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Abstract: This work studies the effect of a plasmonic array structure coupled with thin film
oxide substrate layers on optical surface enhancement using a finite element method. Previous
results have shown that as the nanowire spacing increases in the sub-100 nm range, enhancement
decreases; however, this work improves upon previous results by extending the range above 100 nm.
It also averages optical enhancement across the entire device surface rather than localized regions,
which gives a more practical estimate of the sensor response. A significant finding is that in higher
ranges, optical enhancement does not always decrease but instead has additional plasmonic modes at
greater nanowire and spacing dimensions resonant with the period of the structure and the incident
light wavelength, making it possible to optimize enhancement in more accessibly fabricated nanowire
array structures. This work also studies surface enhancement to optimize the geometries of plasmonic
wires and oxide substrate thickness. Periodic oscillations of surface enhancement are observed at
specific oxide thicknesses. These results will help improve future research by providing optimized
geometries for SERS molecular sensors.

Keywords: plasmonics; thin film; SERS; computational electromagnetics; nanowires; nano-optics;
grating; array

1. Introduction

Surface enhanced Raman spectroscopy (SERS) molecular sensing has seen increased attention
in recent years due to its ability to detect analyte molecules, even down to single molecule detection
capabilities [1-3]. SERS can be used for a variety of chemical sensing including biological and inorganic
molecules [4,5] and can be used with multiple material phases [6,7]. Because of this, SERS can be
used in a variety of applications such as improved biomedical technologies, substance detection,
and experimental chemical sensing [8-10]. Raman spectroscopy takes advantage of vibrational modes
in analyte molecules, which weakly scatter light, to produce a characteristic spectrum with peaks
corresponding to shifts in energy compared to the incident electromagnetic radiation; however, it is
limited by the small signal strength produced by molecules.

Plasmonic nanoantennae can vastly improve the signal strength of molecules on SERS substrates
by focusing incident light into ultra-small regions that enhance the electric near-field by many orders of
magnitude [11-13]. In addition to enhancing the incident light, they can also couple to the Raman signal
of the molecule and, therefore, enhance detection [14,15]. To do this, plasmonic nanogratings have
been fabricated with geometries optimized in such a way as to produce the maximum possible electric
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field [16,17]. In turn, more intense electric fields will interact with individual molecules, producing
a much greater scattering signal than for non-optimized geometries. Previous studies have analyzed
the electric field in only specific regions of the structure or studied the reflectance/transmittance of the
light [18,19]. To have a more complete picture of the SERS enhancement of nanograting structures,
the near-field must be studied across the entire surface because molecules from which the signal is
scattered do not reside solely in gap regions.

Computational modeling can be a useful tool for probing the near-field enhancement in extremely
small regions prior to fabrication and experimental optical characterization. Current computational
methods for probing plasmonic structures includes, but is not limited to, finite difference time domain
(FDTD), discrete dipole approximation (DDA), and finite element method (FEM), the latter of which
was the method used in this study [20-22]. Line averages across the surface of the substrate were used
to gain a better insight into the electric field enhancement across the entire surface as opposed to the
integration regions studied in previous papers [18,23]. For this structure to demonstrate practical SERS
biosensor molecular detection capabilities, it must be able to sense molecules in regions that are not
only between the nanowires, where the highest enhancement occurs, but also spread out across the
entire surface of the device. This work helps to analyze a greater active sensing area by exploring
signal enhancement in an increased detection region.

Furthermore, many papers study plasmonic enhancement in sub-100 nm regions due to optimized
enhancement occurring below this gap width threshold [24-27]. However, additional peaks in
enhancement have been observed above 100 nm geometries resonant with the wavelength of the
light and period of the structure [28-30]. This work shows that, though these higher geometric
modes are weaker in magnitude, they can still yield significant enhancement values for improved
sensing capabilities. In addition, the thickness of a silicon dioxide thin film substrate is studied
to find resonant thicknesses that further improve the enhancement capabilities of the structure;
this optimizes light on the surface of the substrate, where the molecules of interest are located
during SERS. A similar technique has been used to optimize contrast in graphene studies [31,32].
Devices are then proposed for improved plasmonic surface enhancement both at optimized geometries
and at resonant modes with larger structures/gaps. With larger gap and wire geometries providing
significant enhancement, reliance on advanced two-step nanogap or nanoslit lithographic techniques
can be eliminated [18,33-35]. While there are many nice techniques for obtaining quality SERS
substrates [36,37], this work highlights that there are some interesting optical features in patterned
nanograting structures that have not been fully explored. Specifically, this work can improve fabrication
efficiency by allowing for standard nanofabrication techniques such as electron-beam lithography
(EBL), photolithography, or chemical self-alignment [38-41] instead of using advanced methods to
fabricate sub-10 nm gaps [33,42,43]. As a result, SERS sensors can more easily be designed and built in
industry as commercially viable products.

2. Materials and Methods

A finite element method [44] was used to study two-dimensional cross sections of Au plasmonic
nanowires. A line average of all mesh point values along the surface of the structure was used to
calculate optical enhancement. This enhancement is defined as the absolute value of the magnitude of
the localized electric near-field (| E|) divided by the absolute value the incident electric far-field (|Eg|),
all squared, which is proportional to the light intensity [45,46]. This study improves previous work
by calculating the line average of (|E|/|Eg|)? across the entire structure instead of only integrating
in the gap region previously studied, which does not give a full view of the enhancement across the
system’s entire surface [18]. Incident light of constant wavelength Ag = 785 nm, a common probe laser
wavelength used for Raman spectroscopy, was simulated as polarized in the x-direction, which was
perpendicular to the length of the nanowires, and incident normal to the surface of the structure in the
z-direction, as seen in Figure 1a. Complex optical material properties of Au, Ti, SiO;, and Si were used,
and the top surrounding space was simulated as air [47—49]. Fillets with a radius of 4 nm were used on



spacing (s), and silicon dioxide thickness (fsio,) as labeled in Figure la in order to optimize surface
enhancement. The silicon substrate was simulated to be infinitely thick using ports to eliminate back-
scattering from the bottom boundary of the model. The period of the structure, defined as P =w +s
was modeled as an infinite array using periodic boundary conditions, and the lengths of the wires
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The field enhancement can be tuned to be up to 80 times higher than non—optlrmzed geometries.

3. Results

The following section analyzes the parametric sweeps to gain a deeper understanding of where
plasmonic-resonant electric field modes occur and optimizes w, s, and tg;op for the greatest near-field
line average enhancement. Using these geometries, suggestions will be made on how to fabricate the
most effective SERS molecular sensor using plasmonic devices.

3.1. Electrode Spacing Optimization

The first simulation was conducted to build upon previous work by assuming that as s increases,
optical enhancement decreases, but here a line average was taken across the entire surface as opposed
to averaging over mesh points in specific regions [18]. Also, this work explored gap ranges greater
than 100 nm, which has not been commonly studied using plasmonic nanowires for SERS. Electrode
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3.2. Thin Film Thickness and Electrode Optimization

3.2. Thin Fillighhéckrbssusitsh & leetabidon Optiingtiéopptimization of surface enhancement by varying tsioz,
w, and s. Figure 3a presents a color plot of a sweep of s and w from 10 nm to 600 nm in 10 nm steps,
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There are additional plasmonic modes resonant with the geometry of the structure at greater s and w
values. Another mode corresponds to the period of the structure equal to the wavelength of incident
light (Prypde = Ao), shown as the white dashed line with a slope of —1 on the color plot, which means
that it occurred at a constant period [53]. It also allows for a range of geometries, so fabrication does not
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Figure 3b shows the result of a sweep to optimize ts0, from 10 to 800 nm with w and s set at
(i), (ii), and (iii). It shows that there are periodic regions of constructive and destructive interference
at the surface of the substrate, which yield high or low reflection, respectively, dependent on the
wavelength of the light and the t5;0, height [54]. The thin film is optimized at w = 70, s = 10, and tg;o,
= 330 nm; however, other oxide layers, tgio, = 60 or 590 nm, etc., may be used with little to no
loss in light enhancement. A slight shift in peak enhancement values was observed based on the
nanowire surface geometry due to plasmonic surface effects and the period of the structure. The peak
enhancement resulting from the parameters for (ii) were roughly half of the peak values for the
optimized structure, still demonstrating a high sensing capability for applications which may benefit
from relaxed fabrication constraints.

Figure 3c is a second iteration of Figure 3a but demonstrates the effect of using the optimal ts;0p
at 330 nm. It can be observed in the color plot that the enhancement greatly increased for the same
ranges of w and s compared to that in Figure 3a. This indicates that the enhancement values were much
higher at optimized oxide substrate thicknesses, which is expected. Also, the maximum enhancement



Materials 2018, 11, 942 6 of 11

values slightly shifted from (i) w = 70 nm, s = 10 nm and (ii) w = 150 nm, s = 320 nm to (v) w = 50 nm,
s =10nm and (iv) w = 130 nm, s = 360 nm. On this iteration, it was necessary to sweep tgjo, once more
to ensure that the structure was optimized, and the results are shown in Figure 3d. Although the peak
(|E|/|Eo|)? values rose from 15 to a maximum of 22, the tsio, values at which these peaks occurred
did not shift. This indicates that the structure was, in fact, optimized. Were another iteration to be
conducted, it would yield the same results because peak oxide thicknesses did not shift. Line averaged
enhancement is optimized at tsio, = 60, 330, or 590 nm, w = 50 nm and s = 10 nm; however, a second
peak occurred at tg;0, = 630 nm, w = 130 nm and s = 360 nm. This geometric combination is more easily
fabricated and still provides roughly half of the enhancement value of the fully optimized geometry.

4. Discussion

A major implication of this work is that enhancement values do not always decay at greater
geometric values, as was previously assumed, but instead increase at specific w and s values
resonant with the periodicity of the structure. This is, in large part, due to values which yield
the largest constructive and deconstructive interference at the surface of the substrate. At specific
periods, the polarized light passing through the surface will be reflected off the silicon dioxide layer
boundary and constructively interfere, coupling with the light already incident from the top of the
structure. In this case, one such resonant period happened to be equal to the wavelength of the light,
which is dictated by the Rayleigh scattering anomaly, a grating phenomenon [55,56]. This caused
an enhanced electric field at the surface, which led to an increased strength of localized plasmon
resonances across the device surface. These effects can yield up to 22 times the optical enhancement of
non-optimized structures.

The results can be compared to previous work [18,50] to understand how taking a line average
across the surface of the SERS device compares to studying an integration area only over the gap
regions. Bauman et al. studied a similar structure while only looking at an area around the gap
region [18] and showed an enhancement value of around 67 for a similar structure but with a 5 nm
spacing, as compared to the value of 22 obtained in our work using a line average and a spacing of
10 nm. If we were to look at a smaller spacing this enhancement value would almost double, bringing
it closer to, but still less than, the value obtained using a volume average [18,50]. This makes sense
because the greatest enhancement values occur in the gap regions, so integrating only around the gap
would yield higher results than integrating across the entire surface where much lower enhancement
values are found. In [18], for larger widths, the secondary peak is greater in the gap compared to our
surface-average study. The secondary peak, seen around 500 nm in Figure 2a, was much weaker than
the initial peak at 50 nm in contrast to the relative peak amplitudes for gap regions. Again, this makes
sense because larger wire widths lead to a greater space between gap regions, decreasing the overall
surface-averaged result. So, the results of this paper are more realistic because molecules will be spread
over the entire surface as opposed to very specific localized regions. Thus, this study is significant
because even with entire line averages across the surface, enhancement can be up to 22 times that of
non-optimized structures, showing that these results should be used when fabricating SERS devices
for molecular sensing. Also, it is important to optimize geometries at smaller widths when possible
and not around any secondary peaks.

Additional modes were also observed at higher w and s values due to the period of the
structure causing increased reflection off the bottom silicon layer, as shown in Figures 2 and 3.
This allows for devices to be fabricated with more standard techniques such as electron-beam
lithography, which eliminates the need to use more advanced techniques such as nanomasking [33].
Such advanced methods are required to make the smallest optimized structure or gaps below the
typical resolution limits of optical or e-beam lithography. Although the devices may not generate the
greatest enhancement possible, they are still highly efficient, causing optical enhancement values of up
to 11 times greater than for non-optimized devices.
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The standard equation for thin film interference, tsio, = (27tmg — @1 — @2)A¢/(47n), can be used
to defgrminsswhichroxise thickngsses will result in deconstructive interference shown in Bigure 3d,
wheremg =1{0,1,2,3,... }, Ag is the incident wavelength, n is the refractive index of SiO, at A = 785 nm,
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5. Conclusions

Plasmonic structures have been shown to improve SERS sensors by focusing light into extremely
small gap regions where analyte molecules are located, thus enhancing the signal produced by the
molecules, making them more easily detectable. Previous results have shown that optical enhancement
in gap regions increases as the geometries (width and spacing) of the grating structure decrease.
Although this work draws the same conclusions for an optimized structure, it extended the analyzed
size regime above 100 nm, and enhancement across the entire surface of the sample was considered
versus calculating in localized integration regions. Additional plasmonic modes were observed at
higher geometries greater than 100 nm, which had peak enhancement values roughly half of the values
produced by optimized structures but still 11 times greater than those produced by non-optimized
geometries. Average enhancement also oscillated periodically with resonant peaks of constructive and
deconstructive interference based on the thickness of a silicon dioxide thin film atop a silicon layer.
These results were verified by thin film interference theory.

The nanowires and thin film were fully optimized at tsi0, = 60, 330, or 590 nm, w = 50 nm and
s = 10 nm; however, a second resonant peak occurred at tgio, = 630 nm, w = 130 nm and s = 360 nm that
was more accessible in practice through standard fabrication techniques such as EBL or high-resolution
photolithography. So in addition to optimizing the patterned structure, it is also important to optimize
the oxide layer since this can affect the results by a factor of 4. These results can help improve the time
and efficiency needed to fabricate plasmonic-based SERS devices, as compared with sub-10 nm gap
two-step lithography techniques.
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