRO-GR GPU extension can achieve a 6×
speed up over the state of the art.

III. BACKGROUND

A. BSSN formalism of Einstein’s equations

We use the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)

formulation of Einstein’s equations, consisting of 24 cou-

pled, nonlinear, partial differential equations (PDEs). The

BSSN [37]–[39] system is strongly hyperbolic, with first-order

derivatives in time and second-order spatial derivatives. This

formulation is widely used in NR, and we use conventional

methods for numerically solving the equations [40], [41].

Spatial derivatives are approximated using finite difference

stencils that are O(h6) in the grid spacing, h, and the equations

are integrated in time using an explicit Runge-Kutta (RK)

scheme with global timestepping. We use RK4 with a Courant

factor of λ = 0.25 for the tests below. Kreiss-Oliger (KO)

dissipation [42] is added to the solution to eliminate high-

frequency noise that can be generated near the black hole

singularities.

The BSSN equations are written in tensor form, using the

Einstein summation convention [43], i.e., repeated raised and

lowered indices are implicitly summed over the values 1, 2, 3.

The BSSN evolution equations are

∂tα = Lβα− 2αK, (1)

∂tβ
i = βj ∂jβ

i +
3

4
f(α)Bi, (2)

∂tB
i = ∂tΓ̃

i − ηBi + βj ∂jB
i − βj ∂jΓ̃

i, (3)

∂tγ̃ij = Lβ γ̃ij − 2αÃij , (4)

∂tχ = Lβχ+
2

3
χ (αK − ∂aβ

a) , (5)

∂tÃij = LβÃij + χ (−DiDjα+ αRij)
TF

+

α
(

KÃij − 2ÃikÃ
k
j

)

, (6)

∂tK = βk∂kK −DiDiα+

α

(

ÃijÃ
ij +

1

3
K2

)

, (7)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i −
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Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j − 2Ãij∂jα+

2α

(

Γ̃i
jkÃ

jk −
3

2χ
Ãij∂jχ−

2

3
γ̃ij∂jK

)

. (8)

We now define some of the mathematical operations needed to

evaluate the equations. Lie derivatives of scalars and tensors

with respect to the shift vector, β⃗, can be written as

Lβα = βi∂iα+ wα∂iβ
i (9)

Lβuij = βk∂kuij + uik∂jβ
k + ukj∂iβ

k + wuij∂kβ
k, (10)

where w denotes the tensor weight. The trace-free part of a

tensor Tij is defined as

(Tij)
TF = Tij −

1

3
γ̃ij(γ̃

lmTlm). (11)

The Christoffel symbols are evaluated as

Γ̃k
ij =

1

2
γ̃kl (∂j γ̃li + ∂iγ̃lj − ∂lγ̃ij) (12)

Γk
ij = Γ̃k

ij −
1

2χ

(

δki ∂jχ+ δkj ∂iχ− γ̃ij γ̃
kl∂lχ

)

, (13)

and Di denotes the covariant derivative with respect to the

spatial metric γij ,

DiDiα = γij(∂ijα− Γk
ij∂kα) (14)

DiDjα = ∂ijα− Γk
ij∂kα. (15)

Evaluating the RHS of equation (6) requires the evaluation of

the Ricci tensor. The Rij computation can be split as

Rij = R̃ij +Rχ
ij (16)

where

R̃ij =
1

2
γ̃lm∂lmγ̃ij +

1

2

(

γ̃ki∂jΓ̃
k + γ̃kj∂iΓ̃

k
)

+
Γ̃k

2
(Γ̃ijk + Γ̃jik)

+ γ̃lm
(

(Γ̃k
liΓ̃jkm + Γ̃k

ljΓ̃ikm) + Γ̃k
imΓ̃klj

)

(17)

Mij =
1

2χ

(

∂ijχ− Γ̃k
ij∂kχ

)

−
1

4χ2
∂iχ∂jχ (18)

Rχ
ij = Mij +

1

2χ
γ̃ij

(

γ̃kl

(

∂klχ−
3

2χ
∂kχ∂lχ

))

− Γ̃m∂mχ.

(19)

We use the Penrose scalar, Ψ4 [37], [44] for gravitational

wave extraction. This time-dependent quantity captures the

oscillations in the spacetime geometry. Ψ4 is extracted by

expanding it in a basis of spin-weighted spherical harmonics

(ℓ, m modes) on spherical shells; integrations being performed

using Lebedev quadrature [45]. Multiple extraction spheres are

located between 50–100M (see Figure 4), where, again, M
denotes the total mass of the binary.

Fig. 4: A black hole binary inspiral simulation snapshot with

the corresponding extraction spheres used to extract gravita-

tional waves.

B. Octrees

We use octrees as our primary data structure for spatial grid

generation. Octrees are widely used in many computational

applications due to their hierarchical structure (see Figure 5)

and their ability to achieve point local refinement. In terms

of storage, we store only the leaf nodes of the tree since

non-leaf nodes can be computed by performing a top-down

or bottom-up traversal of the tree. We enforce a 2:1 balancing

constraint to smoothly vary refinement over the spatial domain.

We rely on the open-source numerical relativity framework

DENDRO-GR [23], [25], which supports octree construction,

2:1 balancing [46], [47], and space filling curve-based octree

partitioning [48] to ensure scalability of the proposed methods.

Fig. 5: A simplified illustration of a 2D quadtree (in 3D, it would
be an octree) as a data structure to represent a 2D adaptive grid.
Note that we start from the root level and perform a hierarchical
division of each dimension to generate spatially varying resolution
on the computational domain.

C. Notation

Here we summarize octree nomenclature used throughout

the paper. A node in the octree is referred to as an octant. Each

leaf octant consists of r3 uniformly placed grid points. The

points that violate the geometric conformality are referred to

as “hanging” points. Duplicate and hanging points are removed

during the grid construction phase. Each leaf octant is padded

with k points per direction, and a padded octant is referred to

as a “patch” (see Figure 6). Each patch consists of (r + 2k)3

grid points. To enable 6th order finite difference computations,

we set r = 7 and k = 3. The DENDRO-GR framework

provides two maps for each octree partition: (1) O2O, an
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(a) (b)

(c) (d)

Fig. 6: In this figure, the black squares define octants A to E,

with each octant labeled in its top right corner. The shaded

blue area in 6a shows the padding zone of octant A. The red

zones in 6b, 6c, 6d denote the padding zones that overlap with

octant D. The above regions are computed using information

from octant D.

octant to face neighbors map, and (2) O2N, an octant to its

corresponding grid point map. These maps enable numerical

computations on the octree through looping over octants.

D. Performance models

We use slow-fast memory models for analyzing single-GPU

kernels, the slow memory representing the GPU main memory

and the fast memory a combination of L2 and registers. This

assumes the execution model defined by the abstract random

access machine (RAM) [49]. This helps us characterize the up-

per bounds for the ideal attainable performance. We consider

two models. The first assumes infinite fast memory; the second

uses a finite-sized fast memory. Let τf be the machine time

per double precision FLOP; τm the RAM access/byte; CR the

entire register file; CL the L2 size and assume the time to load

and store from it is ℓτm, ℓ < 1; and f the double precision

flops and loads/store m bytes needed in the computation. Let

Q = f/m be the arithmetic intensity (AI) of the kernel.

In the infinite-cache model, the kernel time is T∞(f,m) =

fτf+mτm = mτm

(

1 +
τf
τm

Q
)

. For the finite-cache the mem-

ory costs become τmm
(

m
CL

+ ℓ m
CR

)

, because we need at least
m
C

loads from RAM to the L2 cache and m
CR

loads from the L2

to the registers. Then, using the machine-specific parameter

ξ =
(

1

CL
+ ℓ 1

CR

)

, we obtain T (f,m) = mτm(mξ) + fτf

or T (f,m) = mτm

(

max(1,mξ) +
τf
τm

Q
)

. If we ignore the

FLOPS term, T = mτm max(1,mξ). For the A100, CL =
40MB, CR = 27MB, ℓ ≈ 1/4, and thus, ξ ≈4e-8; τf =1.0e-

13s, τm =6.4e-13s, and τf/τm is 0.16. If Q < 1/0.16 = 6.25,

the FLOPS are negligible and the kernel is bandwidth limited.

Our kernels are memory bound. For example, m can be

up to 2MB for just a single octant; for 108 octants, one for

each A100 SM, mξ ≈ 10. This analysis does not take into

account the structure of the calculations per octant, but shows

the difficulty of obtaining good performance. Next, we discuss

several optimizations that exploit these dependencies.

IV. METHODOLOGY

In this section, we present novel algorithmic contributions

that enable efficient numerical relativity simulations on GPU

architectures. The key computation in numerical relativity is

the time integration of the governing BSSN equations, which

describe the evolution of spacetime. An overview of our

GPU time evolution is presented in Algorithm 1. Minimizing

synchronous data movement between the host and the device

is crucial to achieving high-compute throughput. In the pro-

posed approach, the re-grid operation (i.e., re-discretization to

capture the evolving fields) is the only operation that requires

synchronous data movement between the host and the device.

The host generates the grid (or re-grids) and passes the data to

the device. The time integration is entirely performed on the

device until the host issues the next re-grid operation. The host

uses asynchronous streams to extract the gravitational waves

(e.g., every 16 timesteps) from the evolved quantities.

Algorithm 1 Overview: Time evolution

Require: u state at t = t0, T : time horizon, ∆t timestep size,

fr: re-grid frequency

Ensure: u state at t = T
1: N ← (T − to)/∆T
2: for each i ∈ [0:N :fr] do ▷ 0 to N with fr increments

3: M← construct grid(u) ▷ use DENDRO-GR

4: v ← host to device(u)
5: for each fr timesteps do

6: v ← halo exchange(v) ▷ synchronize partitions

7: v̂ ← octant-to-patch(v) ▷ compute octant patches

8: ŵ ← RHS(v̂, t) ▷ evaluate RHS

9: w ← patch-to-octant(ŵ) ▷ revert back to octants

10: v ← AXPY(w, v,∆t) ▷ evolve state v = v+∆tw

11: u← device to host(v)

12: return u

A. Computing padding zones

The computation of padding zones is referred to as the

octant-to-patch operation. This computation requires appro-

priate interpolations or injections at coarser and finer octant

boundaries while performing direct data copy between octants

at the same resolution.

loop-over-patches: The current DENDRO-GR supports

padding zone computation via loop-over-patches while gath-

ering the padding information from neighboring octants with

proper interpolations. This creates redundant interpolations

between coarser and finer patch boundaries. Most importantly,

gathering octant information with random memory accesses

will not work well on GPU architectures.

loop-over-octants: To minimize the number of interpolations

and increase data locality, we propose the computation of
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padding zones by looping over octants. In the octant-loop

each octant scatters its information to neighboring patches

with appropriate interpolations, injections, or a direct copy (see

Figure 6). We pre-compute and store the octant to neighboring

patches map (O2P) at the grid generation phase to be used

during padding zone computation. The 2:1 balance constraint

ensures that for any octant, all its neighbors can differ by

at most a single level. This simplifies the different cases to

be handled during the octant-to-patch operation. For a given

octant o, its neighbor octant can be at the same refinement level

or one level coarser or finer than o (see Algorithm 2). Single

core CPU performance comparison of the two approaches

is presented in Figure 7. The above comparison shows that

looping-over-octants is significantly more efficient (3x faster)

than looping-over-patches, due to increased data locality and

reduced redundant interpolation.

400 1352 2360 5384 9304
0

1

2

·10−3

number of octants →

ti
m

e/
o

ct
an

t
(s

)
→

loop-over-patch loop-over-octant

Fig. 7: A single core CPU comparison of padding zone

computation with loop-over-patches vs. loop-over-octants. The

proposed looping-over-octants with scattering approach has

higher data locality (i.e., during the read operation) with no

redundant interpolations.

Algorithm 2 octant-to-patch computation

Require: E-octant list, O2B, u-field variable

Ensure: û - u with filled padding zones

1: e← gpu block id x

2: ue ← load(u[O2N[e]]) ▷ global to shared load

3: I[0, 1]← load(Ig) ▷ const to shared load

4: if is hanging(e) then

5: ue ← interp hanging(ue) ▷ shared to shared

load/store

6: for b ∈ O2B[e] do

7: if same resolution then

8: û[b]← copy(ue) ▷ shared to global store

9: else if b is coarser then

10: û[b]← inject(ue) ▷ shared to global store

11: else if b is finer then

12: û[b]← interp(ue, I) ▷ shared to global store
return

The octant-to-patch kernel is launched with kernel grid

dimensions of (|E|, dof, 1) with (r, r, 1) thread block, where

|E| denotes the number of octants and dof denotes the number

of degrees of freedom per grid point. Each GPU block reads

the octant nodal values from global to shared memory. All of

the required interpolations or injections are performed using

the shared memory. Once the octant data is ready to be

scattered, data is moved from the shared to global memory

according to the O2P map (see Figure 8).

O2N map

O2P map

u in global memory

ue in shared memory

interpolate or inject

we shared workspace

û- u with padding zones in global memory

Fig. 8: An overview of the data movement during the octant-

to-patch operation for GPUs. Each GPU block operates on a

single octant in the local partition. A global to shared load is

performed to move the octant nodal values using the O2N map.

All the required interpolations and injections are performed in

the block shared memory. Following this, a shared to global

store operation is performed to scatter the octant nodal values

to their corresponding neighboring blocks. This uses the O2P

map to resolve the neighboring blocks of an octant.

Interpolations: The required interpolations are performed as

tensor products of 1D interpolation operators. First, the thread

block operates on xy slices performing interpolation in the

x direction, followed by interpolations in the y directions.

Finally, the thread block operates in xz slices, performing

interpolations in the z direction. During this process, appro-

priate synchronizations are deployed. A single coarser to finer

interpolation requires O(3(2r − 1)r3) operations.
In our computations, the padding zones are used only during

the stencil evaluations. Once the required stencils are applied,

padding zones are discarded and the fields are reverted back to

the unpatched representation. The above is referred to as the

patch-to-octant operation. During the patch-to-octant opera-

tion, each octant patch copies its internal grid points (i.e., grid

points not in padding zones) to the unpatched representation.
Performance bounds: During octant-to-patch operations we

read 1D interpolation operators (2r2) and octant grid points

values (r3), and we write octant grid point values (r3), padding

zones along with faces (6r2k), edges (12rk2), and vertex

corners (8k3). The number of flops performed during the

octant-to-patch depends on the adaptivity structure of the grid.

An interpolation operation has 3(2r − 1)r3 operations. The

maximum number of interpolations (i.e., octant to all its 8

children) is performed when all the neighboring blocks of
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an octant are finer than the octant resolution. Therefore, the

upper bound for the arithmetic intensity of the octant-to-

patch operation (QU ) is given by

QU ≤
8× 3(2r − 1)r3

8 (2r2 + 2r3 + 12rk2 + 6r2k + 8k3)
≈ 5.07 (20)

Therefore, this kernel is memory bound as discussed in sec-

tion III-D. The memory requirements per octant per state

variable are small, so the infinite cache model should be

predictive as mξ ≪ 1.

B. Computing BSSN equations

In this section, we discuss the BSSN RHS evaluation and

related challenges. We define two main components of the

RHS: computing the derivatives (denoted by D) and the

algebraic combination of the derivatives (denoted by A). Since

we are using an explicit RK scheme, the RHS evaluation is

the key computational kernel for evolving these equations.

All 24 field variables require all first partial derivatives (i.e.,

3 × 24 = 72); variables α, βi, χ, γ̃ij require all second

derivatives (i.e., 6 × 11 = 66). Additionally for all evolution

variables, we need KO dissipation derivatives (i.e., 3 × 24 =
72). Hence, the RHS computation requires 210 derivative

evaluations. Furthermore, these derivatives are combined in

A in a highly connected manner. The easy way to implement

it is to precompute these derivatives with a separate kernel and

then combine them in A. This turns out to be slow, but more

importantly imposes significant memory constraints.

The RHS is evaluated on octants and the patch is used

only in the derivative computations. Therefore, each octant

patch is mapped to a GPU block consisting of (r, r, r) thread

dimensions. This enables the storage of the derivatives at each

grid point in the thread-local memory (see Figure 9).

The A component of the RHS is a mapping between 234

(i.e., 24 + 210) inputs to 24 outputs. Due to the complexity of

these equations, manually writing code is nearly impossible.

For example, Kranc [50] is a commonly used framework to

generate code for the Einstein Toolkit [27]. Other projects,

such as LAZEV [51] and SpEC [32] use custom Mathemat-

ica [52] scripts to generate executable C code. Other efforts use

SymPy [53] for NR code generation, such as SymPyGR [53]

and NRPy+ [54]. Both of these projects use SymPy’s common

sub-expression elimination (CSE) to reduce the number of

operations in the evaluation of A. We use SymPyGR for code

generation with CSE as the baseline code for RHS perfor-

mance evaluations. The high data dependencies inA will cause

register spilling during evaluations. The minimum number of

registers required to evaluate A is an unsolved problem.

The CSE approach creates ∼900 temporary variables, which

reduces the number of operations significantly but causes

heavy register spilling. We argue that minimizing compute

operations is not ideal, in the presence of register spilling,

since memory operations have significantly higher overhead

compared to compute operations. In the CSE code generation

approach, the final expressions are evaluated once all of the

intermediate sub-expressions are evaluated. The above can

û in global memory

L(û) RHS in global memory

shared workspace

Dx

ax
sync

Dy

ay
sync

Dz

az
sync

Dxx

axx

. . .

Fig. 9: An overview of the data movement during fused RHS

evaluation. Each GPU block operates on a single octant patch.

Each evolution variable is moved from the global to block

shared memory one at a time. Once a variable is in the block

shared memory, all its derivatives (i.e., Dx, Dy, Dz, . . .) are

computed using a shared memory workspace. Appropriate

thread synchronizations are enforced to resolve race conditions

in subsequent stencil applications. Once the stencil is com-

puted, each thread grabs its corresponding point and stores the

computed derivative values (i.e., ax, ay, az, . . .) in the thread-

local memory. Once all the required derivatives are computed,

the corresponding RHS is updated.

increase the live range of the allocated temporary variables,

and cannot rely on the compiler to reorder the expressions

to reduce the live range of variables. To reduce the register

pressure, we propose a binary reduction-based code generation

for A evaluation. The key motivation for the above is to

reduce the live ranges of allocated thread-local temporary vari-

ables. For each (i.e., 24 equations) we build its computational

graph (see Figure 10) using the SymPy expression tree and

NetworkX package [55]. Let G be the composed graph (i.e.,

∂tα,+

Lβα,+

β2∂2α, ∗

∂2αβ2

β1∂1α, ∗

∂1αβ1

β0∂0α, ∗

∂0αβ0

2αK, ∗

Kα−2

Fig. 10: A simple illustration of the associated computational

graph for the algebraic component of the ∂tα RHS evaluation.

directed acyclic graph with 2516 nodes and 6708 edges) of

the constructed 24 subgraphs. A valid traversal of the graph

ensures that node v is visited only when its descendants u
have been computed and can be used to compute node v.

The above traversals are not unique (e.g., any topological

ordering of G). As a heuristic, we employ the traversal order

generated by the topological sort of line graph of G. The binary
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Algorithm 3 visit node(v)

Require: G = (V,E), v ∈ V , B− local memory

1: v.DONE ← true

2: for u ∈ V.descendants do

3: store(v, u,B) ▷ Store in local memory

4: reduce(u, v)
5: remove edge (u, v) from G
6: if degree(u) is 0 then

7: evict (u,B)

8: if v is a final expr then

9: store to global(v)
10: if degree(v) is 0 then

11: evict(v,B)

12: return

reduction-based code generator is summarized in Algorithm 3.

For the generated topological traversal, we visit each node v
of the graph and store v and its descendants in the thread-local

memory followed by reduction based on the node operation

(i.e., +, *). Once the reduction is performed, edge (u, v)
is removed from G, and u is evicted from the thread-local

memory once it becomes disconnected from G. The A kernel

generated from the above is referred to as “binary-reduce.”

This approach reported a maximum of 675 live allocated

temporary variables during the traversal of the graph.

We consider another variation of the RHS evaluation to

minimize register spills due to thread-local stored derivative

variables. The motivation is to compute the RHS of an

equation, as soon as its derivatives are ready. This can help to

reduce the live range of computed derivatives. This approach

is referred to as “staged + CSE.”

Next we present a detailed performance comparison of

the existing SymPyGR approach (baseline) and the proposed

“binary-reduce” and “staged + CSE” approaches. We use

the NVIDIA A100 GPU with CUDA compiler version 11.4

with --ptxas-options=-O3 compiler option. Table II

shows the compiler reported ptx-spill loads and stores for

__launch_bounds__(343,3) (i.e., maximum 56 regis-

ters per thread). Figure 11 shows a performance comparison

of the above three approaches with varying number of octants.

RHS ptx-spill stores ptx-spill loads average speedup
variation (bytes) (bytes) w.r.t. SymPyGR

SymPyGR 15892 33288 1.00x
binary-reduce 10176 22012 1.55x
staging + CSE 8876 22028 1.76x

TABLE II: A summary of the compiler reported spill loads

and stores for the generated RHS variations. The last column

represents the average speedup reported compared to the

SymPyGR baseline.

Performance bounds: The arithmetic intensities of the com-

plete RHS (QL) and A (QA) computations assuming a random

access machine model is given by eq. (21a) and eq. (21b),

where OA denotes the approximate number of operations in
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Fig. 11: The reported time per octant for 10 RHS evaluations,

using SYMPYGR code generator, binary reduction based eval-

uations, and staging + CSE approaches on a single NVIDIA

A100 GPU.

the A component.

QL =
r3(33(2d2 − 1) + 177(2d− 1) +OA)

8(24(r + 2k)3 + 24r3)
≈ 6.68 (21a)

QA =
r3(OA)

8(24× 2 + 210)r3
≈ 1.94 (21b)

Again we see that these are not large enough to overcome

the machine imbalance, especially given the memory require-

ments of the RHS evaluations, which result in a large mξ
(section III-D).

V. RESULTS

This section describes numerical and performance evalua-

tion of the proposed computational methodology. A detailed

single node performance analysis is presented in section V-A.

We performed our experiments on Frontera and Lonestar 6

at the Texas Advanced Computing Center (TACC). Frontera

has 8K Intel Cascade Lake nodes [56] and Lonestar 6 has

16 dual-NVIDIA A100 nodes. All GPU-CPU comparisons

were done on a single NVIDIA A100 GPU. Frontera is used

for performing a large weak scaling study, and the GPU

strong and weak scalability tests are performed on Lonestar 6

(section V-B). Accuracy and convergence of binary black hole

simulations are presented in section V-C.

A. Single node performance

Padding zones: Unlike the RHS, this computation is sen-

sitive to the grid refinement level and its overall structure.

For example in a uniform grid, no interpolations take place.

In contrast, in real simulations, the grid changes significantly,

especially during the inspiral stage (see Figure 12) and follow-

ing merger (see Figure 13). For performance evaluation of the

octant-to-patch operation we construct five different grids mi

for i = {1, 2, 3, 4, 5} where moving from m1 to m5 decreases

the adaptivity (i.e. the grid becomes more uniform). Table

III shows the empirically observed arithmetic intensity values

reported by the NVIDIA nv-compute tool. The corresponding
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empirical roofline plot for the above is shown in Figure 14. For

octant-to-patch operations on average, we observe roughly 900

GFlops/s for all grids. The patch-to-octant operation is purely

a data movement kernel with zero arithmetic intensity.

−400 −200 0 200 400

5

10

15

coordinate (M)→

ce
ll

le
v
el
→

Fig. 12: The octants level variation along the x coordinate for

1:8 mass ratio binary system during the inspiral stage.

Fig. 13: A snapshot of the binary black hole system after the

merger. After the merger the grid adaptivity changes to capture

the radially outgoing gravitational waves.

grid octants × dof reported AI octant-to-patch patch-to-octant

octant-to-patch (ms) (ms)
m1 400 × 24 4.07 1.31 0.064
m2 1352 × 24 2.52 3.38 0.2
m3 2360 × 24 2.20 5.60 0.3
m4 5384 × 24 1.90 11.92 0.8
m5 9304 × 24 1.74 19.94 1.56

TABLE III: A summary of the octant-to-patch and patch-to-

octant operations observed operational intensity and execution

times on a single NVIDIA A100 GPU where each grid point

consists of 24 field variables. The arithmetic intensity of the

octant-to-patch operation in RAM execution model is bounded

by Qu ≤ 5.07.

RHS evaluation: We compare one A100 GPU to two EPYC

sockets on Lonestar 6 for a varying number of octants (see

Figure 15). On the EPYC, patch-level parallelism is achieved

using OpenMP. A roofline performance analysis for the RHS

evaluation is presented in Figure 14. The observed arithmetic

intensity for the overall RHS is ≈ 0.62 ≪ 6.68, which is

expected due to L2 misses and register spilling (section III-D).

BSSN solver: We present a detailed performance compari-

son between the CPU DENDRO-GR and the proposed GPU

extension. To make the comparison algorithmically fair, we

use loop-over-octant based octant-to-patch operations for both
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Fig. 14: The empirical roofline performance evaluation for the

key computational kernels on a single NVIDIA A100 GPU.

Overall RHS evaluation is denoted by RHS and the algebraic

combination of derivatives is denoted by A. The octant-

to-patch operation is performed for varying grids mi(i =
1, 2, 3, 4, 5) with decreasing adaptivity. Highly adaptive grids

have a higher number of interpolations, leading to higher arith-

metic intensities and vice versa. The overall RHS evaluation

and octant-to-patch operations achieve compute throughout of

700 GFlops/s and 900 GFlops/s respectively.

256 512 1024 2048 4096 8192 16384
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number of octants →

ti
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)
→

CPU-RHS

GPU-RHS

Fig. 15: Wall clock time to compute patches (padding zones)

for 10 RHS evaluations using one A100 vs. two EPYC sockets.

The CPU RHS evaluation is parallelized using OpenMP, for

which the octants are equally partitioned across 128 threads.

The GPU results show the execution time for RHS evaluation.

codes. We report wall clock time to perform five RK4 steps

in Figure 16. Once the octant patches have been constructed,

the RHS evaluation does not depend on the grid refinement.

B. Parallel scalability

We conduct GPU/CPU strong and CPU weak scaling stud-

ies for the BSSN evolution on binary black hole grids. In

strong scaling, we fix problem size at 125M unknowns and

perform 5 RK4 timesteps (see Figure 17). We observe parallel

efficiencies of 97%, 89%, and 64% for 4, 8, and 16 GPUs

respectively. For the CPU strong scaling results, we observe

parallel efficiencies of 93%, 79%, and 66%. Figure 18 shows

the conducted weak scalability study with 35M unknowns per
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Fig. 16: Overall wall clock time for 5 RK4 timesteps on one

A100 on a two-socket EPYC node for binary black hole grids

with problem size varying from 36M to 104M unknowns.

GPU across 16 A100 GPUs with average parallel efficiency

of 83%.
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Fig. 17: Strong scaling: Overall wall clock time for 5 RK4

timesteps for binary black hole grids with a fixed problem

size of 257M unknowns with increasing number of GPUs.
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Fig. 18: Weak scaling: Overall wall clock time for 5 RK4

timesteps for binary black hole grids with increasing problem

size. The above weak scalability study performed with approx-

imately 35M unknowns per GPU where the largest problem

consists of 560M unknowns.

We perform weak scalability for the overall framework

across 4,096 nodes on the Frontera supercomputer. Keeping

the number of unknowns per core constant is a challenging

task in an adaptive mesh refinement setting. For this exper-

iment, we start with an octree grid generated for the binary

black hole problem and increase the refinement radius black

hole locations until the desired number of unknowns per core

is reached. For the weak scaling experiment (see Figure 20),

we use roughly 500K unknowns per core. The largest problem

size consists of 118B unknowns, which used 4096 nodes on

Frontera.

C. Accuracy and convergence

To establish the accuracy of our new framework, we first

compare the gravitational waveforms for an equal-mass binary

computed with the CPU code to those computed using the

well-known LAZEV [30] code. In Figure 19, we plot the

difference between the CPU waveforms and a high-resolution

LAZEV waveform as a function of the error tolerance used

in the refinement algorithm. As the refinement error tolerance

is decreased, the waveforms converge to the high-resolution

LAZEV waveform. This gives confidence that the waveforms

computed with sparse refinement using an octree are correct.

Gravitational waveforms computed with the GPU code for

q = 1 and q = 2 binaries are plotted against the corresponding

CPU waveforms in Figure 21. These waveforms have also

been verified in comparisons with LAZEV. The overall wall

clock times used for these production runs, including file I/O

and re-grid, are presented in Table IV. Again, these waveforms

match very closely, indicating that the GPU version of the code

accurately computes the gravitational waveforms for merging

black holes.

Fig. 19: The convergence of the numerically computed wave-

forms with increased refinement (i.e., decreasing ϵ) surround-

ing the black hole locations. The plot shows the difference

between the extracted GWs using LAZEV and the proposed

approach for the real part of the Ψ4 scalar. We can see that

with increasing refinement the computed waveforms converge

to the LAZEV waveform.

VI. CONCLUSIONS

This paper presents the first known gravitational waveforms

computed using solutions of the full Einstein equations on

GPUs. The waveforms were verified through comparisons to

other known solutions. We optimized the core computational

kernels of the algorithms and presented a detailed analysis of
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Fig. 20: Weak scalability study on TACC’s Frontera, for evolving the BSSN formulation of the Einstein equations. Shown is

the overall cost breakdown to perform a single RK4 step, using 6th order finite difference stencils. For the above study, we

use approximately 500K unknowns per core, where the largest problem contains a total of 118B unknowns on the grid.

Fig. 21: Numerically computed gravitational waves for mass ratios q = 1 and q = 2 binary black hole mergers. The plotted

signal corresponds to the l = 2, m = 2 mode of the Ψ4 projection. The plot shows the extracted waveforms using the proposed

GPU approach compared to the previously verified result computed using the CPU code.

TABLE IV: The table summarizes wall clock time to evolve

binary black holes with mass ratios q = 1, 2, 4, 8, where T

denotes the time horizon the binary system was evolved to

(where M denotes the total mass of the binary, and M = 1).

The q = 8 BBH is not evolved to completion, but included in

the table to provide an overall wall clock time estimate.
Mass ratio ∆xmin ∆xmin GPUs T timesteps Wall time

q = m1/m2 (BH1) (BH2) NVIDIA A100 (hrs)
1 1.62e-2 1.62e-2 4 748M 183K 87
2 8.13e-3 3.25e-2 4 600M 252K 96
4 4.06e-3 3.25e-2 4 602M 506K 129
8 2.03e-3 3.25e-2 8 1400M 4M 388

their performance. We demonstrated that the time-to-solution

for computing gravitational waveforms in NR can be signifi-

cantly decreased by using GPUs.

The increased computational performance achievable with

GPUs will allow researchers to construct larger and more

accurate NR gravitational wave catalogs. A denser sampling of

the parameter space is urgently needed, since a wider range of

sources will soon be detected. Finally, it is imperative that the

accuracy of NR waveforms keeps pace with the rapid advances

in detector technology. New algorithms and computational

approaches, such as those investigated here, will be required

to meet this computational challenge.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

1 COMPILING DENDRO-GR GPU EXTENSION

The developed Dendro-GR GPU extension is available here. The

following dependencies are required for the compilation. The core

kernel generator is based on SymPyGR.

• C/C++ compilers with C++11 standards and OpenMP sup-

port

• CUDA compilation tools version 10.2

• Python3 SymPy, networkx for code generation.

• MPI implementation (e.g. openmpi, mvapich2 )

• ZLib compression library

• BLAS , LAPACK, and GSL libraries.

• CMake 2.8 or higher version

To build the code use the following commands.

$cd <path to root source dir >

$ mkdir build

$ cd build

$ cmake ../

$ make all -j4

1.1 Using Singularity

The singularity container definition file is provided in the repository

under the folder container. The following command can be used

to build the Dendro-GR container which installs all the required

dependencies and compile the Dendro-GR code.

sudo singularity build --sandbox dgr-cuda dgr.def

singularity run dgr-cuda dgr.def

The main Dendro-GR solver can be initiated by executing the fol-

lowing command.

singularity exec dgr-cuda \

sc22-dgr/build_gpu/BSSN_GR/./bssnSolverCtx\

sc22-dgr/build_gpu/q1.par.json 1

More details on the running of the solvers are described in the ğ3

2 EXPERIMENTAL SETUP

The CPU/GPU performance comparisons were performed in

TACC’s Lonestar6 Cluster. We performed our experiments on Fron-

tera and Lonestar 6 at the Texas Advanced Computing Center

(TACC). Frontera has 8K Intel Cascade Lake nodes and Lonestar 6

has 16 dual-NVIDIA A100 nodes. All GPU-CPU comparisons were

done on a single NVIDIA A100 GPU with full CPU node (i.e., 128

cores, 64 cores per socket) with AMD EPYC 7763 CPU. Frontera is

used for performing a large scale weak scaling study.

· Lonestar6 Cluster module environment used is given below.

1) intel/19.1.1 2) impi/19.0.9 3) python3/3.9.7

4) cmake/3.21.3 5) pmix/3.2.3 6) xalt/2.10.32

7) TACC 8) cuda/11.4 (g) 9) gsl/2.7

Where:

g: built for GPU

· Frontera Cluster module environment used is given below.

Currently Loaded Modules:

1) intel/19.1.1 2) impi/19.0.9 3) git/2.24.1

4) autotools/1.2 5) python3/3.7.0

6) pmix/3.1.4 7) hwloc/1.11.12 8) xalt/2.10.34

9) TACC 10) gsl/2.6 11) cmake/3.20.3

3 RUNNING EXPERIMENTS

The following executables are used in the paper.

• BSSN_GR/bssnSolverCUDA - GPU BSSN solver

• BSSN_GR/bssnSolverCtx - CPU BSSN solver

• BSSN_GR/tpid - two puncture initial condition solver.

The parameter files used to perform the runs can be found in

BSSN_GR/pars folder. For each parameter file, first run tpid to

solver the initial conditions followed by the bssnSolverCUDA or

bssnSolverCtx for GPU and CPU versions respectively.

$ ./BSSN_GR/tpid q1.par.json <number of threads to use>

$ ibrun -np <number of GPUs> \

./BSSN_GR/bssnSolverCUDA q1.par.json 1

• BSSN_GR/pars/q1.par.json : q=1 binary black holemerger

• BSSN_GR/pars/q2.par.json : q=2 binary black holemerger

• BSSN_GR/pars/q4.par.json : q=4 binary black holemerger

AUTHOR-CREATED OR MODIFIED

ARTIFACTS:

Artifact 1

Persistent ID: https://github.com/paralab/Dendro-GR

Artifact name: Dendro-GR

Citation of artifact: Open source Dendro-GR CPU code

Artifact 2

Persistent ID: https://zenodo.org/record/6618080

Artifact name: Numerical relativity on GPUs, Dendro-GR GPU

extension

Citation of artifact: Milinda Shayamal Fernando. (2022).

paralab/sc22-dgr: sc22 paper artifact description code

(v1.0). Zenodo. https://doi.org/10.5281/zenodo.6618080

Artifact 3

Persistent ID: https://github.com/paralab/sc22-dgr/

releases/tag/v1.0

Artifact name: Numerical relativity on GPUs, Dendro-GR GPU

extension

Artifact 4

Persistent ID: https://github.com/paralab/sc22-dgr/blob/

main/container/dgr.def

Artifact name: Singularity definition file to build Dendro-GR con-

tainer

Reproduction of the artifact with container: The produced

GPU results we performed in TACC’s Lonestar6 cluster
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(https://portal.tacc.utexas.edu/user-guides/lonestar6) with the fol-

lowing module environment with NVIDIA A100 GPUs. The pre-

sented gravitational waves were computed using the Lonestar6

GPU cluster with the same module environment.

Currently Loaded Modules: 1) intel/19.1.1 2) impi/19.0.9 3)

python3/3.9.7 4) cmake/3.21.3 5) pmix/3.2.3 6) xalt/2.10.32 7) TACC

8) cuda/11.4 (g) 9) gsl/2.7

Where: g: built for GPU

The presented weak scalability study was per-

formed, with TACC’s Frontera supercomputer

(https://www.tacc.utexas.edu/systems/frontera) with the fol-

lowing module environment.

Currently Loaded Modules: 1) intel/19.1.1 2) impi/19.0.9 3)

git/2.24.1 4) autotools/1.2 5) python3/3.7.0 6) pmix/3.1.4 7)

hwloc/1.11.12 8) xalt/2.10.34 9) TACC 10) gsl/2.6 11) cmake/3.20.3
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