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We present results from the new Dendro-GR code. These include simulations of binary black hole mergers
for mass ratios up to ¢ = 16. Dendro-GR uses wavelet adaptive multiresolution to generate an unstructured
grid adapted to the spacetime geometry together with an octree-based data structure. We demonstrate good
scaling, improved convergence properties, and efficient use of computational resources. We validate the

code with comparisons to LazEv.
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I. INTRODUCTION

The gravitational wave detectors LIGO/Virgo have made
a number of epochal discoveries [1,2]. These have given
us a dramatically broader conception and understanding
of the high-energy universe and some of its compact
object constituents [3-5]. As these detectors continually
improve [6-8] and are added to by new detectors, such as
KAGRA [9], we can confidently expect an ongoing parade
of additional discoveries.

The detection and analysis of gravitational waves (GW)
uses a library of modeled waveforms for comparison with
the detector output signal. Numerical relativity waveforms
are computed using the full nonlinear, Einstein equations,
and these waveforms span the evolution of the binary
system from inspiral, through merger, and finally to ring-
down. These waveforms may be used directly in the
analysis of gravitational waves [10,11], or to inform and
validate faster, approximate methods for generating wave-
forms, such as semianalytical and phenomenological meth-
ods (see, e.g., [12-19]). Numerical relativity can also probe
certain astrophysical scenarios that are difficult to model
with approximate methods. Examples of such scenarios
include nonvacuum spacetimes, such as systems with
neutron stars, accretion disks, and/or magnetic fields.
Even some vacuum binary black hole systems can be
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difficult to model with approximate techniques, such as
binaries with large eccentricity, high spins, or large mass
ratios. We use the mass ratio ¢ = m; /m,, where m, is the
mass of the primary with m; > m,.

While there are advantages to using numerical relativity
waveforms directly in gravitational wave analysis, there
are significant challenges in calculating waveforms of
sufficient quality. The waveforms must be sufficiently long,
have errors bounded within known tolerances, and they
must span a large region of the binary parameter space.
The development of newer, more sensitive gravitational
wave detectors significantly complicates the challenge. For
example, recent work on requirements for third-generation
(3G) detectors [20-22] and LISA [23] estimate that errors
in numerical relativity waveforms need to be reduced by an
order of magnitude [24]. Another study found that numeri-
cal resolutions of binary black hole (BBH) spacetimes will
need to be increased by almost a factor of 10 in some
cases [25]. Reducing the error in numerical waveforms to
the level required by 3G detectors will require new
algorithms and methods in numerical relativity.

The challenge of producing waveforms for future
gravitational wave detectors will require highly scalable
numerical relativity codes that are able to efficiently run on
exascale supercomputers. Dendro-GR is a new code for
relativistic astrophysics that is designed to meet some of
the next-generation challenges in numerical relativity.
Dendro-GR scales well on massively parallel supercomputers,
and it uses fast, responsive wavelet adaptive multiresolu-
tion (WAMR). Importantly, Dendro-GR easily accommodates
many well-tested numerical methods that have been
developed in the relativity community, such as the
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evolution of Einstein equations in the BSSN formalism and
high-resolution shock-capturing methods for relativistic
fluid dynamics.

Several projects are currently being developed in the
community that use modern adaptive-mesh infrastructures
and sophisticated numerical algorithms to meet this com-
putational challenge. Among these are GR-Athena++ [26],
which uses the highly efficient octree AMR infrastruc-
ture of Athena++ for full numerical relativity simulations
coupled to GRMHD, GRChombo [27], a fully modern AMR
numerical relativity code allowing for complex grid con-
figurations, and CarpetX, which is a new AMR driver for the
Einstein Toolkit [28,29] that is built on the AMReX toolkit [30].
Pseudospectral and discontinuous Galerkin methods
promise some advantages for massively parallel comput-
ing. SpECTRE [31] uses discontinuous Galerkin methods
and a task-based parallelization scheme. Nmesh [32,33] and
BAMPS [34] are other codes using discontinuous Galerkin
methods. Simflowny [35] has a domain-specific language and
a web-based development environment and graphical user
interface. Simflowny can generate code for multiple plat-
forms, such as SAMRAI [36]. Dendro-GR uses an efficient
octree structure to store the grid elements similar in spirit to
that used in GR-Athena++, while Dendro-GR’S wavelet decom-
position with an unstructured grid is similar in spirit to
SpECTRE.

This paper presents results from some of the first binary
black hole mergers performed with Dendro-GR. We study
gravitational waves from binary black hole systems with
mass ratios up to ¢ = 16. We compare results with the
well-known LazEv [37,38] code in some cases, and find that
the solutions match in the convergence limit. We also
present performance data for Dendro-GR.

II. METHODS

Dendro-GR has been built with the intention of tackling
relativistic astrophysics problems involving merging com-
pact objects. Its development uses and accommodates a
number of standard techniques within numerical relativity
as well as including some new approaches, all with an eye
to improving the efficiency, scalability, and time to solution
for still challenging problems such as large mass ratio
binary black holes. Among the conventional and well-
tested numerical methods used in Dendro-GR, we solve the
Einstein equations using the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formulation together with typical coor-
dinate conditions, initial data, and finite-differencing
algorithms. Newer approaches used within Dendro-GR
include some of the following and are discussed at greater
length subsequently in this section. The code uses a
dynamic grid which is constructed via an expansion of
the grid functions in an interpolating wavelet basis. In this
basis, terms in the wavelet expansion can be mapped to
individual grid points. The resulting unstructured grid is
naturally represented computationally as an octree. On

integrating the equations of motion in time, each node of
this octree is separately unzipped (decompressed) into a
local point representation on a uniform Cartesian grid. The
integrated functions are then zipped (compressed) back to a
sparse representation by thresholding the coefficients of the
wavelet expansion. This sparse representation is compact
and computationally efficient as it conserves computer
memory and reduces parallel communication. This section
describes some of these key components of Dendro-GR in
more detail. We begin with a brief description of our
formalism for solving the Einstein equations and setting
initial data. We then describe the generation of the grid
using WAMR and the process for integrating the equations.

A. Formalism

There is extensive literature on solving the BSSN
equations in general relativity, including monographs
such as [39-42]. This section briefly outlines our parti-
cular choices for solving the BSSN equations. We write the
BSSN equations in terms of the conformal factor [38]

xh = det(y;;). (1)

For gauge conditions, we use the “1 4 log” slicing con-
dition and the I'-driver shift as used in [43]

o,a = flo,a — 2ak, (2)
i _ iy 4O pi
op = po;p +4_lB ) (3)
0,B' = pio,B" + 01" — pio;T" — nB'. (4)

Spatial derivatives are calculated using centered finite-
difference operators that are O(h°) in the grid spacing, A.

The semidiscrete Einstein equations are integrated in
time using explicit fourth-order Runge-Kutta with a time-
step At = 0.25Ax,;,, Where x,;, is the smallest distance
between points on the grid. Kreiss-Oliger dissipation is
added to the equations using a fifth-order operator

ASu, = (=up 5+ 6ul 5 —15u) |+ 20up,

—15uy, | + 6uy,_H — up_3)/(64Ax) (5)

with a tunable amplitude parameter o, 0 < ¢ < 1, which
allows one to adjust the amount of dissipation [39]. As
discussed below in Sec. IVA, we found best results with
o = 0.4. We make the common choice to enforce certain
algebraic constraints and derivative definitions as descri-
bed, for example, in [44]. Outgoing radiative boundary
conditions are applied to the dynamical variables.

We extract gravitational waves from our simulations at
five radii between 50 M < r < 100 M using the Penrose
scalar, y, [39,45]. Here, M is the sum of the local masses of
each black hole M = m; 4+ m,, and m; and m, are the
ADM masses computed in the asymptotically flat region at
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each puncture [46]. Their decomposition with respect to
spin-weighted spherical harmonics (SWSH) is performed
using the Lebedev quadrature [47]. To evaluate y, at each
of the quadrature points on each 2-sphere, we perform an
efficient search operation on the underlying grid, and
SWSH projection coefficients are computed with a parallel
reduction operation [48].

B. Initial data

Initial data for both Dendro-GR and LazEv are set using the
TwoPunctures code [46] from the Einstein Toolkit [28,29]. For the
initial values of shift, both codes set (¢ = 0) = 0. Initial
values of the lapse in Dendro-GR use the ad hoc function
a(t =0) =2, where § = 1 +m,;/(2r) + myy/(2ry),
r; is the coordinate distance to the ith BH, and m,; is the bare
mass parameter of the ith BH. In LazEv the initial lapse
iS l/~/ =1 + 1/(4}’1) -+ 1/(4r2)

In this paper, we evolve nonspinning black hole binaries
with mass ratios g = 1, 2, 4, 8, and 16. We place the black
holes initially on the x axis, with the binary’s center of mass
at the origin. The smaller black hole with mass m, is placed
on the positive x axis, and the initial coordinate separation
is fixed to x, — x; = 8 M. Again, M is the sum of the local
ADM masses of each black hole computed in the asymp-
totically flat region at each puncture. Initial data parameters
for the ¢ = 1 binary are ad hoc quasicircular parameters
chosen to match previous work [49]. Parameters for all
other cases were found using the low eccentricity post-
Newtonian expressions reported in [50]. To simplify
comparisons with LazEv, we set the TwoPunctures code to
use the bare puncture masses and other parameters shown
in Table I directly. Finally, we ran the ¢ = 1, 2, and 4 cases
with both Dendro-GR and LazEv, while the higher mass ratio
simulations were only run with Dendro-GR.

C. Symbolic code generation

The evaluation of the BSSN equations at a given grid point
is computationally expensive and can be challenging due to
the large number of terms associated with the equations.
Manually writing code to evaluate these equations can be

TABLE L.

prone toerror, difficult to debug, and challenging to perform
architecture-specific optimizations. To address some of these
issues, we have developed a SymPy-based code generation
framework for Dendro-GR. This tool has some of the same
capabilities as NrPy+ [51,52] but is more limited in scope.
Using our symbolic framework, we compute the directed
acyclic graph representing the underlying computations for
the BSSN equations. We perform optimizations to reduce the
overall number of operations as well as architecture-specific
optimizations that improve our code’s performance port-
ability. The current implementation of the symbolic frame-
work supports CPUs and GPUs [48,53].

D. Grid generation with WAMR

The computational complexity of the Einstein equations,
together with the requirement of high accuracy across
multiple spatial and temporal scales, motivates the use of
grid adaptivity. Dendro-GR uses a wavelet-based approach
which results in a representation of the underlying field
variables on a sparse, adaptive mesh. We describe briefly
here the fundamental aspects of this sparse representation.
More complete details can be found in [48,53-55]. While
we use the coefficients in a wavelet expansion to generate
the computational grid, we store the grid functions only in
the point representation. Thus, the wavelet coefficients are
not used to integrate the equations of motion.

Two essential ingredients in our approach are the
notion of iterative interpolation [56] and the wavelet
representation itself [57,58]. We demonstrate both of these
in one dimension. The extension to multiple dimensions is
straightforward and is accomplished by simply repeating
the procedures we will describe in each additional dimen-
sion. To fix ideas, we first define a set of nested grids V;,
where

V,; = {x/*:xik = 277kAx},

where j and k are nonnegative integers, and Ax is the
spacing on the base grid (or level) and which is labeled with
j = 0. This base grid V|, is comprised of N 4 1 grid points
evenly spaced on a domain of length L = NAx. Each finer

The initial configuration parameters for nonspinning binary black hole systems for increasing mass ratio. The presented

numerical waveforms are based on these initial data parameters. The parameters for g > 2 were obtained using the expressions in [50].
The initial data are set using the bare mass parameters. The black holes are placed initially on the x axis at the locations x; and x, as

given in the table. The linear momentum of the second black hole is given in the last two columns, p, = (p,. py), and p; = —p,.
Mass ratio Puncture parameter ADM mass Total X position Momentum BH2
q=m;/m, M mp m, m ADM mass X5 X Dy Py

1 0.48240 0.48240  0.50010 0.50010 0.98844 4 —4 0 0.1140

2 0.31715 0.65150  0.6667 0.33333 0.98931 5.3238 —-2.6762 —-0.0017777 0.10049
4 0.18805 0.78937  0.20000 0.80000 0.99237 6.3873 —1.6127 —0.0010647 0.072660
8 0.10362 0.88245  0.11111 0.88889 0.99534 7.1006  —0.89938  —0.00049937  0.045037
16 0.054585 0.93761  0.058824 094118 0.99740 7.5226 047741  —-0.00019532  0.025319
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FIG. 1. This shows the fundamental solution of the iterated
interpolation ¢(x) (solid) and a basis element attached to the grid
V, called ¢, ;(x) (dashed). All the basis functions are scaled,
translated versions of the fundamental solution.

grid with j > 0 contains each point in every coarser grid.
Values of a field u at level j are designated u(x/*) = u/*. If
known, these values are copied from coarser grids to all
required fine grids. For example, to go from V; to V., we
take u/*1% = /% A similar copy happens to all higher-
level fine grids. Of course, on these finer grids, there will be
points newly appearing. The field values on those grid
points new to grid V;, are interpolated from the known
values on the coarser grid V;. We generally use Lagrange
interpolation. In this manner, all fields at any refinement
level can be had (see Fig. 2). This iterated interpolation
continued to arbitrarily large levels produces continuous
functions with compact support [57].

The process just described is the start of how our sparse
grid will emerge. But it also produces a natural basis set
with which we can represent our fields. This basis set is
comprised of interpolating functions created via iteration
from a sequence of zeros and a single value of one living on
V, (sometimes referred to as a Kronecker sequence). More
specifically, define a function ¢, ;(x) which takes values at
the points x*/ (imagine on the base grid) of ¢ ; (x*') = 5.
Now interpolate as described above to find ¢, ;. at other grid
points and iterate. This can be repeated for ¢; ; with j > 0.
The resulting iterated interpolating functions will have a
number of properties, including compact support and a two
scale relation given by

$ialx) = ch‘,k(pj-&-l,l(x)v

[

where the coefficients cj’  Will depend on the order of the
interpolation. Significantly, each of these iterated, inter-
polating functions are scaled, translated versions of a
single, fundamental function ¢(x) related to a particular
limiting function of the above iterated interpolation. It is
related to the Daubechies scaling function and shown
in Fig. 1.
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FIG. 2. This illustrates a simplified conception of how the grid
is constructed. In (a), one-dimensional nested grids V; (for j = 0,
1, 2) are shown. Note that every fine grid contains all the grid
points on every coarser grid. This redundancy is removed in
(b) on defining the complementary spaces, W; (colored red and
blue). We compute wavelet coefficients (/) as the difference
between u/* and the field as interpolated from level V j-1-1In (c),
those grid points with wavelet coefficients larger than a pre-
determined threshold e are tagged (here with circles) as essential
to the calculation. For those grid points with |@/*| < e, the
corresponding terms in the interpolating wavelet expansion are
ignored, and the grid points are discarded from the mesh, as
illustrated in (d).

With these iterated, interpolating functions in hand, we
can now return to and complete our wavelet representation.
Note that at each point of each level, we have an associated
scaling function

$;x(x) = P(2x/Ax - k),

which, when taken all together, constructs a basis at each
level, j. However, across levels, the set of scaling functions
is overdetermined and will not form a basis for the entire
grid until we deal with the redundancy introduced by
having common points in V; and V;,. To this end, we
consider the complementary space to V;, which we call W,
such that

W, = {x/*:x/% = 27 kAx, k odd},

and is that set of points in V; that are not in V;_; [see
Fig. 2(b)]. With this definition, we use the set of grids given
by {V. W;} and thereby have a basis with respect to which
we can define our fields u:
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u(0) = S0y () + 30 3 dih ().

keS, Jj=1 kes;

The coefficients u** and d/* are expansion coefficients
with S5 = 0,1, ..., N providing the index set for the base
grid Vo, and S; = 1,3,...,2/*'N — 1 being the index set
for the fine grid given by W;. This last expression is our
interpolating wavelet expansion in which u%f are just the
values of the field on the base points and the coefficients
d’* referred to as wavelet coefficients are but the
differences between the field values u/* and the interpo-
lated values at x/* coming from the next lower level, j — 1.
If we designate these interpolated values as i/, the wavelet
coefficients are then computed simply as

Ak = ik — ik,

We can think of that part of the expansion with the
scaling functions as encoding the smooth part of the field
u(x), while the wavelet coefficients provide information
about the function on fine scales. Because of the highly
local nature of the wavelets used, this representation will
have many wavelets in regions exhibiting strong spatial
variations, while few will be necessary in regions where the
field is changing slowly.

With the wavelet representation in hand, compression
is now possible. More particularly, we can make the
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representation sparse by choosing a threshold value €, such
that if the magnitude of the wavelet coefficients |d@/*| is
smaller than e, we truncate the expansion and discard the
corresponding grid points from the grid itself. Doing so
both reduces the grid size and provides an error bound on
the representation of the field. In Figs. 2(c) and 2(d), we
illustrate this approach to constructing the grid. As already
mentioned, extending to multiple dimensions amounts to
taking the basis functions to be products of the one-
dimensional basis functions.

An example of the WAMR-constructed grid used to
evolve binary black holes is shown in Fig. 3, which shows
the grid for a ¢ = 16 binary before merger. This computa-
tional grid is very efficient: The grid is sparse with refined
regions that adapt to the small-scale features of the
spacetime. The grid does not require refined regions to
be rectangular on large scales, significantly saving on
computational and memory costs. Moreover, large over-
lapping regions between refinement levels are not required.

E. Refinement functions

Interpolating wavelets are sensitive to any nondifferen-
tiable or nonconvergent parts of a solution, triggering
immediate refinement. This is important for resolving
small-scale features in solutions. However, refinement
can be triggered by uninteresting or unphysical features
as well. In binary black hole spacetimes, we are primarily
interested in resolving the binary at the center of the grid
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FIG. 3.
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This figure plots the lapse on the computational grid generated for a ¢ = 16 black hole binary, after the system has evolved for

two orbits. The top left frame shows the entire computational domain, and moving to the right, each frame successively moves toward
the smaller of the two black holes. The computational grid is sparse, with refinement concentrated about the black holes, making it very
computationally efficient. The 2:1 refinement constraint for constructing the grid, discussed in Sec. II F 2, is also apparent in the overall

grid structure.
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FIG. 4. This figure shows the wavelet tolerance e(r) for
refinement function RF3 at a few representative times. This
refinement function is spherically symmetric, centered on the
origin of the grid, and is independent of the black hole masses.
The minimum wavelet tolerance is used over a relatively large
region at the center of the grid. After r = 20M, the wavelet
tolerance decreases in the GW extraction zone 50 < r/M < 100,
allowing the initial junk radiation to pass before triggering
refinement in this region.

and following radiation out to the extraction region. To
achieve computational efficiency, therefore, it is important
to control where refinement occurs, focusing on physically
interesting features in the solution.

One way to manage refinement in Dendro-GR is to set a
maximum allowed level of refinement for the entire grid,
Jmax- This limit is enforced globally for all times, and is
chosen to allow for an expected minimum grid resolution. It
is important to note that the spacetime at the black hole
puncture is not smooth, and the WAMR grid will continue
refining on this feature until the maximum level of refinement
is reached. As we evolve binaries with large mass ratios, we
need to prevent over-refinement of the more massive black
hole in the binary. We modify the naive use of J, by
tracking the black hole locations and imposing a mass-
dependent constraint on the maximum refinement level about
each black hole. We refine a sphere expected to extend
beyond the apparent horizon to the local maximum refine-
ment level.

Recall that refinement in WAMR is controlled by the
wavelet tolerance e. Usually, € is taken to be a constant.
However, we have found that using a spatially dependent
wavelet tolerance ¢ = ¢(r) allows us to focus refinement
near the center of the grid and to reduce refinement beyond
the wave extraction zone. We typically choose minimum
and maximum values of ¢, for the inner and outer regions of
the grid, respectively, and let loge vary linearly between
these limits.

Unfortunately, the situation is further complicated by
junk radiation in the initial data and time-dependent
gauge effects as the initial data relax onto the grid.
This latter effect includes a fast moving gauge wave
whose frequency becomes higher with increasing mass
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-3.50 -4.20
-3.75 * -4.35
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-15 -10 -5 0 5 10
riM M

FIG. 5. This figure shows the wavelet tolerance e(r) using
refinement function RF4 for a ¢ = 4 binary at two times, t = 0
and t = 40M. The black dots indicate representative positions
and relative coordinate sizes for the two black holes, though not
necessarily the physical horizons. This refinement function has
the minimum tolerance centered about each black hole. After
t = 20M, the refinement function becomes spherically symmetric
and centered at the grid origin, with € decreasing in the wave
extraction region, similar to RF3.

ratio, q. These features trigger substantial refinement as ¢
increases. Over-refining on this high-frequency radiation
is a waste of computational resources. In order to limit
over-refinement at early times, we have also found it
beneficial to make e a function of time near the
beginning of the run.

For the purposes of this work, we define four refinement
functions labeled RF2, RF3, RF4, and RF5. RF3 is time
dependent, spherically symmetric, and linear in loge, as
shown in Fig. 4. RF2 is time independent, corresponding to
RF3 for ¢ > 100 M. This refinement function works quite
well for smaller values of ¢, such as ¢ < 5. As ¢ increases,
however, this refinement function results in prohibitively
expensive runs because of spurious waves originating
around the smaller black hole. As a result, we introduce
an additional spatial dependence to the refinement func-
tions at early times RF4 and RF5 to more sharply focus
refinement at early times around the individual black holes.
Figures 5 and 6 show these two refinement functions at
t =0 and t =40 M. Beyond ¢ = 40 M, these refinement

-3.00 15 -3.90

-3.50 -4.20

logio€
|
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o
8
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°
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o 15 -10 -5 0
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FIG. 6. This figure shows the wavelet tolerance e(r) using
refinement function RF5 for a ¢ = 4 binary at two times, t = 0
and t = 40M. The black dots indicate representative positions
and relative sizes for the two black holes, however, not the
physical horizons. This refinement function has the minimum
tolerance centered about each black hole. After + = 20M, the
refinement function reduces to a functional form similar to RF3,
but centered about each black hole, rather than the grid’s origin.
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functions become identical to RF3. Notice that refinement
is concentrated in a region around the origin and the binary
system, with € increasing at larger radii. Both are also tuned
in time to allow for sufficient resolution of the outgoing
radiation in the extraction region, while limiting refinement
on the initial burst of spurious radiation.

We note that the definitions of these refinement functions
are ad hoc and tuned to the specific runs reported here
through experimentation. When used with sufficient reso-
lution, the refinement functions do not appear to interfere
with or change significantly the convergence properties of
Dendro-GR, as discussed in Sec. IV below, while significantly
improving the computational efficiency of the runs. In
future work, we will explore generalizations that could be
more widely applicable.

F. Octree

1. Octree partitioning

Octree-based adaptive space discretizations (see Fig. 7)
are commonly used in computational science applications
[48,55,59-63]. Using octrees as the underlying data struc-
ture for spatial discretization is advantageous due to their
simplicity, intrinsic hierarchical structure, and relative ease
of use in designing scalable parallel algorithms.

In octree-based AMR applications, the local number of
octants changes rapidly as the grid adapts and attempts to
capture the spatially varying solution. This will create load
imbalances between partitions that can reduce parallel
performance. In order to maintain good load balancing,
we need fast and efficient partitioning algorithms which,
preferably, scale like O(n) where n is the number of
octants. Doing so will also reduce the overall communi-
cation cost between partitions. To this end, we use space
filling curves [64] with a flexible partitioning scheme [55].
Based on the order with which these curves traverse the
octants, we are able to define a partial ordering operator on
the octree domain, which, in turn, is used to sort the octree.

70 root [ tpm
// \‘\ i y b
11 nl h i nl 1 .
S I N AN i 7
ST2 @@w © U I O @ h
= 7N a fe
t3 becde b€

FIG. 7. A simple illustration of a 2D quadtree (in 3D, it would
be an octree) as a data structure to represent a 2D adaptive grid.
Note that we start from the root level and perform a hierarchical
division of each dimension to generate spatially varying reso-
lution on the computational domain. In terms of storage, we only
store the leaf nodes of the tree since nonleaf nodes can be
computed by performing a top-down or bottom-up traversal of
the tree.

Once this happens, higher-dimensional partitioning reduces
to a 1D problem along a curve.

2. Octree construction and balancing

Octree construction is the process of creating an adaptive
octree discretization to capture a function f:Q — R”
defined on a computational domain €. The wavelet
expansion of f determines the adaptive structure for the
user-specified tolerance function e. Initially, we begin from
the root level of the octree and continue refining if the
computed wavelet coefficients are greater than e. In our
case, with the BSSN equations, the initial grid is generated
based on TwoPuncture initial data (Sec. II B). All processes
begin from the root level and continue refinement until at
least p octants are produced (where p denotes the number
of processes). These p octants are equally partitioned
across processes. Further refinement occurs in an
element-local fashion. As the number of octants increases
with refinement, the octree is periodically repartitioned to
ensure load balancing.

We enforce an additional constraint on the octree during
refinement which we refer to as “2:1 grid balancing” [65].
This particular constraint enforces the condition that for a
given octant in the octree, all of its geometric neighbors
(faces, edges, and vertices) differ, at most, by a single level.
Imposing this constraint ensures that the refinement struc-
ture varies smoothly through the entire grid. Moreover, we
are guaranteed a correct interpolation stencil for points at
level j from points at level j — 1. As a result, this simplifies
the subsequent mesh generation process significantly.

3. Mesh generation

In order to perform numerical computations, the octree
requires the notion of neighborhood information. The
number of grid points placed in each octant depends on
the degree of the finite-difference stencil or polynomial
interpolant used. For dth-order finite differences, (d + 1)3
points are placed on each octant. We refer to this repre-
sentation as octant local. The wavelets are calculated via
interpolations of the same order. As octants are shared
through faces, edges, and vertices, neighboring octants will
contain redundant information. These are efficiently iden-
tified and then removed in order to get the octant shared
representation (see Fig. 8). We have two mappings between
these two data representations which allow for finite-
difference stencil computations of arbitrary order.

4. Evaluating the equations

All the field variables are defined in the compact octant
shared, or zipped, representation. This zipped representa-
tion allows for efficient low overhead interprocess com-
munication. However, to enable finite-difference (FD)
computations, it is necessary to decompose the adaptive
octree into smaller regular grid patches or blocks.
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FIG. 8. This figure shows a 2D example of the octant local
(center) and octant shared (right) nodal representation (with
d = 2) of the adaptive quadtree shown on the left. Note that
the octant local representation has grid points that are local to
each octant and contains duplicate grid points in neighboring
octants. By removing duplicate and hanging grid points, we get
the octant shared representation. In this figure, grid points are
color coded based on the octant level.

Following this decomposition from the octree to a block,
we compute a padding region for which the width depends
on the maximum FD stencil radius (see Fig. 9). The
unzipped representation denotes the octant local represen-
tation together with the padding region constructed from
the adaptive octree. This unzipped representation is purely
local to each process and discarded after FD stencils are
evaluated (see Fig. 9).

III. THE LazEv CODE

The LazEv code [37] was one of the two original codes to
implement the moving puncture approach [38,66]. The
current version uses the conformal function W = /y =
exp(—2¢) [67], eighth-order centered finite differencing in
space [68], and a fourth-order Runge Kutta time integrator.

The LazEv code uses the Einstein Toolkit [28,29]/ Cactus [69]/
Carpet [70] infrastructure. The Carpet mesh refinement driver
provides a “moving boxes” style of mesh refinement. In
this approach, refined grids of fixed size are arranged about
the coordinate centers of both holes. The Carpet code then
moves these fine grids about the computational domain by
following the trajectories of the two BHs.

FIG. 9. This figure shows a simplified example of the octree to
block decomposition and the unzip operation. The left figure
shows the octant shared representation. The block decomposition
is shown in the middle. Note that the given octree is decomposed
into four regular blocks of different sizes. The right figure shows
the decomposed blocks padded with values coming from neigh-
boring octants with interpolated points when needed to give local
uniform blocks.

The LazEv code implements both the BSSN [71-73] and
CCZ4 [74] evolution systems. For the tests here, we use
the BSSN system. For the gauge conditions, we use a
modified 1+log lapse and a modified Gamma-driver shift
condition [38,75,76],

(0, — p0;)a = —2aK, (6a)

op* = (3/4)T = n(3)p. (6b)

For the function 7, we choose

n(F) = (. = n,) exp(=(r/ns)*) +n,. (7)

where 75, =2.0/M, n,=40.0M, and #,=0.25/M.
With this choice, # is small in the outer zones. The
magnitude of # limits how large the time step can be with
dtmax < 1/n [77]. Because this limit is independent of
spatial resolution, it is only significant in the very coarse
outer zones where the standard CFL condition would
otherwise lead to a large value for df,,,,.

We use AHFinderDirect [78] to locate apparent horizons.
We measure the magnitude of the horizon spin using the
isolated horizon algorithm [79]. Note that once we have
the horizon spin, we can calculate the horizon mass via the
Christodoulou formula

My = \Jmd, + S}/ (4m2,). (8)

where my, = \/A/(16x), A is the surface area of the
horizon, and Sy is the spin angular momentum of the
BH (in units of M?).

We calculate the radiation scalar y, using the Antenna
thorn [80,81]. We then extrapolate the waveform to an
infinite observer location using perturbative formulas
from [82].

While we use eighth-order centered difference stencils,
we use a fifth-order Kreiss-Oliger dissipation stencil and
fifth-order spatial prolongation operator (prolongation in
time is second order). We found that a rather large-
dissipation coefficient of €4, = 0.4 gave the best results.

IV. TESTS

In this section, we present some numerical results to
demonstrate the overall accuracy and performance of the
Dendro-GR framework. We first present results that suggest
that the maximum amount of Kreiss-Oliger dissipation
should be used when solving BSSN-like formulations of
the Einstein equations. Higher amounts of Kreiss-Oliger
dissipation increase the rate of convergence observed in our
tests. Second, we study binary black hole mergers with
mass ratios 1 < g < 16 using Dendro-GR. We show that these
results converge to equivalent solutions obtained using
LazEv. Finally, we present results on the numerical

064035-8



MASSIVELY PARALLEL SIMULATIONS OF BINARY BLACK ...

PHYS. REV. D 107, 064035 (2023)

performance of Dendro-GR. We discuss some of the refine-
ment challenges in binary black hole spacetimes, and show
how different refinement strategies affect the overall
computational cost of the solution.

A. Effects of Kreiss-Oliger dissipation
on BBH mergers

Kreiss-Oliger dissipation is widely used in numerical
relativity. This dissipation is explicitly added to the
numerical scheme to eliminate high-frequency noise that
can arise in the evolution, especially near the puncture,
where spacetime variables are nondifferentiable and at
refinement boundaries. A common expectation is that
one should minimize the amount of explicit dissipation
provided that high-frequency noise is well controlled.
However, when performing the initial comparisons of
results from binary black hole mergers with Dendro-GR
and LazEv, we found the opposite to be true.

In our tests, the fifth-order Kreiss-Oliger dissipation
operator in Eq. (5) is added to the rhs of the semidiscrete
equations with the parameter ¢, 0 < ¢ < 1. We performed
multiple binary black hole mergers for ¢ = 1 with different
values of ¢ using both LazEv and Dendro-GR. Results from
LazEv are shown in Fig. 10, which plots the coordinate
separation between the two black holes. This figure shows
that the runs with small dissipation ¢ = 0.04 differ from
those with large dissipation, ¢ ~ 0.4. Further, the solution
with small dissipation converges toward those with large
dissipation with increasing resolution. Curiously, for the
runs with large dissipation, the order of the spatial finite
derivatives (4, 6, 8) and the order of the Kreiss-Oliger
dissipation operator (5, 9) were not as important as the
amount of dissipation, i.e., the value of . Similar results
were obtained with Dendro-GR.

This result is counterintuitive, and we are not aware
of a similar discussion in the literature. The numerical noise
in the 6 =0.04 runs was well controlled, and visual
inspection of the solutions did not indicate potential
problems. However, when solving the BSSN equations
for black hole spacetimes, better solutions at lower reso-
lutions are obtained using larger amounts of explicit
numerical dissipation.

B. Convergence tests for Dendro-GR and LazEv

Convergence is an important test not only of the
computational code, but it is also the only way to establish
an estimate of the overall error in the waveform. To test the
convergence of both codes, we evolved initial data for an
equal mass (¢ = 1), nonspinning binary. The initial data
parameters are shown in Table I. For the ¢ = 1 binary, we
ran the LazEv code at three resolutions, Ax = hy, hy/1.2,
and h/1.44 with hy = 3.3M, on the coarsest grid with nine
levels of refinement. As shown in the center panel of
Fig. 11, the waveform is not initially convergent, as
relatively small stochastic errors owing to reflections of

-4 4%-order, 0=0.4, h=hg
“ ~x- 6Mh-order, 0=0.4, h=h,
[ --m- 8M-order,0=0.4, h=ho

<4 8/9%M.order,0=0.32, h=h,
5l 8th-order, 0= 0.4, h=hy/1.2
—-— 6-order, 0=0.04, h=hg
--- 6%M-order, 0=0.04, h=ho/1.2

4

0.002f __ -

o _
< 0.001} [

0.000 o
0

FIG. 10. This figure shows the effect of Kreiss-Oliger dis-
sipation on the ¢ = 1 binary BH merger using the LazEv code.
Shown are results of the binary separation versus time using both
different finite-difference orders and different dissipation ampli-
tudes (o). The top frame plots the coordinate separation (r)
between the BHs as a function of the coordinate time for runs
with large (6 ~ 0.4) and small (6 = 0.04) Kreiss-Oliger dissipa-
tion, different finite-difference orders (4, 6, 8), and at two
resolutions. Fifth-order Kreiss-Oliger dissipation and fifth-order
prolongation are used for all cases, except the one marked 8/9th
order. The latter use eight-order finite differencing and both
ninth-order dissipation and ninth-order prolongation. All of the
high-dissipation cases computed with different FD orders are
indistinguishable on this plot (dotted curves). The two low-
dissipation-coefficient runs (sixth-order FD at two resolutions)
converge to the higher-dissipation-coefficient results as O(h?).
The low-dissipation results, while convergent, show a system-
atically larger error than the higher-dissipation results. The lower
panel plots the difference between the fourth- and sixth-order
results (ryg = ram — ren) and the sixth- and eighth-order
(reg = rem — rsm) results for o = 0.4 (fifth-order dissipation).
Note that even though the corresponding three curves in the top
panel are indistinguishable, clear convergence with increasing
order is seen in the lower panel. Note that /4 indicates the coarsest
resolution of the AMR grid and Ay = 3.3M.

high-frequency spurious radiation off the refinement boun-
daries dominate the error. As these high-frequency waves
dissipate and the physical signal gets larger, convergence of
the error becomes clear. The bottom panel shows that the
waveform is convergent for the late inspiral at order 3.5.
Note that Fig. 10 also shows convergence of the radial
separation for the ¢ = 1 case. The ¢ = 2 binaries were run
with base resolutions of /,/1.2 and h/1.4, but added an
additional level of refinement around the smaller BH.
Similar convergence results were obtained for g = 2.
Finally, for ¢ =4, we ran with a base resolution of
hy/1.2 and added two additional refinement levels (com-
pared to g = 1) about the smaller black hole.

Dendro-GR uses an unstructured grid, and convergence is
both more difficult to define and more challenging to
demonstrate. Convergence depends both on the spatial
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FIG.11. Convergence test of a ¢ = 1, nonspinning binary using
LazEv. The top panel shows the low- and high-resolution wave-
forms. The middle panel shows the differences in the waveforms
between the low and medium resolutions (in blue) and the
medium and high resolutions (in red). Because the waveforms
are of comparable size, initially there is small, but nonconvergent
noise (at these resolutions). The bottom panel shows the
differences rescaled, assuming 3.5-order convergence, at the
peak of the waveform. At the peak, the stochastic AMR noise
is smaller than the truncation error.

resolution Ax as well as the wavelet tolerance e. Figure 12
shows the convergence of Dendro-GR solutions (for y4) at
two resolutions, labeled low (runs 2RF31 and q2RF41) and
medium (q2RF3m and q2RF4m), for g = 2 binaries. The
highest-resolution LazEv y, is also plotted for comparison.
With respect to changing Ax, the low- and medium-
resolution runs converge to the LazEv solution.

As mentioned above, we choose the wavelet tolerance ¢
to be a function of both time and space in Dendro-GR. Thus,
choosing different refinement functions can also potentially
affect the solution. Figure 12 also shows this effect by
plotting results from two different wavelet refinement
functions, RF3 and RF4, for each resolution. In this case,
the effect of changing the refinement function had a
relatively small effect on the solution and the overall
run-time; see Table II.

Figure 13 illustrates the effect of only varying e on the
solution. This figure compares the Dendro-GR waveforms for
three values of €, = {1073, 107>, 107} with the highest-
resolution LazEv waveform by plotting the difference.
Clearly, the differences decrease with decreasing e, as
smaller values for e trigger larger refined regions in the
octree. While this is a form of convergence with respect to
wavelet tolerance, the maximum refinement level J,,,, and

1.2

1.1
1.0
0.9t /,

- 0.8

=
S 0.7

rf3, lo

0.6 //,/ —-= rf3, med

0.5p%7/ -=-= rf4, lo

04,’ —-= rf4, med

' —— LazEv
03 1 1 1 1 1
468 469 470 471 472

t/M

FIG. 12. This figure shows the convergence of Dendro-GR
solutions with decreasing Ax. For ¢ =2, GW solutions were
computed at two resolutions with two refinement functions with
fixed €,;,. The low-resolution runs are plotted with dashed lines,
with some representative points indicated with circles and
squares. The higher-resolution runs are plotted with dashed
dot lines, and representative points are indicated with triangles
and diamonds. The RF3 solutions are in red and the RF4 in green.
Both RF3 and RF4 solutions converge to the LazEv solution (solid
black line) as the maximum refinement level is increased. The
convergence is largely unaffected by the choice of refinement
function.

the minimum resolution Ax,;, are fixed, so this is not
convergence in the Richardson sense of the term.

C. Dendro-GR binaries with different mass ratios

Table II gives some refinement and performance infor-
mation for the Dendro-GR runs reported in this paper. The
refinement information includes the maximum allowed

1x10*

A(rys)

460 480 500 520 540 560

FIG. 13. This figure shows convergence with respect to € given
a fixed maximum refinement level. The plot shows the difference
between the extracted GWs using the LazEv and Dendro-GR codes
for the real part of the y, scalar with decreasing e¢. The Dendro-GR
solutions with decreasing e converge to the LazEv waveforms.
Refinement function RF3 was used here.
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TABLE II. Some parameters and run-time information for the runs presented in this paper. All runs used wavelet tolerances
€min = 107 and €,,,, = 107>. Runs were performed on Expanse at SDSC.

Mass ratio J nax AXppin J ax AXmin SUs" Wall
Run ID q=my/m, (BH2) (BH2) (BHI) (BHI) RF (cpu-h) time” (h)
q1RF2° 1 15 4.069 x 1073 15 4.069 x 1073 2 ‘e e
q2RF3I 2 15 4.069 x 1073 14 8.138 x 1073 3 5540 43
q2RF3m 2 16 2.034 x 1073 15 4.069 x 1073 3 41170 80
q2RF41 2 15 4.069 x 1073 14 8.138 x 1073 4 5229 41
q2RF4m 2 16 2.034 x 1073 15 4.069 x 1073 4 39521 77
g4RF2 4 16 2.034 x 1073 14 8.138 x 1073 2 22717 89
q8RF3 8 18 5.086 x 1074 14 8.138 x 1073 3 485810 483
q8RF4 8 18 5.086 x 107 14 8.138 x 1073 4 101915 318
q8RF5 8 18 5.086 x 1074 14 8.138 x 1073 5 64477 263
ql6RF4 16 19 2.543 x 1074 14 8.138 x 1073 4 799 590 1149
q16RF5° 16 19 2.543 x 1074 14 8.138 x 1073 5 - .

*Here, SU = >, ¢;1;, where c; is the number of CPUs used for a time #; measured in hours, and i is an index that runs over all of
the batch jobs used to complete the run. This measure of computational workload is not exact, as Dendro-GR regularly rebalances the
workload, which may change the number of CPUs actually used in the simulation.

"This is also an imperfect measure of computational performance, as the wall-clock time depends on many factors, including the
number of CPU cores available for the job, and the workload per core.

“Timing information for these jobs is not available.

refinement level J,,,,, the minimum resolution used in the
run A;,, and the refinement function. The performance
information provides an estimate for the total number of
SUs, defined as the number of CPU - hours to complete the
run. This number is approximated because Dendro-GR
dynamically changes the number of active threads during
a run. Finally, the table includes the total wall-clock time
used to complete the run. While this information is valuable
in providing a general view of Dendro-GR’s performance, we
caution that detailed conclusions cannot be drawn. First, the
runs in this table were run over a long time period. During
this time, code changes were made, and parameters were
adjusted as we gained experience with the code. These
changes impacted the computational costs of the runs.
Second, wall-clock times depend on the number of cores
used for each job, the final integration time, the workload
per core, etc. For comparison, the LazEv ¢ = 1 medium-
resolution run used 27472 SUs, while the high-resolution
run used 71651 SUs. The LazEv ¢ = 2 medium-resolution
run used 100766 SUs, while the high-resolution run used
228065 SUs. Finally, the LazEv ¢ = 4 medium resolution
used 169799 SUs, while the LazEv ¢ = 4 high resolution
used 474683 SUs. All the LazEv runs were performed on
the same Intel Skylake cluster. Note that the LazEv runs
were performed at relatively high resolution to ensure
that the error in the LazEv simulations is small compared
to the Dendro-GR simulations. These high-resolution runs are
required because we will use the LazEv simulations to
calibrate the accuracy of the Dendro-GR simulations.
Figures 14 and 15 show gravitational waveforms com-
puted for nonspinning binaries with mass ratios up to
q = 16. Parameters for the initial data are shown in

Table II, which also gives resolution and refinement
function data, as well as the computational cost and time
to solution. As noted in Sec. II B, the initial data for g > 2
are constructed from a single family of initial data [50],
while data for ¢ = 1 are constructed from ad hoc param-
eters. For ¢ = 1, 2, and 4, the figures also show waveforms
computed with LazEv. Because of the relativity long
wall-clock time required, we chose not to complete the
correspondingly high-resolution simulations for g =4
simulations. Thus, the difference between the Dendro-GR
and LazEv waveforms for ¢ = 4 may only indicate that the
LazEv simulation was underresolved. Importantly, due to its
scaling, the Dendro simulations were obtained more quickly.
The binaries with ¢ = 8 and g = 16 were performed only
with Dendro-GR. These figures show that Dendro-GR produces
gravitational waveforms very similar to LazEv. The mis-
match for these different waveforms are calculated below in
Sec. IV D. Unfortunately, it is difficult to draw conclusions
on the accuracy of Dendro-GR across different values of g,
because these runs were performed over a long period of
time with changing refinement strategies and a changing
code base. Many of the code changes and new approaches
were motivated, in fact, in the process of running these
cases. We were not able to go back and rerun all cases with
the same version of the code and consistent refinement
criteria.

As discussed in Sec. IIE, a gauge wave propagates
across the computational domain at early times, as the
coordinates transition from the Bowen-York gauge con-
ditions used to calculate the initial data [46], to the puncture
gauge conditions used in the evolution. The wavelength of
the gauge wave is related to the black hole size, and thus the
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FIG. 14. Plots comparing the waveform for the ¢ = 1, 2, 4, 16 cases. LazEv and Dendro-GR waveforms are given for all except ¢ = 16,
where only Dendro-GR results were produced. This figure plots the real part of y, for the highest-resolution Dendro-GR and LazEv (where

available) runs.

frequency of this unphysical wave increases with mass
ratio, g. The high-frequency wave triggered excessive
refinement at the beginning of the higher mass ratio runs,
particularly for ¢ > 8, prompting our experimentation with
different wavelet refinement functions. We ran simulations
of the ¢ = 8 binary with three different refinement func-
tions, and plot the resulting waveforms in Fig. 15. RF3 uses
€min OVver a larger volume of the grid, while RF4 and RF5
allow for a larger wavelet tolerance over a larger region of
the grid. Consequently, RF3 likely gives a more precise
solution but at a greater computational cost as it may tend to
over-refinement. While RF4 and RF5 are more computa-
tionally efficient, differences in the waveforms become
noticeable. For ¢ = 16, RF3 was too expensive, and this
run was only done with RF4 and RF5. The RF5 run was not
completed, as the differences in results for RF3 and RF5 for
q = 8 were large. Interestingly, the differences in RF3 and
RF4 occur only at the initial time. After t = 40M, both
refinement functions are identical. The phase differences

seen in the figure seem to arise solely from small variations
in the refinement at early times.

The number of computational cores used in the ¢ = 8
and g = 16 runs are plotted in Figs. 16 and 17, respectively.
Dendro-GR regularly repartitions the computational workload
across the available cores. To balance the communication
cost between cores, it will use fewer cores than the total
number available if the workload per core drops below
some threshold. In these runs, over-refinement on the
high-frequency gauge wave and junk radiation remains a
problem and causes the large increase in demand for
computational resources at the beginning of the run.
As this radiation moves beyond the gravitational wave
extraction region, the grid is coarsened and the runs become
much more efficient.

D. Overlaps

When using numerical waveforms for gravitational wave
data analysis, numerical convergence provides an important
estimation of the error in the numerical solution. Ideally, the
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FIG. 15. This figure shows the real part of y4 for a ¢ = 8 black
hole binary computed with Dendro-GR using three different
refinement functions with the same minimum spatial resolution.
RF3 has the smallest error tolerance at the center of the grid, butis
very computationally expensive. The RF4 solution is quite
similar to RF3, but at roughly one fifth of the computational
cost (see Table II). The RF5 solution is the least expensive to
compute, but for the parameters used here, the phase error is
significant.

convergence error determined by comparing the solutions
computed at two different resolutions is smaller than the
other errors in the analysis. However, convergence testing
overlooks the frequency response of a real-world detector.
The overlap provides a way to compare two waveforms as
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------ q=8, RF4
2500} T TSR
«n 2000¢
[0}
—_
O 1500t
@)
1000t
500t
0 E_ [
0 200 400 600 800 1000
t/M

FIG. 16. This figure shows the effect of different refinement
functions on the computational cost of evolving a ¢ = 8 black
hole binary with Dendro-GR by plotting the number of computa-
tional cores used during the simulation as a function of the
computational time. The three refinement functions RF3, RF4,
and RF5 differ only for r < 40M. Thus, the differences arise
primarily in how the initial junk radiation and gauge waves are
resolved. As shown in Fig. 15, the gravitational wave results from
RF3 and RF4 are similar, although the maximum workload for
RF4 was about 6 times smaller than the maximum workload for
RF3. The results for RF5, while the most efficient run, show
larger differences than the other two cases.
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FIG. 17. This figure shows the number of computational cores
used in ¢ = 8 and ¢ = 16 binary black hole merger simulations
with RF4.

measured in a detector with a given frequency response. In
addition, the overlap helps us to determine the computa-
tional resources required to simulate a particular configu-
ration. This allows us to determine how similar two
waveforms computed at different resolutions or with differ-
ent codes are to one another.

For this analysis, we will measure the consistency
of two waveforms using the CreateCompatible
ComplexOverlap function in LALSimUtls (which is
freely available) [83,84]. This function automatically opti-
mizes over both time translations and phase shifts. Because
of this, the mode-by-mode mismatch allows for the phase
shifts of different modes to be inconsistent. That is, one
expects each m mode to be shifted by mg.

Internally, this function uses the inner product

iy =2 [“HDEDar )

where h(f) is the Fourier transform of the complex
waveform h(t) and we use the Advanced-LIGO design
sensitivity zero-detuned high-power noise curve [85] S, (f)
with f.., = 20 Hz and f,,x = 2000 Hz. This inner prod-
uct is then further maximized over time and phase shifts as
described in [86]

(hy|hy) = max H /_:%@mdfu (10)

to.¢Po

The overlap of two waveforms is then given by

O = <hl|h2> i (11)
(1 |hy) (Mol ha)

and the mismatch is given by

064035-13



MILINDA FERNANDO et al.

PHYS. REV. D 107, 064035 (2023)

Mismatch

—_

107°F <7
10-6 /.’.
10 s —————
50 100 150 200
M/M o
FIG. 18. This figure shows the mismatch in various (¢, m)

gravitational waveform modes between the Dendro-GR and the
high-resolution LazEv solutions for a ¢ = 1 binary. The dot-
dashed lines show the mismatch between the modes of the LazEv
medium-resolution waveforms and the LazEv high-resolution
waveforms. The solid lines show the overlaps of the Dendro-GR
waveforms against the LazEv high-resolution waveforms. The
modes are presented in order of decreasing amplitude. The (2,0)
mode, which fails our accuracy goal of M < 0.005, is subdomi-
nant to all the other modes.

M=1-0. (12)

Because Eq. (9) directly involves the detector’s noise
sensitivity curve S,(f), the mismatch is a function of the
actual frequency waveform and is not invariant under a

1073 L

10—4 L

10—5 L

Mismatch

FIG. 19. This figure shows the mismatch in various (£, m)
gravitational waveform modes between the Dendro-GR and the
high-resolution LazEv solutions for a ¢ = 2 binary. The dot-
dashed lines show the mismatch between the modes of the LazEv
medium-resolution waveforms and the LazEv high-resolution
waveforms. The solid lines show the overlaps of the Dendro-GR
waveforms against the LazEv high-resolution waveforms. The
modes are presented in order of decreasing amplitude [i.e.,
(3,—3) is subdominant to (2,—2), (4, —4) to (3,3), etc.].

change in the total mass of the system. Depending on the
total mass, only a portion of the waveform may be in the
detector’s sensitivity region. As an example, for systems
with small total mass, LIGO is most sensitive to the low-
frequency portion of the signal at early times. For systems
with a large total mass, however, LIGO is most sensitive to
the high-frequency merger and early ringdown portion of
the waveforms.

We use the mismatch M to compare the Dendro-GR and
LazEv waveforms. A mismatch of M < 0.005 was deter-
mined in Ref. [87] to be minimally acceptable for
Advanced LIGO analysis. Ideally, a mismatch M <
0.005 is desired. However, this limit of < 0.005 is for
the net mismatch in the observed waveforms (i.e., after
summing all modes). Setting the mismatch tolerance to
< 0.005 for all subdominant modes is therefore more
restrictive than required. Here, we want to use the
mismatch between the LazEv and Dendro-GR simulations
to measure the truncation error in the Dendro-GR simu-
lations. This is only true if the error in the LazEv
simulations is much smaller than the Dendro-GR simula-
tions. In an attempt to guarantee this, we require that the
corresponding LazEv-to-LazEv mismatches (between the
medium and high resolutions) are much smaller than
the corresponding LazEv-to-Dendro-GR mismatches (we note
that a small LazEv-to-LazEv mismatch may not account
for all possible global errors). When this is not the case,
the mismatch between the two codes is not a measure of
the error of the Dendro-GR simulations. Figures 18-20
show the overlaps for different modes of y, computed
with Dendro-GR and LazEv for the g =1, ¢ =2, and
g = 4 binaries, respectively. In particular, we use the
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FIG. 20. This figure shows the mismatch in various (£, m)
gravitational waveform modes between the Dendro-GR and the
high-resolution LazEv solutions for a ¢ =4 binary. The dot-
dashed lines show the mismatch between the modes of the LazEv
medium-resolution waveforms and the LazEv high-resolution
waveforms. The solid lines show the overlaps of the Dendro-GR
waveforms against the LazEv high-resolution waveforms. The
modes are presented in order of decreasing amplitude [i.e.,
(3,—3) is subdominant to (2,—2), (4,—4) to (3,3), etc.].
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FIG. 21. This figure shows the overlaps in the (£, m) = (2, -2)

mode of v, computed with various Dendro-GR refinement criteria
against the high-resolution LazEv solution for a ¢ = 2 binary. The
blue line is computed with ¢ = 1079, and all other cases use
e = 107, As expected, the waveforms computed with the more
expensive RF3 refinement function (red) have better overlaps to
LazEv than those computed with RF4 (green). Finally, the tan solid
line shows the overlap of the LazEv medium- and high-resolution
waveforms.

high-resolution LazEv solutions as the base solutions for
comparison with the Dendro-GR and medium-resolution
LazEv waveforms. The figure shows the modes in order of
decreasing amplitude. The ¢ =1 subdominant Dendro
(2,0) mode shows a significant mismatch with the
corresponding LazEv mode. All modes with amplitude
larger than the (2,0) mode show much smaller mis-
matches between Dendro and LazEv. The ¢ =2 and ¢ = 4
comparisons show similar behavior [here, more modes
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FIG. 22. This figure shows the overlaps in the Dendro-GR g = 8
gravitational waveforms computed with the RF3 and RF4 refine-
ment functions. The waveforms are presented in order of
decreasing amplitude. As expected, the dominant modes have
smaller mismatches than the subdominant modes.

are nontrivial, and the (2,0) mode is subdominant to all
modes shown].

Figure 21 shows the mismatch in the (£, m) = (2,-2)
mode of y, between Dendro-GR waveforms computed with
different refinement criteria and the high-resolution LazEv
waveform. These mismatches compare solutions computed
with different refinement functions RF3 and RF4 with a
refinement tolerance ¢ = 107>, The figure also shows the
mismatch for a solution computed with RF3 and the
refinement tolerance set to e = 107%. The main result
from this figure is that higher resolution (more restrictive
error tolerance) leads to a better agreement between LazEv
and Dendro. Finally, the mismatch between the medium-
and high-resolution LazEv solutions is shown. Consistent
with the earlier convergence results, the Dendro-GR runs
match the high-resolution LazEv solution well, and the
RF3 solution is slightly closer. Finally, Fig. 22 shows
the mismatch between the Dendro-GR solutions for the
q = 8 binary computed with the RF3 and RF4 refinement
functions.

V. DISCUSSION

This paper presented binary black hole evolutions
performed with Dendro-GR for different mass ratios up to
q = 16. We presented validation tests in comparison with
results from LazEv, and we gave performance information
for these runs.

While the focus of this paper is on evolving binary black
holes with Dendro-GR, the first result that we presented has
general applicability in the numerical relativity community.
We found that in binary black hole evolutions with the
BSSN formalism, the rate of convergence is increased
when a large amount of Kreiss-Oliger dissipation is added
to the solution. In our tests, runs with a dissipation
parameter of ¢ = 0.4 had a better rate of convergence
than runs with ¢ = 0.04, where ¢ is bounded by ¢ < 1 for
numerical stability.

While the performance and scaling of Dendro-GR is very
good, we are currently working on additional improve-
ments. In particular, we are improving the unzip process,
in which an octant of the tree is locally expanded to a
uniform Cartesian grid, to reduce the communication
overhead. As shown in this paper, we started exploring
different ways to control the refinement algorithm,
especially during the initial times of an evolution. We
want to improve the computational performance of Dendro-
GR, while not sacrificing the accuracy of the solutions.
While we have had some initial success, much more
work remains to be done. We continue working on a
more general method to monitor errors in the evolution of
black hole spacetimes. Finally, in an independent project,
we are developing a version of Dendro-GR that runs
primarily on GPUs.

The version of Dendro-GR used to produce the results in this
paper is distributed subject to the MIT license in Ref. [88].
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