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We present results from the new Dendro-GR code. These include simulations of binary black hole mergers

for mass ratios up to q ¼ 16. Dendro-GR uses wavelet adaptive multiresolution to generate an unstructured

grid adapted to the spacetime geometry together with an octree-based data structure. We demonstrate good

scaling, improved convergence properties, and efficient use of computational resources. We validate the

code with comparisons to LazEv.
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I. INTRODUCTION

The gravitational wave detectors LIGO/Virgo have made

a number of epochal discoveries [1,2]. These have given

us a dramatically broader conception and understanding

of the high-energy universe and some of its compact

object constituents [3–5]. As these detectors continually

improve [6–8] and are added to by new detectors, such as

KAGRA [9], we can confidently expect an ongoing parade

of additional discoveries.

The detection and analysis of gravitational waves (GW)

uses a library of modeled waveforms for comparison with

the detector output signal. Numerical relativity waveforms

are computed using the full nonlinear, Einstein equations,

and these waveforms span the evolution of the binary

system from inspiral, through merger, and finally to ring-

down. These waveforms may be used directly in the

analysis of gravitational waves [10,11], or to inform and

validate faster, approximate methods for generating wave-

forms, such as semianalytical and phenomenological meth-

ods (see, e.g., [12–19]). Numerical relativity can also probe

certain astrophysical scenarios that are difficult to model

with approximate methods. Examples of such scenarios

include nonvacuum spacetimes, such as systems with

neutron stars, accretion disks, and/or magnetic fields.

Even some vacuum binary black hole systems can be

difficult to model with approximate techniques, such as

binaries with large eccentricity, high spins, or large mass

ratios. We use the mass ratio q ¼ m1=m2, where m1 is the

mass of the primary with m1 ≥ m2.

While there are advantages to using numerical relativity

waveforms directly in gravitational wave analysis, there

are significant challenges in calculating waveforms of

sufficient quality. The waveforms must be sufficiently long,

have errors bounded within known tolerances, and they

must span a large region of the binary parameter space.

The development of newer, more sensitive gravitational

wave detectors significantly complicates the challenge. For

example, recent work on requirements for third-generation

(3G) detectors [20–22] and LISA [23] estimate that errors

in numerical relativity waveforms need to be reduced by an

order of magnitude [24]. Another study found that numeri-

cal resolutions of binary black hole (BBH) spacetimes will

need to be increased by almost a factor of 10 in some

cases [25]. Reducing the error in numerical waveforms to

the level required by 3G detectors will require new

algorithms and methods in numerical relativity.

The challenge of producing waveforms for future

gravitational wave detectors will require highly scalable

numerical relativity codes that are able to efficiently run on

exascale supercomputers. Dendro-GR is a new code for

relativistic astrophysics that is designed to meet some of

the next-generation challenges in numerical relativity.

Dendro-GR scales well on massively parallel supercomputers,

and it uses fast, responsive wavelet adaptive multiresolu-

tion (WAMR). Importantly, Dendro-GR easily accommodates

many well-tested numerical methods that have been

developed in the relativity community, such as the
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evolution of Einstein equations in the BSSN formalism and

high-resolution shock-capturing methods for relativistic

fluid dynamics.

Several projects are currently being developed in the

community that use modern adaptive-mesh infrastructures

and sophisticated numerical algorithms to meet this com-

putational challenge. Among these are GR-Athena++ [26],

which uses the highly efficient octree AMR infrastruc-

ture of Athena++ for full numerical relativity simulations

coupled to GRMHD, GRChombo [27], a fully modern AMR

numerical relativity code allowing for complex grid con-

figurations, and CarpetX, which is a new AMR driver for the

Einstein Toolkit [28,29] that is built on the AMReX toolkit [30].

Pseudospectral and discontinuous Galerkin methods

promise some advantages for massively parallel comput-

ing. SpECTRE [31] uses discontinuous Galerkin methods

and a task-based parallelization scheme. Nmesh [32,33] and

BAMPS [34] are other codes using discontinuous Galerkin

methods. Simflowny [35] has a domain-specific language and

a web-based development environment and graphical user

interface. Simflowny can generate code for multiple plat-

forms, such as SAMRAI [36]. Dendro-GR uses an efficient

octree structure to store the grid elements similar in spirit to

that used in GR-Athena++, while Dendro-GR’s wavelet decom-

position with an unstructured grid is similar in spirit to

SpECTRE.

This paper presents results from some of the first binary

black hole mergers performed with Dendro-GR. We study

gravitational waves from binary black hole systems with

mass ratios up to q ¼ 16. We compare results with the

well-known LazEv [37,38] code in some cases, and find that

the solutions match in the convergence limit. We also

present performance data for Dendro-GR.

II. METHODS

Dendro-GR has been built with the intention of tackling

relativistic astrophysics problems involving merging com-

pact objects. Its development uses and accommodates a

number of standard techniques within numerical relativity

as well as including some new approaches, all with an eye

to improving the efficiency, scalability, and time to solution

for still challenging problems such as large mass ratio

binary black holes. Among the conventional and well-

tested numerical methods used in Dendro-GR, we solve the

Einstein equations using the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formulation together with typical coor-

dinate conditions, initial data, and finite-differencing

algorithms. Newer approaches used within Dendro-GR

include some of the following and are discussed at greater

length subsequently in this section. The code uses a

dynamic grid which is constructed via an expansion of

the grid functions in an interpolating wavelet basis. In this

basis, terms in the wavelet expansion can be mapped to

individual grid points. The resulting unstructured grid is

naturally represented computationally as an octree. On

integrating the equations of motion in time, each node of

this octree is separately unzipped (decompressed) into a

local point representation on a uniform Cartesian grid. The

integrated functions are then zipped (compressed) back to a

sparse representation by thresholding the coefficients of the

wavelet expansion. This sparse representation is compact

and computationally efficient as it conserves computer

memory and reduces parallel communication. This section

describes some of these key components of Dendro-GR in

more detail. We begin with a brief description of our

formalism for solving the Einstein equations and setting

initial data. We then describe the generation of the grid

using WAMR and the process for integrating the equations.

A. Formalism

There is extensive literature on solving the BSSN

equations in general relativity, including monographs

such as [39–42]. This section briefly outlines our parti-

cular choices for solving the BSSN equations. We write the

BSSN equations in terms of the conformal factor [38]

χ−1 ¼ detðγijÞ: ð1Þ

For gauge conditions, we use the “1þ log” slicing con-

dition and the Γ-driver shift as used in [43]

∂tα ¼ βi∂iα − 2αK; ð2Þ

∂tβ
i ¼ βj∂jβ

i þ 3

4
Bi; ð3Þ

∂tB
i ¼ βj∂jB

i þ ∂tΓ̃
i
− βj∂jΓ̃

i
− ηBi: ð4Þ

Spatial derivatives are calculated using centered finite-

difference operators that are Oðh6Þ in the grid spacing, h.
The semidiscrete Einstein equations are integrated in

time using explicit fourth-order Runge-Kutta with a time-

step Δt ¼ 0.25Δxmin, where xmin is the smallest distance

between points on the grid. Kreiss-Oliger dissipation is

added to the equations using a fifth-order operator

Δ
6
xu

n
m ¼ ð−unmþ3

þ 6unmþ2
− 15unmþ1

þ 20unm

−15unmþ1
þ 6unm−2

− unm−3
Þ=ð64ΔxÞ ð5Þ

with a tunable amplitude parameter σ, 0 ≤ σ < 1, which

allows one to adjust the amount of dissipation [39]. As

discussed below in Sec. IVA, we found best results with

σ ¼ 0.4. We make the common choice to enforce certain

algebraic constraints and derivative definitions as descri-

bed, for example, in [44]. Outgoing radiative boundary

conditions are applied to the dynamical variables.

We extract gravitational waves from our simulations at

five radii between 50 M ≤ r ≤ 100 M using the Penrose

scalar, ψ4 [39,45]. Here,M is the sum of the local masses of

each black hole M ¼ m1 þm2, and m1 and m2 are the

ADM masses computed in the asymptotically flat region at
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each puncture [46]. Their decomposition with respect to

spin-weighted spherical harmonics (SWSH) is performed

using the Lebedev quadrature [47]. To evaluate ψ4 at each

of the quadrature points on each 2-sphere, we perform an

efficient search operation on the underlying grid, and

SWSH projection coefficients are computed with a parallel

reduction operation [48].

B. Initial data

Initial data for both Dendro-GR and LazEv are set using the

TwoPunctures code [46] from the Einstein Toolkit [28,29]. For the

initial values of shift, both codes set βiðt ¼ 0Þ ¼ 0. Initial

values of the lapse in Dendro-GR use the ad hoc function

αðt ¼ 0Þ ¼ ψ̃−2, where ψ̃ ¼ 1þmp1=ð2r1Þ þmp2=ð2r2Þ,
ri is the coordinate distance to the ith BH, andmpi is the bare

mass parameter of the ith BH. In LazEv the initial lapse

is ψ̃ ¼ 1þ 1=ð4r1Þ þ 1=ð4r2Þ.
In this paper, we evolve nonspinning black hole binaries

with mass ratios q ¼ 1, 2, 4, 8, and 16. We place the black

holes initially on the x axis, with the binary’s center of mass

at the origin. The smaller black hole with massm2 is placed

on the positive x axis, and the initial coordinate separation

is fixed to x2 − x1 ¼ 8 M. Again,M is the sum of the local

ADM masses of each black hole computed in the asymp-

totically flat region at each puncture. Initial data parameters

for the q ¼ 1 binary are ad hoc quasicircular parameters

chosen to match previous work [49]. Parameters for all

other cases were found using the low eccentricity post-

Newtonian expressions reported in [50]. To simplify

comparisons with LazEv, we set the TwoPunctures code to

use the bare puncture masses and other parameters shown

in Table I directly. Finally, we ran the q ¼ 1, 2, and 4 cases

with both Dendro-GR and LazEv, while the higher mass ratio

simulations were only run with Dendro-GR.

C. Symbolic code generation

The evaluation of the BSSN equations at a given grid point

is computationally expensive and can be challenging due to

the large number of terms associated with the equations.

Manually writing code to evaluate these equations can be

prone toerror, difficult to debug, and challenging to perform

architecture-specific optimizations. To address some of these

issues, we have developed a SymPy-based code generation

framework for Dendro-GR. This tool has some of the same

capabilities as NrPy+ [51,52] but is more limited in scope.

Using our symbolic framework, we compute the directed

acyclic graph representing the underlying computations for

the BSSN equations.We performoptimizations to reduce the

overall number of operations as well as architecture-specific

optimizations that improve our code’s performance port-

ability. The current implementation of the symbolic frame-

work supports CPUs and GPUs [48,53].

D. Grid generation with WAMR

The computational complexity of the Einstein equations,

together with the requirement of high accuracy across

multiple spatial and temporal scales, motivates the use of

grid adaptivity. Dendro-GR uses a wavelet-based approach

which results in a representation of the underlying field

variables on a sparse, adaptive mesh. We describe briefly

here the fundamental aspects of this sparse representation.

More complete details can be found in [48,53–55]. While

we use the coefficients in a wavelet expansion to generate

the computational grid, we store the grid functions only in

the point representation. Thus, the wavelet coefficients are

not used to integrate the equations of motion.

Two essential ingredients in our approach are the

notion of iterative interpolation [56] and the wavelet

representation itself [57,58]. We demonstrate both of these

in one dimension. The extension to multiple dimensions is

straightforward and is accomplished by simply repeating

the procedures we will describe in each additional dimen-

sion. To fix ideas, we first define a set of nested grids Vj,

where

Vj ¼ fxj;k∶xj;k ¼ 2−jkΔxg;

where j and k are nonnegative integers, and Δx is the

spacing on the base grid (or level) and which is labeled with

j ¼ 0. This base grid V0 is comprised of N þ 1 grid points

evenly spaced on a domain of length L ¼ NΔx. Each finer

TABLE I. The initial configuration parameters for nonspinning binary black hole systems for increasing mass ratio. The presented

numerical waveforms are based on these initial data parameters. The parameters for q ≥ 2 were obtained using the expressions in [50].

The initial data are set using the bare mass parameters. The black holes are placed initially on the x axis at the locations x1 and x2 as
given in the table. The linear momentum of the second black hole is given in the last two columns, p2 ¼ ðpx; pyÞ, and p1 ¼ −p2.

Mass ratio Puncture parameter ADM mass Total x position Momentum BH2

q ¼ m1=m2 mp2 mp1 m2 m1 ADM mass x2 x1 px py

1 0.48240 0.48240 0.50010 0.50010 0.98844 4 −4 0 0.1140

2 0.31715 0.65150 0.6667 0.33333 0.98931 5.3238 −2.6762 −0.0017777 0.10049

4 0.18805 0.78937 0.20000 0.80000 0.99237 6.3873 −1.6127 −0.0010647 0.072660

8 0.10362 0.88245 0.11111 0.88889 0.99534 7.1006 −0.89938 −0.00049937 0.045037

16 0.054585 0.93761 0.058824 0.94118 0.99740 7.5226 0.47741 −0.00019532 0.025319
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grid with j > 0 contains each point in every coarser grid.

Values of a field u at level j are designated uðxj;kÞ≡ uj;k. If
known, these values are copied from coarser grids to all

required fine grids. For example, to go from Vj to Vjþ1, we

take ujþ1;2k ¼ uj;k. A similar copy happens to all higher-

level fine grids. Of course, on these finer grids, there will be

points newly appearing. The field values on those grid

points new to grid Vjþ1 are interpolated from the known

values on the coarser grid Vj. We generally use Lagrange

interpolation. In this manner, all fields at any refinement

level can be had (see Fig. 2). This iterated interpolation

continued to arbitrarily large levels produces continuous

functions with compact support [57].

The process just described is the start of how our sparse

grid will emerge. But it also produces a natural basis set

with which we can represent our fields. This basis set is

comprised of interpolating functions created via iteration

from a sequence of zeros and a single value of one living on

V0 (sometimes referred to as a Kronecker sequence). More

specifically, define a function ϕ0;kðxÞ which takes values at
the points x0;l (imagine on the base grid) of ϕ0;kðx0;lÞ ¼ δlk.

Now interpolate as described above to find ϕ0;k at other grid

points and iterate. This can be repeated for ϕj;k with j > 0.

The resulting iterated interpolating functions will have a

number of properties, including compact support and a two

scale relation given by

ϕj;kðxÞ ¼
X

l

clj;kϕjþ1;lðxÞ;

where the coefficients clj;k will depend on the order of the

interpolation. Significantly, each of these iterated, inter-

polating functions are scaled, translated versions of a

single, fundamental function ϕðxÞ related to a particular

limiting function of the above iterated interpolation. It is

related to the Daubechies scaling function and shown

in Fig. 1.

With these iterated, interpolating functions in hand, we

can now return to and complete our wavelet representation.

Note that at each point of each level, we have an associated

scaling function

ϕj;kðxÞ ¼ ϕð2jx=Δx − kÞ;

which, when taken all together, constructs a basis at each

level, j. However, across levels, the set of scaling functions
is overdetermined and will not form a basis for the entire

grid until we deal with the redundancy introduced by

having common points in Vj and Vjþ1. To this end, we

consider the complementary space to Vj, which we callWj,

such that

Wj ¼ fxj;k∶xj;k ¼ 2−jkΔx; k oddg;

and is that set of points in Vj that are not in Vj−1 [see

Fig. 2(b)]. With this definition, we use the set of grids given

by fV0;Wjg and thereby have a basis with respect to which
we can define our fields u:

FIG. 1. This shows the fundamental solution of the iterated

interpolation ϕðxÞ (solid) and a basis element attached to the grid

V1 called ϕ1;1ðxÞ (dashed). All the basis functions are scaled,

translated versions of the fundamental solution.

(a)

(b)

(c)

(d)

FIG. 2. This illustrates a simplified conception of how the grid

is constructed. In (a), one-dimensional nested grids Vj (for j ¼ 0,

1, 2) are shown. Note that every fine grid contains all the grid

points on every coarser grid. This redundancy is removed in

(b) on defining the complementary spaces, Wj (colored red and

blue). We compute wavelet coefficients (dj;k) as the difference

between uj;k and the field as interpolated from level Vj−1. In (c),

those grid points with wavelet coefficients larger than a pre-

determined threshold ϵ are tagged (here with circles) as essential

to the calculation. For those grid points with jdj;kj < ϵ, the

corresponding terms in the interpolating wavelet expansion are

ignored, and the grid points are discarded from the mesh, as

illustrated in (d).
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uðxÞ ¼
X

k∈S0

u0;kϕ0;kðxÞ þ
X

∞

j¼1

X

k∈Sj

dj;kϕj;kðxÞ:

The coefficients u0;k and dj;k are expansion coefficients

with S0 ¼ 0; 1;…; N providing the index set for the base

grid V0, and Sj ¼ 1; 3;…; 2jþ1N − 1 being the index set

for the fine grid given by Wj. This last expression is our

interpolating wavelet expansion in which u0;k are just the

values of the field on the base points and the coefficients

dj;k referred to as wavelet coefficients are but the

differences between the field values uj;k and the interpo-

lated values at xj;k coming from the next lower level, j − 1.

If we designate these interpolated values as ũj;k, the wavelet
coefficients are then computed simply as

dj;k ¼ uj;k − ũj;k:

We can think of that part of the expansion with the

scaling functions as encoding the smooth part of the field

uðxÞ, while the wavelet coefficients provide information

about the function on fine scales. Because of the highly

local nature of the wavelets used, this representation will

have many wavelets in regions exhibiting strong spatial

variations, while few will be necessary in regions where the

field is changing slowly.

With the wavelet representation in hand, compression

is now possible. More particularly, we can make the

representation sparse by choosing a threshold value ϵ, such

that if the magnitude of the wavelet coefficients jdj;kj is
smaller than ϵ, we truncate the expansion and discard the

corresponding grid points from the grid itself. Doing so

both reduces the grid size and provides an error bound on

the representation of the field. In Figs. 2(c) and 2(d), we

illustrate this approach to constructing the grid. As already

mentioned, extending to multiple dimensions amounts to

taking the basis functions to be products of the one-

dimensional basis functions.

An example of the WAMR-constructed grid used to

evolve binary black holes is shown in Fig. 3, which shows

the grid for a q ¼ 16 binary before merger. This computa-

tional grid is very efficient: The grid is sparse with refined

regions that adapt to the small-scale features of the

spacetime. The grid does not require refined regions to

be rectangular on large scales, significantly saving on

computational and memory costs. Moreover, large over-

lapping regions between refinement levels are not required.

E. Refinement functions

Interpolating wavelets are sensitive to any nondifferen-

tiable or nonconvergent parts of a solution, triggering

immediate refinement. This is important for resolving

small-scale features in solutions. However, refinement

can be triggered by uninteresting or unphysical features

as well. In binary black hole spacetimes, we are primarily

interested in resolving the binary at the center of the grid

FIG. 3. This figure plots the lapse on the computational grid generated for a q ¼ 16 black hole binary, after the system has evolved for

two orbits. The top left frame shows the entire computational domain, and moving to the right, each frame successively moves toward

the smaller of the two black holes. The computational grid is sparse, with refinement concentrated about the black holes, making it very

computationally efficient. The 2∶1 refinement constraint for constructing the grid, discussed in Sec. II F 2, is also apparent in the overall

grid structure.
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and following radiation out to the extraction region. To

achieve computational efficiency, therefore, it is important

to control where refinement occurs, focusing on physically

interesting features in the solution.

One way to manage refinement in Dendro-GR is to set a

maximum allowed level of refinement for the entire grid,

Jmax. This limit is enforced globally for all times, and is

chosen to allow for an expected minimum grid resolution. It

is important to note that the spacetime at the black hole

puncture is not smooth, and the WAMR grid will continue

refiningon this feature until themaximum level of refinement

is reached. As we evolve binaries with large mass ratios, we

need to prevent over-refinement of the more massive black

hole in the binary. We modify the naive use of Jmax by

tracking the black hole locations and imposing a mass-

dependent constraint on themaximumrefinement level about

each black hole. We refine a sphere expected to extend

beyond the apparent horizon to the local maximum refine-

ment level.

Recall that refinement in WAMR is controlled by the

wavelet tolerance ϵ. Usually, ϵ is taken to be a constant.

However, we have found that using a spatially dependent

wavelet tolerance ϵ ¼ ϵðrÞ allows us to focus refinement

near the center of the grid and to reduce refinement beyond

the wave extraction zone. We typically choose minimum

and maximum values of ϵ, for the inner and outer regions of

the grid, respectively, and let log ϵ vary linearly between

these limits.

Unfortunately, the situation is further complicated by

junk radiation in the initial data and time-dependent

gauge effects as the initial data relax onto the grid.

This latter effect includes a fast moving gauge wave

whose frequency becomes higher with increasing mass

ratio, q. These features trigger substantial refinement as q
increases. Over-refining on this high-frequency radiation

is a waste of computational resources. In order to limit

over-refinement at early times, we have also found it

beneficial to make ϵ a function of time near the

beginning of the run.

For the purposes of this work, we define four refinement

functions labeled RF2, RF3, RF4, and RF5. RF3 is time

dependent, spherically symmetric, and linear in log ϵ, as

shown in Fig. 4. RF2 is time independent, corresponding to

RF3 for t ≥ 100 M. This refinement function works quite

well for smaller values of q, such as q ≲ 5. As q increases,

however, this refinement function results in prohibitively

expensive runs because of spurious waves originating

around the smaller black hole. As a result, we introduce

an additional spatial dependence to the refinement func-

tions at early times RF4 and RF5 to more sharply focus

refinement at early times around the individual black holes.

Figures 5 and 6 show these two refinement functions at

t ¼ 0 and t ¼ 40 M. Beyond t ¼ 40 M, these refinement

FIG. 4. This figure shows the wavelet tolerance ϵðrÞ for

refinement function RF3 at a few representative times. This

refinement function is spherically symmetric, centered on the

origin of the grid, and is independent of the black hole masses.

The minimum wavelet tolerance is used over a relatively large

region at the center of the grid. After t ¼ 20M, the wavelet

tolerance decreases in the GW extraction zone 50 < r=M < 100,

allowing the initial junk radiation to pass before triggering

refinement in this region.

FIG. 5. This figure shows the wavelet tolerance ϵðrÞ using

refinement function RF4 for a q ¼ 4 binary at two times, t ¼ 0

and t ¼ 40M. The black dots indicate representative positions

and relative coordinate sizes for the two black holes, though not

necessarily the physical horizons. This refinement function has

the minimum tolerance centered about each black hole. After

t ¼ 20M, the refinement function becomes spherically symmetric

and centered at the grid origin, with ϵ decreasing in the wave

extraction region, similar to RF3.

FIG. 6. This figure shows the wavelet tolerance ϵðrÞ using

refinement function RF5 for a q ¼ 4 binary at two times, t ¼ 0

and t ¼ 40M. The black dots indicate representative positions

and relative sizes for the two black holes, however, not the

physical horizons. This refinement function has the minimum

tolerance centered about each black hole. After t ¼ 20M, the

refinement function reduces to a functional form similar to RF3,

but centered about each black hole, rather than the grid’s origin.
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functions become identical to RF3. Notice that refinement

is concentrated in a region around the origin and the binary

system, with ϵ increasing at larger radii. Both are also tuned

in time to allow for sufficient resolution of the outgoing

radiation in the extraction region, while limiting refinement

on the initial burst of spurious radiation.

We note that the definitions of these refinement functions

are ad hoc and tuned to the specific runs reported here

through experimentation. When used with sufficient reso-

lution, the refinement functions do not appear to interfere

with or change significantly the convergence properties of

Dendro-GR, as discussed in Sec. IV below, while significantly

improving the computational efficiency of the runs. In

future work, we will explore generalizations that could be

more widely applicable.

F. Octree

1. Octree partitioning

Octree-based adaptive space discretizations (see Fig. 7)

are commonly used in computational science applications

[48,55,59–63]. Using octrees as the underlying data struc-

ture for spatial discretization is advantageous due to their

simplicity, intrinsic hierarchical structure, and relative ease

of use in designing scalable parallel algorithms.

In octree-based AMR applications, the local number of

octants changes rapidly as the grid adapts and attempts to

capture the spatially varying solution. This will create load

imbalances between partitions that can reduce parallel

performance. In order to maintain good load balancing,

we need fast and efficient partitioning algorithms which,

preferably, scale like OðnÞ where n is the number of

octants. Doing so will also reduce the overall communi-

cation cost between partitions. To this end, we use space

filling curves [64] with a flexible partitioning scheme [55].

Based on the order with which these curves traverse the

octants, we are able to define a partial ordering operator on

the octree domain, which, in turn, is used to sort the octree.

Once this happens, higher-dimensional partitioning reduces

to a 1D problem along a curve.

2. Octree construction and balancing

Octree construction is the process of creating an adaptive

octree discretization to capture a function f∶Ω → Rn

defined on a computational domain Ω. The wavelet

expansion of f determines the adaptive structure for the

user-specified tolerance function ϵ. Initially, we begin from

the root level of the octree and continue refining if the

computed wavelet coefficients are greater than ϵ. In our

case, with the BSSN equations, the initial grid is generated

based on TwoPuncture initial data (Sec. II B). All processes

begin from the root level and continue refinement until at

least p octants are produced (where p denotes the number

of processes). These p octants are equally partitioned

across processes. Further refinement occurs in an

element-local fashion. As the number of octants increases

with refinement, the octree is periodically repartitioned to

ensure load balancing.

We enforce an additional constraint on the octree during

refinement which we refer to as “2:1 grid balancing” [65].

This particular constraint enforces the condition that for a

given octant in the octree, all of its geometric neighbors

(faces, edges, and vertices) differ, at most, by a single level.

Imposing this constraint ensures that the refinement struc-

ture varies smoothly through the entire grid. Moreover, we

are guaranteed a correct interpolation stencil for points at

level j from points at level j − 1. As a result, this simplifies

the subsequent mesh generation process significantly.

3. Mesh generation

In order to perform numerical computations, the octree

requires the notion of neighborhood information. The

number of grid points placed in each octant depends on

the degree of the finite-difference stencil or polynomial

interpolant used. For dth-order finite differences, ðdþ 1Þ3
points are placed on each octant. We refer to this repre-

sentation as octant local. The wavelets are calculated via

interpolations of the same order. As octants are shared

through faces, edges, and vertices, neighboring octants will

contain redundant information. These are efficiently iden-

tified and then removed in order to get the octant shared

representation (see Fig. 8). We have two mappings between

these two data representations which allow for finite-

difference stencil computations of arbitrary order.

4. Evaluating the equations

All the field variables are defined in the compact octant

shared, or zipped, representation. This zipped representa-

tion allows for efficient low overhead interprocess com-

munication. However, to enable finite-difference (FD)

computations, it is necessary to decompose the adaptive

octree into smaller regular grid patches or blocks.

FIG. 7. A simple illustration of a 2D quadtree (in 3D, it would

be an octree) as a data structure to represent a 2D adaptive grid.

Note that we start from the root level and perform a hierarchical

division of each dimension to generate spatially varying reso-

lution on the computational domain. In terms of storage, we only

store the leaf nodes of the tree since nonleaf nodes can be

computed by performing a top-down or bottom-up traversal of

the tree.
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Following this decomposition from the octree to a block,

we compute a padding region for which the width depends

on the maximum FD stencil radius (see Fig. 9). The

unzipped representation denotes the octant local represen-

tation together with the padding region constructed from

the adaptive octree. This unzipped representation is purely

local to each process and discarded after FD stencils are

evaluated (see Fig. 9).

III. THE LazEv CODE

The LazEv code [37] was one of the two original codes to

implement the moving puncture approach [38,66]. The

current version uses the conformal function W ¼ ffiffiffi

χ
p ¼

expð−2ϕÞ [67], eighth-order centered finite differencing in

space [68], and a fourth-order Runge Kutta time integrator.

The LazEv code uses the Einstein Toolkit [28,29]/ Cactus [69]/

Carpet [70] infrastructure. The Carpet mesh refinement driver

provides a “moving boxes” style of mesh refinement. In

this approach, refined grids of fixed size are arranged about

the coordinate centers of both holes. The Carpet code then

moves these fine grids about the computational domain by

following the trajectories of the two BHs.

The LazEv code implements both the BSSN [71–73] and

CCZ4 [74] evolution systems. For the tests here, we use

the BSSN system. For the gauge conditions, we use a

modified 1+log lapse and a modified Gamma-driver shift

condition [38,75,76],

ð∂t − βi∂iÞα ¼ −2αK; ð6aÞ

∂tβ
a ¼ ð3=4ÞΓ̃a

− ηðx⃗Þβa: ð6bÞ

For the function η, we choose

ηðr⃗Þ ¼ ðηc − ηoÞ expð−ðr=ηsÞ4Þ þ ηo; ð7Þ

where ηc ¼ 2.0=M, ηs ¼ 40.0M, and ηo ¼ 0.25=M.

With this choice, η is small in the outer zones. The

magnitude of η limits how large the time step can be with

dtmax ∝ 1=η [77]. Because this limit is independent of

spatial resolution, it is only significant in the very coarse

outer zones where the standard CFL condition would

otherwise lead to a large value for dtmax.

We use AHFinderDirect [78] to locate apparent horizons.

We measure the magnitude of the horizon spin using the

isolated horizon algorithm [79]. Note that once we have

the horizon spin, we can calculate the horizon mass via the

Christodoulou formula

mH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

irr þ S2H=ð4m2

irrÞ
q

; ð8Þ

where mirr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=ð16πÞ
p

, A is the surface area of the

horizon, and SH is the spin angular momentum of the

BH (in units of M2).

We calculate the radiation scalar ψ4 using the Antenna

thorn [80,81]. We then extrapolate the waveform to an

infinite observer location using perturbative formulas

from [82].

While we use eighth-order centered difference stencils,

we use a fifth-order Kreiss-Oliger dissipation stencil and

fifth-order spatial prolongation operator (prolongation in

time is second order). We found that a rather large-

dissipation coefficient of ϵdis ¼ 0.4 gave the best results.

IV. TESTS

In this section, we present some numerical results to

demonstrate the overall accuracy and performance of the

Dendro-GR framework. We first present results that suggest

that the maximum amount of Kreiss-Oliger dissipation

should be used when solving BSSN-like formulations of

the Einstein equations. Higher amounts of Kreiss-Oliger

dissipation increase the rate of convergence observed in our

tests. Second, we study binary black hole mergers with

mass ratios 1 ≤ q ≤ 16 using Dendro-GR. We show that these

results converge to equivalent solutions obtained using

LazEv. Finally, we present results on the numerical

FIG. 9. This figure shows a simplified example of the octree to

block decomposition and the unzip operation. The left figure

shows the octant shared representation. The block decomposition

is shown in the middle. Note that the given octree is decomposed

into four regular blocks of different sizes. The right figure shows

the decomposed blocks padded with values coming from neigh-

boring octants with interpolated points when needed to give local

uniform blocks.

FIG. 8. This figure shows a 2D example of the octant local

(center) and octant shared (right) nodal representation (with

d ¼ 2) of the adaptive quadtree shown on the left. Note that

the octant local representation has grid points that are local to

each octant and contains duplicate grid points in neighboring

octants. By removing duplicate and hanging grid points, we get

the octant shared representation. In this figure, grid points are

color coded based on the octant level.
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performance of Dendro-GR. We discuss some of the refine-

ment challenges in binary black hole spacetimes, and show

how different refinement strategies affect the overall

computational cost of the solution.

A. Effects of Kreiss-Oliger dissipation

on BBH mergers

Kreiss-Oliger dissipation is widely used in numerical

relativity. This dissipation is explicitly added to the

numerical scheme to eliminate high-frequency noise that

can arise in the evolution, especially near the puncture,

where spacetime variables are nondifferentiable and at

refinement boundaries. A common expectation is that

one should minimize the amount of explicit dissipation

provided that high-frequency noise is well controlled.

However, when performing the initial comparisons of

results from binary black hole mergers with Dendro-GR

and LazEv, we found the opposite to be true.

In our tests, the fifth-order Kreiss-Oliger dissipation

operator in Eq. (5) is added to the rhs of the semidiscrete

equations with the parameter σ, 0 ≤ σ < 1. We performed

multiple binary black hole mergers for q ¼ 1 with different

values of σ using both LazEv and Dendro-GR. Results from

LazEv are shown in Fig. 10, which plots the coordinate

separation between the two black holes. This figure shows

that the runs with small dissipation σ ¼ 0.04 differ from

those with large dissipation, σ ∼ 0.4. Further, the solution

with small dissipation converges toward those with large

dissipation with increasing resolution. Curiously, for the

runs with large dissipation, the order of the spatial finite

derivatives (4, 6, 8) and the order of the Kreiss-Oliger

dissipation operator (5, 9) were not as important as the

amount of dissipation, i.e., the value of σ. Similar results

were obtained with Dendro-GR.

This result is counterintuitive, and we are not aware

of a similar discussion in the literature. The numerical noise

in the σ ¼ 0.04 runs was well controlled, and visual

inspection of the solutions did not indicate potential

problems. However, when solving the BSSN equations

for black hole spacetimes, better solutions at lower reso-

lutions are obtained using larger amounts of explicit

numerical dissipation.

B. Convergence tests for Dendro-GR and LazEv

Convergence is an important test not only of the

computational code, but it is also the only way to establish

an estimate of the overall error in the waveform. To test the

convergence of both codes, we evolved initial data for an

equal mass (q ¼ 1), nonspinning binary. The initial data

parameters are shown in Table I. For the q ¼ 1 binary, we

ran the LazEv code at three resolutions, Δx ¼ h0, h0=1.2,
and h0=1.44with h0 ¼ 3.3M, on the coarsest grid with nine

levels of refinement. As shown in the center panel of

Fig. 11, the waveform is not initially convergent, as

relatively small stochastic errors owing to reflections of

high-frequency spurious radiation off the refinement boun-

daries dominate the error. As these high-frequency waves

dissipate and the physical signal gets larger, convergence of

the error becomes clear. The bottom panel shows that the

waveform is convergent for the late inspiral at order 3.5.

Note that Fig. 10 also shows convergence of the radial

separation for the q ¼ 1 case. The q ¼ 2 binaries were run

with base resolutions of h0=1.2 and h0=1.4, but added an

additional level of refinement around the smaller BH.

Similar convergence results were obtained for q ¼ 2.

Finally, for q ¼ 4, we ran with a base resolution of

h0=1.2 and added two additional refinement levels (com-

pared to q ¼ 1) about the smaller black hole.

Dendro-GR uses an unstructured grid, and convergence is

both more difficult to define and more challenging to

demonstrate. Convergence depends both on the spatial

FIG. 10. This figure shows the effect of Kreiss-Oliger dis-

sipation on the q ¼ 1 binary BH merger using the LazEv code.

Shown are results of the binary separation versus time using both

different finite-difference orders and different dissipation ampli-

tudes (σ). The top frame plots the coordinate separation (r)
between the BHs as a function of the coordinate time for runs

with large (σ ∼ 0.4) and small (σ ¼ 0.04) Kreiss-Oliger dissipa-

tion, different finite-difference orders (4, 6, 8), and at two

resolutions. Fifth-order Kreiss-Oliger dissipation and fifth-order

prolongation are used for all cases, except the one marked 8=9th
order. The latter use eight-order finite differencing and both

ninth-order dissipation and ninth-order prolongation. All of the

high-dissipation cases computed with different FD orders are

indistinguishable on this plot (dotted curves). The two low-

dissipation-coefficient runs (sixth-order FD at two resolutions)

converge to the higher-dissipation-coefficient results as Oðh5Þ.
The low-dissipation results, while convergent, show a system-

atically larger error than the higher-dissipation results. The lower

panel plots the difference between the fourth- and sixth-order

results (r46 ¼ r4th − r6th) and the sixth- and eighth-order

(r68 ¼ r6th − r8th) results for σ ¼ 0.4 (fifth-order dissipation).

Note that even though the corresponding three curves in the top

panel are indistinguishable, clear convergence with increasing

order is seen in the lower panel. Note that h indicates the coarsest

resolution of the AMR grid and h0 ¼ 3.3M.
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resolution Δx as well as the wavelet tolerance ϵ. Figure 12

shows the convergence of Dendro-GR solutions (for ψ4) at

two resolutions, labeled low (runs q2RF3l and q2RF4l) and

medium (q2RF3m and q2RF4m), for q ¼ 2 binaries. The

highest-resolution LazEv ψ4 is also plotted for comparison.

With respect to changing Δx, the low- and medium-

resolution runs converge to the LazEv solution.

As mentioned above, we choose the wavelet tolerance ϵ

to be a function of both time and space in Dendro-GR. Thus,

choosing different refinement functions can also potentially

affect the solution. Figure 12 also shows this effect by

plotting results from two different wavelet refinement

functions, RF3 and RF4, for each resolution. In this case,

the effect of changing the refinement function had a

relatively small effect on the solution and the overall

run-time; see Table II.

Figure 13 illustrates the effect of only varying ϵ on the

solution. This figure compares the Dendro-GR waveforms for

three values of ϵmin ¼ f10−3; 10−5; 10−6g with the highest-

resolution LazEv waveform by plotting the difference.

Clearly, the differences decrease with decreasing ϵ, as

smaller values for ϵ trigger larger refined regions in the

octree. While this is a form of convergence with respect to

wavelet tolerance, the maximum refinement level Jmax and

the minimum resolution Δxmin are fixed, so this is not

convergence in the Richardson sense of the term.

C. Dendro-GR binaries with different mass ratios

Table II gives some refinement and performance infor-

mation for the Dendro-GR runs reported in this paper. The

refinement information includes the maximum allowed

FIG. 11. Convergence test of a q ¼ 1, nonspinning binary using

LazEv. The top panel shows the low- and high-resolution wave-

forms. The middle panel shows the differences in the waveforms

between the low and medium resolutions (in blue) and the

medium and high resolutions (in red). Because the waveforms

are of comparable size, initially there is small, but nonconvergent

noise (at these resolutions). The bottom panel shows the

differences rescaled, assuming 3.5-order convergence, at the

peak of the waveform. At the peak, the stochastic AMR noise

is smaller than the truncation error.

FIG. 12. This figure shows the convergence of Dendro-GR

solutions with decreasing Δx. For q ¼ 2, GW solutions were

computed at two resolutions with two refinement functions with

fixed ϵmin. The low-resolution runs are plotted with dashed lines,

with some representative points indicated with circles and

squares. The higher-resolution runs are plotted with dashed

dot lines, and representative points are indicated with triangles

and diamonds. The RF3 solutions are in red and the RF4 in green.

Both RF3 and RF4 solutions converge to the LazEv solution (solid

black line) as the maximum refinement level is increased. The

convergence is largely unaffected by the choice of refinement

function.

FIG. 13. This figure shows convergence with respect to ϵ given

a fixed maximum refinement level. The plot shows the difference

between the extracted GWs using the LazEv and Dendro-GR codes

for the real part of the ψ4 scalar with decreasing ϵ. The Dendro-GR

solutions with decreasing ϵ converge to the LazEv waveforms.

Refinement function RF3 was used here.
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refinement level Jmax, the minimum resolution used in the

run Δmin, and the refinement function. The performance

information provides an estimate for the total number of

SUs, defined as the number of CPU · hours to complete the

run. This number is approximated because Dendro-GR

dynamically changes the number of active threads during

a run. Finally, the table includes the total wall-clock time

used to complete the run. While this information is valuable

in providing a general view of Dendro-GR’s performance, we

caution that detailed conclusions cannot be drawn. First, the

runs in this table were run over a long time period. During

this time, code changes were made, and parameters were

adjusted as we gained experience with the code. These

changes impacted the computational costs of the runs.

Second, wall-clock times depend on the number of cores

used for each job, the final integration time, the workload

per core, etc. For comparison, the LazEv q ¼ 1 medium-

resolution run used 27472 SUs, while the high-resolution

run used 71651 SUs. The LazEv q ¼ 2 medium-resolution

run used 100766 SUs, while the high-resolution run used

228065 SUs. Finally, the LazEv q ¼ 4 medium resolution

used 169799 SUs, while the LazEv q ¼ 4 high resolution

used 474683 SUs. All the LazEv runs were performed on

the same Intel Skylake cluster. Note that the LazEv runs

were performed at relatively high resolution to ensure

that the error in the LazEv simulations is small compared

to the Dendro-GR simulations. These high-resolution runs are

required because we will use the LazEv simulations to

calibrate the accuracy of the Dendro-GR simulations.

Figures 14 and 15 show gravitational waveforms com-

puted for nonspinning binaries with mass ratios up to

q ¼ 16. Parameters for the initial data are shown in

Table II, which also gives resolution and refinement

function data, as well as the computational cost and time

to solution. As noted in Sec. II B, the initial data for q ≥ 2

are constructed from a single family of initial data [50],

while data for q ¼ 1 are constructed from ad hoc param-

eters. For q ¼ 1, 2, and 4, the figures also show waveforms

computed with LazEv. Because of the relativity long

wall-clock time required, we chose not to complete the

correspondingly high-resolution simulations for q ¼ 4

simulations. Thus, the difference between the Dendro-GR

and LazEv waveforms for q ¼ 4 may only indicate that the

LazEv simulation was underresolved. Importantly, due to its

scaling, the Dendro simulations were obtained more quickly.

The binaries with q ¼ 8 and q ¼ 16 were performed only

with Dendro-GR. These figures show that Dendro-GR produces

gravitational waveforms very similar to LazEv. The mis-

match for these different waveforms are calculated below in

Sec. IV D. Unfortunately, it is difficult to draw conclusions

on the accuracy of Dendro-GR across different values of q,
because these runs were performed over a long period of

time with changing refinement strategies and a changing

code base. Many of the code changes and new approaches

were motivated, in fact, in the process of running these

cases. We were not able to go back and rerun all cases with

the same version of the code and consistent refinement

criteria.

As discussed in Sec. II E, a gauge wave propagates

across the computational domain at early times, as the

coordinates transition from the Bowen-York gauge con-

ditions used to calculate the initial data [46], to the puncture

gauge conditions used in the evolution. The wavelength of

the gauge wave is related to the black hole size, and thus the

TABLE II. Some parameters and run-time information for the runs presented in this paper. All runs used wavelet tolerances

ϵmin ¼ 10−5 and ϵmax ¼ 10−3. Runs were performed on Expanse at SDSC.

Run ID

Mass ratio

q ¼ m1=m2

Jmax

(BH2)

Δxmin

(BH2)

Jmax

(BH1)

Δxmin

(BH1) RF

SUs
a

(cpu·h)

Wall

time
b
(h)

q1RF2
c

1 15 4.069 × 10−3 15 4.069 × 10−3 2 � � � � � �
q2RF3l 2 15 4.069 × 10−3 14 8.138 × 10−3 3 5 540 43

q2RF3m 2 16 2.034 × 10−3 15 4.069 × 10−3 3 41 170 80

q2RF4l 2 15 4.069 × 10−3 14 8.138 × 10−3 4 5 229 41

q2RF4m 2 16 2.034 × 10−3 15 4.069 × 10−3 4 39 521 77

q4RF2 4 16 2.034 × 10−3 14 8.138 × 10−3 2 22 717 89

q8RF3 8 18 5.086 × 10−4 14 8.138 × 10−3 3 485 810 483

q8RF4 8 18 5.086 × 10−4 14 8.138 × 10−3 4 101 915 318

q8RF5 8 18 5.086 × 10−4 14 8.138 × 10−3 5 64 477 263

q16RF4 16 19 2.543 × 10−4 14 8.138 × 10−3 4 799 590 1 149

q16RF5
c

16 19 2.543 × 10−4 14 8.138 × 10−3 5 � � � � � �
a
Here, SU ¼

P

i citi, where ci is the number of CPUs used for a time ti measured in hours, and i is an index that runs over all of
the batch jobs used to complete the run. This measure of computational workload is not exact, as Dendro-GR regularly rebalances the
workload, which may change the number of CPUs actually used in the simulation.

b
This is also an imperfect measure of computational performance, as the wall-clock time depends on many factors, including the

number of CPU cores available for the job, and the workload per core.
c
Timing information for these jobs is not available.
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frequency of this unphysical wave increases with mass

ratio, q. The high-frequency wave triggered excessive

refinement at the beginning of the higher mass ratio runs,

particularly for q ≥ 8, prompting our experimentation with

different wavelet refinement functions. We ran simulations

of the q ¼ 8 binary with three different refinement func-

tions, and plot the resulting waveforms in Fig. 15. RF3 uses

ϵmin over a larger volume of the grid, while RF4 and RF5

allow for a larger wavelet tolerance over a larger region of

the grid. Consequently, RF3 likely gives a more precise

solution but at a greater computational cost as it may tend to

over-refinement. While RF4 and RF5 are more computa-

tionally efficient, differences in the waveforms become

noticeable. For q ¼ 16, RF3 was too expensive, and this

run was only done with RF4 and RF5. The RF5 run was not

completed, as the differences in results for RF3 and RF5 for

q ¼ 8 were large. Interestingly, the differences in RF3 and

RF4 occur only at the initial time. After t ¼ 40M, both

refinement functions are identical. The phase differences

seen in the figure seem to arise solely from small variations

in the refinement at early times.

The number of computational cores used in the q ¼ 8

and q ¼ 16 runs are plotted in Figs. 16 and 17, respectively.

Dendro-GR regularly repartitions the computational workload

across the available cores. To balance the communication

cost between cores, it will use fewer cores than the total

number available if the workload per core drops below

some threshold. In these runs, over-refinement on the

high-frequency gauge wave and junk radiation remains a

problem and causes the large increase in demand for

computational resources at the beginning of the run.

As this radiation moves beyond the gravitational wave

extraction region, the grid is coarsened and the runs become

much more efficient.

D. Overlaps

When using numerical waveforms for gravitational wave

data analysis, numerical convergence provides an important

estimation of the error in the numerical solution. Ideally, the

FIG. 14. Plots comparing the waveform for the q ¼ 1, 2, 4, 16 cases. LazEv and Dendro-GR waveforms are given for all except q ¼ 16,

where only Dendro-GR results were produced. This figure plots the real part of ψ4 for the highest-resolution Dendro-GR and LazEv (where

available) runs.
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convergence error determined by comparing the solutions

computed at two different resolutions is smaller than the

other errors in the analysis. However, convergence testing

overlooks the frequency response of a real-world detector.

The overlap provides a way to compare two waveforms as

measured in a detector with a given frequency response. In

addition, the overlap helps us to determine the computa-

tional resources required to simulate a particular configu-

ration. This allows us to determine how similar two

waveforms computed at different resolutions or with differ-

ent codes are to one another.

For this analysis, we will measure the consistency

of two waveforms using the CreateCompatible

ComplexOverlap function in LALSimUtils (which is

freely available) [83,84]. This function automatically opti-

mizes over both time translations and phase shifts. Because

of this, the mode-by-mode mismatch allows for the phase

shifts of different modes to be inconsistent. That is, one

expects each m mode to be shifted by mϕ.

Internally, this function uses the inner product

hh1jh2i ¼ 2

Z

∞

−∞

h�
1
ðfÞh2ðfÞ
SnðfÞ

df; ð9Þ

where hðfÞ is the Fourier transform of the complex

waveform hðtÞ and we use the Advanced-LIGO design

sensitivity zero-detuned high-power noise curve [85] SnðfÞ
with fmin ¼ 20 Hz and fmax ¼ 2000 Hz. This inner prod-

uct is then further maximized over time and phase shifts as

described in [86]

hh1jh2i ¼ max
t0;ϕ0

�

2

�

�

�

�

Z

∞

−∞

h�
1
ðfÞh2ðfÞ
SnðfÞ

df

�

�

�

�

�

: ð10Þ

The overlap of two waveforms is then given by

O ¼ hh1jh2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hh1jh1ihh2jh2i
p ; ð11Þ

and the mismatch is given by

FIG. 15. This figure shows the real part of ψ4 for a q ¼ 8 black

hole binary computed with Dendro-GR using three different

refinement functions with the same minimum spatial resolution.

RF3 has the smallest error tolerance at the center of the grid, but is

very computationally expensive. The RF4 solution is quite

similar to RF3, but at roughly one fifth of the computational

cost (see Table II). The RF5 solution is the least expensive to

compute, but for the parameters used here, the phase error is

significant.

FIG. 16. This figure shows the effect of different refinement

functions on the computational cost of evolving a q ¼ 8 black

hole binary with Dendro-GR by plotting the number of computa-

tional cores used during the simulation as a function of the

computational time. The three refinement functions RF3, RF4,

and RF5 differ only for t ≤ 40M. Thus, the differences arise

primarily in how the initial junk radiation and gauge waves are

resolved. As shown in Fig. 15, the gravitational wave results from

RF3 and RF4 are similar, although the maximum workload for

RF4 was about 6 times smaller than the maximum workload for

RF3. The results for RF5, while the most efficient run, show

larger differences than the other two cases.

FIG. 17. This figure shows the number of computational cores

used in q ¼ 8 and q ¼ 16 binary black hole merger simulations

with RF4.
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M ¼ 1 −O: ð12Þ

Because Eq. (9) directly involves the detector’s noise

sensitivity curve SnðfÞ, the mismatch is a function of the

actual frequency waveform and is not invariant under a

change in the total mass of the system. Depending on the

total mass, only a portion of the waveform may be in the

detector’s sensitivity region. As an example, for systems

with small total mass, LIGO is most sensitive to the low-

frequency portion of the signal at early times. For systems

with a large total mass, however, LIGO is most sensitive to

the high-frequency merger and early ringdown portion of

the waveforms.

We use the mismatch M to compare the Dendro-GR and

LazEv waveforms. A mismatch of M < 0.005 was deter-

mined in Ref. [87] to be minimally acceptable for

Advanced LIGO analysis. Ideally, a mismatch M ≪

0.005 is desired. However, this limit of < 0.005 is for

the net mismatch in the observed waveforms (i.e., after

summing all modes). Setting the mismatch tolerance to

< 0.005 for all subdominant modes is therefore more

restrictive than required. Here, we want to use the

mismatch between the LazEv and Dendro-GR simulations

to measure the truncation error in the Dendro-GR simu-

lations. This is only true if the error in the LazEv

simulations is much smaller than the Dendro-GR simula-

tions. In an attempt to guarantee this, we require that the

corresponding LazEv-to-LazEv mismatches (between the

medium and high resolutions) are much smaller than

the corresponding LazEv-to-Dendro-GR mismatches (we note

that a small LazEv-to-LazEv mismatch may not account

for all possible global errors). When this is not the case,

the mismatch between the two codes is not a measure of

the error of the Dendro-GR simulations. Figures 18–20

show the overlaps for different modes of ψ4 computed

with Dendro-GR and LazEv for the q ¼ 1, q ¼ 2, and

q ¼ 4 binaries, respectively. In particular, we use the

FIG. 18. This figure shows the mismatch in various ðl; mÞ
gravitational waveform modes between the Dendro-GR and the

high-resolution LazEv solutions for a q ¼ 1 binary. The dot-

dashed lines show the mismatch between the modes of the LazEv

medium-resolution waveforms and the LazEv high-resolution

waveforms. The solid lines show the overlaps of the Dendro-GR

waveforms against the LazEv high-resolution waveforms. The

modes are presented in order of decreasing amplitude. The (2,0)

mode, which fails our accuracy goal of M < 0.005, is subdomi-

nant to all the other modes.

FIG. 19. This figure shows the mismatch in various ðl; mÞ
gravitational waveform modes between the Dendro-GR and the

high-resolution LazEv solutions for a q ¼ 2 binary. The dot-

dashed lines show the mismatch between the modes of the LazEv

medium-resolution waveforms and the LazEv high-resolution

waveforms. The solid lines show the overlaps of the Dendro-GR

waveforms against the LazEv high-resolution waveforms. The

modes are presented in order of decreasing amplitude [i.e.,

ð3;−3Þ is subdominant to ð2;−2Þ, ð4;−4Þ to (3,3), etc.].

FIG. 20. This figure shows the mismatch in various ðl; mÞ
gravitational waveform modes between the Dendro-GR and the

high-resolution LazEv solutions for a q ¼ 4 binary. The dot-

dashed lines show the mismatch between the modes of the LazEv

medium-resolution waveforms and the LazEv high-resolution

waveforms. The solid lines show the overlaps of the Dendro-GR

waveforms against the LazEv high-resolution waveforms. The

modes are presented in order of decreasing amplitude [i.e.,

ð3;−3Þ is subdominant to ð2;−2Þ, ð4;−4Þ to (3,3), etc.].
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high-resolution LazEv solutions as the base solutions for

comparison with the Dendro-GR and medium-resolution

LazEv waveforms. The figure shows the modes in order of

decreasing amplitude. The q ¼ 1 subdominant Dendro

(2,0) mode shows a significant mismatch with the

corresponding LazEv mode. All modes with amplitude

larger than the (2,0) mode show much smaller mis-

matches between Dendro and LazEv. The q ¼ 2 and q ¼ 4

comparisons show similar behavior [here, more modes

are nontrivial, and the (2,0) mode is subdominant to all

modes shown].

Figure 21 shows the mismatch in the ðl; mÞ ¼ ð2;−2Þ
mode of ψ4 between Dendro-GR waveforms computed with

different refinement criteria and the high-resolution LazEv

waveform. These mismatches compare solutions computed

with different refinement functions RF3 and RF4 with a

refinement tolerance ϵ ¼ 10−5. The figure also shows the

mismatch for a solution computed with RF3 and the

refinement tolerance set to ϵ ¼ 10−6. The main result

from this figure is that higher resolution (more restrictive

error tolerance) leads to a better agreement between LazEv

and Dendro. Finally, the mismatch between the medium-

and high-resolution LazEv solutions is shown. Consistent

with the earlier convergence results, the Dendro-GR runs

match the high-resolution LazEv solution well, and the

RF3 solution is slightly closer. Finally, Fig. 22 shows

the mismatch between the Dendro-GR solutions for the

q ¼ 8 binary computed with the RF3 and RF4 refinement

functions.

V. DISCUSSION

This paper presented binary black hole evolutions

performed with Dendro-GR for different mass ratios up to

q ¼ 16. We presented validation tests in comparison with

results from LazEv, and we gave performance information

for these runs.

While the focus of this paper is on evolving binary black

holes with Dendro-GR, the first result that we presented has

general applicability in the numerical relativity community.

We found that in binary black hole evolutions with the

BSSN formalism, the rate of convergence is increased

when a large amount of Kreiss-Oliger dissipation is added

to the solution. In our tests, runs with a dissipation

parameter of σ ¼ 0.4 had a better rate of convergence

than runs with σ ¼ 0.04, where σ is bounded by σ < 1 for

numerical stability.

While the performance and scaling of Dendro-GR is very

good, we are currently working on additional improve-

ments. In particular, we are improving the unzip process,

in which an octant of the tree is locally expanded to a

uniform Cartesian grid, to reduce the communication

overhead. As shown in this paper, we started exploring

different ways to control the refinement algorithm,

especially during the initial times of an evolution. We

want to improve the computational performance of Dendro-

GR, while not sacrificing the accuracy of the solutions.

While we have had some initial success, much more

work remains to be done. We continue working on a

more general method to monitor errors in the evolution of

black hole spacetimes. Finally, in an independent project,

we are developing a version of Dendro-GR that runs

primarily on GPUs.

The version of Dendro-GR used to produce the results in this

paper is distributed subject to the MIT license in Ref. [88].

FIG. 21. This figure shows the overlaps in the ðl; mÞ ¼ ð2;−2Þ
mode of ψ4 computed with various Dendro-GR refinement criteria

against the high-resolution LazEv solution for a q ¼ 2 binary. The

blue line is computed with ϵ ¼ 10−6, and all other cases use

ϵ ¼ 10−5. As expected, the waveforms computed with the more

expensive RF3 refinement function (red) have better overlaps to

LazEv than those computed with RF4 (green). Finally, the tan solid

line shows the overlap of the LazEv medium- and high-resolution

waveforms.

FIG. 22. This figure shows the overlaps in the Dendro-GR q ¼ 8

gravitational waveforms computed with the RF3 and RF4 refine-

ment functions. The waveforms are presented in order of

decreasing amplitude. As expected, the dominant modes have

smaller mismatches than the subdominant modes.
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