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Fig. 1: The simulation snapshots of a binary black hole merger of mass ratio 1:4 (¢ = 4) and extracted gravitational waves
using 4 NVIDIA A100 GPUs with a wall clock time of 5.3 days with 13 levels of refinement (i.e., coarsest level=3, finest
level=15, with finest resolution of 4.06e-3), and without assuming any spacetime symmetries.

Abstract—Simulations to calculate a single gravitational wave-
form (GW) can take several weeks. Yet, thousands of such
simulations are needed for the detection and interpretation of
gravitational waves. Future detectors will require even more
accurate waveforms than those currently used. We present
here the first large scale, adaptive mesh, multi-GPU numerical
relativity (NR) code together with performance analysis and
benchmarking. While comparisons are difficult to make, our
GPU extension of the DENDRO-GR NR code achieves a 6x
speedup over existing state-of-the-art codes. We achieve 800
GFlops/s on a single NVIDIA A100 GPU with an overall 2.5x
speedup over a two-socket, 128-core AMD EPYC 7763 CPU node
with an equivalent CPU implementation. We present detailed
performance analyses, parallel scalability results, and accuracy
assessments for GWs computed for mass ratios q=1,2,4. We also
present strong scalability up to 8 A100s and weak scaling up to
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229,376 x86 cores on the Texas Advanced Computing Center’s
Frontera system.

Index Terms—High performance computing, Gravitational
waves, Astrophysics, Numerical simulation, Scientific computing

I. INTRODUCTION

Gravitational waves are generated in the merger of astro-
physical compact objects, such as black holes and neutron
stars. These waves carry information about the merging system
in the complicated pattern of the changing amplitude and
frequency of the wave. The first detection of gravitational
waves was made by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [1] in 2015 [2]. Since that time,
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over 80 additional detections have been made by the LIGO-
Virgo collaboration [3], [4].

The interaction of gravitational waves and matter is very
weak. For example, gravitational waves from compact object
mergers deflect the mirrors of LIGO and Virgo by distances on
the order of 10~!? m. These detectors produce an enormous
amount of data (approximately 800 TB/year) and require
advanced data analysis techniques to extract information from
GW events. Information about the progenitor binary systems
is extracted using templated waveforms that are parameterized
with 15 parameters. One key parameter is the ratio of the
masses of the two objects in the binary, ¢ = m;j/ms, where
mq is the mass of the primary body, m; > ms. Solving the
full set of Einstein’s equations to generate model waveforms
using the techniques of numerical relativity (NR) requires
expensive, large-scale supercomputer simulations. Thus, the
library of candidate waveforms for the large parameter space
is primarily created using a combination of semi-analytical
and phenomenological approximate models [5]-[9], which can
be rapidly computed. However, these models must be tuned
and verified through comparison with full numerical relativity
solutions over different regions of the parameter space.

To enable such comparisons, among other types of gravita-
tional waveform analysis, catalogs of NR waveforms for bi-
nary black hole (BBH) mergers are being constructed, such as
the SXS [10], RIT [11], GaTech [12], and CoRe [13] catalogs.
Waveforms for BBHs with large mass ratios, g > 10, cannot
be reliably computed from semi-analytical methods. The post-
Newtonian approximation, for example, diverges in this limit.
These systems are particularly difficult to calculate using NR
simulations. This is due to the extreme resolution requirements
needed to resolve the smaller black hole, the consequent
reduction in the size of the maximum allowable timestep, and
the resulting greater number of timesteps required to reach
the merger event. Figure 3 shows the computational grids for
a ¢ = 8 binary, and Table I shows the estimated resolution
requirements and the number of timesteps for binary black
hole systems with different mass ratios. The largest mass ratios
in the SXS and GaTech catalogs are, for example, ¢ = 10 and
q = 15, respectively; the RIT catalog has a few waveforms up
to ¢ = 128. However, it is essential that waveforms for large ¢
binaries are available for a large region of the binary parameter
space, so that detected waveforms from these systems can be
properly analyzed and understood.

A further challenge for numerical relativity will come as
new detectors (such as LISA [15], the Einstein Telescope [16],
and Cosmic Explorer [14]) come online and existing detectors
are improved. As the signal-to-noise ratio (SNR) increases,
higher fidelity waveforms will be required to extract the full
scientific impact of the detected waveforms. For example,
Figure 2 shows simulated gravitational waveforms that could
be detected by the future A+ configuration for LIGO [17],
[18] and the proposed Cosmic Explorer detector. Gravitational
wave signals will be detected with both higher SNR and
for longer times. Generating comparable quality gravitational
waveforms using NR is currently beyond the capabilities of
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Fig. 2: Simulated gravitational-wave detector strain measure-
ments for two merging black holes with simulated noise for
LIGO A+ noise (yellow) and Cosmic Explorer (blue). The
source is a GW150914-like black hole binary. Compare Ref [2]
for the measured signal by Advanced LIGO. The figure is
from [14].

most NR codes [19]-[21].

mass-ratio  AZymin ATmin time timesteps
¢g=mi/ma (BHI) (BH2) M)

1 8.33e-03 8.33e-03 650 7.8¢4

4 3.33e-03 1.33e-02 700 2.1e5

16 9.80e-04 1.57¢-02 1400 1.4e6

64 2.56e-04 1.64e-02 6000 2.3e7

256 6.46e-05 1.65¢-02 24000 3.7e8

512 3.23e-05 1.65e-02 48000 1.5¢9

TABLE I: Approximate resolution requirements needed to
resolve the black holes in binaries with increasing mass ratio,
q, with fixed total mass M = 1. (Note that all quantities are
given in geometric units.) We assume ~120 grid points across
event horizons and an initial separation of d = 8. Merger times
for ¢ < 16 are from simulations of the full Einstein equations.
Other times are approximated using evolutions of the post-
Newtonian 2.5 equations.

i

Fig. 3: Two-dimensional slices of the grid generated for a
binary merger of mass ratio ¢ = 8. From left to right, the
grid is zoomed in on in order to show the refinement levels
surrounding the smaller black hole.

To overcome these challenges, we present an octree-based
adaptive multi-resolution scheme that enables efficient use
of GPUs for numerical relativity. Using the so-called BSSN
3D+t formulation of the Einstein equations (section II1I-A) and
an octree-based sixth-order in space and explicit fourth-order
in time discretization (section III-B), we study the efficient
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evaluation of the right hand side (RHS) of these PDEs. As we
will see, this involves 24 state variables and 210 derivatives,
thus generating tremendous memory pressure. This, in addition
to the need to use adaptive mesh refinement (AMR)—which
has long been considered a challenge on parallel architectures
due to the complex dynamic data structures [22]—makes
even small performance improvements extremely formidable.
Our implementation extends the open-source DENDRO-GR li-
brary [23]-[25], one of the state-of-the-art AMR NR codes
(section II). Our contributions are summarized below.

« To the best of our knowledge, this work is the first highly-
scalable, adaptive, multi-GPU numerical relativity code
performing binary black hole mergers;

o Algorithms for efficient use of GPUs for numerical sim-
ulations on adaptive octree grids (section IV);

e A detailed roofline analysis for complicated Einstein
equation evaluations;

o Novel code generation approach to reduce the register
pressure with additional GPU and CPU optimizations
(sections IV-A and IV-B);

e A 2.5x overall speedup using a single NVIDIA A100
GPU compared to a single CPU node consisting of two
AMD EPYC 7763 64-core processors (section V-A);

« Demonstration of strong and weak scalability using multi-
GPU and full Frontera system runs (section V-B); and

« Demonstration of accuracy and convergence of our algo-
rithms (section V-C).

In addition to the above, we also introduce several CPU per-
formance improvements in the DENDRO-GR implementation.

II. RELATED WORK

Adaptivity in numerical relativity codes: AMR or adaptive
coordinates are essential in numerical relativity for the simu-
lation of merging binaries and the extraction of gravitational
waves. We highlight a few examples here, while a more
complete listing can be found in Ref. [26]. Many relativity
codes use nested box-based adaptivity in which a sequence
of box-in-box regions with varying resolution is used for
spatial discretization. For example, the Einstein Toolkit [27]
is an open-source AMR code that is based on the Carpet [28]
and Cactus [29] frameworks. LAZEV [30], used in some of
our comparisons below, is also based on Carpet and Cactus.
Octree-based adaptive mesh resolution is widely used in many
computational applications. DENDRO-GR [25] and Athena++-
GR [31] use octree-based refinement in NR. As an alternative
approach, the spectral Einstein code (SpEC) [32] and the
NRPy+/SENR [33], [34] code use adaptive coordinates that
conform to the spacetime properties in place of, or in addition
to, AMR.

NR on GPUs: GPUs have had very limited use in NR. A
GPU extension of the SpEC code [35] has been implemented
for single black hole spacetimes. The authors presented an
overall runtime breakdown for two SpEC benchmarks but
did not include a detailed performance analysis for the GPU
code. An attempted GPU extension of DENDRO-GR [25]
is presented in Ref. [36] and relies on the asynchronous

movement of evolution vectors between host and device for
each timestep. This work also lacks detailed performance
evaluations.

In summary, despite the significance and computational
costs associated with numerical relativity, there has been little
work on GPU accelerated codes. To provide some context
relative to the scale of the problem, the LAZEV code (used
in the RIT catalog) requires approximately 30 and 50 days
for ¢ = 2 and ¢ = 4 BBH simulations, respectively. These
are for medium resolution runs without assumed symmetries
using 256 cores. Note, however, that comparisons between
different codes are difficult due to the use of different PDE
formulations, discretization schemes, and target accuracies.
Due to the complexity of the problem, finding studies that
report performance as a function of degrees of freedom and
accuracy is difficult. Nevertheless, using our estimates, we
believe our DENDRO-GR GPU extension can achieve a 6x
speed up over the state of the art.

ITII. BACKGROUND
A. BSSN formalism of Einstein’s equations

We use the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation of Einstein’s equations, consisting of 24 cou-
pled, nonlinear, partial differential equations (PDEs). The
BSSN [37]-[39] system is strongly hyperbolic, with first-order
derivatives in time and second-order spatial derivatives. This
formulation is widely used in NR, and we use conventional
methods for numerically solving the equations [40], [41].
Spatial derivatives are approximated using finite difference
stencils that are O(h°) in the grid spacing, h, and the equations
are integrated in time using an explicit Runge-Kutta (RK)
scheme with global timestepping. We use RK4 with a Courant
factor of A = 0.25 for the tests below. Kreiss-Oliger (KO)
dissipation [42] is added to the solution to eliminate high-
frequency noise that can be generated near the black hole
singularities.

The BSSN equations are written in tensor form, using the
Einstein summation convention [43], i.e., repeated raised and
lowered indices are implicitly summed over the values 1,2, 3.
The BSSN evolution equations are

O = Lga—2aK, (1)
0B = o8+ 2B, @
OB = I —yB' 457 0,B" — gl o,T", 3)
OFi; = Lp¥iy — 204, (4)

X = Lox+ ox (oK — .6, )

0 A;; = LpAy+x(~DiDja+aRy) " +
o (Kij — 2,21%!1’;’.) , 6)
WK = pB*O,K — D'D;a+
a (Aij/i”' - ;K2> : (7)
ort = 30,008 + %&”’ajakﬁ’f +pI9;T" —
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We now define some of the mathematical operations needed to

evaluate the equations. Lie derivatives of scalars and tensors
with respect to the shift vector, 3, can be written as

Lpa = B0, + wad; 5 )
Eguij = Bkakuij + uikﬁjﬂk + ukjé‘lﬂk + wuijakﬂk, (10)

where w denotes the tensor weight. The trace-free part of a
tensor T;; is defined as

1 ~/ 2t
(Ti;)"F =Ty - g’Yz'j(’Yl Tim)- (11)
The Christoffel symbols are evaluated as
S P . ~
5 = 577 (05 + s — O¥ij) (12)

~ 1 o
rf =T - 2 (670;x + 650:x — ;7" 0x) . (13)

and D; denotes the covariant derivative with respect to the
spatial metric ;;,

(14)
15)

D'D;a = ~" (000 — Ffj(?ka)
DiDjOz = 81']'04 — Ffjaka.

Evaluating the RHS of equation (6) requires the evaluation of
the Ricci tensor. The I;; computation can be split as

Rij = Ri; + R (16)
where
> Lotmg = Lo &k~ A1k
Rij = 3 OrmYij + 3 (’Ykiajr + YO )
Ik - N
+ ?(Fijk + Tjir)
+ f~}/lm ((fﬁf‘jkm + f‘Zf‘lkm) + ffmfkl]) a7
1 . 1

Mg = 5 (Bix = Th0kx) — 3995 (18)

1 3 -
RX = M + —5i: [ 3™ Oy — — 9 xO, — T8, Y.
> j+ QXVJ (’Y kLX 2x kXO1X X

19)

We use the Penrose scalar, ¥4 [37], [44] for gravitational
wave extraction. This time-dependent quantity captures the
oscillations in the spacetime geometry. W, is extracted by
expanding it in a basis of spin-weighted spherical harmonics
(¢, m modes) on spherical shells; integrations being performed
using Lebedev quadrature [45]. Multiple extraction spheres are
located between 50-100M (see Figure 4), where, again, M
denotes the total mass of the binary.

Fig. 4: A black hole binary inspiral simulation snapshot with
the corresponding extraction spheres used to extract gravita-
tional waves.

B. Octrees

We use octrees as our primary data structure for spatial grid
generation. Octrees are widely used in many computational
applications due to their hierarchical structure (see Figure 5)
and their ability to achieve point local refinement. In terms
of storage, we store only the leaf nodes of the tree since
non-leaf nodes can be computed by performing a top-down
or bottom-up traversal of the tree. We enforce a 2:1 balancing
constraint to smoothly vary refinement over the spatial domain.
We rely on the open-source numerical relativity framework
DENDRO-GR [23], [25], which supports octree construction,
2:1 balancing [46], [47], and space filling curve-based octree
partitioning [48] to ensure scalability of the proposed methods.
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Fig. 5: A simplified illustration of a 2D quadtree (in 3D, it would
be an octree) as a data structure to represent a 2D adaptive grid.
Note that we start from the root level and perform a hierarchical
division of each dimension to generate spatially varying resolution
on the computational domain.

C. Notation

Here we summarize octree nomenclature used throughout
the paper. A node in the octree is referred to as an octant. Each
leaf octant consists of 73 uniformly placed grid points. The
points that violate the geometric conformality are referred to
as “hanging” points. Duplicate and hanging points are removed
during the grid construction phase. Each leaf octant is padded
with k points per direction, and a padded octant is referred to
as a “patch” (see Figure 6). Each patch consists of (r + 2k)3
grid points. To enable 6th order finite difference computations,
we set 7 = 7 and k£ = 3. The DENDRO-GR framework
provides two maps for each octree partition: (1) 020, an
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Fig. 6: In this figure, the black squares define octants A to E,
with each octant labeled in its top right corner. The shaded
blue area in 6a shows the padding zone of octant A. The red
zones in 6b, 6¢, 6d denote the padding zones that overlap with
octant D. The above regions are computed using information
from octant D.

octant to face neighbors map, and (2) 02N, an octant to its
corresponding grid point map. These maps enable numerical
computations on the octree through looping over octants.

D. Performance models

We use slow-fast memory models for analyzing single-GPU
kernels, the slow memory representing the GPU main memory
and the fast memory a combination of L2 and registers. This
assumes the execution model defined by the abstract random
access machine (RAM) [49]. This helps us characterize the up-
per bounds for the ideal attainable performance. We consider
two models. The first assumes infinite fast memory; the second
uses a finite-sized fast memory. Let 7; be the machine time
per double precision FLOP; 7,,, the RAM access/byte; C'r the
entire register file; C';, the L2 size and assume the time to load
and store from it is ¢7,,, £ < 1; and f the double precision
flops and loads/store m bytes needed in the computation. Let
Q@ = f/m be the arithmetic intensity (AI) of the kernel.

In the infinite-cache model, the kernel time is T°°(f, m) =

fre+mry, = mry, (1 + %Q) For the finite-cache the mem-

ory costs become 7,,m (CﬂL + ECﬂR) because we need at least
¢ loads from RAM to the L2 cache and CﬂR loads from the L2
to the registers. Then, using the machine-specific parameter
= <C%L + L), we obtain T(f,m) = mry,(m&) + fry

or T(f,m) = m7,, (max(1, mf) + 7%Q) If we ignore the
FLOPS term, T' = mr,, max(1,m¢). For the A100, Cj =
40MB, Cr = 27MB, ¢ = 1/4, and thus, £ ~4e-8; Tp =1.0e-
13s, T, =6.4e-13s, and 74 /7., is 0.16. If Q < 1/0.16 = 6.25,
the FLOPS are negligible and the kernel is bandwidth limited.

Our kernels are memory bound. For example, m can be
up to 2MB for just a single octant; for 108 octants, one for

each A100 SM, m¢ ~ 10. This analysis does not take into
account the structure of the calculations per octant, but shows
the difficulty of obtaining good performance. Next, we discuss
several optimizations that exploit these dependencies.

IV. METHODOLOGY

In this section, we present novel algorithmic contributions
that enable efficient numerical relativity simulations on GPU
architectures. The key computation in numerical relativity is
the time integration of the governing BSSN equations, which
describe the evolution of spacetime. An overview of our
GPU time evolution is presented in Algorithm 1. Minimizing
synchronous data movement between the host and the device
is crucial to achieving high-compute throughput. In the pro-
posed approach, the re-grid operation (i.e., re-discretization to
capture the evolving fields) is the only operation that requires
synchronous data movement between the host and the device.
The host generates the grid (or re-grids) and passes the data to
the device. The time integration is entirely performed on the
device until the host issues the next re-grid operation. The host
uses asynchronous streams to extract the gravitational waves
(e.g., every 16 timesteps) from the evolved quantities.

Algorithm 1 Overview: Time evolution
Require: w state at t = tg, T time horizon, At timestep size,
fr: re-grid frequency
Ensure: u state att =T
I N« (T —t,)/AT
2: for each i € [0:N:fr] do
3: M <« construct_grid(u)

> 0 to IV with f,. increments
> use DENDRO-GR

4 v < host_to_device(u)

5: for each f, timesteps do

6: v < halo_exchange(v) > synchronize partitions
7: © < octant-to-patch(v) > compute octant patches
8: w < RHS(9, 1) > evaluate RHS
9: w < patch-to-octant(w) > revert back to octants
10: v < AXPY (w, v, At) i evolve state v = v+ Atw
11: u < device_to_host(v)

12: return v

A. Computing padding zones

The computation of padding zones is referred to as the
octant-to-patch operation. This computation requires appro-
priate interpolations or injections at coarser and finer octant
boundaries while performing direct data copy between octants
at the same resolution.

loop-over-patches: The current DENDRO-GR supports
padding zone computation via loop-over-patches while gath-
ering the padding information from neighboring octants with
proper interpolations. This creates redundant interpolations
between coarser and finer patch boundaries. Most importantly,
gathering octant information with random memory accesses
will not work well on GPU architectures.

loop-over-octants: To minimize the number of interpolations
and increase data locality, we propose the computation of
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padding zones by looping over octants. In the octant-loop
each octant scatters its information to neighboring patches
with appropriate interpolations, injections, or a direct copy (see
Figure 6). We pre-compute and store the octant to neighboring
patches map (02P) at the grid generation phase to be used
during padding zone computation. The 2:1 balance constraint
ensures that for any octant, all its neighbors can differ by
at most a single level. This simplifies the different cases to
be handled during the octant-to-patch operation. For a given
octant o, its neighbor octant can be at the same refinement level
or one level coarser or finer than o (see Algorithm 2). Single
core CPU performance comparison of the two approaches
is presented in Figure 7. The above comparison shows that
looping-over-octants is significantly more efficient (3x faster)
than looping-over-patches, due to increased data locality and
reduced redundant interpolation.

—e— loop-over-patch —=— loop-over-octant

1073
T
T
2 2 il
=
s
ERE ]
Q H—
g e 5
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400 1352 2360 5384 9304

number of octants —
Fig. 7: A single core CPU comparison of padding zone
computation with loop-over-patches vs. loop-over-octants. The
proposed looping-over-octants with scattering approach has
higher data locality (i.e., during the read operation) with no
redundant interpolations.

Algorithm 2 octant-to-patch computation
Require: FE-octant list, 02B, u-field variable
Ensure: 4 - u with filled padding zones

1: e < gpu_block_id_x

2 u, < load(u[02N]e]]) > global to shared load

3: 110, 1] < load(Ig) > const to shared load

4: if is_hanging(e) then

5: U, < interp_hanging(u.) > shared to shared
load/store

6: for b € 02B[e] do

7: if same resolution then

8 a[b] + copy(ue) > shared to global store

9: else if b is coarser then

10: a[b] + inject(u,) > shared to global store

11: else if b is finer then

12: a[b] + interp(ue, I) > shared to global store
return

The octant-to-patch kernel is launched with kernel grid

dimensions of (|E|,dof,1) with (r,r, 1) thread block, where
|E| denotes the number of octants and dof denotes the number
of degrees of freedom per grid point. Each GPU block reads
the octant nodal values from global to shared memory. All of
the required interpolations or injections are performed using
the shared memory. Once the octant data is ready to be
scattered, data is moved from the shared to global memory
according to the 02P map (see Figure 8).

O — u in global memory
CITTT I TI T3 TATITTITIT]

A

O2N|map

[TTTTTTTT]

interpolate or inject
LTI A A A A>T
T T T T ANANNANA T

U in shared memory  w,. shared workspace

O2P|map

L4
LTI I T I I I I T I T I I T I I rrTd

u- u with padding zones in global memory

Fig. 8: An overview of the data movement during the octant-
to-patch operation for GPUs. Each GPU block operates on a
single octant in the local partition. A global to shared load is
performed to move the octant nodal values using the 02N map.
All the required interpolations and injections are performed in
the block shared memory. Following this, a shared to global
store operation is performed to scatter the octant nodal values
to their corresponding neighboring blocks. This uses the 02P
map to resolve the neighboring blocks of an octant.

Interpolations: The required interpolations are performed as
tensor products of 1D interpolation operators. First, the thread
block operates on zy slices performing interpolation in the
x direction, followed by interpolations in the y directions.
Finally, the thread block operates in xz slices, performing
interpolations in the z direction. During this process, appro-
priate synchronizations are deployed. A single coarser to finer
interpolation requires O(3(2r — 1)r®) operations.

In our computations, the padding zones are used only during
the stencil evaluations. Once the required stencils are applied,
padding zones are discarded and the fields are reverted back to
the unpatched representation. The above is referred to as the
patch-to-octant operation. During the patch-to-octant opera-
tion, each octant patch copies its internal grid points (i.e., grid
points not in padding zones) to the unpatched representation.

Performance bounds: During octant-to-patch operations we
read 1D interpolation operators (2r2) and octant grid points
values (r3), and we write octant grid point values (r3), padding
zones along with faces (6r%k), edges (12rk?), and vertex
corners (8k3). The number of flops performed during the
octant-to-patch depends on the adaptivity structure of the grid.
An interpolation operation has 3(2r — 1)r3 operations. The
maximum number of interpolations (i.e., octant to all its 8
children) is performed when all the neighboring blocks of
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an octant are finer than the octant resolution. Therefore, the
upper bound for the arithmetic intensity of the octant-to-
patch operation (Qy) is given by

8 x 3(2r — 1)r3
(2r2 + 213 1 12rk2 + 612k + 8k3)

Therefore, this kernel is memory bound as discussed in sec-
tion III-D. The memory requirements per octant per state
variable are small, so the infinite cache model should be
predictive as m& < 1.

~5.07 (20)

QU§8

B. Computing BSSN equations

In this section, we discuss the BSSN RHS evaluation and
related challenges. We define two main components of the
RHS: computing the derivatives (denoted by D) and the
algebraic combination of the derivatives (denoted by .4). Since
we are using an explicit RK scheme, the RHS evaluation is
the key computational kernel for evolving these equations.
All 24 field variables require all first partial derivatives (i.e.,
3 x 24 = 72); variables «, /3, X,7ij require all second
derivatives (i.e., 6 X 11 = 66). Additionally for all evolution
variables, we need KO dissipation derivatives (i.e., 3 x 24 =
72). Hence, the RHS computation requires 210 derivative
evaluations. Furthermore, these derivatives are combined in
A in a highly connected manner. The easy way to implement
it is to precompute these derivatives with a separate kernel and
then combine them in A. This turns out to be slow, but more
importantly imposes significant memory constraints.

The RHS is evaluated on octants and the patch is used
only in the derivative computations. Therefore, each octant
patch is mapped to a GPU block consisting of (r,r,r) thread
dimensions. This enables the storage of the derivatives at each
grid point in the thread-local memory (see Figure 9).

The A component of the RHS is a mapping between 234
(i.e., 24 + 210) inputs to 24 outputs. Due to the complexity of
these equations, manually writing code is nearly impossible.
For example, Kranc [50] is a commonly used framework to
generate code for the Einstein Toolkit [27]. Other projects,
such as LAZEV [51] and SpEC [32] use custom Mathemat-
ica [52] scripts to generate executable C code. Other efforts use
SymPy [53] for NR code generation, such as SymPyGR [53]
and NRPy+ [54]. Both of these projects use SymPy’s common
sub-expression elimination (CSE) to reduce the number of
operations in the evaluation of .A. We use SymPyGR for code
generation with CSE as the baseline code for RHS perfor-
mance evaluations. The high data dependencies in .4 will cause
register spilling during evaluations. The minimum number of
registers required to evaluate A is an unsolved problem.

The CSE approach creates ~900 temporary variables, which
reduces the number of operations significantly but causes
heavy register spilling. We argue that minimizing compute
operations is not ideal, in the presence of register spilling,
since memory operations have significantly higher overhead
compared to compute operations. In the CSE code generation
approach, the final expressions are evaluated once all of the
intermediate sub-expressions are evaluated. The above can

Qg a/y a, Qg
shared workspace % sync % sync § sync
O — L(4) RHS in global memory

(T I T I I I T I I I T I I T I T

Fig. 9: An overview of the data movement during fused RHS
evaluation. Each GPU block operates on a single octant patch.
Each evolution variable is moved from the global to block
shared memory one at a time. Once a variable is in the block
shared memory, all its derivatives (i.e., D,,D,,D.,...) are
computed using a shared memory workspace. Appropriate
thread synchronizations are enforced to resolve race conditions
in subsequent stencil applications. Once the stencil is com-
puted, each thread grabs its corresponding point and stores the
computed derivative values (i.e., a,, ay, a, ...) in the thread-
local memory. Once all the required derivatives are computed,
the corresponding RHS is updated.

increase the live range of the allocated temporary variables,
and cannot rely on the compiler to reorder the expressions
to reduce the live range of variables. To reduce the register
pressure, we propose a binary reduction-based code generation
for A evaluation. The key motivation for the above is to
reduce the live ranges of allocated thread-local temporary vari-
ables. For each (i.e., 24 equations) we build its computational
graph (see Figure 10) using the SymPy expression tree and
NetworkX package [55]. Let G be the composed graph (i.e.,

8,504,"‘
20K, * Lgo, +
-2 a K p%9o,x BYO01a,x B20ra,x

NN N

B o B D1 B2 Dsax

Fig. 10: A simple illustration of the associated computational
graph for the algebraic component of the d;a« RHS evaluation.

directed acyclic graph with 2516 nodes and 6708 edges) of
the constructed 24 subgraphs. A valid traversal of the graph
ensures that node v is visited only when its descendants u
have been computed and can be used to compute node v.
The above traversals are not unique (e.g., any topological
ordering of G). As a heuristic, we employ the traversal order
generated by the topological sort of line graph of G. The binary

Authorized licensed use limited to: Rochester Institute of Technology. Downloaded on June 27,2023 at 19:11:27 UTC from |IEEE Xplore. Restrictions apply.



Algorithm 3 visit_node(v)
Require: G = (V, E),v € V, B— local memory
1: v.DONE < true
2: for u € V.descendants do
3: store(v, u, B)
4 reduce(u, v)
5: remove edge (u,v) from G
6: if degree(u) is O then
7
8
9

> Store in local memory

evict (u, B)
. if v is a final expr then
store_to_global(v)

._
@ ¢

if degree(v) is O then
11: evict(v,B)
12: return

reduction-based code generator is summarized in Algorithm 3.
For the generated topological traversal, we visit each node v
of the graph and store v and its descendants in the thread-local
memory followed by reduction based on the node operation
(i.e., +, *). Once the reduction is performed, edge (u,v)
is removed from G, and w is evicted from the thread-local
memory once it becomes disconnected from G. The A kernel
generated from the above is referred to as “binary-reduce.”
This approach reported a maximum of 675 live allocated
temporary variables during the traversal of the graph.

We consider another variation of the RHS evaluation to
minimize register spills due to thread-local stored derivative
variables. The motivation is to compute the RHS of an
equation, as soon as its derivatives are ready. This can help to
reduce the live range of computed derivatives. This approach
is referred to as “staged + CSE.”

Next we present a detailed performance comparison of
the existing SymPyGR approach (baseline) and the proposed
“binary-reduce” and “staged + CSE” approaches. We use
the NVIDIA A100 GPU with CUDA compiler version 11.4
with ——ptxas-options=-03 compiler option. Table II
shows the compiler reported ptx-spill loads and stores for
_ launch_bounds__ (343, 3) (i.e., maximum 56 regis-
ters per thread). Figure 11 shows a performance comparison
of the above three approaches with varying number of octants.

RHS ptx-spill stores ptx-spill loads average speedup

variation (bytes) (bytes) w.r.t. SymPyGR
SymPyGR 15892 33288 1.00x
binary-reduce 10176 22012 1.55x
staging + CSE 8876 22028 1.76x

TABLE II: A summary of the compiler reported spill loads
and stores for the generated RHS variations. The last column
represents the average speedup reported compared to the
SymPyGR baseline.

Performance bounds: The arithmetic intensities of the com-
plete RHS (@) and A (Q 4) computations assuming a random
access machine model is given by eq. (21a) and eq. (21b),
where O 4 denotes the approximate number of operations in

—e— SymPyGR binary-reduce —— staged + CSE
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Fig. 11: The reported time per octant for 10 RHS evaluations,
using SYMPYGR code generator, binary reduction based eval-
uations, and staging + CSE approaches on a single NVIDIA
A100 GPU.

the A component.

_ r3(33(2d* — 1) + 177(2d — 1) + O)

QL= 8(24(r + 2k)® + 2413)
*(04)

8(24 x 2 4 210)r3

Again we see that these are not large enough to overcome

the machine imbalance, especially given the memory require-

ments of the RHS evaluations, which result in a large m¢&
(section III-D).

~ 6.68 (21a)

Qa = ~ 1.94 (21b)

V. RESULTS

This section describes numerical and performance evalua-
tion of the proposed computational methodology. A detailed
single node performance analysis is presented in section V-A.
We performed our experiments on Frontera and Lonestar 6
at the Texas Advanced Computing Center (TACC). Frontera
has 8K Intel Cascade Lake nodes [56] and Lonestar 6 has
16 dual-NVIDIA A100 nodes. All GPU-CPU comparisons
were done on a single NVIDIA A100 GPU. Frontera is used
for performing a large weak scaling study, and the GPU
strong and weak scalability tests are performed on Lonestar 6
(section V-B). Accuracy and convergence of binary black hole
simulations are presented in section V-C.

A. Single node performance

Padding zones: Unlike the RHS, this computation is sen-
sitive to the grid refinement level and its overall structure.
For example in a uniform grid, no interpolations take place.
In contrast, in real simulations, the grid changes significantly,
especially during the inspiral stage (see Figure 12) and follow-
ing merger (see Figure 13). For performance evaluation of the
octant-to-patch operation we construct five different grids m;
for i = {1,2,3,4,5} where moving from m; to ms decreases
the adaptivity (i.e. the grid becomes more uniform). Table
IIT shows the empirically observed arithmetic intensity values
reported by the NVIDIA nv-compute tool. The corresponding
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empirical roofline plot for the above is shown in Figure 14. For
octant-to-patch operations on average, we observe roughly 900
GFlops/s for all grids. The patch-to-octant operation is purely
a data movement kernel with zero arithmetic intensity.

T T | T T

15 - 1
10 - 1
5, -

|
—400 —200 0 200 400

coordinate (M) —

cell level —

Fig. 12: The octants level variation along the x coordinate for
1:8 mass ratio binary system during the inspiral stage.

i
Fig. 13: A snapshot of the binary black hole system after the
merger. After the merger the grid adaptivity changes to capture
the radially outgoing gravitational waves.

octant-to-patch patch-to-octant
(ms) (ms)

reported Al
octant-to-patch

grid octants X dof

m1 400 x 24 4.07 1.31 0.064
mg 1352 x 24 2.52 3.38 0.2
m3 2360 x 24 2.20 5.60 0.3
myg 5384 x 24 1.90 11.92 0.8
ms 9304 x 24 1.74 19.94 1.56

TABLE III: A summary of the octant-to-patch and patch-to-
octant operations observed operational intensity and execution
times on a single NVIDIA A100 GPU where each grid point
consists of 24 field variables. The arithmetic intensity of the
octant-to-patch operation in RAM execution model is bounded
by Q. < 5.07.

RHS evaluation: We compare one A100 GPU to two EPYC
sockets on Lonestar 6 for a varying number of octants (see
Figure 15). On the EPYC, patch-level parallelism is achieved
using OpenMP. A roofline performance analysis for the RHS
evaluation is presented in Figure 14. The observed arithmetic
intensity for the overall RHS is ~ 0.62 < 6.68, which is
expected due to L2 misses and register spilling (section III-D).

BSSN solver: We present a detailed performance compari-
son between the CPU DENDRO-GR and the proposed GPU
extension. To make the comparison algorithmically fair, we
use loop-over-octant based octant-to-patch operations for both

T T T T T T
F64 Peak: 5355 GFLOP/s
.
1,000 | i
m > B &}0
@) \5§
&
&@“
&
100 L] | Ll
0.1 1 10 100
FLOP/Byte (Operational Intensity)
ORHS =8 A my & Mm2 O M3 O My O My

Fig. 14: The empirical roofline performance evaluation for the
key computational kernels on a single NVIDIA A100 GPU.
Overall RHS evaluation is denoted by RHS and the algebraic
combination of derivatives is denoted by A. The octant-
to-patch operation is performed for varying grids m;(i =
1,2,3,4,5) with decreasing adaptivity. Highly adaptive grids
have a higher number of interpolations, leading to higher arith-
metic intensities and vice versa. The overall RHS evaluation
and octant-to-patch operations achieve compute throughout of
700 GFlops/s and 900 GFlops/s respectively.

107* | |
¢ 6f 0o CPU-RHS | |
o J0GPU-RHS
@ 4t .
[}
1 |
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256 512 1024 2048 4096 8192 16384

number of octants —
Fig. 15: Wall clock time to compute patches (padding zones)
for 10 RHS evaluations using one A100 vs. two EPYC sockets.
The CPU RHS evaluation is parallelized using OpenMP, for
which the octants are equally partitioned across 128 threads.
The GPU results show the execution time for RHS evaluation.

codes. We report wall clock time to perform five RK4 steps
in Figure 16. Once the octant patches have been constructed,
the RHS evaluation does not depend on the grid refinement.

B. Parallel scalability

We conduct GPU/CPU strong and CPU weak scaling stud-
ies for the BSSN evolution on binary black hole grids. In
strong scaling, we fix problem size at 125M unknowns and
perform 5 RK4 timesteps (see Figure 17). We observe parallel
efficiencies of 97%, 89%, and 64% for 4, 8, and 16 GPUs
respectively. For the CPU strong scaling results, we observe
parallel efficiencies of 93%, 79%, and 66%. Figure 18 shows
the conducted weak scalability study with 35M unknowns per
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Fig. 16: Overall wall clock time for 5 RK4 timesteps on one
A100 on a two-socket EPYC node for binary black hole grids
with problem size varying from 36M to 104M unknowns.

GPU across 16 A100 GPUs with average parallel efficiency
of 83%.

[ unzip(cpu) U rhs(cpu) [ zip(cpu) [ comm (cpu)
unzip(gpu) E rhs(gpu) L zip(gpu) 4 comm (regular-mpi)

T 10 -
Y
E 5f .
g -
]
0 w EEL
8 16

number of CPU EPYC nodes / A100 GPUs —
Fig. 17: Strong scaling: Overall wall clock time for 5 RK4
timesteps for binary black hole grids with a fixed problem
size of 257M unknowns with increasing number of GPUs.

unzip [ rhs [ zip @ comm (regular-mpi)
I I

time (s) —

4 8 16
number of A100 GPUs —
Fig. 18: Weak scaling: Overall wall clock time for 5 RK4
timesteps for binary black hole grids with increasing problem
size. The above weak scalability study performed with approx-
imately 35M unknowns per GPU where the largest problem
consists of 560M unknowns.

We perform weak scalability for the overall framework
across 4,096 nodes on the Frontera supercomputer. Keeping
the number of unknowns per core constant is a challenging
task in an adaptive mesh refinement setting. For this exper-
iment, we start with an octree grid generated for the binary

black hole problem and increase the refinement radius black
hole locations until the desired number of unknowns per core
is reached. For the weak scaling experiment (see Figure 20),
we use roughly 500K unknowns per core. The largest problem
size consists of 118B unknowns, which used 4096 nodes on
Frontera.

C. Accuracy and convergence

To establish the accuracy of our new framework, we first
compare the gravitational waveforms for an equal-mass binary
computed with the CPU code to those computed using the
well-known LAZEV [30] code. In Figure 19, we plot the
difference between the CPU waveforms and a high-resolution
LAZEv waveform as a function of the error tolerance used
in the refinement algorithm. As the refinement error tolerance
is decreased, the waveforms converge to the high-resolution
LAZEv waveform. This gives confidence that the waveforms
computed with sparse refinement using an octree are correct.

Gravitational waveforms computed with the GPU code for
q = 1 and g = 2 binaries are plotted against the corresponding
CPU waveforms in Figure 21. These waveforms have also
been verified in comparisons with LAZEV. The overall wall
clock times used for these production runs, including file I/O
and re-grid, are presented in Table IV. Again, these waveforms
match very closely, indicating that the GPU version of the code
accurately computes the gravitational waveforms for merging
black holes.

le—4

Arys)

460 480 540 560

Fig. 19: The convergence of the numerically computed wave-
forms with increased refinement (i.e., decreasing €) surround-
ing the black hole locations. The plot shows the difference
between the extracted GWs using LAZEV and the proposed
approach for the real part of the ¥, scalar. We can see that
with increasing refinement the computed waveforms converge
to the LAZEV waveform.

VI. CONCLUSIONS

This paper presents the first known gravitational waveforms
computed using solutions of the full Einstein equations on
GPUs. The waveforms were verified through comparisons to
other known solutions. We optimized the core computational
kernels of the algorithms and presented a detailed analysis of
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Fig. 20: Weak scalability study on TACC’s Frontera, for evolving the BSSN formulation of the Einstein equations. Shown is
the overall cost breakdown to perform a single RK4 step, using 6th order finite difference stencils. For the above study, we
use approximately 500K unknowns per core, where the largest problem contains a total of 118B unknowns on the grid.
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Fig. 21: Numerically computed gravitational waves for mass ratios ¢ = 1 and ¢ = 2 binary black hole mergers. The plotted
signal corresponds to the [ = 2, m = 2 mode of the W, projection. The plot shows the extracted waveforms using the proposed
GPU approach compared to the previously verified result computed using the CPU code.

TABLE IV: The table summarizes wall clock time to evolve
binary black holes with mass ratios ¢ = 1,2,4,8, where T
denotes the time horizon the binary system was evolved to
(where M denotes the total mass of the binary, and M = 1).
The ¢ = 8 BBH is not evolved to completion, but included in
the table to provide an overall wall clock time estimate.

Mass ratio  AZmin AZmin GPUs T timesteps  Wall time
g=mi/me (BHI) (BH2) NVIDIA A100 (hrs)
1 1.62e-2 1.62e-2 4 748M 183K 87
2 8.13e-3 3.25¢-2 4 600M 252K 96
4 4.06e-3 3.25e-2 4 602M 506K 129
8 2.03e-3 3.25¢-2 8 1400M 4M 388

their performance. We demonstrated that the time-to-solution
for computing gravitational waveforms in NR can be signifi-
cantly decreased by using GPUs.

The increased computational performance achievable with

GPUs will allow researchers to construct larger and more
accurate NR gravitational wave catalogs. A denser sampling of
the parameter space is urgently needed, since a wider range of
sources will soon be detected. Finally, it is imperative that the
accuracy of NR waveforms keeps pace with the rapid advances
in detector technology. New algorithms and computational
approaches, such as those investigated here, will be required
to meet this computational challenge.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

1 COMPILING DENDRO-GR GPU EXTENSION

The developed Dendro-GR GPU extension is available here. The
following dependencies are required for the compilation. The core
kernel generator is based on SymPyGR.

e C/C++ compilers with C++11 standards and OpenMP sup-
port

CUDA compilation tools version 10.2

Python3 SymPy, networkx for code generation.

MPI implementation (e.g. openmpi, mvapich2 )

ZLib compression library

BLAS , LAPACK, and GSL libraries.

CMake 2.8 or higher version

To build the code use the following commands.

$cd <path to root source dir >
$ mkdir build

$ cd build

$ cmake ../

$ make all -j4

1.1 Using Singularity

The singularity container definition file is provided in the repository
under the folder container. The following command can be used
to build the Dendro-GR container which installs all the required
dependencies and compile the Dendro-GR code.

sudo singularity build --sandbox dgr-cuda dgr.def
singularity run dgr-cuda dgr.def

The main Dendro-GR solver can be initiated by executing the fol-
lowing command.

singularity exec dgr-cuda \
sc22-dgr/build_gpu/BSSN_GR/./bssnSolverCtx\
sc22-dgr/build_gpu/ql.par.json 1

More details on the running of the solvers are described in the §3

2 EXPERIMENTAL SETUP

The CPU/GPU performance comparisons were performed in
TACC’s Lonestar6 Cluster. We performed our experiments on Fron-
tera and Lonestar 6 at the Texas Advanced Computing Center
(TACC). Frontera has 8K Intel Cascade Lake nodes and Lonestar 6
has 16 dual-NVIDIA A100 nodes. All GPU-CPU comparisons were
done on a single NVIDIA A100 GPU with full CPU node (i.e., 128
cores, 64 cores per socket) with AMD EPYC 7763 CPU. Frontera is
used for performing a large scale weak scaling study.
« Lonestar6 Cluster module environment used is given below.

1) intel/19.1.1 2) impi/19.0.9  3) python3/3.9.7
4) cmake/3.21.3 5) pmix/3.2.3 6) xalt/2.10.32
7) TACC 8) cuda/11.4 (g) 9) gsl/2.7

Where:
g: built for GPU

« Frontera Cluster module environment used is given below.

Currently Loaded Modules:

1) intel/19.1.1 2) impi/19.0.9
4) autotools/1.2 5) python3/3.7.0
6) pmix/3.1.4 7) hwloc/1.11.12 8) xalt/2.10.34
9) TACC 10) gsl/2.6 11) cmake/3.20.3

3) git/2.24.1

3 RUNNING EXPERIMENTS
The following executables are used in the paper.

e BSSN_GR/bssnSolverCUDA - GPU BSSN solver
e BSSN_GR/bssnSolverCtx - CPU BSSN solver
e BSSN_GR/tpid - two puncture initial condition solver.

The parameter files used to perform the runs can be found in
BSSN_GR/pars folder. For each parameter file, first run tpid to
solver the initial conditions followed by the bssnSolverCUDA or
bssnSolverCtx for GPU and CPU versions respectively.

$ ./BSSN_GR/tpid g1.par.json <number of threads to use>
$ ibrun -np <number of GPUs> \
./BSSN_GR/bssnSolverCUDA q1.par.json 1

e BSSN_GR/pars/ql.par.json:q=1binary black hole merger
e BSSN_GR/pars/q2.par. json:q=2binary black hole merger
e BSSN_GR/pars/qg4.par. json:q=4binary black hole merger

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:

Artifact 1

Persistent ID: https://github.com/paralab/Dendro-GR
Artifact name: Dendro-GR

Citation of artifact: Open source Dendro-GR CPU code

Artifact 2

Persistent ID: https://zenodo.org/record/6618080

Artifact name: Numerical relativity on GPUs, Dendro-GR GPU
extension

Citation of artifact: Milinda Shayamal Fernando. (2022).
paralab/sc22-dgr: sc22 paper artifact description code
(v1.0). Zenodo. https://doi.org/10.5281/zenodo.6618080

Artifact 3

Persistent ID: https://github.com/paralab/sc22-dgr/
releases/tag/v1.0

Artifact name: Numerical relativity on GPUs, Dendro-GR GPU
extension

Artifact 4
Persistent ID: https://github.com/paralab/sc22-dgr/blob/
main/container/dgr.def
Artifact name: Singularity definition file to build Dendro-GR con-
tainer
Reproduction of the artifact with container: The produced
GPU results we performed in TACC’s Lonestar6 cluster
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(https://portal.tacc.utexas.edu/user-guides/lonestar6) with the fol-
lowing module environment with NVIDIA A100 GPUs. The pre-
sented gravitational waves were computed using the Lonestar6
GPU cluster with the same module environment.

Currently Loaded Modules: 1) intel/19.1.1 2) impi/19.0.9 3)
python3/3.9.7 4) cmake/3.21.3 5) pmix/3.2.3 6) xalt/2.10.32 7) TACC
8) cuda/11.4 (g) 9) gsl/2.7

Where: g: built for GPU

The presented weak scalability study was per-
formed, with TACC’s Frontera supercomputer
(https://www.tacc.utexas.edu/systems/frontera) with the fol-
lowing module environment.

Currently Loaded Modules: 1) intel/19.1.1 2) impi/19.0.9 3)
git/2.24.1 4) autotools/1.2 5) python3/3.7.0 6) pmix/3.1.4 7)
hwloc/1.11.12 8) xalt/2.10.34 9) TACC 10) gsl/2.6 11) cmake/3.20.3
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