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ABSTRACT

In this paper, we consider the density estimation problem associated with the stationary measure
of ergodic Itô diffusions from a discrete-time series that approximate the solutions of the stochastic
differential equations. To take an advantage of the characterization of density function through
the stationary solution of a parabolic-type Fokker-Planck PDE, we proceed as follows. First, we
employ deep neural networks to approximate the drift and diffusion terms of the SDE by solving
appropriate supervised learning tasks. Subsequently, we solve a steady-state Fokker-Plank equa-
tion associated with the estimated drift and diffusion coefficients with a neural-network-based
least-squares method. We establish the convergence of the proposed scheme under appropriate
mathematical assumptions, accounting for the generalization errors induced by regressing the
drift and diffusion coefficients, and the PDE solvers. This theoretical study relies on a recent pertur-
bation theory of Markov chain result that shows a linear dependence of the density estimation to
the error in estimating the drift term, and generalization error results of nonparametric regression
and of PDE regression solution obtained with neural-network models. The effectiveness of this
method is reflected by numerical simulations of a two-dimensional Student’s t distribution and a
20-dimensional Langevin dynamics.

K eywords Stochastic differential equations · Data-driven method · Deep neural network · Fokker-Plank equation
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1 Introduction

Many phenomena subject to random perturbations can be modeled by stochastic differential equations (SDEs)
driven by Brownian noises. Under some regularity assumption, the time evolution of the probability measure can
be characterized by the Fokker-Planck equation, a parabolic partial differential equation that depicts the time
evolution of the density function of the underlying stochastic processes. Despite its wide applications in modeling
physical or biological systems. [53, 25, 15, 4, 20], solving the Fokker-Planck PDE associated to high-dimensional
Itô diffusion processes is computationally a challenging task. In this paper, we are interested in estimating the
density function associated with the stationary solution of the Fokker-Planck PDE from a discrete-time series of
approximate solutions of the underlying SDEs without knowing the explicit drift and diffusion components.

Density estimation is a long-standing problem in computational statistics and machine learning. Among the
existing approaches, it is widely accepted that the classical Kernel Density Estimation (KDE) [54] is not effective for
problems with dimension higher than three (see e.g., [24, 39, 65]). Along this line, the kernel embedding (another
class of linear estimator) also suffered from the curse of dimension [71]. Another class of popular parametric density
estimators is the Gaussian Mixture Models (which is also known as the Radial Basis Models in some literature) [24].
This class of approaches is considered as a nonlinear estimator method since the training involves the minimization
of a loss function that depends nonlinearly on the latent parameters. A practical issue of such a convex nonlinear
optimization problem is the difficulty in identifying the global minimizer using numerical methods. While this issue
is not solved, recent advances in deep learning theory show that the deep neural network (DNN), as a composition
of multiple linear transformations and simple nonlinear activation functions, has the capacity of approximating
various kinds of functions, overcoming or mitigating the curse of dimensionality [46, 14, 48, 51, 67, 37, 47, 23,
58]. Besides, it is shown that with over-parametrization and random initialization, the DNN-based least square
optimization achieves a global minimizer by gradient descent with a linear convergence rate in both the setting of
regression [27, 11, 68, 7, 43, 40, 9, 8] and PDE solvers [41, 34]. In parallel to this finding, several density estimators
have adopted DNN, such as the Neural Autoregressive Distribution Estimation [63] and its variant, the Masked
Autoregressive Flow [50].

Building on these encouraging results, we consider solving the density estimation problem where the target function
is the density associated with the stationary measure of an Itô process. With this prior knowledge, we propose to
solve the density estimation problem following these two steps. First, we employ a deep learning algorithm to solve
appropriate supervised learning tasks to uncover the drift and diffusion coefficients of the SDEs. Second, we solve the
stationary Fokker-Planck PDE generated from the estimated drift and diffusion coefficients. While traditional grid-
based numerical methods, such as finite element methods and finite difference methods [61, 32, 56] can be employed
to solve the Fokker-Plank equation, they are usually limited to low-dimensional problems. On the other hand, neural
network-based methods has been successfully used in solving high dimensional PDEs [29, 18, 36, 69, 52, 30, 70, 16],
including the recent application in solving the high-dimensional Fokker-Plank equation [66, 70, 35]. These successes
encourage us to also use deep learning to solve the approximate Fokker-Planck PDE.

We will also develop a new theory for the proposed approach with numerical verifications on low and relatively high-
dimensional test examples, especially when the parameters of the Fokker-Planck equations have to be estimated,
which has not been considered in the literature. Our theory can also explain and support the empirical success
of existing deep learning approaches lacking the theoretical analysis of deep learning. The main goals of this
theoretical study are to 1) understand under which mathematical assumptions can the density estimation problem
be well-posed, 2) establish the convergence of the proposed scheme, and 3) identify the error in terms of training
sample size, width/length of the neural-network models, discretization time step and noise amplitudes in the
training data, and the dimension of the stochastic processes. In conjunction, we will also verify whether the
perturbation theory [72] is valid. Particularly, we will check whether the stochastic process associated with the
estimated drift and diffusion terms (obtained from deep learning regression in the first step) can indeed estimate the
underlying invariant measure accurately. This verification is a by-product that can practically be used to generate
more samples if needed.

The organization of this paper is as follows. In Section 2, we introduce the problem of stationary density estimation
associated with Itô diffusions. In Section 3, the deep learning method is discussed. In Section 4, we provide the
convergence theoretical analysis. In Section 5, we present the numerical experiments of Student’s distribution and
Langevin dynamics. We conclude the paper with some remarks and open questions in Section 6. To improve the
readability, we report the proofs of the lemmas of Section 4 in Appendix A.
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2 Problem Setup

Consider the following SDE,

d X t = a(X t )d t +b(X t )dWt , (1)

with an initial condition randomly drawn from an arbitrary well-defined distribution, X0 ∼ π0. The SDE in (1) is
defined with a drift term, a : Rd → R

d and a diffusion tensor, b : Rd → R
d×m , where m ≤ d . Here, Wt denotes the

standard m−dimensional Wiener process. We assume that a and b are globally Lipschitz such that the SDE in (1)
with the initial condition X0 = x has a unique solution. In addition, we also assume that the Markov process X t

is ergodic. This implies that the transition kernel corresponding to the Markov process X t converges to a unique
stationary measure π as t → ∞. When the probability measure π is absolutely continuous with respect to the
Lebesque measure, dπ(x) = p(x)d x, the density function p : Rd →R is the solution of the stationary Fokker-Planck
equation,

L
∗p :=−div(ap)+

1

2

n∑

i , j=1

∂

∂xi

∂

∂x j
((bb⊤)i j p) = 0, (2)

where p ≥ 0 and
∫

Rd p(x)d x = 1. We will state these (and additional) assumptions in Section 4 for the convergence
analysis study.

In this work, we aim to estimate the stationary density p of the SDE (1) without the knowledge of a and b. What is
available is a time series {xn}n≥0 generated by a numerical SDE solver of (1) that is assumed to possess an ergodic
invariant measure, π̃, whose “distance” from π can be controlled by the numerical discretization time step δt . We
should point out that when a is globally Lipschitz and b is a full rank matrix and if the underlying Markov process
in X t in (1) is geometrically ergodic, then the Markov chain {xn} induced by the Euler-Maruyama discretization is
also geometrically ergodic [42]. In Section 4, we will restrict our convergence study to this case. In a less stringent
case, e.g., a is locally Lipschitz, the Markov chain induced by EM discretization is not ergodic in general. While one
can generate an ergodic Markov chain by solving the SDE in (1) with a stochastic backward Euler discretization
[42], consistent learning from samples of such an ergodic chain will induce a more complicated loss function
that incorporates the backward Euler scheme. While this case can be incorporated numerically, we neglect it in
this paper since generally speaking the discretization scheme is unknown and the inconsistency of the numerical
schemes that are used in generating the time series and in the construction of loss function in the learning algorithm
induces an additional bias. For simplicity, we consider discrete Markov chain xn generated by EM scheme,

xn+1 −xn = a(xn)δt +b(xn)
p
δtξn , ξn ∼N (0, I m), (3)

where δt denotes the time step size and I m is an m ×m identity matrix. In the next section, we will use the same
discretization to construct the appropriate loss functions to approximate a and bb⊤. Since the available training
data are sampled from π̃, the learning algorithm can only (at best) achieve a population risk defined with respect to
π̃ and we will characterize the error induced by the EM discretization using an existing perturbation theory result.

While the SDE is defined on an entire unbounded domain R
d (the measure is not compactly supported or the density

is strictly positive away from zero), numerically we can only solve the PDE on a bounded domain. Following existing
approaches of solving Fokker-Planck PDEs with neural-networks [66, 64, 70], we consider a simply connected
compact domain Ω ⊂ R

d large enough such that the density on R
d \Ω is effectively negligible. Practically, this

assumption implies that the training data xn ∈ Ω, and the stationary solution that we are looking for can be
normalized with respect to Ω, that is,

∫

Ω
p(x)d x = 1. This assumption is critical especially when the vector field a is

unknown and needs to be numerically estimated with deep learning, for which one can only (at best) guarantee the
error in L2- topology over a compact domain. In Section 4, we will clarify this assumption.

3 Deep learning method for density estimation

In this section, we introduce a deep learning method to estimate the stationary density of SDE (1) from a time series
of its solution, which consists of two steps. We begin the discussion by reviewing two deep learning architectures
that we will use in our numerical simulations, the fully connected neural network (FNN) and the residual neural
network (ResNet) in Section 3.1. Given a time series of the SDEs in (1), we fit the drift a and diffusion coefficients
bb⊤ in the SDE (1) by NNs, denoted as aNN and B NN, respectively (see Section 3.2). Define L̂

∗ as the Fokker-Planck
(FP) differential operator generated from the estimated networks aNN and B NN approximating the underlying (FP)
operator L

∗ in (2). Our approach in estimating the stationary density p is to solve the homogeneous PDE L̂
∗p̂ = 0,

where p̂ is a solution parameterized by an FNN. The PDE can be solved via the network-based least square method
introduced in Section 3.3.
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3.1 Neural networks

We now give a brief overview of the two basic neural networks that have been widely employed in deep learning. The
first one is the fully connected neural network (FNN). Suppose d is the dimensions of inputs. Given an activation
function σ : R→ R, L ∈ N

+, and wℓ ∈ N
+ for ℓ = 1, . . . ,L, an FNN is constructed as the composition of L simple

nonlinear functions as follows

φNN(x ;θ) := c⊤hL ◦hL−1 ◦ · · · ◦h1(x) for x ∈R
d ,

where c ∈ R
wL×1; hℓ(xℓ) := σ

(

W ℓxℓ+g ℓ

)

with W ℓ ∈ R
wℓ×wℓ−1 and g ℓ ∈ R

wℓ for ℓ = 1, . . . ,L (W0 := d). With the
abuse of notations, σ(x) means that σ is applied entry-wise to a vector x to obtain another vector of the same size.
wℓ is the width of the ℓ-th layer and L is the depth of the FNN. θ := {c , W ℓ, g ℓ : 1 ≤ ℓ≤ L} is the set of all parameters
in φNN to determine the underlying neural network.

Besides FNN, in our numerical simulations, we will also consider the residual neural network (ResNet) [19]. Using
similar notations above, ResNet can be defined recursively as follows,

h0 = x,h−1 = 0,

vℓ =σ
(

W ℓhℓ−1 +g ℓ

)

, ℓ= 1,2, · · · ,L,

hℓ = pad(hℓ−2)+vℓ, ℓ= 1,2, · · · ,L, (4)

φNN(x;θ) = c⊤hL .

Here, the function pad(·) is used to pad zeros to the vector such that two vectors in the summation (4) are of
same size. Popular types of activation functions include the rectified linear unit (ReLU) σ(x) = max{0, x}, ReLU3

σ(x) = max{0, x3/6}, Tanh σ(x) = ex−e−x

ex+e−x and Mish σ(x) = xTanh(log(1+ex )) [45]. We use FL,W,σ to denote the class
of FNNs with depth L, width W for all layers and activation σ.

3.2 Regression of drift and diffusion coefficients

Taking the expectation of (3) with respect to ξn , one can see that

E[xn+1 −xn −a(xn)δt ] = 0. (5)

With this identity, we consider a supervised learning method for estimating a(x) with neural networks. More
precisely, we approximate every component of a(x) by an FNN aNN(x ;θ) parameterized by a set of trainable

parameters θ. In practice, letting y n := xn+1−xn

δt
, by (5), we define θa

i as follows,

θa
i := argmin

θ

1

N

N−1∑

n=0

∣
∣yn

i −aNN(xn ;θ)
∣
∣2

, (6)

for i = 1, · · · ,d , where yn
i

is the i -th component of y n . Then we define the vector-valued function

aNN(x ;θa) :=
[

aNN(x ;θa
1), · · · , aNN(x ;θa

d )
]⊤

(7)

as the drift estimator to approximate a(x), where θa consists of {θa
i }.

This is a supervised learning task to estimate a : Rd →R
d from a pair of labelled training data set, {xn , y n}N−1

n=0 . To

simplify the analysis in the next section, we assume that x i are i.i.d. samples of the stationary random distribution π̃.
While we do not employ this simplification in our numerical study, practically, such i.i.d. samples can be obtained by
sub-sampling from the Markov chain {xn}n≥0 such that their temporal correlation is negligible. For convenience of
the following discussion, we denote X := {x0, . . . , x N−1} and Y := {y 0, . . . , y N−1}. In (6), the parameter θa

i is a global
minimizer of the empirical loss function. Practically, since tochastic gradient descent or the Adam method [31] is
used, such a global minimizer may not necessarily be identified.

Next, we approximate b(x)b(x)⊤ in similar ways. The (i , j )-th component of b(x)b(x)⊤ can be approximated by an
FNN BNN(x ;θb

i j ). Since ξn is independent of xn , using the fact E[ξnξ
⊤
n ] = I n and (3) we have

E

[

(xn+1 −xn −a(xn)δt )(xn+1 −xn −a(xn)δt )⊤−b(xn)b(xn)⊤δt
]

= 0.

Based on this identity, assuming that we have obtained the network aNN(x ;θa) ≈ a(x), we can compute θb
i j by

θb
i j := argmin

θ

1

N

N−1∑

i=0

∣
∣
∣
∣(y n

i −aNN(xn ,θa
i ))(y n

j −aNN(xn ,θa
j )))⊤−

1

δt
BNN(xn ;θ)

∣
∣
∣
∣

2

. (8)

4
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for 1 ≤ i , j ≤ d . Similarly, the global minimizer θb
i j may not be identified in practice. To summarize, If these global

minimizers are identified, the training procedure gives B NN(x) :=
[

BNN(x ,θb
i j )

] j=1,··· ,d

i=1,··· ,d
≈ b(x)b(x)⊤.

We should also point out that when the diffusion tensor is a constant matrix, b ∈ R
d×m , we do not need to solve

the optimization problem (8) by deep learning. In such a case, B NN is specified as a matrix and we will empirically
estimate bb⊤ using the residual from the drift estimator aNN(·). Particularly,

B NN :=
δt

N

N∑

n=1

(

y n −aNN(xn ;θa)
)(

y n −aNN(xn ;θa)
)⊤

, (9)

where we used the same notation B NN and understand that it is a d ×d matrix in this case.

3.3 Estimation of the stationary density

Given the approximate drift aNN ≈ a and diffusion coefficients, B NN ≈ bb⊤, we define the estimated FP operator,

L̂
∗p :=−div(aNNp)+

1

2

d∑

i , j=1

∂

∂xi

∂

∂x j
(B

i j

NNp), (10)

where B
i j

NN is the (i , j )-entry of BNN.

Subsequently, the stationary density is estimated by solving the approximate stationary FP equation,

L̂
∗p̂ = 0, in Ω (11)

where p̂ : Ω→ (0,∞) denotes the analytical solution of this PDE that satisfies,
∫

Ω

p̂(x)d x = 1. (12)

Numerically, we set Ω to be a rectangular domain that is large enough yet tightly covers most of the data points in
X .

We solve the equation (11) with the condition (12) by the popular network-based least square method [10, 33]. Specif-
ically, We use a neural network p̂NN(x ;θ) with a parameter set θ determined by solving the following minimization
problem,

min
θ

J [p̂NN(·;θ)],

where

J [q] := ‖L̂ ∗q‖2
L2(Ω) +λ1

∣
∣
∣
∣

∫

Ω

q(x)d x −1

∣
∣
∣
∣

2

+λ2‖q‖2
L2(∂Ω), ∀q : Ω→R, (13)

where λ1 is a regularization constant corresponding to the normalization factor in (12) such to ensure nontrivial
solution; λ2 is a regularization parameter corresponding to an artificial Dirichlet boundary condition. In our
numerical simulation, we empirically found that the artificial boundary constraint can be neglected if the function
values at the prescribed boundary is sufficiently small.

In the practical computation, when d is moderately large, the first term of (13) is usually computed via a Monte-Carlo
integration. For example, if the data {xn

I }N1
n=1 are uniformly distributed points in Ω, then

‖L̂ ∗q‖2
L2(Ω) ≈

|Ω|
N1

N1∑

n=1

∣
∣
∣L̂

∗q(xn
I )

∣
∣
∣

2
, (14)

where |Ω| denotes the volume of the domain Ω.

Similarly, as for the second term in (13), Monte-Carlo integral is formulated as

∫

Ω

q(x)d x ≈
|Ω|
N2

N2∑

n=1
q(xn

II), (15)

where {xn
II}

N2
n=1 are uniformly distributed sampled points in Ω.

5
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For the third term in (13), we approximate,

‖q‖L2(∂Ω) ≈
|∂Ω|
N3

N3∑

n=1
|q(xn

III)|
2, (16)

where {xn
III}

N3
n=1 are uniformly distributed sampled points in ∂Ω.

Combining (14), (15), and (16), the training procedure is to minimize the following empirical loss function,

JS [q] :=
|Ω|
N1

N1∑

n=1

∣
∣L

∗q(xn
I )

∣
∣2 +λ1

∣
∣
∣
∣
∣

|Ω|
N2

N2∑

n=1
q(xn

II)−1

∣
∣
∣
∣
∣

2

+λ2
|∂Ω|
N3

N3∑

n=1

∣
∣q(xn

III)
∣
∣2

. (17)

Let

θS = argmin
θ

JS [p̂NN(·,θ)], (18)

then the density estimator is given by p̂NN(·;θS ) ≈ p(·) with p̂NN : Ω→R and
∫

Ω
p̂NN(x ;θS )dx ≈ 1.

We should point out that in our numerical simulations, since the time series {xn}N
n=1 that are distributed in accor-

dance to π̃ are available, we conveniently replace the first component in the loss function in (13) with a weighted
norm, L2(Ω, π̃) and accordingly adjust the Monte-Carlo sum in the first component in the empirical loss function in
(17). While the convergence analysis corresponding to a weighted norm is equivalent to that of the unweighted
norm when p̃i is absolutely continuous with respect to Lebesque measure with bounded density function, for
simplicity of the exposition, we will consider the analysis corresponding to loss functions in (13) with unweighted
L2(Ω) norms. If the dimension d is lower, one can also adopt numerical quadrature rules such as Gauss-type
quadrature to evaluate the integrals in (13) for higher accuracy.

4 Convergence Theory

In this section, we deduce an error bound for the estimator p̂NN(x ;θS ), where θS is the global minimizer of the
empirical loss function in (17). Throughout the discussion in this section, we restrict the diffusion coefficient
b ∈R

d×m to be a full column rank matrix. We use the notation ‖ ·‖ for the Euclidean norm in R
d .

4.1 Preliminary remarks

Let us set the stage for our discussion by specifying the class of FNNs. In Section 3.1, we introduced the general class
of FNNs FL,M ,σ. While for the simplicity of analysis, we choose special classes of FNNs as the hypothesis spaces of
the optimization.

On one hand, we consider using deep ReLU FNNs with uniform bounds in the minimization (6), the regression of
true drift a(x). Specifically, for any P > 0, we denote

F
P
L,M ,ReLU =

{

φ ∈FL,M ,ReLU : |φ(x)| ≤ P, ∀x ∈Ω
}

, (19)

as the class of ReLU FNNs with depth L, width M , and a uniform bound P in Ω.

On the other hand, we consider using two-layer ReLU3 FNNs with parameter bounds in the minimization (18), the
approximation of the true density p(x). More precisely, for any Q > 0, we explicitly specify

F2,M ,σ̇,Q =
{

φ : Ω→R : φ(x) =
1

M

M∑

m=1
cmσ̇(w⊤

m x), |cm |,‖w m‖1 ≤Q

}

, (20)

where σ̇= max(0, x3/6) denoting the ReLU3 activation function widely used in network-based methods for second-
order PDEs. For simplicity, we omit the biases g ℓ in the definition of FNNs in Section 3.1.

Since the analysis depends on the results of the perturbation theory on the ergodic Itô diffusion in [72], we will
briefly review the concepts of geometric ergodicity and other relevant results.

We will now make precise the assumptions mentioned in Section 2.

Assumption 4.1. The following are key assumptions of the underlying system that generates the process X t :

6
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i. Lipschitz & Linear growth bound: The vector field a : Rd →R
d is globally Lipschitz with Lipschitz constant

λa > 0 to ensure the existence and uniqueness of the solution of the SDE in (1) given an initial condition.
There exists a constant K ∈ (0,+∞) such that

‖a(x)‖2 ≤ K 2(1+‖x‖2),∀x ∈R
d .

This linear growth assumption will ensure that the even order moments can be bounded under the same rate.

ii. Geometric ergodicity: The Markov process X t is geometrically ergodic with a unique invariant measure π.
See e.g. Assumptions 2.2-2.3 in [72] for the detailed conditions to achieve the geometric ergodicity for the SDE
driven by additive Brownian noises. One of the conditions that is important for our discussion is that there

exists a Lyapunov function V : Rd → [1,∞) with lim
x→∞

V (x) =+∞, and c1,c2 ∈ (0,+∞) such that

L V (x) ≤−c1V (x)+ c2, ∀x ∈R
d ,

where L is the L2(Rd ) adjoint of the FP operator L
∗ defined in (2).

iii. Essentially quadratic: The Lyapunov function V =W ℓ for some ℓ≥ 1, where W is essentially quadratic, i.e.,
there exist constants Ci ∈ (0,+∞), i = 1,2,3, such that

C1
(

1+‖x‖2)≤W (x) ≤C2
(

1+‖x‖2) , ‖∇W (x)‖ ≤C3 (1+‖x‖) , ∀x ∈R
d .

Together with the previous two assumptions, there exists δ0 > 0 such that for all δt ∈ (0,δ0), the discrete
Markov chain induced by the EM algorithm in (3) is geometrically ergodic with the invariant measure, π̃,
and that,

sup
f ∈Gℓ

∣
∣π( f )− π̃( f )

∣
∣≤ K1(δt )νπ(V ),

for some K1 = K1(ℓ) and ν ∈ (0,1/2). Here, the supremum is defined over a set of locally Lipschitz functions
bounded above by V ,

Gℓ :=
{

f (x) ≤V (x),∀x ∈R
d and

∣
∣ | f (x)− f (y)| ≤Cℓ

(

1+‖x‖2ℓ−1 +‖y‖2ℓ−1
)

‖x − y‖, ∀x , y ∈R
d
}

. (21)

Lemma 4.1. Under the assumptions 4.1, for any small 0 < ǫ≪ 1, suppose that the estimator â : Rd →R
d is globally

Lipschitz with Lipschitz constant independent of ǫ and is a consistent estimator in the following sense,

‖a(x)− â(x)‖2 ≤ K2(1+‖x‖2)ǫ2, ∀x ∈R
d , (22)

for some constant K2 > 0 that is independent of ǫ. Let us denote X̂n := X̂ (tn), where tn = nδt to be a Markov chain
generated by the solution to,

d X̂ = â(X̂ t )d t + b̂ dWt , X̂0 = x , (23)

with b̂b̂
⊤

:= B̂ . For any x ∈R
d , there exists 0 < ρ < 1 and K1 > 0 such that,

sup
f ∈Gℓ

|π( f )−E
x [ f (X̂n)]| ≤ K3

[(

ρn +
1−ρn

1−ρ
ǫ

)

V (x)

]

, ∀n ≥ 0, (24)

where the set Gℓ is defined in (21). If the process X̂ associated to (23) has an invariant measure π̂, then there exist

0 <α< 1, 0 <β<∞, and 0 < γ< 1−α such that, π̂(V ) ≤ β
1−α−γ .

The result above holds for all x ∈R
d by requiring the condition in (22) and that underlying process X (t ) is ergodic

in R
d with a unique invariant measure π. Similar conclusion was reported in [22] under a much stronger uniform

convergence in placed of (22). One of the key issue in applying this result directly to the learning configuration is
that the assumption in (22) can be difficult to achieve unless if one consider learning with a loss function defined
with the topology that is used to deduced the error bound in (24), which relies on the perturbation theory of Markov
chain. The usual practical machine learning computations solve a supervised learning problem induced by a weaker
topology (commonly L2) on a bounded domain. In such a weaker topology (relative to the sup norm in (24)), one
can at best expect to construct an estimator with convergence guaranteed under an L2(Ω, π̃) error on a compact
domain Ω ⊃ X that contains all the training data. In the numerical section, we will empirically show that the
pointwise accuracy of a and verify the accuracy of the invariant mean and covariance statistics induced by a Markov
chain generated by the estimated drift and diffusion coefficients.

To overcome the incompatibility of the domains, we consider the following assumption.

7
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Assumption 4.2. Let Ω⊂R
d be a simply connected compact domain such that P (X ∉Ω) ≤ ǫ0 for some 0 < ǫ0 ≪ 1. For

example, let Ω := B(0,R) = {x ∈R
d : ‖x‖ ≤ R} be a closed Euclidean ball of radius R > 1 and suppose that X has mean

zero (centered) and is a sub-exponentially distributed random variable, SE (ν2,α), with ν,α> 0, then by concentration
inequality for sub-exponential distribution, one obtains

P(‖X ‖ ≥ R) ≤ 2e−
R

2α := ǫ0, ∀R > ν2α−1. (25)

Let X̃ be a random variable corresponding to the stationary distribution induced by the Euler-Maruyama discretization
in (3), using the Markov inequality and strong error bound of EM scheme, one can deduce that P[‖X − X̃ ‖ ≤ (δt )1/4] ≤
(δt )−1/4

E[|X − X̃ ] ≤C (δt )1/4, which means that P[‖X̃ ‖ ≥ R + (δt )1/4] ≤P(‖X ‖ ≥ R)P[‖X − X̃ ‖ ≥ (δt )1/4] ≤O(ǫ0). Even
if X (resp. X̃ ) is defined on R

d , one can almost surely realize ‖X ‖ ≤ R (resp. ‖X̃ ‖ ≤ R +δt 1/4) for large enough R > 0.
This assumption effectively means that the process X satisfies the Assumption 4.1 for x ∈Ω= B(0,R) almost surely
for large enough R. This also implies that Lemma 4.1 is valid for x ∈Ω, where we understood π( f ) :=

∫

Ω
f (x)π(d x)

in (24). In the convergence theory below, without loss of generality, we will assume that Ω= [0,1]d . For general Ω,

similar results can be derived easily by rescaling Ω to [0,1]d with an isomorphic map.

With the above assumption, we only need to restrict our attention to a compact domain Ω and, hence, the assump-
tion that â is globally Lipschitz with Lipschitz constant independent of ǫ is reasonable. In our algorithm, we use
the ReLU activation functions to construct â and, hence, â is a globally Lipschitz continuous function. By the
simultaneous approximation of ReLU neural networks in [17, 21], as long as a ∈C s with s > 1, there exists a ReLU
network â approximating a in the Sobolev norm of W 1,∞(Ω) with Ω as a compact set. This means that the Lipschitz
constant of â can be bounded by a constant depending on a instead of the approximation accuracy. However, how
to identify â satisfying these assumptions is a problem of the optimization algorithm.

We use the notations π̃( f ) =
∫

Ω
f (x)d π̃(x) and π̂( f ) =

∫

Ω
f (x)d π̂(x) for integrals over Ω. With Assumption 4.2, we

now let the solution p̂ : Ω→ (0,∞) of the approximate FP equation be the density of π̂, defined with respect to
the Lebesque measure, d π̂ = p̂(x)d x. Since the PDE in (11) is defined with the estimated coefficients, namely,
aNN : Ω→Ω as defined in (7) and B NN ∈R

d×d as defined in (9), the error analysis below will need to account for the
errors induced by these estimations. Recall that b is a constant matrix and aNN is the best empirical estimator from
the chosen hypothesis space (e.g., a class of FNN-functions of the chosen architecture), obtained by regressing the
labeled training data {x i , y i }N

i=1, where x i ∈X and y i := a(x i )+ηi , ηi ∼N (0, (δt )−1bb⊤).

To quantify the error of the diffusion estimator, one can subtract bb⊤ from the empirical estimator defined in (9)
and derive the following upper bound,

‖bb⊤−B NN‖2 ≤

∥
∥
∥
∥
∥

N∑

i=1
Di

∥
∥
∥
∥
∥

2

+δt Eπ̃

[∥
∥(a(X )−aNN(X ;θa))

∥
∥2

]

, (26)

where for each i = 1, . . . , N ,

Di :=
δt

N

(

y i −aNN(x i ;θa)
)(

y i −aNN(x i ;θa)
)⊤−

1

N

(

δtEπ̃[(a(X )−aNN(X ;θa))(a(X )−aNN(X ;θa))⊤]+bb⊤
)

, (27)

is an independent, random, symmetric matrix of mean zero. Since x i is bounded almost surely, one can bound
Di almost surely with large enough R > 0. In such a case, one can use a matrix concentration inequality to bound
the first term in (27) with large enough training sample N . Particularly, using the Matrix Bernstein inequality (e.g.,
Theorem 1.6.2 in [62]), if we define

ǫ := δt Eπ̃

[∥
∥(a(X )−aNN(X ;θa)

∥
∥2

]

, (28)

and denote ‖Di‖ ≤ D
N

for some D > 0, then the first term in (26) is smaller than ǫ with probability 1 −
2d exp(− ǫ2/2

O(N−2)+DN−1ǫ/3
) > 0. This means, one can bound ‖

∑N
i=1 Di‖ ≤ ǫ with high probability by choosing

N ≥Cǫ−1 log2d . We can therefore conclude that the spectral error in (26) is of order-ǫ, which is the generalization
error rate as defined in (28).

We should point out that the result in Lemma 4.1 does not assume the ergodicity of the Markov process X̂ (t)

generated by the SDE in (23). Suppose that X̂ (t ) is generated with â = aNN and b̂b̂
⊤ = B NN has an invariant measure

π̂ on Ω. Integrating (24) with respect to π̂, we obtain,
∣
∣
∣π( f )− π̂( f )

∣
∣
∣ =

∣
∣
∣π( f )−

∫

Ω

f (x)π̂(d x)
∣
∣
∣=

∣
∣
∣π( f )−

∫

Ω

E
x [ f (X̂n)]π̂(d x)

∣
∣
∣≤ K3π̂(V )ǫ (29)

8
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as n →∞. To obtain (29), we have used (24). With this background, the error bound for p̂NN(x ;θS ) can be deduced
by accounting the regression error of a and the error from the proposed PDE solver,

∣
∣
∣π( f )−

∫

Ω

f (x)p̂NN(x ;θS )d x
∣
∣
∣ ≤

∣
∣π( f )−

∫

Ω

f (x)p̂(x)d x
∣
∣+

∣
∣
∣
∣

∫

Ω

f (x)
(

p̂(x)− p̂NN(x ;θS )
)

d x

∣
∣
∣
∣

≤ K3π̂(V )δt Eπ̃

[∥
∥(a(X )−aNN(X ;θa)

∥
∥2

]

︸ ︷︷ ︸

(I )

+‖ f ‖L2(Ω) ‖p̂ − p̂NN(·;θS )‖L2(Ω)
︸ ︷︷ ︸

(I I )

, (30)

where we have used (29), (28), and the Cauchy-Schwartz inequality. In the next two subsections, we will bound the
terms (I) and (II) in (30).

4.2 Regression error for the drift estimator

Now let us consider the error in the regression of the drift coefficients, namely, the minimization problem (6). We
will derive the L2 error with respect to π̃ between the estimator aNN(x ;θa) and the true drift function a(x). For this
purpose, given a class F of functions: Ω→ R, we denote its pseudo dimension by Pdim(F ), which is the largest
integer m for which there is some (x1, · · · , xm , y1, · · · , ym) ∈Ω

m ×R
m such that for any (b1, · · · ,bm) ∈ {0,1}m , there

exists f ∈F satisfying f (x i ) > yi ⇔ bi = 1 ∀i . The prediction error analysis of FNNs have been studied in several
papers, e.g., [55, 49, 5, 41, 28, 38, 44, 12]. In particular, we introduce the following lemma concerning the prediction
error of the FNN-based least square regression, which is studied in [28].

Lemma 4.2 ([28], Theorem 4.2). Let f0 : [0,1]d → R be a Hölder continuous function, i.e., there exist λ ≥ 0 and

α ∈ (0,1] such that | f0(x)− f0(y)| ≤λ‖x − y‖α for all x , y ∈ [0,1]d . Suppose ‖ f0‖L∞([0,1]d ) ≤ P for some P ≥ 1. Let ν be
a probability measure that is absolutely continuous with respect to the Lebesgue measure and a random variable
x ∼ ν. Let η be a random variable satisfying E[η] = 0 and Var[η] =σ2. Let {xn}N

n=1 be N independent and identically
distributed samples of x , and yn = f0(xn)+η is the response with noise η for each n. For any I1, I2 ∈N

+, let

θ f0 := argmin
θ

1

N

N∑

n=1

∣
∣yn − fNN(xn ;θ)

∣
∣2

,

where fNN ∈F
P
L,W,ReLU having depth L = 12I2 +14 and width W = max{4d⌊I

1
d

1 ⌋+3d ,12I1 +8} for all hidden layers.

Then the prediction error is given by

Eν

[

| fNN(·,θ f0 )− f0|2
]

≤C [P 2W L(d +W L) log(W d +W 2L)(log N )3N−1 +λ2d(I1I2)−4α/d ], (31)

for N ≥ Pdim(F P
L,W,ReLU), where C is a constant that does not depend on d, N , L, W , λ, α, I1, I2, P .

In Lemma 4.2, the exponent of the error bound in (33) can be improved to be dimension-independent if we assume
f0 is in Barron-type spaces, which are first studied in [2] and further developed in [14, 13, 38, 60, 59, 6, 3]. Here we
follow the Barron space with respect to two-layer ReLU networks proposed in [13]. Suppose f : Ω→R is a function
having the following form,

f (x) =
∫

R×Rd
c max(w⊤x ,0)ρ(dc,dw ) = Eρ[c max(w⊤x ,0)], x ∈Ω

for some probability measure ρ on R×R
d , then its Barron norm is defined by

‖ f ‖BReLU = inf
ρ∈P f

(Eρ |c|‖w‖1), (32)

where P f :=
{

ρ : f (x) = Eρ[c max(w⊤x ,0)]
}

. And the ReLU Barron space is defined by BReLU = { f ∈C 0 : ‖ f ‖BReLU <
∞}. Now we have the following result.

Lemma 4.3. Let f0 : [0,1]d → R such that ‖ f0‖BReLU
≤ P and ‖ f0‖L∞([0,1]d ) ≤ P for some P ≥ 1. For the least square

regression proposed in Lemma 4.2, we let fNN ∈F
P
2,W,ReLU for some W ∈N

+, Then the prediction error is given by

Eν

[

| fNN(·,θ f0 )− f0|2
]

≤C
[

P 2W (d +W ) log(W d +W 2)(log N )3N−1 +‖ f0‖2
BReLU

dW −1
]

, (33)

for N ≥ Pdim(F P
2,W,ReLU), where C is a constant that does not depend on d, N , W , f0, P .

Proof. See Appendix A.
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In our case, we set in the hypothesis of Lemma 4.2 that L =O(I2) and W =O(I1) are both large integers. Combining
with Lemma 4.3, the error estimation for the minimization problem (6) can be directly obtained.

Lemma 4.4. In addition to the Assumption 4.1, we let π̃ be absolutely continuous with respect to the Lebesgue measure.
Denote Pa = max{‖a‖L∞(Ω),1}.

1. Let L and W be integers large enough, then the estimator aNN defined in (7) with components aNN ∈F
Pa

L,W,ReLU

satisfies

Eπ̃

[

|aNN −a|2
]

≤Ca

(

d 2W LN−1 +d(W L)2N−1 +d 2(W L)−4/d
)

, (34)

for N ≥ Pdim(F Pa

L,W,ReLU
);

2. Suppose all components of a are in BReLU with Barron norms no greater than Pa . Let W ∈ N
+, then the

estimator aNN defined in (7) with components aNN ∈F
Pa

2,W,ReLU
satisfies

Eπ̃

[

|aNN −a|2
]

≤Ca

(

d 2W N−1 +dW 2N−1 +d 2W −1) , (35)

for N ≥ Pdim(F Pa

2,W,ReLU
),

where Ca > 0 is a term that depends on a and at most a polynomial in the logarithm of N , L, W .

In Lemma 4.4, the Barron assumption on the target function helps to overcome the curse of dimensionality. In the
following analysis for the solution error in the approximate FP equation, we will specify a Barron space for ReLU3

networks and assume that the true solution is in this space; therefore the derived solution error is also exponentially
independent of dimensions.

Another situation to mitigate the curse of dimensionality is when the data points are supported on a neighborhood
of a low-dimensional Riemannian submanifold in Ω [5, 28]. Since it does not apply to the current problem in
practice, we will not discuss more on this situation.

4.3 Solution error for the approximate FP equation

Now let us consider the error between p̂NN(·;θS ) and the true solution p̂ of the approximate stationary FP equation
(11). In this section, we only consider the case that {xn

MC}N1
n=1 in (15) are uniformly distributed in Ω. Similar results

apply to other measures with smooth densities supported on Ω.

First, we rewrite the approximate stationary FP equation (15) in the following divergence form

−L̂
∗p̂ =−

d∑

i , j=1

(
1

2
B

i j

NNp̂x j

)

xi

+
d∑

i=1
ai

NNp̂xi
+

(
d∑

i=1

∂ai
NN

∂xi

)

p̂ = 0, in Ω. (36)

The error analysis is valid only when the equation (36) is well-posed. So we need to set up specific assumptions on
the coefficients of (36). First, note that B NN is positive semi-definite and (36) is elliptic, so we assume further that
(36) is non-degenerate by specifying the smallest eigenvalue of B NN as a positive number. Also, we assume that the
coefficients have a uniform bound, which is common in the analysis of elliptic equations.

Assumption 4.3. The smallest eigenvalue of the symmetric matrix B NN, denoted as Λ, is positive. Besides, |B i j

NN| < 2B1,

|ai
NN(x)| < B1,

∣
∣
∑d

i=1∂ai
NN(x)/∂xi

∣
∣< B1, ∀i , j and ∀x ∈Ω, for some B1 > 0 .

Next, considering (36) is defined in a compact domain, we can not guarantee the uniqueness of the solution p̂ since
no boundary condition is specified. Moreover, even if we impose a boundary condition, say Dirichlet condition
p̂ = g on ∂Ω, we still need extra assumptions on the coefficients to ensure the uniqueness. For the latter, it suffices
to take the following assumption.

Assumption 4.4.
∫

Ω

d∑

i=1
ai

NNvxi
· v +

(
d∑

i=1

∂ai
NN

∂xi

)

v2dx ≥ 0, ∀v ∈ H 1(Ω).

Under Assumption 4.4, one can show that (36) with any Dirichlet condition admits a unique solution by Fredholm
alternative and Lax-Milgram theorem. However, we can not specify such a boundary condition since no information
on ∂Ω is provided. Fortunately, we note that the true density p vanishes as |x|→∞, so it can be assumed that the
approximate density p̂ has a similar behavior. Although we do not specify any boundary value for p̂, we can assume
that p̂ “almost" vanishes on ∂Ω as follows.

10
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Assumption 4.5. Let ‖p̂‖L∞(∂Ω) ≤ ǫp̂ and ‖p̂‖H 1(∂Ω) ≤ ǫp̂ for some small positive number ǫp̂ > 0.

Under Assumption 4.4 and 4.5, it can be shown that any two solutions of (36) are close to each other up to accuracy
ǫp̂ by standard elliptic equation analysis.

Now we indicate that the error ‖q − p̂‖L2(Ω) for any function q is bounded by the loss function J [q] and ǫp̂ .

Lemma 4.5. Assume p̂ is a classical solution of (11) with the condition (12). Let q ∈C 2(Ω̄) and assume ‖∇q‖L2(∂Ω) ≤
B2 for some B2 > 0. If Assumptions 4.3-4.5 hold, then

‖q − p̂‖2
L2(Ω) ≤C

(

J [q]+d(1+ǫp̂ )J [q]
1
2 +d(1+ǫp̂ )ǫp̂

)

,

where C only depends on Ω, Λ, B1, B2, λ1, λ2.

Proof. See Appendix A.

Next, we estimate J [p̂] via the generalization analysis of FNNs. In the analysis, we redefine the Barron space for
two-layer ReLU3 networks and assume p̂ is in this Barron space. The definition directly follows the ReLU Barron
space proposed in Section 4.2 except that we replace the ReLU activation with the ReLU3 activation. Accordingly, we
slightly modify the Barron norm, which is also proposed in [41]. Recall that σ̇ denotes the ReLU3 activation function,
i.e. σ̇= max(0, x3/6).

Suppose f : Ω→R is a function having the following form,

f (x) =
∫

R×Rd
cσ̇(w⊤x)ρ(dc,dw ) = Eρ[cσ̇(w⊤x)], x ∈Ω

for some probability measure ρ on R×R
d , then its ReLU3 Barron norm is defined by

‖ f ‖Bσ̇ = inf
ρ∈P f

(Eρ |c|‖w‖3
1), (37)

where P f := {ρ : f (x) = Eρ[cσ̇(w⊤x)]}. And the ReLU3 Barron space is defined by Bσ̇ = { f ∈C 0 : ‖ f ‖Bσ̇ <∞}. Now
let us derive the uniform approximation of FNNs in F2,M ,σ̇,Q for Barron functions.

Lemma 4.6. Given f ∈Bσ̇, there exists some pNN ∈F
2,M ,σ̇,max

{

‖ f ‖Bσ̇
/M ,1

} such that

sup
x∈Ω

∣
∣L̂

∗pNN(x)−L̂
∗ f (x)

∣
∣+ sup

x∈Ω

∣
∣pNN(x)− f (x)

∣
∣+ sup

x∈∂Ω

∣
∣pNN(x)− f (x)

∣
∣≤ (4B1 +2)‖ f ‖Bσ̇

p
d/M , (38)

Proof. See Appendix A.

Next, we introduce the error estimate for the Monte-Carlo integration, which can be directly proved using the
Hoeffding’s inequality.

Lemma 4.7. Given a compact domain Ω. Suppose f : Ω→ R is a function with ‖ f ‖∞ <∞. Let {xn}N
n=1 be a set of

uniformly distributed points in Ω. Then for any δ ∈ (0,1), with probability at least 1−δ over the choice of xn ,

∣
∣
∣
∣
∣

|Ω|
N

N∑

n=1
f (xn)−

∫

Ω

f (x)dx

∣
∣
∣
∣
∣
≤

√

2‖ f ‖2
∞ log(2/δ)

N
.

Now, the error estimate for the approximate FP equation is given as follows.

Lemma 4.8. Under Assumption 4.3-4.5, further assume p̂ ∈Bσ̇. Let θS = argminθ JS [p̂NN(·,θ)] with p̂NN ∈F2,M ,σ̇,Q .

Also, suppose {xn
I }N1

n=1 ⊂Ω, {xn
II}

N2
n=1 ⊂Ω, {xn

III}
N3
n=1 ⊂ ∂Ω in (17) are uniformly distributed. Then for any δ ∈ (0,1), with

probability of at least 1−δ over the choice of these points,

‖p̂NN(x ;θS )− p̂‖2
L2(Ω) ≤C

(

J [p̂NN(x ;θS )]+d(MQ4d
1
2 +ǫp̂ )J [p̂NN(x ;θS )]

1
2 +d(MQ4d

1
2 +ǫp̂ )ǫp̂

)

, (39)

and

J [p̂NN(x ;θS )] ≤C
[

I1(Q,d ,δ, M , N1, N2, N3)+ I2(Q,δ, M , N2)+ I3(p̂,d ,δ, M , N2)
]

,

11
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with

I1 = (Q8 +1)
(

d 2
√

log(d)+ log(Q4 +1)+
√

log(1/δ)
)

M 2(1/
√

N1 +1/
√

N3),

I2 = MQ4
√

log(6/δ)/N2

(

MQ4(
√

log(6/δ)/N2 +1)+1
)

,

I3 = ‖p̂‖2
Bσ̇

d/M +‖p̂‖2
∞ log(6/δ)/N2 +ǫ2

p̂ ,

where C only depends on Ω, Λ,B1, λ1, and λ2. Especially, suppose J [p̂NN(x ;θS )] ≤ 1 and let Np := min{N1, N2, N3}.

Take Q ≤O(M− 1
4 d− 1

8 ) and Np ≥O(log(1/δ)) , then

‖p̂NN(x ;θS )− p̂‖2
L2(Ω) ≤O

(

d 2(log(d))
1
4 M N

− 1
4

p +d
3
2 M− 1

2 +d N
− 1

2
p +dǫp̂

)

,

with an order constant depending on Ω, Λ,B1, λ1, λ2, δ, and p̂.

Proof. See Appendix A.

In Lemma 4.8, it implies using Np ∼O(M s ) with s > 4 will reduce the solution error up to O(dǫp̂ ) as M , Np →∞. In
practice, as an approximation of the original density p which vanishes as ‖x‖→∞, the solution p̂ could have a
similar behavior. Hence ǫp̂ is small enough if Ω is moderately large. And this also leads to a small solution error
‖p̂NN − p̂‖2

L(Ω).

Recall in the analysis of regression error for the drift estimator a, we derive an error estimate for deep networks of
any width and depth. While in the error analysis for the FP solution p̂, only results for two-layer shallow networks
are derived in the current work. It is promising to develop this analysis for deep networks in the future work.

4.4 The main error estimation

Inserting the two error bounds in Lemma 4.4 and Lemma 4.8 into the inequality in (30) and collecting all the
assumptions, we can show the following main theorem for the error estimation of the proposed algorithm.

Theorem 4.1. Let π be the invariant measure of a Markov process X t that satisfies Assumptions 4.1 and 4.2. Let
Pa ≥ 1 such that ‖a‖L∞(Ω) ≤ Pa . Given discrete samples {xn}N

n=0 of an ergodic measure π̃ that is absolutely continuous

with respect to the Lebesque measure in R
d , suppose that aN N defined by (7) with components aNN ∈ F

Pa

L,W,ReLU

is a consistent estimator in the sense of (22) for all x ∈ Ω = [0,1]d . Suppose also that N ≥ Pdim(FL,W,ReLU). Let
the assumptions in Lemma 4.8 be valid, namely the Assumptions 4.3-4.5. Suppose that p̂ ∈ Bσ̇ is estimated by

p̂NN(·,θS ) ∈ F2,M ,σ̇,Q with Q ≤ O(M− 1
4 d− 1

8 ), where θS is the global minimizer of the empirical loss function (17).

Then, for all f ∈Gℓ as defined in (21), and for any δ ∈ (0,1), with probability of at least 1−δ over the choice of {xn
I }N1

n=1,

{xn
II}

N2
n=1 and {xn

III}
N3
n=1,

sup
f ∈Gℓ

∣
∣
∣π( f )−

∫

Ω

f (x)p̂NN(x ,θS )d x
∣
∣
∣ ≤ K3π̂(V )δtCa

(

d 2W LN−1 +d(W L)2N−1 +d 2(W L)−4/d
)

+C p̂

(

d 2(log(d))
1
4 M N

− 1
4

p +d
3
2 M− 1

2 +d N
− 1

2
p +dǫp̂

)

, (40)

where, Np := min{N1, N2, N3} that satisfies Np ≥ O(log(1/δ)). Here, the term Ca > 0 depends on a and at most a
polynomial in the logarithm of N , L, W , and the constant C p̂ > 0 depends on Ω, δ, p̂, ‖ f ‖L2(Ω), the regularization
weights λ1, λ2, and the upper bounds constants Λ,B1 defined in Assumption 4.3.

And the error bound independent of dimensions exponentially is given as follows.

Theorem 4.2. Under the hypothesis of Theorem 4.1, we further assume all components of a are in BReLU with Barron

norms no greater than Pa , and let aNN ∈F
Pa

2,W,ReLU
, then the error bound term d 2W LN−1+d(W L)2N−1+d 2(W L)−4/d

in (40) can be improved to be d 2W N−1 +dW 2N−1 +d 2W −1.

We should point out that while the results are valid for the global minimizers θa
i in (6) and θS in (18), we do not

specify the condition for which such global minimizers are attainable. We directly assume that the minimizers are
found, and do not consider the error from the optimization algorithms. In practice, one can not ensure that the
global minimizers can be necessarily found by usual optimizers like gradient descent.

12
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Moreover, throughout the convergence analysis, we consider using special FNN class (19) with uniform bounds or
(20) with parameter bounds as the hypothesis space, and derive corresponding approximation errors. However, in
practical deep learning, one usually uses the general FNN class FL,W,σ since it is closed under gradient descent
optimizers and therefore easy for implementation.

5 Numerical Examples

In this section, we numerically demonstrate the effectiveness of our proposed methods on two test problems.
The first example is a two-dimensional SDE with Student’s t stationary distribution. The second example is a
20-dimensional Langevin dynamics associated to Lenard-Jones potential with Gibbs invariant measure.

In our examples, we replace the norm in the first term in (13) with a weighted L2(Ω, π̃), recalling that π̃ denotes the
stationary measure of the discrete Markov chain induced by (3). Hence we can directly use the available data set
X := {x0, . . . , x N−1} as the Monte Carlo integration points. Empirically, we approximate the first term of (13) via the
following Monte-Carlo average,

‖L̂ q‖2
L2(Ω,π̃) ≈

1

|X ∩Ω|

N−1∑

n=0

∣
∣
∣L̂ q(xn)

∣
∣
∣

2
1Ω(xn), (41)

where 1Ω denotes the characteristic function over domain Ω.

5.1 Student’s t-distribution

Consider a two-dimensional SDE (1) for Student’s t-distribution [1] with

a(x) =
[
− 3

2 x1 +x2
1
4 x1 − 3

2 x2

]

, b(x) =
[ √

φ(x1, x2) 0

− 11
8

√

φ(x1, x2)
p

255
8

√

φ(x1, x2)

]

where x = (x1, x2) and φ(x1, x2) = 1+ 2
15 (4x2

1 −x1x2 +x2
2). The stationary density is explicitly given by

p(x1, x2) =
2

π
p

15

(

φ(x1, x2)
)−3

. (42)

5.1.1 Data generation and implementation details

The time series dataset {x i }N
i=0 is generated by EM scheme (3) with δt = 0.05 and N = 2×107. The bounded domain

Ω is set as [−4,4]× [−6,6] such that over 98% points are in Ω.

In our implementation, we use 6-hidden-layer ResNets (discussed in Section 3.1) with the same width 50 per hidden
layer and the smooth Mish activation function [45]. To learn aNN and bNN, Adam algorithm is applied to optimize
the loss (6) and (8) with batch size 10,000 for T = 20,000 iterations. We use an initial learning rate of 10−4. The
learning rate follows cosine decay with the increasing training iterations, i.e., the learning rate decays by multiplying
a factor 0.5(cos(πt

T
)+1), where t is the current iteration. To solve the PDE (10), we optimize the loss (13) with

λ= 1,γ= 500. In Adam, we use the batch size 10,000 for first term in (13) and 4,000 for the boundary term while
the second term is approximated by 3002 Gaussian quadrature points. The learning rate is initialized by 10−3 and
follows cosine decay.

5.1.2 Identification of the drift and diffusion coefficients.

To evaluate the accuracy, we define relative L2 error as follows,

‖ f − f̂ ‖L2(Ω)

‖ f ‖L2(Ω)
, (43)

where f and f̂ represents the true function and the approximate function, respectively. Numerically, we approximate
the integral over 10000 Gaussian quadrature points in Ω.

The relative L2 error between aNN and a is 2.94×10−2. Figure 1 displays the spatial profile of the first components
of a, aNN, and their difference on the computational domain Ω. The relative L2 error between B NN and bb⊤ is
6.98×10−2. To check the pointwise accuracy of the estimates, We plot the first diagonal components of bb⊤, B NN
on the computational domain Ω and their difference in Figure 2. We can see our method works well on fitting the
drift and diffusion terms.

13
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(a) a1 (b) (aNN)1 (c) a1-(aNN)1

Figure 1: The comparison of the first component of drift term. (a) a1, (b) (aNN)1, and (c) their difference.

Given the approximate drift and diffusion coefficients, we now empirically validate the result in Lemma 4.1 on the
computational domain

xn+1 −xn = aNN(xn)δt +U (xn)S(xn)
1
2 U (xn)⊤

p
δtξn , ξn ∼N (0, I 2), (44)

where U (xn)S(xn)U (xn)⊤ is the eigendecomposition of B NN(xn). We denote these empirical statistics to be defined
with respect to the distribution π̂E M that approximates π̂. Compare to the ground truth statistics, the statistics of
π̂E M are subjected to errors from the estimation of a, B , and from the EM integration. In Table 1, we note that when
δt = 0.05, the covariance error of aNN,B NN is comparable to the error of a,b. When δt = 0.01, the covariance of
aNN,B NN becomes much closer to the ground truth than δt = 0.05.

Distribution π π̃ :=πEM π̂EM

δt N/A 0.05 0.05 0.01

mean
[
0.000 0.000

] [
−0.002 0.000

] [
0.001 0.004

] [
0.002 −0.003

]

covariance

[
1.000 0.500
0.500 4.000

] [
1.127 0.499
0.499 4.398

] [
1.115 0.490
0.490 4.347

] [
1.013 0.501
0.501 3.984

]

Table 1: Comparison of mean and covariance statistics corresponding to the ground truth distribution π, discrete
Markov chain induced by EM scheme in (3), π̃ :=πE M , and the discrete Markov chain generated by (44) for various
δt whose invariant distribution is denoted as π̂EM.

5.1.3 Computation of the density function

We optimize the loss (13) with aNN and B NN and obtain the solution p̂NN(·;θ). The relative L2 error between
p̂NN(·;θ) and the true density (42) is 6.78×10−2. To quantify the error induced by the regression alone, we replace
aNN and B NN of L̂

∗ in (13) with the underlying coefficients, a and bb⊤, and optimize (13) with differential operator
L

∗ in the first term. We denote the corresponding solution by p̃NN(·;θ). The relative L2 error between p̃NN(·;θ)
and the true density (42) is 3.97×10−2. We can see p̂NN(·;θ) achieves the error of same magnitude as p̃NN(·;θ).
Figure 3 shows the true density and the differences between the true density and the network solutions p̂NN(·;θ),
p̃NN(·;θ), plotted as functions of the computational domain Ω. Notice that the errors are more prominent when the
coefficients a and b are estimated, as expected.

5.2 The Langevin dynamics

We consider a molecular model describing the dynamics of M atoms with mass 1. We assume the M particles are
spaced in a chain with a periodic boundary condition. Let the equilibrium distance between two neighboring
particles be a0, then the equilibrium position of the m-th particle is ma0. Denote rm as the displacement of the
m-th particle from its equilibrium position, and denote vm as its velocity. The Langevin dynamics of this model is
described as follows

v̇ =−∇r U (r )−γv +
√

2kB TγẆ t ,

ṙ = v ,
(45)
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(a) (bb⊤)11 (b) (B NN)11 (c) (bb⊤)11 − (B NN)11

Figure 2: The comparison of first component of bb⊤. (a) (bb⊤)11, (b) (B NN)11 and (c) their difference.

(a) true density p (b) p − p̃NN(·;θ) (c) p − p̂NN(·;θ)

Figure 3: The comparison of solutions. (a) True density p, (b) difference between p and p̃NN(·;θ) and (c) difference
between p and p̂NN(·;θ). Here p̂NN(·;θ) is obtained by optimizing (13) with aNN and B NN, while p̃NN(·;θ) is obtained
by optimizing (13) with a and bb⊤.

where v = [v1, · · · , vM ]⊤ and r = [r1, · · · ,rM ]⊤ are the velocities and displacement of all particles; W t =
[W (1)

t , · · · ,W (M)
t ]⊤ is an M-dimensional Wiener process; U is some potential function; γ is the friction constant; kB T

is the temperature. The mass of particles is set to be unity in (61). The equilibrium distribution of (61) is given by

p(v ,r ) ∝ exp

[

−
1

kB T

(

U (r )+
1

2
|v |2

)]

. (46)

In the numerical simulation, we take the Lennard-Jones potential [26], which is given by

U (r ) =
M∑

i=1

i−1∑

j=i−2
ψ(ri − r j + (i − j )a0), r0 := rM , r−1 := rM−1 (47)

with
ψ(r ) = |r |−12 −|r |−6. (48)

The model parameters of this example is set to be a0 = 1, γ= 0.5, kB T = 0.25, M = 10.

5.2.1 Data generation

We generate the data by Euler-Maruyama discretization, namely,

v n+1 = v n − (∇r nU (r n)+γv n)δt +
√

2kB Tγδtξ, ξ∼ (N (0,1))M ,

r n+1 = r n +v nδt ,
(49)

for n = 0,1, · · · , N −1 with the initial states

v 0 = 0, r 0 ∼ (N (0,0.01))M .
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Figure 4: The distribution of the original dataset X in the (r1,r2)-plane and the distribution of the transformed

dataset X̂ in the (d1,d2)-plane.

In this example, we set δt = 0.0005 and N = 107. Following the notation in Section 3.2, we denote X := {v n ,r n}N
n=0

as the original data set. If we visualize the distribution of X by projecting it onto the (r1,r2)-plane (Figure 4),
it is observed that displacement components are distributed near a straight line. To simplify the computation
and visualization, we consider a coordinate transformation that will map X to be enclosed by a hyper-rectangle.
Specifically, we introduce the following coordinate transformation,

T : RM →R
M−1, d := [d1, · · · ,dM−1]⊤ =T (r ) = [r2 − r1, · · · ,rM − rM−1]⊤ ,

where d is called the relative displacement. Note that the map T implies r1 − rM =−
∑M−1

m=1 dm . If we define the

transformed dateset X̂ := {v n ,d n}N
n=0 with d n =T (r n) and project it onto the (d1,d2)-plane (Figure 4), then it is

observed that most points in X̂ are located near the origin and form a circular region. Consequently, we apply the
proposed method to the transformed dataset X̂ in the practical computation.

5.2.2 Identification of the drift and diffusion coefficients.

Now we aim to identify the drift term a(v ,r ) and the diffusion bb⊤ of the underlying dynamics. Due to transforma-
tion T , we define â(v ,d ) := a(v ,r ) and aim to identify â by the optimization (6) using the dataset X̂ . Note â(v ,d )
is a vector-valued function with (2M −1)-dimensional inputs and 2M-dimensional outputs. In this example, to
obtain higher accuracy, we use an individual neural network with (2M −1)-dimensional inputs and scalar outputs
to approximate the each component of â(v ,d ), solving the regression problem in (6). In this application, this is a

regression over training data set (X̂ ,Y ), where Y := { v n+1−v n

δt
, r n+1Br n

δt
}N−1
n=0

In practice. we set each component of âNN to be a fully connected ReLU network with 3 layers and 100 neurons in
each layer. We employ Adams optimizer with 1000 epochs, and the learning rates are set to decay from 10−3 to 10−5.
The relative ℓ2 training errors for the first M components corresponding to the velocity are observed to be between
3.87×10−2 and 5.60×10−2, and the errors for the next M components are between 5.04×10−5 and 8.99×10−5.

Next, we consider the approximation B N N to the constant matrix bb⊤ using the formula in (9). In this example,
since bb⊤ is a diagonal matrix, we also set B NN to be diagonal with components (b11, . . . ,b2M ,2M ). The errors
|bkk − (bb⊤)kk | for the first M components are observed to be between 6.32×10−6 and 2.67×10−6, and the errors
for the next M components are between 8.07×10−13 and 3.63×10−12.

Similar to the previous example, we simulate the dynamics by the obtained âNN and B NN,

v n+1 −v n = (âNN)1:M (v n ,d n)δt + (B NN)
1
2
p
δtξn , ξn ∼N (0, I M ),

r n+1 − r n = (âNN)M+1:2M (v n ,d n)δt ,
(50)

and compare it with the ground truth. For the covariance of π, Monte Carlo integration with 108 points is used.
For the statistics of π̃ and π̂EM, we generate a sequence of 107 points. The information is shown in Table 2 for the
components v 1 and d 1. Notice that in this case, the statistical error for estimating π̂E M is not much worse than the
Monte-Carlo error of π̃.

16



A PREPRINT - SEPTEMBER 8, 2021

Distribution π π̃ π̂EM

δt N/A 0.0005 0.0005

mean
[
0 0

] [
−0.00363 −0.00013

] [
−0.00153 −0.00003

]

covariance

[
0.40229 −0.01749
−0.01749 0.00245

] [
0.37816 0.00008
0.00008 0.00292

] [
0.40916 0.00041
0.00041 0.00314

]

Table 2: Comparison of mean and covariance statistics (v 1 and d 1) corresponding to the ground truth distribution
π , discrete Markov chain induced by EM scheme in (3), π̃, and the discrete Markov chain generated by (50) for
δt = 0.0005 whose invariant distribution is denoted as π̂EM.

.

5.2.3 Computation of the density function

In this section, we aim to recover the equilibrium density function based on the obtained {âNN(v ,d ;θk )} and B NN.
We let p(v ,r ) be the original density function in (v ,r )-coordinates, and define p̂(v ,d ) := p(v ,r ) be the density
function under transformation T . Since p(v ,r ) satisfies (11), we can derive the PDE for p̂(v ,d ), which is given by

−
M∑

k=1

∂

∂vk
(p̂ âk )−

2M−1∑

k=M+1

∂

∂dk−M

(

p̂(âk+1 − âk )
)

+
1

2

M∑

k=1

(bb⊤)kk
∂2

∂v2
k

p̂ +
1

2
(bb⊤)M+1,M+1

∂2

∂d 2
1

p̂

+
1

2

M−1∑

k=2

(bb⊤)k+M ,k+M

(
∂

∂dk
−

∂

∂dk−1

)2

p̂ +
1

2
(bb⊤)2M ,2M

∂2

∂d 2
M−1

p̂ = 0, (51)

where âk denotes the k-th component of â.

Once the drift and diffusion coefficients are estimated, we substitute âk with the kth FNN estimate, denoted as
âNN(v ,d ;θk ), and (bb⊤)k,k with the diagonal components of the estimated diffusion matrix, bkk := (B NN)kk , such
that (51), becomes,

−
M∑

k=1

∂

∂vk
(p̂ âNN(v ,d ;θk ))−

2M−1∑

k=M+1

∂

∂dk−M

(

p̂(âNN(v ,d ;θk+1)− âNN(v ,d ;θk ))
)

+
1

2

(
M∑

k=1

bkk
∂2p̂

∂v2
k

+bM+1,M+1
∂2p̂

∂d 2
1

+
M−1∑

k=2

bk+M ,k+M

(
∂

∂dk
−

∂

∂dk−1

)2

p̂ +b2M ,2M
∂2p̂

∂d 2
M−1

)

= 0, (52)

Next, we select a bounded domain in which the PDE (52) will be solved. Our choice is to use a hyperrectangle

Ω =
2M−1∏

k=1
[ck − sk ,ck + sk ] to enclose most of the points in X̂ . At the same time, we expect Ω to be also densely

covered by the points in X̂ . By this principle, we set ck as the component-wise mean of the points in X̂ , namely,

ck =
{

1
N

∑N
n=1 vk , for k = 1, · · · , M ,

1
N

∑N
n=1 dk , for k = M +1, · · · ,2M −1,

(53)

and set sk empirically as follows.

sk =
{

1.0, for k = 1, · · · , M ,

0.1, for k = M +1, · · · ,2M −1.
(54)

For clarity, we display the projections of X̂ and Ω onto coordinate planes in Figure 5.

We take a neural network p̂NN(v ,d ;θ) to approximate p̂(v ,d ). Then we solve the PDE (52) with the least square
method introduced in Section 3.3 to determine p̂NN(v ,d ;θ). Specifically, we solve the least-square problem in (17)
with γ= 0, ignoring the artificial boundary constraint since the function values at the boundary ∂Ω are small, they
range from 7×10−7 to 4×10−6. Meanwhile, 90% of the points in X̂ ∩Ω are selected as the training set, denoted as D̂T,
and the other 10% are chosen as the testing set, denoted as D̂S, for the evaluation of the solution error. In practice.
we set each p̂NN to be a fully-connected network having 3 layers and 100 neurons in each layer with activation
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Figure 5: The projections of the dataset X (blue points) and the enclosing region Ω (red boxes) onto (v1, v2), (v3, v3),
(d1,d2), (d3,d4)-planes

function max{x3,0}. Adams optimizer is used to solve the optimization with 1000 epochs, and the learning rates
are set to decay from 10−4 to 10−5. Once p̂NN is obtained, we evaluate the result by computing the error between
p̂NN(v ,d ) and the true density function p̂(v ,d ). From (46)-(47), we directly have the expression of p̂(v ,d ), namely,

p̂(v ,d ) = c · p̂0(v ,d ) := c ·exp

[

−
1

kB T

(

Û (d )+
1

2
|v |2

)]

(55)

with

Û (d ) =ψ(−
M−1∑

i=1
di +a0)+ψ(−

M−2∑

i=1
di +2a0)+ψ(d1 +a0)+ψ(−

M−1∑

i=2
di +2a0)

+
M∑

i=3
ψ(di−1 +a0)+

M∑

i=3
ψ(di−1 +di−2 +2a0), (56)

where c is determined by the uniform condition

c =
(∫

R2M−1
p̂0(v ,d )

)−1

. (57)

Then the relative ℓ2 error between p̂NN(v ,d ) and p̂(v ,d ) can be computed according to (43) with L2(Ω) replaced
by L2(D̂S ), where the integral is replaced by an average over the testing data set D̂S . In this numerical result, we
found thatthe relative ℓ2 error of the computed density function p̂NN is 5.402×10−2. In Figure 6, we also show the
marginal densities of p̂NN

p̂
marginal
NN,k (vk ) :=

∫

(v ,d )\vk∈R2M−2
p̂NN(v ,d ;θ), for k = 1, · · · , M ,

p̂
marginal
NN,k (dk ) :=

∫

(v ,d )\dk∈R2M−2
p̂NN(v ,d ;θ), for k = M +1, · · · ,2M −1,

(58)
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Figure 6: Marginal densities of the computed density function p̂NN (red curves) and the true density function p̂ (blue
curves) for all components.

compared with the following true marginal densities

p̂
marginal
k

(vk ) :=
∫

(v ,d )\vk∈R2M−2
p̂(v ,d ), for k = 1, · · · , M ,

p̂
marginal
k

(dk ) :=
∫

(v ,d )\dk∈R2M−2
p̂(v ,d ), for k = M +1, · · · ,2M −1,

(59)

where the integrals in (57), (58) and (59) are computed by the Monte Carlo method. Notice the accurate estimation
of the marginal densities of the velocity components that are Gaussian and the marginal densities of the relative
displacement components that are non-symmetric.
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6 Conclusion

In this paper, we developed a deep learning-based method to estimate the stationary density of an unknown
Itô diffusion SDE from a time series induced by the Euler-Maruyama solver. Neural networks are employed to
approximate the drift, diffusion, and stationary density of the underlying dynamics. In our method, the first step
is learning the drift and diffusion coefficients by solving least square regressions corresponding to the available
dataset, and the second step is solving the steady-state Fokker-Plank equation formed by the estimated drift and
diffusion coefficients. Theoretically, we deduced an error bound for the proposed approach for an SDE with global
Lipschitz drift coefficients and constant diffusion matrix, accounting errors contributed by the discretization of
the SDE in the training data, the regression of the drift terms using fully-connected ReLU networks with arbitrary
width and layers, and the regression solution to the Fokker-Planck PDE using a fully-connected two-layer neural
network with the ReLU3 activation function. This error bound is deduced under various assumptions that underpin
the perturbation theory result in [72], generalization errors in approximating Lipschitz continuous functions in [28]
and in solving PDEs in [41].

From this theoretical study, we observe two difficult aspects that warrant careful treatments in future studies. The
first issue is concerning the incompatibility of the topologies that characterize the perturbation theory and machine
learning generalization theory. Since the bound in (24) is stronger than an L2-error bound in generalization theory,
one requires a tacit assumption of consistency in the sense of (22), which is not easily verified in practice. The
second issue is concerning the incompatibility of the computational and physical domains, which is admitted under
the Assumption4.2. Particularly, while the underlying stochastic process is defined on R

d , the error estimation
that accounts for finite samples the training for a and p̂ is not easily guaranteed for the entire unbounded domain.
Besides, it is also only feasible to employ the computation over a bounded domain.

In numerical simulations, we verified the effectiveness of the proposed method on two examples, a two-dimensional
Student’s t-distribution, and the 20-dimensional Langevin dynamics. Although the proposed data-driven methods
show encouraging numerical results on the approximation of the invariant statistics and densities, the empirical
loss function in (17) requires samples x I , xn

I I
and xn

I I I
. Such a requirement may not be viable when the geometry

is more complicated than hypercubes. While sampling the first term in (17) is avoidable by a Monte-Carlo over
the available time series as we have done in our numerical examples, generating samples for the second and third
terms in the loss function in (17) is unavoidable. In the future, we plan to consider different penalties such as the
one proposed in [70] which requires no additional samples other than the available time series.
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A Proofs for Section 4

Proof of Lemma 4.3. Since f0 ∈ BReLU, by [13, Theorem 12], there exists a two-layer ReLU FNN f ∗ with width W
such that ‖ f ∗‖L∞([0,1]d ) ≤ ‖ f0‖BReLU and

‖ f ∗− f0‖L∞([0,1]d ) ≤ 4‖ f0‖BReLU (d +1)
1
2 W − 1

2 ≤ 4
p

2‖ f0‖BReLU d
1
2 W − 1

2 .

So f ∗ ∈F
P
2,W,ReLU. Since ν is absolutely continuous with respect to the Lebesgue measure, it follows that

‖ f ∗− f0‖2
L2
ν([0,1]d )

≤ 32‖ f0‖2
BReLU

dW −1. (60)

Also, [28, Lemma 3.2] implies that

Eν

[

| fNN(·,θ f0 )− f0|2
]

≤C

[

P 2W (d +W ) log(W d +W 2)(log N )3N−1 + inf
f ∈F

P
2,W,ReLU

Eν

[

| f − f0|2
]

]

, (61)

where C is a constant that does not depend on d , N , W , f0, P . Combining (60) and (61) completes the proof.
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Proof of Lemma 4.5. Denote ê := q − p̂. On one hand, using integration by parts,

∫

Ω

L̂
∗ê · ê dx ≥

∫

Ω

d∑

i , j=1

1

2
B

i j

NNêxi
êx j

dx −
∫

∂Ω

(
d∑

i , j=1

1

2
B

i j

NN|êxi
| · |n j |

)

|ê|ds +
∫

Ω

d∑

i=1
ai

NNêxi
· ê +

(
d∑

i=1

∂ai
NN

∂xi

)

ê2dx

≥
1

2
Λ

∫

Ω

‖∇ê‖2dx −
1

2
dB1

∫

∂Ω
‖∇ê‖ · |ê|ds

≥
1

2
Λ‖∇ê‖2

L2(Ω) −
1

2
dB1

(

‖∇q‖L2(∂Ω) +‖∇p̂‖L2(∂Ω)

)

‖ê‖L2(∂Ω)

≥
1

2
Λ‖∇ê‖2

L2(Ω) −
1

2
dB1

(

B2 +ǫp̂

)

‖ê‖L2(∂Ω), (62)

where n j is the j -th component of the outward unit normal vector.

On the other hand, ∫

Ω

L̂
∗ê · êdx =

∫

Ω

L̂
∗q · êdx ≤ ‖L̂ ∗q‖L2(Ω) · ‖ê‖L2(Ω). (63)

Combining (62) and (63) leads to

‖∇ê‖2
L2(Ω) ≤ 2Λ−1‖L̂ ∗q‖L2(Ω) · ‖ê‖L2(Ω) +Λ

−1dB1(B2 +ǫp̂ )‖ê‖L2(∂Ω). (64)

Next, by Poincaré inequality, there exists some C1 > 0 that only depends on Ω such that
∥
∥
∥
∥ê −|Ω|−1

∫

Ω

êdx

∥
∥
∥
∥

L2(Ω)
≤C1‖∇ê‖L2(Ω),

which leads to

‖ê‖L2(Ω) ≤ |Ω|−1
∣
∣
∣
∣

∫

Ω

êdx

∣
∣
∣
∣‖1‖L2(Ω) +C1‖∇ê‖L2(Ω) ≤C2

(∣
∣
∣
∣

∫

Ω

êdx

∣
∣
∣
∣+‖∇ê‖L2(Ω)

)

,

where C2 = max(C1, |Ω|−1/2). Therefore, by (64) and the fact
∫

Ω
p̂dx = 1,

‖ê‖2
L2(Ω) ≤ C3

[∣
∣
∣
∣

∫

Ω

êdx

∣
∣
∣
∣

2

+‖∇ê‖2
L2(Ω)

]

≤ C3

[∣
∣
∣
∣

∫

Ω

qdx −1

∣
∣
∣
∣

2

+2Λ−1‖L̂ ∗q‖L2(Ω) · ‖ê‖L2(Ω) +Λ
−1dB1(B2 +ǫp̂ )‖ê‖L2(∂Ω)

]

, (65)

where C3 = 2C 2
2 . Using the Young’s inequality 2C3Λ

−1‖L̂ ∗q‖L2(Ω) · ‖ê‖L2(Ω) ≤
4C 2

3Λ
−2‖L̂ ∗q‖2

L2(Ω)
+‖ê‖2

L2(Ω)
2 , it follows

from (65) that

1

2
‖ê‖2

L2(Ω) ≤C3

∣
∣
∣
∣

∫

Ω

qdx −1

∣
∣
∣
∣

2

+2C 2
3Λ

−2‖L̂ ∗q‖2
L2(Ω) +C3Λ

−1dB1(B2 +ǫp̂ )‖ê‖L2(∂Ω). (66)

Note ‖ê‖L2(∂Ω) ≤ ‖p̂‖L2(∂Ω) +‖q‖L2(∂Ω) ≤ ǫp̂ +‖q‖L2(∂Ω), it follows from (66) that

‖ê‖2
L2(Ω) ≤ 2C3

∣
∣
∣
∣

∫

Ω

qdx −1

∣
∣
∣
∣

2

+4C 2
3Λ

−2‖L̂ ∗q‖2
L2(Ω) +2C3Λ

−1dB1(B2 +ǫp̂ )ǫp̂

+2C3Λ
−1dB1(B2 +ǫp̂ )‖q‖L2(∂Ω)

≤ C
(

J [q]+d(B2 +ǫp̂ )J [q]
1
2 +d(B2 +ǫp̂ )ǫp̂

)

,

where C only depends on Ω,Λ,B1,λ1,λ2.

Proof of Lemma 4.6. Let f = E(c,w )∼ρ[cσ̇(w⊤x)] for some ρ taking the infimum in (37). Then L̂
∗ f =

E(c,w )∼ρ[L̂ ∗(cσ̇(w⊤x))]. Using the homogeneity of the neuron cσ̇(w⊤x), we may assume that ‖w‖1 = 1 and
|c| = ‖ f ‖Bσ̇ ρ-almost everywhere. Indeed, denote p0 as the density of ρ, we define the probability measure ρ∗ with
the density

p∗
0 (ĉ, ŵ ) =

{∫

c‖w‖3
1=ĉ p0(c, w )dcdw , if ‖ŵ‖1 = 1,

0, otherwise,
(67)
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then it can be verified that ρ∗ ∈ P f , Eρ |c|‖w‖3
1 = Eρ∗ |ĉ|‖ŵ‖3

1 and supp(p∗
0 ) ⊂R× {‖ŵ‖1 = 1}. Moreover, we define the

probability measure ρ∗∗ with the density

p∗∗
0 (c̃, w̃ ) =







‖ f ‖−1
Bσ̇

∫+∞
0 |ĉ|p∗

0 (ĉ, ŵ )dĉ, if c̃ = ‖ f ‖Bσ̇ ,‖w̃‖1 = 1,

‖ f ‖−1
Bσ̇

∫0
−∞ |ĉ|p∗

0 (ĉ, ŵ )dĉ, if c̃ =−‖ f ‖Bσ̇ ,‖w̃‖1 = 1,

0, otherwise,

(68)

then it can be verified that ρ∗∗ ∈ P f , Eρ∗ |ĉ|‖ŵ‖3
1 = Eρ∗∗ |c̃|‖w̃‖3

1 and supp(p∗∗
0 ) ⊂ {c̃ =±‖ f ‖Bσ̇ }× {‖w̃‖1 = 1}.

Let {(cm , w m)} be M independent and identically distributed samples with ρ. By [57, Lemma 26.2],

E{(cm ,w m )}∼ρM

[

sup
x∈Ω

L̂
∗
(

1

M

M∑

m=1
cmσ̇(w⊤

m x)

)

−L̂
∗ f (x)

]

= E{(cm ,w m )}∼ρM

[

sup
x∈Ω

(

1

M

M∑

m=1
L̂

∗cmσ̇(w⊤
m x)−E(c,w )∼ρ[L̂ ∗(cσ̇(w⊤x))]

)]

≤ 2E{(cm ,w m )}∼ρM Eτ

[

sup
x∈Ω

1

M

M∑

m=1
τmL̂

∗(cmσ̇(w⊤
m x))

]

, (69)

where τm =±1 with probability 1/2 are independent Rademacher variables.

Note that

Eτ

[

sup
x∈Ω

1

M

M∑

m=1
τmL̂

∗(cmσ̇(w⊤
m x))

]

= Eτ

[

sup
x∈Ω

1

M

M∑

m=1
τmcm

(

1

2
w⊤

m B NNw mσ̇′′(w⊤
m x)+a⊤

NNw mσ̇′(w⊤
m x)+

(
d∑

i=1

∂ai
NN

∂xi

)

σ̇(w⊤
m x)

)]

≤ Eτ

[

sup
x∈Ω

1

M

M∑

m=1

1

2
τmcm w⊤

m B NNw mσ̇′′(w⊤
m x)

]

+Eτ

[

sup
x∈Ω

1

M

M∑

m=1
τmcm a⊤

NNw mσ̇′(w⊤
m x)

]

+Eτ
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sup
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1

M

M∑

m=1
τmcm

(
d∑

i=1

∂ai
NN

∂xi

)

σ̇(w⊤
m x)

]

(70)

For the first term in (70), by the contraction lemma for Rademacher complexities [57, Lemma 26.9], we have

Eτ

[

sup
x∈Ω

1

M

M∑

m=1

1

2
τmcm w⊤

m B NNw mσ̇′′(w⊤
m x)

]

= Eτ

[

sup
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1

M
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1

2
cm w⊤

m B NNw m ·w⊤
m x)

]

≤ Eτ

[

sup
x∈Ω

1

M

M∑

m=1
τmB1|cm |‖w m‖2

1 ·w⊤
m x

]

=
B1

M
Eτ

[

sup
x∈Ω

x⊤
M∑

m=1
τm |cm |‖w m‖2

1 ·w m

]

≤ B1Eτ

∥
∥
∥
∥
∥

1

M
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τm |cm |‖w m‖2

1 ·w m

∥
∥
∥
∥
∥

1

. (71)

Similarly, we can derive

Eτ

[

sup
x∈Ω

1

M

M∑

m=1
τmcm a⊤

NNw mσ̇′(w⊤
m x)

]

≤ B1Eτ

∥
∥
∥
∥
∥

1

2M

M∑

m=1
τm |cm |‖w m‖1 ·w m

∥
∥
∥
∥
∥

1

(72)

and

Eτ

[

sup
x∈Ω

1

M

M∑

m=1
τmcm

(
d∑

i=1

∂ai
NN

∂xi

)

σ̇(w⊤
m x)

]

≤ B1Eτ

∥
∥
∥
∥
∥

1

2M

M∑

m=1
τm |cm |w m

∥
∥
∥
∥
∥

1

. (73)
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Denote um := cm w m , then ‖um‖1 = ‖ f ‖Bσ̇ . We combine (69)-(73) and obtain

E{(cm ,w m )}∼ρM

[

sup
x∈Ω

L̂

(

1

M

M∑

m=1
cmσ̇(w⊤

m x)

)

−L̂ f (x)

]

≤ 2 sup
‖um‖1≤‖ f ‖Bσ̇

2B1Eτ‖
1

M

M∑

m=1
τm um‖1

≤ 2‖ f ‖Bσ̇ sup
‖um‖1≤1

2B1Eτ‖
1

M

M∑

m=1
τm um‖1

≤ 2
p

d‖ f ‖Bσ̇ sup
‖um‖2≤1

2B1Eτ‖
1

M

M∑

m=1
τm um‖2

≤ 4B1‖ f ‖Bσ̇

p
d/M (74)

by using the Rademacher complexity of the unit ball [57, Lemma 26.10]. Applying the same argument to
−

(

L̂
( 1

M

∑M
m=1 cmσ̇(w⊤

m x)
)

−L̂ f (x)
)

leads to

E{(cm ,w m )}∼ρM

[

sup
x∈Ω

∣
∣
∣
∣
∣
L̂

(

1

M

M∑

m=1
cmσ̇(w⊤

m x)

)

−L̂ f (x)

∣
∣
∣
∣
∣

]

≤ 4B1‖ f ‖Bσ̇

p
d/M . (75)

By similar argument, we can derive

E(c,w )∼ρ

[

sup
x∈Ω

∣
∣
∣
∣
∣

1

M

M∑

m=1
cmσ̇(w⊤

m x)− f (x)

∣
∣
∣
∣
∣

]

, E(c,w )∼ρ

[

sup
x∈∂Ω

∣
∣
∣
∣
∣

1

M

M∑

m=1
cmσ̇(w⊤

m x)− f (x)

∣
∣
∣
∣
∣

]

≤ ‖ f ‖Bσ̇

p
d/M . (76)

Therefore we have

E(c,w )∼ρM

[

sup
x∈Ω

∣
∣
∣
∣
∣
L̂

(

1

M

M∑

m=1
cmσ̇(w⊤

m x)

)

−L̂ f (x)

∣
∣
∣
∣
∣
+ sup

x∈Ω

∣
∣
∣
∣
∣

1

M

M∑

m=1
cmσ̇(w⊤

m x)− f (x)

∣
∣
∣
∣
∣

+ sup
x∈∂Ω

∣
∣
∣
∣
∣

1

M

M∑

m=1
cmσ̇(w⊤

m x)− f (x)

∣
∣
∣
∣
∣

]

≤ (4B1 +2)‖ f ‖Bσ̇

p
d/M , (77)

which implies there exists {(cm , w m)}M
m=1 such that the inequality holds. Then the FNN

∑M
m=1(cm/M)σ̇(w⊤

m x) ∈
F

2,M ,σ̇,max
{

‖ f ‖Bσ̇
/M ,1

} satisfies (38).

Proof of Lemma 4.8. Denote p̂S
NN(x) = p̂NN(x ;θS ). Since p̂NN ∈ F2,M ,σ̇,Q , using the expression in (20) we have

‖∇p̂S
NN‖L2(∂Ω) ≤ 1

2 MQ4|∂Ω|
1
2 = 1

2 MQ4(2d)
1
2 . Then the inequality (39) directly follows Lemma 4.5. For the rest, we

use C to represent any constant which on depends on Ω, Λ, B1, λ1 and λ2. On one hand,

|J [p̂S
NN]− JS [p̂S

NN]| ≤

∣
∣
∣
∣
∣
‖L p̂S

NN‖
2
L2(Ω) −

|Ω|
N1

N1∑

n=1
|L p̂S

NN(xn
I )|2

∣
∣
∣
∣
∣
+λ2

∣
∣
∣
∣
∣
‖p̂S

NN‖
2
L2(∂Ω) −

|∂Ω|
N3

N3∑

n=1
|p̂S

NN(xn
III)|

2

∣
∣
∣
∣
∣

+λ1

∣
∣
∣
∣
∣

∫

Ω

p̂S
NN(x)dx −

|Ω|
N2

N2∑

n=1
p̂S

NN(xn
II)

∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣

∫

Ω

p̂S
NN(x)dx +

|Ω|
N2

N2∑

n=1
p̂S

NN(xn
II)−2

∣
∣
∣
∣
∣
. (78)

By virtue of [41, Theorem 3.2], with probability at least 1−δ/3,
∣
∣
∣
∣
∣
‖L p̂S

NN‖
2
L2(Ω) −

|Ω|
N1

N1∑

n=1
|L p̂S

NN(xn
I )|2

∣
∣
∣
∣
∣
+λ2

∣
∣
∣
∣
∣
‖p̂S

NN‖
2
L2(∂Ω) −

|∂Ω|
N3

N3∑

n=1
|p̂S

NN(xn
III)|

2

∣
∣
∣
∣
∣
≤C I1. (79)

Similarly, by the fact |p̂S
NN(x)| ≤ MQ4/6 for all x and Lemma 4.7, we have with probability at least 1−δ/3,

∣
∣
∣
∣
∣

∫

Ω

p̂S
NN(x)dx −

|Ω|
N2

N2∑

n=1
p̂S

NN(xn
II)

∣
∣
∣
∣
∣
≤C MQ4

√

log(6/δ)/N2, (80)

and |Ω|
N2

∑N2
n=1 p̂S

NN(xn
II) ≤C MQ4. Then we have

λ1

∣
∣
∣
∣
∣

∫

Ω

p̂S
NN(x)dx −

|Ω|
N2

N2∑

n=1
p̂S

NN(xn
II)

∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣

∫

Ω

p̂S
NN(x)dx +

|Ω|
N2

N2∑

n=1
p̂S

NN(xn
II)−2

∣
∣
∣
∣
∣
≤C I2. (81)
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On the other hand, by Lemma 4.6 there exists some pNN ∈ F2,M ,σ̇,Q such that

sup
x∈Ω

∣
∣L̂ pNN(x)

∣
∣+ sup

x∈Ω

∣
∣pNN(x)− p̂(x)

∣
∣+ sup

x∈∂Ω

∣
∣pNN(x)− p̂(x)

∣
∣≤C‖p̂‖Bσ̇

p
d/M . (82)

Note that
∫

Ω
p̂dx = 1, we have
∣
∣
∣
∣
∣

|Ω|
N2

N2∑

n=1
pNN(xn

II)−1

∣
∣
∣
∣
∣

2

≤ 2

(∣
∣
∣
∣
∣

|Ω|
N2

N2∑

n=1

(

pNN(xn
II)− p̂(xn

II)
)

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

|Ω|
N2

N2∑

n=1
p̂(xn

II)−
∫

Ω

p̂dx

∣
∣
∣
∣
∣

2)

. (83)

and
∣
∣pNN(xn

III)
∣
∣2 ≤ 2

(∣
∣pNN(xn

III)− p̂(xn
III)

∣
∣2 +ǫ2

p̂

)

, (84)

using the fact that |p̂(x)| ≤ ǫp̂ on ∂Ω in Assumption 4.5.

Then it follows (82)-(84) and Lemma 4.7 that with probability at least 1−δ/3

JS [p̂S
NN] ≤ JS [pNN] ≤

1

N1

N1∑

n=1

∣
∣L pNN(xn

I )
∣
∣2 +2λ1

∣
∣
∣
∣
∣

|Ω|
N2

N2∑

n=1

(

pNN(xn
II)− p̂(xn

II)
)

∣
∣
∣
∣
∣

2

+2λ1

∣
∣
∣
∣
∣

|Ω|
N2

N2∑

n=1
p̂(xn

II)−
∫

Ω

p̂

∣
∣
∣
∣
∣

2

+2λ2
|∂Ω|
N3

N3∑

n=1

(∣
∣pNN(xn

III)− p̂(xn
III)

∣
∣2 +ǫ2

p̂

)

≤C I3. (85)

Finally, the proof can be completed by using (78), (79), (81), (85) and the fact J [p̂S
NN] ≤

∣
∣J [p̂S

NN]− JS [p̂S
NN]

∣
∣+ JS [p̂S

NN].
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