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A B S T R A C T

A method based on the tracking of the peaks of interference fringes as a function of time-dependent analyzer
setting is used to detect the Pancharatnam phase of light. The advantage of this method is demonstrated by
observations of the nonlinearity of the Pancharatnam phase for certain paths on Poincare sphere where the
fringe visibility reduces to almost zero. We also describe variations of this experiment with structured light
beams, where the Pancharatnam phase leads to linear or nonlinear rotation of flower-pattern or spiral-shape
interference fringes.

1. Introduction

Polarization is a physical degree of freedom of an electromagnetic
wave. If the polarization state of a light wave evolves during its
propagation, the wave may acquire a contribution to its phase in
addition to the contribution from its dynamical phase. This additional,
polarization-dependent contribution to the phase of a light wave, was
first discussed by Pancharatnam [1] and is known as the Pancharatnam
phase of light. It is a type of geometric phase of light [2]. Pancharatnam
showed that for cyclic evolution of polarization, this phase depends
only on the geometry of the geodesic circuit traced by the wave po-
larization on the Poincare sphere and is equal to half the area enclosed
by the polarization circuit on the Poincare sphere [3]. Experimental
observations of the Pancharatnam phase of light typically involve an
interferometric set up where the polarization of one or both of the two
interfering coherent beams evolves as they traverse the interferometer.
At the output of the interferometer, the beams interfere with a phase
that includes contribution from the dynamical phase difference which
arises due to the difference in the paths traversed by the beams as well
as the Pancharatnam phase.

The dependence of the Pancharatnam phase on the orientation,
retardation, and other parameters pertaining to polarization elements
affecting wave polarization is, in general quite complex; it may be
nonlinear [4–6] or linear [7–9], depending on the polarization paths
on the Poincare sphere. While both linear and linear regimes of the
Pancharatnam phase are of interest from a fundamental point of view,
the nonlinear regime is of special interest from an application point of
view. Indeed, the nonlinear aspect of the Pancharatnam phase has been
used for optical switching [6,10] as well as supersensitive polarization
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interferometry [11]. The concept of the Pancharatnam phase has been
extended to quantum optical and atom optical systems as well [12–14].

The experiments to observe the Pancharatnam phase have been
summarized in several review articles [15,16]. Most experiments have
used polarization circuits which lead to linear dependence of the Pan-
charatnam phase on the parameter that affects the change. These
experiments, typically observe the Pancharatnam phase by changing
the orientation of polarizers in small increments and/or retarders and
monitoring the fringe intensity. This approach works well in the lin-
ear regime but is not convenient in the nonlinear regime. The main
difficulty arises from the fact that the fringe intensity variation at a
fixed point arises both from the change in the phase difference and the
intensities of the two interfering beams but is, in fact, dominated by
the variation in beam intensities [6]. We propose and demonstrate that
by making the polarization settings time-dependent and monitoring the
positions of interference fringe peaks is a more efficient way to observe
the Pancharatnam phase. The advantage of the method described in this
paper is especially transparent in the context of the nonlinearity of the
Pancharatnam phase.

We begin by first focusing on how the nonlinearity of the Pancharat-
nam’s phase arises. This is followed by an experimental observation
of the nonlinearity using the method proposed here when a funda-
mental Gaussian beam is used in the interferometer. We also describe
experiments using structured beams for observing the Pancharatnam
phase both in the linear and nonlinear regimes and their distinguishing
features.
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2. Nonlinear Pancharatnam phase

Consider the Mach–Zehnder interferometer shown in Fig. 1(a) and
the corresponding Poincare sphere [17] in Fig. 1(b) showing the tra-
jectory of the polarization corresponding to the beams in the two
arms of the interferometer. A vertically polarized (point V on the
Poincare sphere) light beam of wavelength 𝜆 is incident at a 50/50
beam splitter BS1. The beam along arm A of the interferometer passes
through a half-wave plate H1 with its fast axes oriented at 45◦ to the
horizontal, while the beam along arm B passes a half-wave plate H2
(designed for a slightly longer wavelength 𝜆 + 𝛥𝜆) with its fast axis at
45◦ to the horizontal. The beam traversing arm A arrives horizontally
polarized (point H on the Poincare sphere) at beam splitter BS2 while
the beam traversing arm B arrives elliptically polarized (point B) with
its long axis horizontal. The beams emerging from one of the output
ports of BS2 are incident on a linear polarizer LP (analyzer) with its
transmission axis at an angle 𝜑 to the horizontal. The analyzer projects
the polarization states of the two beams onto the polarization state C
(linear polarization at an angle 𝜑 to the horizontal). Note that the angle
of azimuth of state C on Poincare sphere is twice the angle 𝜑 specifying
the inclination of the analyzer axis to the horizontal [17]. Thus the
beams emerging from the analyzer LP are linearly polarized in state
C and interfere with a phase difference, which equals the sum of the
dynamical phase due to optical path length difference between the two
arms of the interferometer and the Pancharatnam phase given by half
the area enclosed by the spherical triangle HBC on the Poincare sphere
[Fig. 1(b)].

The Pancharatnam phase contribution to the phase difference be-
tween the two wave interfering at the output of analyzer LP is half the
area of spherical triangle HBC, which can be expressed in terms of the
coordinates of points H, B and C on Poincare sphere [5]. It can also
be expressed directly in terms of experimentally accessible quantities
using Jones matrix formalism [17]. To do so, we recall that the Jones
matrix 𝑀𝜉 (𝜑) of a wave plate whose fast axis is inclined at an angle 𝜑
to the horizontal and which introduces a phase difference 𝛿 between
its slow and fast eigenstates is

𝑀𝜉 (𝜑) =
(

cos2 𝜑 + 𝜉 sin2 𝜑 (1 − 𝜉) sin𝜑 cos𝜑
(1 − 𝜉) sin𝜑 cos𝜑 𝜉 cos2 𝜑 + sin2 𝜑

)

, (1)

where 𝜉 = exp[𝑖𝛿] for a wave plate and by putting 𝜉 = 0 we obtain Jones
matrix 𝐿𝑜(𝜑) for a linear polarizer.

The initial state of light of wavelength 𝜆1 entering the interferom-
eter is vertical polarization (V on the Poincare sphere) represented by

Jones matrix
(
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)

. Noting that the half-wave plate (designed for 𝜆1) in
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𝐴
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for the retarders and polarizers for these values of 𝜑 and 𝜉, the final
states of polarization of the two beams following the arms A and B of
the interferometer, after the analyzer LP, are given by
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The preceding calculation takes into account only the phase due to
the evolution of wave polarization. From Eqs. (2) and (3), the phase
difference (which equals the Pancharatnam phase within a constant),
between the two interfering beams after the analyzer, arising from the
evolution of polarization, is given by

𝛾
𝑃
= tan−1

[

sin 𝛼 (cos𝜑 − sin𝜑)
(cos𝜑 + sin𝜑) + cos 𝛼 (cos𝜑 − sin𝜑)

]

. (4)

This is clearly a highly nonlinear function of the analyzer angle 𝜑.
The rate of change 𝛾 ′

𝑃
≡ 𝑑𝛾

𝑃
∕𝑑𝜑 of the Pancharatnam phase with the

analyzer angle 𝜑 is given by

𝛾 ′
𝑃
= − sin 𝛼

1 + cos 𝛼 cos 2𝜑
, (5)

which depends on angle 𝛼 by which the point 𝐵 overshoots linear
polarization H on the Poincare sphere. For small analyzer angles (𝜑 ≈
0), the magnitude of 𝛾 ′

𝑃
is tan(𝛼∕2) whereas for analyzer angles near 𝜋∕2

it is cot(𝛼∕2). This means that for small values of 𝛼, the Pancharatnam
phase varies little (𝛾 ′

𝑃
∼ 𝛼∕2) with analyzer settings 𝜑 near zero,

whereas it varies rapidly (𝛾 ′
𝑃
∼ 2∕𝛼) for analyzer settings close to 𝜋∕2.

The smaller the angle 𝛼, the more pronounced the nonlinearity of the
Pancharatnam phase for analyzer angles 𝜑 ≈ 𝜋∕2.

If the analyzer is rotated, the angle 𝜑 increases (or decreases), the
final state 𝐶 moves away from H towards V along the equator. As 𝜑
crosses 𝜋∕2, the geodesic connecting B to C swings suddenly from the
left half of the lower hemisphere to right half of the lower hemisphere
passing over the south pole of Poincare sphere. The area of the spherical
triangle HBC and, therefore, the Pancharatnam phase, follows this same
trend, changing most rapidly as 𝜑 crosses the 𝜋∕2 setting. In this case
the Pancharatnam phase depends nonlinearly on the analyzer setting
𝜑. Experimental verifications of the nonlinearity of the Pancharatnam
phase have used similar interferometric setups that project polarization
states of the two beams on to the same final polarization state using a
variable analyzer [4–6].

The difficulty of such setups for observing the Pancharatnam phase
can be appreciated by considering the resultant intensity 𝐼

𝐶
after the

analyzer LP (transmitting polarization C), which is given by [1]
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where 𝐼
𝐻
and 𝐼

𝐵
are the intensities of the beams with polarizations

H and B, respectively, 𝜃
𝐻𝐶

and 𝜃
𝐵𝐶

are the angles between the po-
larization states H and C, and B and C, respectively, on the Poincare
sphere, 𝛿 is the dynamical phase difference (depends on the location
of the fringe) and 𝛾

𝑃
is the Pancharatnam phase. As point 𝐶 moves all

three quantities, 𝜃
𝐻𝐶

, 𝜃
𝐵𝐶
, and 𝛾

𝑃
[Eq. (4)] vary and this means that the

resultant intensity 𝐼
𝐶
will vary both due to the changes in the intensities

of the two beams and the change in the Pancharatnam phase and for
the polarization circuit shown, the intensity variation of the interfering
beams dominates the resultant intensity variation masking the effect
of phase nonlinearity. This makes the extraction of phase difference
by monitoring the fringe intensity difficult [6]. The approach used in
this paper to address this problem is to make the analyzer setting time
dependent and focus on the motion of the position of the peaks rather
than on the fringe intensity as the analyzer setting changes. Note that
the position of an interference fringe peak of order 𝑚, given by 𝛿𝑚+𝛾𝑃 =
2𝜋𝑚 ⇒ 𝛿𝑚 = 2𝜋𝑚 − 𝛾

𝑃
, is determined solely by the change in phase 𝛾

𝑃
.

Note that the measurement of the position of a fringe peak certainly
involves a measurement of intensity, but it is not the measurement of
the intensity at one point (the peak) but of the entire intensity pattern.
As explained in Section 4, the peak positions are located by fitting a
cosine curve to the entire pattern. This procedure makes the location
of fringe peaks a global quantity rather than a local one, allowing the
determination of the peak position with greater accuracy even if the
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Fig. 1. (a) Mach–Zehnder interferometer for observing the nonlinearity of the Pancharatnam phase. (b) Polarization trajectories for the two interferometer beams on the Poincare
sphere.

overall intensity decreases and becomes small. We find that even in
cases where the amplitudes of the interfering beams do not change as
the polarization evolves [see the next section], monitoring the peak
position is at least as effective as monitoring the fringe intensity for
observing the Pancharatnam phase of light.

3. Experiment

The experimental set up is shown in Fig. 1(a). A 50/50 beam splitter
BS1 divides a vertically polarized (V ) laser beam (𝜆1 = 633 nm) into two
coherent waves of equal intensity and sends one part along arm A and
the other along arm B. Half-wave plate H1 with its fast axis at 𝜋∕4 to the
horizontal, transforms the polarization state of the wave along arm A
into horizontal polarization H along great circle VLH on the Poincare
sphere and the half-wave plate in arm B, designed for 𝜆2 = 808 nm,
transforms the wave along this arm into elliptic polarization B along the
great circle VLHB. The analyzer LP projects states H and B onto state
C (linear polarization at an angle 𝜑 to the horizontal). The analyzer
LP is mounted on a voltage controlled motor whose angular speed can
be controlled by a varying the voltage. For a fixed voltage, the motor
rotates at a uniform angular speed and the final state C advances along
the equator at a constant angular speed.

If the motor rotates at a constant angular speed 𝛺, the change in
analyzer angle (with the horizontal) is given by 𝜑 = 𝛺𝑡, where the ori-
gin of time is chosen to be the instant when the analyzer is horizontal.
The Pancharatnam phase contribution to the overall interference phase
is then given by Eq. (4) with 𝜑 = 𝛺𝑡. Since the path difference between
the two arms of the interferometer remains unchanged as the analyzer
rotates, only the time varying Pancharatnam phase contributes to the
change in the overall interference phase difference. Due to this time-
varying phase difference we observe a shifting fringe pattern. Due to
the nonlinearity of Pancharatnam phase, the fringes shift nonuniformly
even as the analyzer rotates at a constant angular speed. The motor was
rotated at a rate of approximately 1/9 Hz corresponding to 𝛺 = (2𝜋∕9)
rad/s. The camera sampled the resulting interference pattern at an
average rate of 7 Hz.

4. Results and discussion

The interference pattern at the output of analyzer LP was monitored
by a CCD camera. A few sample interference frames, separated by equal
time intervals are shown in Fig. 2. The rapid shift of the fringe pattern
due the Pancharatnam phase occurs between Figs. 2(d) and 2(e) (see
the video Visualization1 in Fig. 2).

Successive image frames of the interference pattern, recorded at
regular intervals, were analyzed using a computer program, which

took pixel brightness (corresponding to intensity) measurements along
points on a fixed line in each frame of the series. As an example,
the vertical red line in Fig. 3(a) shows the pixels along which fringe
intensity measurements were taken. The line is four pixels wide, and the
average of intensity over the four horizontal pixels inside the line was
associated with the vertical pixel coordinate. The interference fringe
pattern was constructed by plotting the vertical pixel coordinate along
the 𝑥-axis and the intensity 𝐼(𝑥) of that pixel on along the 𝑦-axis
(Fig. 3(b)). The fringe-pattern was fitted to a cosine function

𝐼(𝑥) = 𝑎 + 𝑏 cos(𝑘𝑥 − 𝑑) , (7)

where the parameters 𝑎, 𝑏, and 𝑑 varied from frame to frame reflecting
variation of incident light intensity, nonuniform transmission by differ-
ent parts of the analyzer, etc. but the parameter 𝑘, which is related
to the periodicity of the fringe-pattern was the same for all frames.
The parameter 𝑘 is the wavenumber for the interference pattern, which
was determined by performing a nonlinear regression on a few sample
frames in the series. All the frames were then fitted with the cosine form
(7) using this value of 𝑘. This assumption was made because the path
lengths, wavelength of interfering beams and alignment of the setup
remain unchanged and, therefore, the period of the interference pattern
remains unchanged.

The camera was allowed to saturate at the highest fringe intensity
(the orange seen in Fig. 3(a)) in order to be able to record fringe
patterns even when the fringes became too dim for analyzer settings
close to 𝜋∕2.

Fig. 3(a) shows a typical fringe-pattern recorded by the CCD. It also
shows a line along which the pattern was scanned. The result of this
scanning is shown in Fig. 3(b), which displays intensity 𝐼(𝑥) (dots) as
a function of pixel coordinate 𝑥 along with the cosine wave regression
(continuous curve). This allowed us to determine the position of fringe
peaks. By following this procedure for successive frames and recording
the coordinate of each fringe peak we were able to track the position
of each fringe peak from one frame to another. Using the fact that
the phase difference from one interference fringe to the next changes
by 2𝜋, each peak position was assigned a relative phase difference.
Finally, since successive frames were recorded at regular time intervals
𝛥𝑡 ≈ (1∕7) s, the analyzer angle from one frame to the next differed
by 𝛺𝛥𝑡. The result is a graph of peak coordinates vs. analyzer angle
shown in Fig. 4. Note that we have not made an attempt to align
the zero of analyzer angle to a particular position of fringe peak.
However, the shift of the fringe peak is directly related to the variation
of the Pancharatnam phase due to the setting of the uniformly rotating
analyzer.

The positions of the peaks of several interference fringes were
tracked. This allows for a more efficient use of the data and also works
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Fig. 2. Sample interference fringe pattern images recorded by the CCD camera. The fringes shift most rapidly as the analyzer angle crosses 𝜋∕2 setting (see Visualization1).

Fig. 3. (a) A typical frame of recorded interference fringes showing the line along which fringes were scanned. (b) Scanned fringe pattern (dots) along with the cosine wave
regression (full curve).

Fig. 4. Experimental data (black dots) for peak positions compared with the theoretical
predictions (full curve) of Eq. (4).

as a check to detect any systematic drifts. The results are shown in
Fig. 4. The vertical axis is the peak position (pixel coordinate), which as
noted in the preceding paragraph, is proportional to the Pancharatnam
Phase and the horizontal axis is the angle of rotation of the analyzer.
The figure shows the trajectories of the peak positions of several fringes.
The full curves are the predictions of Eq. (4).

We carried out another variation of this experiment using angu-
lar momentum carrying pure vortex beams [18]. A vortex beam of
angular momentum index +2 was sent along one arm and another
of opposite index −2 along the other arm of a well-aligned Mach–
Zehnder interferometer in Fig. 1(a). A single four-lobe interference
fringe pattern [Fig. 5] appears at the output of the analyzer [18]. As
the Pancharatnam phase varies with the rotation of the analyzer, the

Fig. 5. Four-lobe fringe pattern when beams of opposite angular momentum index
±2 traverse the two arms of the interferometer in Fig. 1(a). Nonlinear Pancharatnam
phase causes rotation of the fringe pattern to speed up when the analyzer setting crosses
𝜑 = 𝜋∕2 (see Visualization2).

relative phase difference between the two interfering beams also varies
and causes a rotation of the interference pattern.

5. Conclusion

The experimental data from the interferometer agree with the pre-
dictions of Pancharatnam’s theorem and, in particular, verify the non-
linear dependence of the Pancharatnam phase on analyzer angle. The
scatter of points is due to the cumulative effect of small variations in
intensity, rate of rotation, CCD sampling rate, and vibrations coupling
into the optical setup. That many of the deviations of interferometer
data from the theoretical curves are similar for all the fringes, suggests
that they are caused by these common sources of error in the image
acquisition system that affect the entire fringe pattern. We emphasize
that by using the method proposed here, viz., by making the analyzer
angle time-dependent and varying it at a constant rate, the motion of
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the fringes at the output of the analyzer can be viewed on a screen (or
on a computer screen connected to the CCD). Starting from a setting
near 𝜑 = 0, as the analyzer rotates and 𝜑 increases, the fringe pattern
dims without much shift, but as 𝜑 crosses 𝜋∕2 setting, the fringes shift
rapidly and the fringe-pattern momentarily disappears. The effect is
visually quite dramatic. The attached video [Fig. 2 Visualization1] of
fringe pattern as a function of analyzer angle shows an example of
this. It can be seen that as time elapses and analyzer angle changes
linearly with time, fringes vary in intensity with little shift until the
analyzer reaches 𝜋∕2 setting, when the fringes momentarily vanish and
the fringe pattern shifts.

The second video clip [Fig. 5 Visualization2] shows this when the
two arms of the interferometer carry vortex beams of opposite indices
±2. In this case, as the analyzer rotates, fringes, which have the form
of four flower petals, vary in intensity with little angular shift until the
analyzer crosses 𝜋∕2 setting when the fringe pattern rotates rapidly.

We have used the method proposed here for other interferom-
eters [7–9] as well, where the Pancharatnam phase varies linearly
with the angular setting of a wave plate, using both the fundamental
Gaussian beam and higher order structured beams, such as the vortex
beams. The use of vortex beams is attractive as the interference fringe
pattern provides a reference point, the origin of a fork or a spiral in the
fringe pattern, past which fringe movement can be monitored. In such
cases one directly observes uniformly shifting or rotating spiral fringes
past the reference point for a uniformly rotating analyzer, in agreement
with the predictions of Pancharatnam’s theorem.
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