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Abstract

This paper develops simple feed-forward neural networks that achieve the universal
approximation property for all continuous functions with a fixed finite number of neurons.
These neural networks are simple because they are designed with a simple, computable,
and continuous activation function o leveraging a triangular-wave function and the softsign
function. We first prove that o-activated networks with width 36d(2d + 1) and depth 11
can approximate any continuous function on a d-dimensional hypercube within an arbi-
trarily small error. Hence, for supervised learning and its related regression problems, the
hypothesis space generated by these networks with a size not smaller than 36d(2d +1) x 11
is dense in the continuous function space C([a,b]?) and therefore dense in the Lebesgue
spaces LP([a,b]?) for p € [1, 00). Furthermore, we show that classification functions arising
from image and signal classification are in the hypothesis space generated by o-activated
networks with width 36d(2d 4+ 1) and depth 12 when there exist pairwise disjoint bounded
closed subsets of R? such that the samples of the same class are located in the same subset.
Finally, we use numerical experimentation to show that replacing the rectified linear unit
(ReLU) activation function by ours would improve the experiment results.

Keywords: universal approximation property, fixed-size neural network, classification
function, periodic function, nonlinear approximation

1. Introduction

Deep neural networks have been widely used in data science and artificial intelligence. Their
tremendous successes in various applications have motivated extensive research to establish
the theoretical foundation of deep learning. Understanding the approximation capacity
of deep neural networks is one of the keys to revealing the power of deep learning. The
most basic layers of deep neural networks are nonlinear functions as the composition of
an affine linear transform and a nonlinear activation function. The composition of these
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simple nonlinear functions can generate a complicated deep neural network with powerful
approximation capacity, which is the key difference from classic approximation tools. In
this paper, we show that the hypothesis space of deep neural networks generated from
the composition of 11 such simple nonlinear functions is dense in the continuous function
space C([a,b]?) when the affine linear transforms are parameterized with O(d?) non-zero
parameters in total and the nonlinear activation function is constructed from a simple
triangular-wave function and the softsign function.

1.1 Main Results

One of the key elements of a neural network is its activation functions. Searching for simple
activation functions enabling powerful approximation capacity of neural networks is an
important mathematical problem that probably originated in the Kolmogorov superposition
theorem (KST) (Kolmogorov, 1957) for Hilbert’s 13-th problem, where a two-hidden-layer
neural network with O(d) neurons and complicated activation functions depending on the
target functions are constructed to represent an arbitrary function in C([0, 1]¢). Since then,
whether simple and computable activation functions independent of the target function
exist to make the space of neural networks with O(d) neurons dense in C(]0,1]%) or even
equal to C(]0,1]%) has been an open problem. A function g : R — R is said to be a universal
activation function (UAF) if the function space generated by g-activated networks with C, 4
neurons is dense in C([0, 1]%), where C, 4 is a constant determined by o and d. That is, if
o0 is a UAF, then p-activated networks with C, 4 neurons can approximate any continuous
function within an arbitrary error on [0, 1]% by only adjusting the parameters.

In this paper, we first construct a simple and computable example of UAFs. As a typical
and simple UAF, this activation function is called elementary universal activation function
(EUAF), and the corresponding networks are called EUAF networks. Then, we prove that
the function space generated by EUAF networks with O(d?) neurons is dense in C([a, b]%).
Furthermore, it is shown that EUAF networks with O(d?) neurons can exactly represent
d-dimensional classification functions.

While a good activation function should be simple and numerically implementable, the
neural network activated by it should be able to approximate continuous functions well
with a manageable size. Considering these requirements and motivated by previous works
(Yarotsky and Zhevnerchuk, 2020; Shen et al., 2021a,b), the activation function to be cho-
sen should have appropriate nonlinearity, periodicity, and the capacity to reproduce step
functions. It is challenging to find a single activation function with all these properties.
Here, we propose an activation function with all required properties by using two simple
functions o1 and o9 defined below.

Let o1 be the continuous triangular-wave function with period 2, i.e.,

o1(x) = |z| for any x € [—1,1]
and o1(z +2) = o1(x) for any = € R. Alternatively, o1 can also be written as:
o1(z) = |z —2|%ft]| for any x € R, where |-] is the floor function.

Clearly, oy is periodic and x — o (x) is a continuous variant of the floor function as desired.
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To introduce high nonlinearity, let o9 be the softsign activation function commonly used
in machine learning (Turian et al., 2009; Le and Zuidema, 2015):

oa(z) : for any = € R.

S
x|+ 1
Then the activation function o is defined as:

o(z) = {al(x) for x € [0, 00), (1)

~ oa(z) for z e (—o0,0).

See an illustration of ¢ in Figure 1. This activation function o is used to construct powerful
neural networks in this paper.

1

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 1: An illustration of o on [—10, 10].

As we shall see later, the periodicity of the triangular-wave function o7 and the (high)
nonlinearity of the softsign function o9 play crucial roles in the proofs of our main results.
One may find more details Section 2.2, which provides the ideas of proving our main results.
Observe that o; is an even function and o3 is an odd function, i.e., o(z) = o1(x) = 01(—x)
for any x > 0 and —o(—z) = —o3(—x) = o2(x) for any x > 0. This implies that o(x)
and —o(—x) with > 0 have both required periodicity and nonlinearity features and play
the same roles as o1(z) and o9(x), respectively. These requirements lead to our choice
of o as the activation function. If allowed to be more complicated, one can design many
other UAFs satisfying stronger requirements for various applications. For example, the
idea of designing a C* UAF is given in Section 4.1 and a sigmoidal UAF (see Figure 8) is
constructed in Section 4.2.

With the activation function o in hand, let us introduce the network (architecture)
using o as the activation function, called o-activated network (architecture). To be precise,
a o-activated network with a (vector) input € R, an output ®(x,0) € R, and L € N
hidden layers can be briefly described as follows:

Ao, bo

Ap_q, br_ 3, ALb
8, L—1 Lth o hL L JL hL+1:(I)(m70)a (2)

— 7 g 7
r = ho h1 h1 P L

where Nog = d € N+, Ni,No,---,Np, € N+, Npiai=1, A; € RNi+1xNi and b, € RNit+1 are
the weight matrix and the bias vector in the i-th affine linear transform L;, respectively,
i.e.,

hi+1 =A; -h;,+b, = Ez(hl) fori=0,1,---,L
and

hi,j :O'(hi7j) fOI‘j: 1727"'7Ni and i = 1,2,-",L.
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Here, ?L” and h; ; are the j-th entries of ;LZ and h;, respectively, for j =1,2,---) N; and i =
1,2,---, L. 0 is a fattened vector consisting of all parameters in Ag, by, A1,b1, -+, Ar, br.

With a slight abuse of notation, o can be applied to a vector elementwisely, i.e., given
any k € Nt

T
a(y) = [o(y1), o(y2), -+ o(y)]”  for any y = [y1, 42, us]” € R".
Then ® can be represented in a form of function compositions as follows:
O(x,0)=LpoocoLly 10 -+ cocoLljoogoLy(x) foranyx € R,

Given N, L € N*, let @y 1 (x,0) denote the o-activated network architecture ®(x, 0) in
Equation (2) with Ny = Ny =---= N = N. Let

W=Wynr=dxN+N + (NxN+N)x(L-1) + Nx1+1=0(dN + N°L)

be the total number of parameters in ®y 1 (x,8), i.e., 8 € RW.
Define the hypothesis space #3(N, L) as the function space generated by d-input EUAF
networks with width N and depth L, i.e.,

HY(N, L) = {¢ L o(a) = By.p(x,0) for any x € RY, 0 € RW}. (3)

Let C([a,b]?) be the space of all continuous functions f : [a,b] — R with the maximum
norm. Our first main result, Theorem 1 below, shows that EUAF networks with a fixed
size O(d?) enjoy the universal approximation property by only adjusting their parameters.

Theorem 1. Let f € C([a,b]?) be a continuous function and H4(N, L) be the hypothesis
space defined in Equation (3) with N = 36d(2d + 1) and L = 11. Then, for an arbitrary
e > 0, there exists ¢ € H7(N, L) such that

|p(z) — f(x)] <e for any x € [a, b]°.

To prove Theorem 1, we first summarize key proof ideas in Section 2.2 and then present
the detailed proof later in Section 5.1.

Remark. The network realizing ¢ in Theorem 1 has
dxN+N + (NxN+N)x(L-1) + Nx1+1~d*

parameters, where N = 36d(2d + 1) and L = 11. However, as shown in our constructive
proof of Theorem 1, it is enough to adjust 5437(d + 1)(2d + 1) = O(d?) < d* parameters
and set all the others to 0.

Since for an arbitrary M > 0, 2Mo(%5#) — M = x for all x € [-M, M], we can
manually add hidden layers to EUAF networks without changing the output. This leads to

the following immediate corollary of Theorem 1.

Corollary 2. Assume N > 36d(2d + 1) and L > 11. Then the hypothesis space #3(N, L)
defined in Equation (3) is dense in C([a,b]?).
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The stable and accurate approximation of discontinuities has many real-world applica-
tions and has been widely studied (Bernholdt et al., 2019; Beck et al., 2020; Gupta et al.,
2020; Gedeon et al., 2021; Hu et al., 2021). Most of common discontinuous functions are in
the Lebesgue spaces LP([a, b]?) for p € [1,00). Let us consider the denseness of our hypoth-
esis space in these function spaces. Since C/([a,b]?) is dense in LP([a,b]?) for p € [1,00),
the hypothesis space in Corollary 2 is also dense in LP([a,b]?) as shown in the following
corollary.

Corollary 3. Assume N > 36d(2d+1), L > 11, and p € [1,00). Then the hypothesis space
HH(N, L) defined in Equation (3) is dense in LP([a,b]?).

This corollary implies that, for f € LP([a,b]?) and an arbitrary ¢ > 0, there exists
¢ € H5(N, L) such that ||¢ — fll1r(fape) <&

One can ask whether the arbitrary error € > 0 in Theorem 1 can be further reduced to
0. This is not true in general, but it is true for a class of interesting functions widely used in
image classification. Given any pairwise disjoint bounded closed subsets E1, Eo,---, E; C
R?, define “the classification function space” of these subsets as

J
Ci(Er, Ea, - By) = {f f =) 1yl forany ri,ra, -1y € Q}7
j=1

where 1, is the indicator function of E; for each j. Our second main result, Theorem 4
below, shows that each element of €y(FE1, E2,- -+, Fy) can be exactly represented by a o-
activated network with O(d?) neurons in U}'le E;.

Theorem 4. Let Ei,Es,---,E; C R% be pairwise disjoint bounded closed subsets and
H3(N, L) be the hypothesis space defined in Equation (3) with N = 36d(2d+1) and L = 12.
Then, for an arbitrary f € €4(E1, Ea,- -+, Ey), there exists ¢ € H#y(N, L) such that

J

o(x) = f(x) forany x € U E;.

j=1
Remark. The network realizing ¢ in Theorem 4 has
dXxN+N + (NxN+N)x(L-1) + Nx1+1~d*

parameters, where N = 36d(2d + 1) and L = 12. However, as shown in our constructive
proof of Theorem 4 in Section 5.2, it is enough to adjust 5509(d +1)(2d +1) = O(d?) < d*
parameters and set all the others to 0.

For a general function space .%, define Z |p = { fle: feF }, where f|g is the function
achieved via limiting f on E. Then, we have a corollary of Theorem 4 as follows.

Corollary 5. Let Ei,Fs,---,E; C R% be pairwise disjoint bounded closed subsets and
(N, L) be the hypothesis space defined in Equation (3). If N > 36d(2d + 1) and L > 12,
then

J
C4(Er, By, -+, Ey)|, € #4(N,L)|,, with E = | ] Ej.
j=1
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One of the most successful applications of deep learning is image and signal classifica-
tion. In supervised classification problems, given a few samples and their labels (usually
integers), the goal of the task is to learn how to assign a label to a new sample. For exam-
ple, in binary classification via deep learning, a neural network is trained based on given
samples (and labels) to approximate a classification function mapping one class of samples
to 0 and the other class of samples to 1. Theorem 4 (or Corollary 5) implies that the clas-
sification function can be exactly realized by an EUAF network with a size depending only
on the dimension of the problem domain via adjusting its parameters. This means that the
best approximation error of EUAF networks to classification functions in the classification
problem is 0.

We remark that, in the worst scenario, there might exist complicated high-dimensional
functions such that, the parameters of the EUAF network in Theorem 1 (or 4) require
high computer precision for storage, and the precision might be exponentially high in the
problem dimension. We refer to this as the curse of memory, which may make Theorem 1
and 4 less interesting in real-world applications, though the number of parameters can be
very small. The key question to be addressed is how rare the curse of memory would happen
in real-world applications. If the target functions in real-world applications typically have
no curse of memory with a high probability, then EUAF networks would be very useful in
real-world applications. In future work, we will explore the statistical characterization of
high-dimensional functions for the curse of memory of EUAF networks. Another approach
to reducing the memory requirement is to increase the network size. Our main result has
provided a network size O(d?) to achieve an arbitrary error. If a larger network size is used,
the curse of memory can be lessened as we shall discuss in Section 1.4.

1.2 Related Work

In recent years, there has been an increasing amount of literature on the approximation
power of neural networks as a special case of nonlinear approximation (DeVore, 1998; Cohen
et al., 2022; Daubechies et al., 2022). In the early works of approximation theory for neural
networks, the universal approximation theorem (Cybenko, 1989; Hornik, 1991; Hornik et al.,
1989) without approximation errors showed that there exists a sufficiently large neural
network approximating a target function in a certain function space within any given error
€ > 0. There are also other versions of the universal approximation theorem. For example,
it was shown in (Lin and Jegelka, 2018) that the residual neural networks activated the
rectified linear unit (ReLU) with one neuron per hidden layer and a sufficiently large depth
are a universal approximator. The universal approximation property for general residual
neural networks was proved in (Li et al., to appear) via a dynamical system approach. In
all papers discussed above, the network size goes to infinity when the target approximation
error approaches 0. However, our result in Theorem 1 implies that EUAF networks with a
fixed size (O(d?) neurons in total) can achieve an arbitrary small error for approximating
f € C(la,b]%).

The approximation errors in terms of the total number of parameters of ReLLU networks
are well studied for basic function spaces with (nearly) optimal approximation errors, e.g.,
(nearly) optimal asymptotic errors for continuous functions (Yarotsky, 2018), C* functions
(Yarotsky and Zhevnerchuk, 2020), piecewise smooth functions (Petersen and Voigtlaender,
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2018), solutions of special PDEs (Elbrachter et al., 2022; Beck et al., 2020), functions that
can be optimally approximated by affine systems (Bolcskei et al., 2019), and Sobolev spaces
(Yang et al., 2022; Hon and Yang, 2021). Approximation errors in terms of width and
depth would be more useful than those in terms of the total number of nonzero parameters
in practice, because width and depth are two essential hyper-parameters in every numerical
algorithm instead of the number of nonzero parameters. This motivated the works on the
(nearly) optimal non-asymptotic errors in terms of width and depth with explicit pre-factors
for approximating continuous functions in (Shen et al., 2020, 2022; Zhang, 2020) and for
C* functions in (Lu et al., 2021; Zhang, 2020). As the errors are (nearly) optimal, there are
two possible directions to improve the approximation error in order to reduce the effect of
the curse of dimensionality. The first one is to consider smaller target function spaces, e.g.,
analytic functions (E and Wang, 2018; Bonito et al., 2021), Barron spaces (Barron, 1993; E
et al., 2019b; E and Wojtowytsch, 2022; Siegel and Xu, 2021), and band-limited functions
(Chen and Wu, 2019; Montanelli et al., 2021).

Another direction is to design advanced activation functions, where one can use mul-
tiple activation functions, to enhance the power of neural networks, especially to conquer
the curse of dimensionality in network approximation. There have been several papers de-
signing activation functions to achieve good approximation errors. The results in (Yarotsky
and Zhevnerchuk, 2020) imply that (sin, ReLU)-activated neural networks (i.e., the acti-
vation function of a neuron can be chosen from either sin or ReLU) with W parameters
can approximate Lipschitz continuous functions with an asymptotic approximation error
(’)(efcd‘/W), where ¢4 is a constant depending on d. In (Shen et al., 2021a), it was shown
that (Floor, ReLU)-activated neural networks with width O(N) and depth O(L) admit an
quantitative approximation error O(vdN _\/Z) for Lipschitz continuous functions, conquer-
ing the curse of dimensionality in approximation with a root-exponentially small error in
depth L.! In (Shen et al., 2021b), it was shown that, even if the depth is as small as 3, neu-
ral networks with width N and O(d + N) nonzero parameters can approximate Lipschitz
continuous functions with an exponentially small error O(v/d2~V), if the floor function
|x], the exponential function 2%, and the step function 1 {z>0} are used as activation func-
tions. Recently in (Jiao et al., 2021), the results in (Yarotsky and Zhevnerchuk, 2020; Shen
et al., 2021b) were combined to avoid the curse of dimensionality using ReLU, sin, and 2%
activation functions. Corollary 2 implies that the hypothesis space of EUAF networks acti-
vated by a single activation function with O(d?) neurons is dense in C([a, b]?). Particularly,
all continuous functions can be arbitrarily approximated by fixed-size EUAF networks with
width N and depth L on a d-dimensional hypercube whenever N > 36d(2d+1) and L > 11.

There is another research line for the approximation error of neural networks: applying
KST (Kolmogorov, 1957) or its variants to explore new activation functions for a fixed-
size network to achieve an arbitrary error. The original KST shows that any multivariate
function f € C(]0,1]%) can be represented as f(x) = Z?io 92‘(2?:1 hij(xz;)) for any & =
[x1, 29, 24]7 € [0,1]%, where g; and h;; are univariate continuous functions. In fact,
the composition architecture of KST can be regarded as a special neural network with

1. Although there is no curse of dimensionality in network approximation, the construction requires ex-
ponentially many data samples of the target function and computer memory. Hence, there would be
a curse of dimensionality in inferring a target function from its finite samples when standard learning
techniques are applied to a computer.
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(complicated) activation functions depending on the target function, which results in the
failure of KST in practice. To alleviate this issue, a single activation function independent
of the target function is designed in (Maiorov and Pinkus, 1999) to construct networks
with a fixed size (O(d) neurons) to achieve an arbitrary error for approximating functions
in C([~1,1]%). However, the activation function in (Maiorov and Pinkus, 1999) has no
closed form and is hardly computable. See Section 2.2 for a detailed discussion of the
construction in (Maiorov and Pinkus, 1999). The computability issue of activation functions
was addressed recently in (Yarotsky, 2021). It was shown in (Yarotsky, 2021) that, for an
arbitrary € > 0 and any function f in C([0, 1]%), there exists a network of size only depending
on d constructed with multiple activation functions either (sin & arcsin) or (|| & a non-
polynomial analytic function) to approximate f within an error €. To the best of our
knowledge, there is no explicit characterization of the size dependence on d in (Yarotsky,
2021). For example, a very important question is whether the dependence can be mild,
e.g., only a polynomial of d, or has to be severe, e.g., exponentially in d. The results of
the current paper provide positive answers to all the issues discussed above: We show that
EUAF networks with a simple and computable activation function, width 36d(2d + 1), and
depth 11 can approximate functions in C(][a, b]d) within an arbitrary pre-specified error
e > 0.

In summary, this paper aims to design a simple and computable activation function
o to construct fixed-size neural networks with the universal approximation property. The
network width and depth are explicitly characterized, depending only on the dimension
d. The fixed-size neural network is designed to approximate any continuous functions on a
hypercube within an arbitrary error by only adjusting O(d?) network parameters. Moreover,
we prove that an arbitrary classification function can be exactly represented by such a
fixed-size network architecture via only adjusting O(d?) network parameters. The main
contribution of this paper is to develop a rigorous mathematical analysis for the universal
approximation property of fixed-size neural networks. The mathematical analysis developed
here would provide a deeper understanding for other neural networks and the approximation
results discussed here can be applied to the full error analysis of deep learning in the next
subsection.

1.3 Error Analysis

We will briefly discuss the full error analysis of deep neural networks. Let ®(x, 8) denote a
function of € X generated by a network architecture parameterized with & € RY. Given
a target function f defined on X, the final goal is to find the expected risk minimizer
Op € argmin Rp(0), where Rp(0) = By py(x) [(®(2,0), f(x))]
0cRW

with an unknown data distribution U(X) over X and a loss function ¢(-,-) typically taken
as l(y1,y2) = %\yl —12|?. Note that Op may not be always achievable. For any pre-specified
n > 0, one can always identify 0p , € RY instead of Op such that

Rp (01)’,7) < eglg/‘/ Rp (0) +1n/2. (4)

Since the expected risk Rp(6) is not available in practice, we use the empirical risk Rs(0)
to approximate Rp(6) for given samples {(z;, f (:I:Z))}Zl:l and our goal is to identify the
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empirical risk minimizer

0s € argmin Rs(0), where Rs(0) := 1 Zé(@(wi,e),f(wi)).
OcRW n-<=

Similarly, Os is not always achievable. For any pre-specified np > 0, one can always identify
0s,, € RY instead of O such that

Rg(asm)fgegﬁa_RS(e)4—n/z (5)

In practical implementation, only a numerical minimizer 8 of Rs(6) can be achieved via
a numerical optimization method. The discrepancy between the learned function ®(x, @)
and the target function f is measured by Rp(€xr), which is bounded by

Rp(0n) = [Rp(0x) — Rs(On)] + [Rs(On) — Rs(0s,9)] + [Rs(0s,n) — Rs(0p,y)] + [Rs(0p,y) — Rp(0py)] + Rp(6p,,)

GE OE <n/2 by (5) GE < im;v Rp(0)+n/2 by (4)
gerYY

< n + inf Rp(8) + [Rs(Oy)— inf Rs(8)] + [Rp(On) — Rs(0n)] + [Rs(0p,y) — Bp(0p,)] -
~~ OcRW OcRW

perturbation — generalization error (GE)
approximation error optimization error (OE)

If ®(x, 0) is realized by EUAF networks, then Theorem 1 implies

inf ||®(-,0) — f()||poc(xn =0 forall f e C(X) with X = [a, b]%.
eﬁw”( ) = FO)llpee () or all f € C(X) wi [a, b]

It follows that

ol Rp(0) = inf Eq ) [((8(x.0). [(@))] = 0.

Since the pre-specified hyper-parameter 1 can be arbitrarily small, the full error analysis
can be reduced to the analysis of the optimization and generalization errors, which de-
pends on data samples, optimization algorithms, etc. One could refer to (Neyshabur et al.,
2019; E et al., 2019a,b; E and Wojtowytsch, 2020; Kawaguchi, 2016; Nguyen and Hein,
2017; Kawaguchi and Bengio, 2019; He et al., 2020; Li et al., 2019) for the analysis of the
generalization and optimization errors.

1.4 Computability

The EUAF network is simple and computable in the sense that the output and subgradient
of EUAF networks can be efficiently evaluated. The computability of EUAF implies that
we can numerically implement the optimization algorithm to find a numerical minimizer
of the empirical risk. Therefore, EUAF can be directly applied to existing deep learning
software in the same way as other popular activation functions (such as ReLU or Sigmoid).
For further discussion on the computability of EUAF, one may refer to Section 3, which
provides experiments to explore the numerical properties of EUAF. As opposed to the
computability of EUAF, the activation function proposed in (Maiorov and Pinkus, 1999)
is not computable in the sense that there is no numerical algorithm to evaluate the output
and subgradient of the corresponding network.

As we shall see later in the proof of Theorem 1, our EUAF network may require suffi-
ciently large parameters to achieve an arbitrarily small error. The magnitude of network
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parameters in Theorem 1 can be dramatically reduced by increasing the network size. In
particular, if we replace each elemental block like Figure 2(a) by a block like Figure 2(b),
then the magnitude of parameters can be roughly reduced to its square root. By repeatedly
applying this idea, it is easy to prove that the magnitude of parameters can be exponentially
reduced as the network size increases linearly. If we fix the size of these larger networks and
only tune their parameters, they can still approximate high-dimensional continuous func-
tions within an arbitrarily small error. How to fix a network size to balance the number
of parameters and their memory depends on both the computer hardware and software.
The goal of this paper is to demonstrate the existence of a simple network with a fixed size
achieving an arbitrary error in spite of the magnitude of parameters and we have shown
that the network size can be as small as O(d?). It is interesting to investigate the balance
between the network size and the memory requirement in the future.

a8 —-—'—Cl;%h-—> axr h X - axr b
(a) (b)

Figure 2: Illustrations of the magnitude reduction of parameters for a sub-network. The
parameters are marked in orange. Without loss of generality, a > 1 and b > 1. (a) Return
ax + b via two large parameters a and b. (b) Return ax + b via several small parameters
bounded by max{+/a, vVb}.

In real-world applications, the parameters of the EUAF network are learned from the
samples of the target function, which involves sophisticated numerical optimization. We
refer to the learnability of network parameters as the existence of a numerical optimization
algorithm that can identify network parameters to achieve a target approximation error.
The computability of the EUAF networks does not imply learnability, which involves ap-
proximation, optimization, and generalization error analyses. The result in this paper shows
that there exist computable EUAF networks achieving an arbitrarily small approximation
error. This means the learnability of the best approximation is reduced to achieving small
generalization and optimization errors, which depend on the given data, the empirical risk
model, and the optimization algorithm. Therefore, whether or not EUAF networks would
be useful in real-world applications also depends on optimization and generalization, which
is out of the scope of this paper. The optimization and generalization error analyses of
practical deep neural networks including EUAF networks is a challenging problem. To the
best of our knowledge, there is no complete error analysis to address the learnability of
neural networks with nonlinear activation functions.

The rest of this paper is organized as follows. In Section 2, we first summarize notations
used in this paper and then discuss the ideas of proving Theorem 1. Section 3 focuses
on numerical experimentation of EUAF, which acts as a proof of concept to explore the
numerical properties of EUAF. Next, several UAFs with better properties are proposed in
Section 4. After that, we use several sections to present the complete proofs of Theorems 1
and 4. In Section 5, by assuming Theorem 6 is true, we give the detailed proofs of Theo-
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ACHIEVING ARBITRARY ACCURACY WITH FIXED NUMBER OF NEURONS

rems 1 and 4. Theorem 6 is proved in Section 6 based on Proposition 7, the proof of which
can be found in Section 7. Finally, Section 8 concludes this paper with a short discussion.

2. Notations and Proof Ideas

In this section, we first summarize notations used in this paper and then discuss the ideas
of proving Theorem 1.

2.1 Notations
Let us summarize all basic notations used in this paper as follows.

o Let R, Q, and Z denote the set of real numbers, rational numbers, and integers,
respectively.

e Let N and NT denote the set of natural numbers and positive natural numbers, re-
spectively. That is, N = {1,2,3,---} and N = N* [ J{0}.

e For any z € R, let |z] :=max{n:n <z, n € Z} and [z]| :=min{n:n >z, n € Z}.

e Let 1g be the indicator (characteristic) function of a set S, i.e., 1g is equal to 1 on S
and 0 outside S.

e The set difference of two sets A and B is denoted by A\B :={zx:x € A, = ¢ B}.
e Matrices are denoted by bold uppercase letters. For instance, A € R™*" is a real

matrix of size m x n, and AT denotes the transpose of A. Vectors are denoted as

U1

bold lowercase letters. For example, v = [v1,vo,---,v4]7 = U:Z € R% is a column
Ud
vector. Besides, “[” and “|” are used to partition matrices (vectors) into blocks, e.g.,
_ | A1 A1z
A= |:A21 A22} :
e For any p € [1,00), the p-norm (or P-norm) of a vector & = [z1, 2, -+, 4] € R? is
defined by

1
il = [@ller == (Jza]? + wal” + - + [zaf?) 7.

In the case p = oo,

oo = Il e = max {|a;| :i = 1,2,---,d}.

e For any ai,as,---,a; € R, we say ai,a9,---,a; are rationally independent if
they are linearly independent over the rational numbers Q. That is, if there exist
A1, Ag, -+, Ay € Q such that 377 1 Xj-a; =0, then Ay = Ay =--- = A; = 0. For a

simple example, 1, v/2, and /3 are rationally independent.

e An algebraic number is any complex number (including real numbers) that is a root
of a polynomial equation with rational coefficients, i.e., « is an algebraic number if

11
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and only if there exist Ag, A1, -+, Ay € Q with Z}J:O )\jaj = 0.2 Denote the set of all
algebraic numbers by A. We say a complex number is transcendental if it is not
in A. The set A is countable, and, therefore, almost all numbers are transcendental.
The best known transcendental numbers are 7 (the ratio of a circle’s circumference
to its diameter) and e (the natural logarithmic base).

e The expression “a network (architecture) with width N and depth L” means

— The number of neurons in each hidden layer of this network (architecture) is no
more than N.

— The number of hidden layers of this network (architecture) is no more than L.

2.2 Key Ideas of Proving Theorem 1

The proof of Theorem 1 has two main steps: 1) prove the one-dimensional case; 2) reduce
the d-dimensional approximation to the one-dimensional case via KST (Kolmogorov, 1957).
In fact, in the case of d = 1, the size of the network in Theorem 1 can be further reduced as
shown in Theorem 6 below. Theorem 6 is actually an enhanced version of Theorem 1 and
hence implies Theorem 1 in the case d = 1.

Theorem 6. Let f € C([a,b]) be a continuous function. Then, for an arbitrary € > 0,
there exists a function ¢ generated by an EUAF network with width 36 and depth 5 such
that

|p(x) — f(x)| < e for any = € [a,b] C R.

The detailed proof of Theorem 6 can be found in Section 6. The main ideas of proving
Theorem 6 are developed from some ideas of our early works (Shen et al., 2021a,b). Roughly
speaking, we eventually convert a function approximation problem in an interval (e.g.,
[0,1)) to a point-fitting problem via the composition architecture of neural networks in the
following three main steps.?

e Divide [0,1) into small intervals 7, = [%, %) with a left endpoint zp for k €
{1,2,---, K}, where K is an integer determined by the given error and the target

function f.

e Construct a sub-network to generate a function ¢; mapping the whole interval Zj to k
for each k. The floor function |-] is a good choice to implement this step. Precisely, we
can define ¢1(x) = | Kz|. The floor function is not continuous and has zero-derivative
almost everywhere. As we shall see later, o1 (or o) can be a continuous alternative to
implement this step, but the construction is more complicated.

e The final step is to design another sub-network to generate a function ¢o mapping k
approximately to f(xy) for each k. Then ¢o o ¢1(x) = ¢o(k) = f(zx) ~ f(x) for any
x €T and k € {1,2,---, K}, which implies ¢o 0 ¢1 = f on [0,1). After the above two

2. For simplicity, we denote 1 = z° for any z € R, including the case 0°.

3. The goal of a point-fitting problem is to identify a function ¢ : R — R in a given hypothesis space (e.g.,
the space of functions realized by neural networks) such that |¢(x;) — y;| < € for i = 1,2,---,n and a
pre-specified error € > 0, where {(;,7:)}7=; € R**! are given samples.

12
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steps, we simplify the approximation problem to a point-fitting problem, where k is
approximately mapped to f(k). This step is the bottleneck of the construction in our
previous papers (Shen et al., 2021a,b). Roughly speaking, the final approximation
error is essentially determined by how many points we can fit using a neural network.

For the second step, the capacity to generate step functions with sufficiently many
“steps” via a sub-network with a limited number of neurons plays an important role. The
reproduced step functions can be considered as a continuous version of the floor function
(|-]) in (Shen et al., 2021a,b), which is a perfect step function with infinite “steps” that
improves the approximation power of networks as shown in (Shen et al., 2021a,b). The key
ingredient in the third step of the proof of Theorem 6 is essentially a point-fitting problem
with arbitrarily many points. This requires the following proposition motivated by the well-
known fact that an irrational winding on the torus is dense. See Figure 3 for illustrations
of such a fact. Here, we propose a new point-fitting technique that can fit arbitrarily many

points within an arbitrary error using fixed-size neural networks.
. E(8)
0 %
0.0 0.5 1.0

. E() . B . B

1.0 1.0 1.0 /

o

0.0 0.5 1.0 0.0 0.5 1.0

E(16) - E(32)

0.0 0.5 1.0 0.0 0.5 10 0.0

- E(1)

o

=)

10 0.0 0.5 1.0

Figure 3: Illustrations of the denseness of F(cc) in [0,1]%, where E(r) is a winding of an
“irrational” direction [1,v/2]7 on [0,7), ie., E(r) = {[r(t),7(v2¢)]T : t € [0,r)} with
() =t — [t].

Proposition 7. For any K € N, the following point set
w w w T
{[n(z2), 1), onl20)]" - we R} C (0,17

is dense in [0, 1]%, where 7 is the ratio of a circle’s circumference to its diameter.

The proof of Proposition 7 can be found in Section 7. To prove the denseness in Propo-
sition 7, we borrow some ideas from transcendental number theory and Diophantine ap-
proximations in number theory. The number 7 used in Proposition 7 is transcendental. It
can be replaced by any other transcendental number.
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Proposition 7 implies that for any given sample points (k,yx) € R? with y;, € [0,1] for
k=1,2,---,K and any K € NT, there exists wg € R such that the function = Ul(wlfm) can
fit the points (k,yx) € R? for k = 1,2, ---, K within an arbitrary pre-specified error € > 0.
To put it another way, for any ¢ > 0, there exists wo € R such that |o1(;5%) — yx| < € for
all k.

As we shall see later in the proof of Proposition 7, the key point is the periodicity of the

outer function o;. Of course, the inner function = — W“% is also necessary since it helps
to adjust sample points for x = 1,2,---, K. In fact, the inner function x — ﬂwﬁ can be

regarded as a variant of o9 via scaling and shifting. The periodicity has been explored to
improve neural network approximation in the literature, e.g. the sine function in (Yarotsky
and Zhevnerchuk, 2020) is periodic and the floor function (|-]) in (Shen et al., 2021a,b) is
implicitly periodic because z — |z | is periodic. We remark that a similar result holds if we
replace o1 by a non-trivial periodic function and replace the sample locations x = 1,2, -, K
by distinct rational numbers r1, 73, -+, rx € Q. See Section 7 for a further discussion.

Theorem 6 essentially proves Theorem 1 for the univariate case. To prove the general
case, we need the Kolmogorov superposition theorem (KST) (Kolmogorov, 1957) given
below to reduce a multivariate problem to a one-dimensional case.

Theorem 8 (KST). There exist continuous functions h;; € C([0,1]) for i = 0,1,---,2d
and j =1,2,---,d such that any continuous function f € C(]0,1]%) can be represented as

2d d
f(.’L') = Zgl<zhz,j(x])) for any & = [33]_,932, o '7xd]T S [Oa ]-]dv
=0 7j=1

where g; : R — R is a continuous function for each i € {0,1,---,2d}.

KST is often used to reduce a multidimensional problem to a one-dimensional one. In
fact, the compositional representation in KST can be regarded as a special neural network
with (complicated) activation functions depending on the target function, which makes
KST useless in practical computation. To avoid this dependency, an activation function
was designed in (Maiorov and Pinkus, 1999) to construct neural network representations
with O(d) neurons that can approximate functions in C'([—1,1]%) within an arbitrary error.
Let us briefly summarize the main ideas in (Maiorov and Pinkus, 1999): 1) Identify a dense
and countable subset {u;}32, of C([-1,1]), e.g., polynomials with rational coefficients. 2)
Construct an activation function g to encode all ui(z) for z € [—1,1]. In fact, for each
k, ugl—1,1) is “stored” in o on [4k,4k + 2|, and the values of ¢ on [4k + 2,4k + 4] are
properly assigned to make p a smooth and monotonically increasing function. That is, let
oz +4k + 1) = ap + bz + cpuk(x) for any = € [—1,1] with carefully chosen constants
ag, bg, and ¢, # 0 such that p(x) can be a sigmoidal function. 3) For any g € C([-1,1]),
there exists a one-hidden-layer p-activated network with width 3 approximating g within

[ an.—
an arbitrary error 6 > 0, i.e., there exists k such that g(z)~ug(x) = 9<x+4k+i) G~

for any x € [—1,1]. 4) Replace the inner and outer functions in KST with these one-
hidden-layer networks to achieve a two-hidden-layer g-activated network with width O(d)
to approximate f € C([—1,1]¢) within an arbitrary error ¢ > 0. As we can see, the key
point of the construction in (Maiorov and Pinkus, 1999) is to encode a dense and countable
subset of the target function space in an activation function.
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Note that both (Maiorov and Pinkus, 1999) and this paper use KST to reduce dimension.
However, the activation function of (Maiorov and Pinkus, 1999) is complicated without any
closed form and there is no efficient numerical algorithm to evaluate it. After encoding
a dense subset of continuous function into a single but complicated activation function,
one only needs to construct affine linear transformations to select appropriate functions
of this dense subset from this complicated activation function to construct approximation.
Hence, such a complicated activation function simplifies the proof of the denseness, since
the denseness is encoded in the activation function. As a contrast, we design a simple
activation function with efficient numerical implementation (see Figure 1 for an illustration)
achieving the universal approximation property with fixed-size networks, because simple and
implementable activation functions are a basic requirement for a neural network to be used
in applications. However, the proof of the denseness of a neural network generated by such
a simple activation function becomes difficult. A sophisticated analysis will be developed
in the rest of this paper to overcome the difficulties.

3. Experimentation

In this section, we will conduct two simple experiments as a proof of concept to explore
the numerical performances of the EUAF activation function. Let us first discuss the
numerical implementation of EUAF in PyTorch. To enable the automatic differentiation
feature for EUAF, we need to implement EUAF based on PyTorch built-in functions. With
the following four built-in functions abs(z) = |z|, floor(z) = |z],

1 if z >0,
softsign(x) = |$|a:_ T and sign(z) =<0 ifx=0,
-1 ifz <0,

we can represent EUAF as
softsign(xz)  if x <0,
‘93*2“THH ite>0

1 —sign(x z+1 1+ sign(x
2%()_{_‘33_2L ; J‘ 2%()

= softsign() - 1—512gn(:1;) + abs(:z -2 ﬂoor(zg ;_ 1))

EUAF(z) = {

= softsign(x) -

1 + sign(x)
5 .

Thus, it is numerically cheap to compute EUAF and its subgradient. We believe the EUAF
activation function can achieve good results in some real-world applications if proper op-
timization algorithms are developed for EUAF. In this paper, we only conduct two simple
experiments: a function approximation experiment in Section 3.1 and a classification ex-
periment in Section 3.2.

Next, let us briefly discuss when our EUAF activation function would outperform the
practically used ones (e.g., ReLU, Sigmoid, and Softsign), which is based on full error
analysis in Section 1.3. In our discussion, we take the ReLU activation function as an
example and suppose the optimization error is well-controlled. Clearly, replacing ReLLU by
EUAF can reduce the approximation error, but would result in a large generalization error.
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Thus, we would expect that EUAF achieves better results than ReLU if the approximation
error is larger than the generalization error. That means EUAF would outperform Rel.U
in the following two cases.

e The approximation error is pretty large (e.g., the target function is sufficiently com-
plicated).

e The generalization error is well-controlled (e.g., there are sufficiently many samples).

If a given problem does not belong to these two cases, one may consider replacing only
a small number of ReLLUs by EUAFs. In the function approximation experiment in Sec-
tion 3.1, we first choose a complicated target function and then generate sufficiently many
samples to reduce the generalization error. In the classification experiment in Section 3.2,
we control the generalization error via three common methods: keeping network parameters
small via L2 regularization, dropout (Hinton et al., 2012; Srivastava et al., 2014), and batch
normalization (Ioffe and Szegedy, 2015).

3.1 Function Approximation

We will design fully connected neural network (FCNN) architectures activated by ReLU
or EUAF to solve a function approximation problem. To better compare the approxima-
tion power of ReLU and EUAF activation functions, we choose a complicated (oscillatory)
function f as the target function, where f is defined as

f(21,29) = 0.65in(8z1) + 0.4sin(16x3)  for any (z1,22) € [0,1]%

To compare the numerical performances of ReLU and EUAF activation functions, we
design two FCNN architectures with different activation functions. Both of them have 4
hidden layers and each hidden layer has 80 neurons. For simplicity, we denote them as
FCNN1 and FCNN2. See illustrations of them in Figure 4. FCNNI1 is a standard fully
connected ReLLU network and FCNN2 can be regarded as a variant of FCNN1 by replacing
ReLU by EUAF.

(o) —ED) () —CR] (w0 )&

R R —(own) (R () —( o)

(a) FCNNL. (b) FCNN2.

Figure 4: Ilustrations of FCNN1 and FCNN2. FC represents a fully connected layer.

Before presenting the numerical results, let us present the hyper-parameters for training
FCNN1 and FCNN2. We randomly choose 10% training samples and 10° test samples in
[0,1]2. The number of epochs and the batch size are set to 500 and 256, respectively.
We adopt RAdam (Liu et al., 2020) as the optimization method and the learning rate is
0.002 x 0.9°"! in epochs 5(i — 1) + 1 to 5i for s = 1,2,---,100. Several loss functions are
used to estimate the training and test losses, including the mean squared error (MSE), the
mean absolute error (MAE), and the maximum (MAX) loss functions. To illustrate MSE,
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MAE and MAX losses, we denote ¢ as the network-generated function and x1,-- -, x,, as
the test samples (m = 10° in our setting). Then, the MSE loss is given by L+ 37, (¢(;) —
f(a;i))2, the MAE loss is given by L 37", }qb(mz) — f(z;)|, and the MAX loss is given by
max {|¢(z;) — f(x;)| : i = 1,2,---,m}. The MSE loss is used in our training process. In
the settings above, we repeat the experiment 12 times and discard 2 top-performing and 2
bottom-performing trials by using the average of test losses (MSE) in the last 100 epochs
as the performance criterion. For each epoch, we adopt the average of training (test) losses
in the rest 8 trials as the target training (test) loss.

Next, let us present the experiment results to compare the numerical performances of
ReLU and EUAF activation functions. Training and test losses (MSE) over epochs for
FCNN1 and FCNN2 are summarized in Figure 5.

0.0003 — training loss (FCNN1)
| test loss (FCNN1)
— training loss (FCNN2)
— test loss (FCNN2)

0.0002

0.0001

0.0000

100 200 300 400 500
epoch

Figure 5: Training and test losses (MSE) in epochs 25-500 for FCNN1 and FCNN2.

In Table 1, we present a comparison of FCNN1 and FCNN2 for the average of the test
losses in the last 100 epochs measured in several loss functions. As we can see from Figure 5
and Table 1, FCNN2 performs better than FCNN1. That means replacing ReLLU by EUAF
would improve experiment results.

L . test loss
activation function
MSE MAE MAX
FCNN1 ReLU 3.53 x 107° 457 x 1073 3.69 x 1072
FCNN2 EUAF 756 x 1076 213 x 1073 1.48 x 1072

Table 1: Test loss comparison.

3.2 Classification
The goal of a classification problem with J € NT classes is to identify a classification
function f defined by

f(x)=j forany x € Ejand j=0,1,---,J — 1,

where Fy, Eq,---, E;_; are pairwise disjoint bounded closed subsets of R¢ and all samples
with a label j are contained in E; for each j. Such a classification function f can be
continuously extended to R?, which means a classification problem can also be regarded as
a continuous function approximation problem. We take the case J = 2 as an example to
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illustrate the extension. The multiclass case is similar. By defining

dist(x, E;) = inj{7 |z —yllz for any & € R and i = 0,1,
yek;

we have dist(z, Eg) + dist(x, F1) > 0 for any x € R?. Thus, we can define

~ dist(x, Ep)

f@):

= f € RY.
dist(x, Ep) + dist(x, F1) orany @

It is easy to verify that fis continuous on R? and

~ 0 if x € Ey,
x = f(x for any x € E Fi.
{1ﬁm€E1 f(=) Y Un

That means f is a continuous extension of f. That means we can apply our theory to

classification problems.

We will design convolutional neural network (CNN) architectures activated by ReLU or
EUAF to solve a classification problem corresponding to a standard benchmark data set
Fashion-MNIST (Xiao et al., 2017). This data set consists of a training set of 60000 samples
and a test set of 10000 samples. Each sample is a 28 x 28 grayscale image, associated with a
label from 10 classes. To compare the numerical performances of ReLU and EUAF activa-
tion functions, we design two small CNN architectures with different activation functions.
Both of them have two convolutional layers and two fully connected layers. For simplicity,
we denote them as CNN1 and CNN2. See illustrations of them in Figure 6. We present

more details of CNN1 and CNN2 in Table 2.

[ Input ]H[ Conv ]4’[ ]"[BdﬂtllNOrul]"[ Conv ]4’[ ] [ Input ]ﬁ[ Conv ]4’[ ]"[Bat(‘lL\IOl'Hl]"[ Conv ]4’[

( J=(_F¢_ J—(BatchNorm]—(_ Flatten J—{ Dropout J—( MaxPool ] J~(_Fc_J{BatchNorm)—(_ Flatten }+_ Dropout J—{ MaxPool )

[ Dropout ]HLB:\t(,lL\I()rm]‘?[ FC ]H[B-{)t(:llN()rm]ﬂ[ Softmax }4’[ Output ] [ Dropout ]H[Batvlle’m]H[ FC ]H[B:m,h,\lorm]ﬂ[ Softmax ]"[ Output ]
(a) CNNT1. (b) CNN2.

Figure 6: Illustrations of CNN1 and CNN2. Conv and FC represent convolutional and fully

connected layers, respectively.

activation function

layers output size of each layer  dropout batch normalization
CNN1 CNN2
input € R2$*28 28 x 28
Conv-1: 1 x (3% 3), 24 ReLU EUAF, 1 (26 x 26) 24 x (26 x 26) yes

ReLU, 23 x (26 x 26)

EUAF, 1 x (24 x 24)

9. . b 3 I P I3 .
Conv-2: 24 x (3 x 3), 24 ReLU ReLU, 23 x (24 x 24) 3456 (MaxPool & Flatten) 0.25 yes
/ EUAF, 1 )

FC-1: 3456, 48 ReLU ReLU, 47 48 0.5 yes
FC-2: 48, 10 10 (Softmax) yes

output € R0

Table 2: Details of CNN1 and CNN2.
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CNNT1 is activated by ReLLU, while CNN2 is activated by ReLU and EUAF. In CNN2,
only one channel (neuron) of a convolutional (fully connected) hidden layer is activated
by EUAF. CNN2 can be regarded as a variant of CNN1 by replacing a small number of
ReLUs by EUAFs. This follows a natural question: Why do we not make all (or most)
neurons (channels) of CNN2 activated by EUAF? We use only a few EUAFs in CNN2 for
two reasons listed below.

e Since the number of available training samples is limited, using too many EUAF
activation functions would lead to a large generalization error.

e The key difference of EUAF to the practical used activation functions (e.g., ReLU,
Sigmoid, and Softsign) is the periodic part on [0,00). As we shall see later in the
proof of our main theorem, only a small number of neurons in the constructed network
require the periodic property. Thus, we would expect that neural networks activated
by the practical used activation functions and a few EUAFs are super expressive.

Next, let us discuss why we choose relatively small network architectures. Since the
Fashion-MNIST classification problem is simple, the expressive power of a relatively large
ReL U CNN architecture is enough. That means there is no need to introduce EUAF if the
network architecture is relatively large. We believe EUAF would be useful for complicated
classification problems. R

We remark that we use CNNs to approximate an equivalent variant f of the original
classification function f mentioned previously, where f is given by

f(w):ej for any @ € Fj and j =0,1,---,J — 1,

where {ej, e, -+, es} is the standard basis of R’, ie., ej € R’ denotes the vector with a 1
in the j-th coordinate and 0’s elsewhere.

Before presenting the numerical results, let us present the hyper-parameters for training
two CNN architectures above. We use the cross-entropy loss function to evaluate the loss.
The number of epochs and the batch size are set to 500 and 128, respectively. We adopt
RAdam (Liu et al., 2020) as the optimization method. The weight decay of the optimizer is
0.0001 and the learning rate is 0.002 x 0.9°~! in epochs 5(i — 1) +1 to 5i for i = 1,2, - - -, 100.
All training (test) samples in the Fashion-MNIST data set are standardized in our experi-
ment, i.e., we rescale all training (test) samples to have a mean of 0 and a standard deviation
of 1. In the settings above, we repeat the experiment 48 times and discard 8 top-performing
and 8 bottom-performing trials by using the average of test accuracy in the last 100 epochs
as the performance criterion. For each epoch, we adopt the average of test accuracies in
the rest 32 trials as the target test accuracy.

Let us present the experiment results to compare the numerical performances of CNN1
and CNN2. The test accuracy comparison of CNN1 and CNN2 is summarized in Table 3.

activation function largest accuracy average of largest 100 accuracies average accuracy in last 100 epochs
CNN1 ReLU 0.933066 0.932852 0.932698
CNN2 ReLU and EUAF 0.933922 0.933685 0.933508

Table 3: Test accuracy comparison.
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For each of CNN1 and CNN2, we present the largest test accuracy, the average of
largest 100 test accuracies over epochs, and the average of test accuracies in the last 100
epochs. For an intuitive comparison, we also provide illustrations of the test accuracy over
epochs for CNN1 and CNN2 in Figure 7. As we can see from Table 3 and Figure 7, CNN2
performs better than CNN1. That means replacing a small number of ReL.Us by EUAFs
would improve the experiment results.

0.935 0934
| RIS
‘fﬂ‘,’
5o g \\f‘v\\/\l\/\/\/W\/'\N\AA/W\/W\AMv
< <
— -
= =
= 05 < (.932
0.895 —— (CNN1 —— CNN1
‘ CNN2 CNN2
0.875 0.931
0 50 100 150 200 250 300 330 400 400 120 40 160 430 500
epoch epoch
(a) Epochs 1-400. (b) Epochs 401-500.

Figure 7: Test accuracy over epochs.

4. Other Examples of UAF's

This section aims at designing new UAFs with additional properties such as smooth or
sigmoidal functions. As discussed in the introduction and shown in the proof of our main
theorem, the construction of UAFs mainly relies on three properties: high nonlinearity,
periodicity, and the capacity to reproduce step functions. The EUAF ¢ defined in Equa-
tion (1) is a simple and typical example of UAFs satisfying these three properties. Indeed,
having these properties plays an important role in our proof and is a necessary but not
sufficient condition for designing a UAF. In other words, these properties are important,
but cannot guarantee the successful construction of UAFs.

Here, we present another idea to design new UAFs, which mainly relies on the following
observation: If a UAF p can be approximated by a fixed-size network activated by a new
activation function g within an arbitrary error on any bounded interval, then g is also a
UAF. Such an observation is a direct result of the lemma below.

Lemma 9. Let 0,0 : R — R be two functions with o € C(R). For an arbitrary given
function f € [a,b]* — R and any € > 0, suppose that the following two conditions hold:

o There exists a function ¢, realized by a o-activated network with width N and depth
L such that
|po(x) — f(x)| <e/2 for any x € [a,b]".

e For any M > 0 and each § € (0,1), there exists a function os realized by a 0-activated

network with width N and depth L such that
0s(t) = o(t) as 6 — 0T foranyte [-M,M],

where = denotes the uniform convergence.
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Then, there exists a function ¢ = ¢z generated by a o-activated network with width N - N
and depth L - L such that

|p(x) — f(x)] <& for any x € [a, b]%.

The proof of Lemma 9 is placed in Section 4.3. Based on Lemma 9, we will propose
two UAFs with better mathematical properties. That is, the idea of designing a C* UAF
is given in Section 4.1 and a sigmoidal UAF is constructed in detail in Section 4.2.

4.1 Smooth UAF

The smoothness of a function is one of the most desired properties in mathematical modeling
and computation. The EUAF ¢ is continuous but not smooth. So we will show how to
construct a C* UAF based on an existing one. The key point is the fact that the indefinite
integral of a continuous function is continuously differentiable.

Suppose ¢ is a continuous UAF. Define

o(x) = / o(t)dt  for any x € R.
0

For any M > 0, it holds that

(x+<5 —o(x 5/ (t)dt = o(x) as d — 0T for any z € [-M, M)].

This means ¢ can be approximated by a one-hidden-layer g-activated network with width
2 arbitrarily well on any bounded interval. It follows that ¢ is also a UAF. By repeated
applications of the above idea, one could easily construct a C* UAF.

In particular, set o9 = o and define g1, 02, - - -, 05 by induction as follows.

oit1(x) = / 0i(t)dt for any x € Rand i € {0,1,---,s —1}. (6)
0

Then g, is a C® UAF as shown in the following theorem.

Theorem 10. Let os € C5(R) be the function defined in Equation (6) for any s € NT.
Then, for any f € C([a,b]?) and any ¢ > 0, there exists a function ¢ generated by a
os-activated network with width 72sd(2d + 1) and depth 11 such that

|p(z) — f(x)] <e for any x € [a, b]°.

Proof. For any i € {0,1,---,s — 1} and any M > 0, it is easy to verify that

QZH(xJHS;_QZH 5/ (t)dt = o;(z) as d — 0T for any z € [-M, M].

This means p; can be approximated by a one-hidden-layer g;;i-activated network with
width 2 arbitrarily well on any bounded interval. By induction, one could easily prove that
0o = o can be approximated by a one-hidden-layer ps-activated network with width 2s
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arbitrarily well on any bounded interval. That is, for each § € (0, 1), there exists a function
05,5 realized by a p,-activated network with width 2s and depth 1 such that

oss(t) = o(t) as 6 — 0" foranyte[—M,M].

By Theorem 1, there exists a function ¢, generated by a o-activated network with width
36d(2d + 1) and depth 11 such that

|po(x) — f(x)| <e/2 for any x € [a, b]d.

Then, by Lemma 9, there exists another function ¢ = ¢,, realized by a p,-activated network
with width 2s x 36d(2d + 1) = 72sd(2d + 1) and depth 1 x 11 = 11 such that

|p(xz) — f(x)| <& for any x € [a,b]%

So we finish the proof. |

4.2 Sigmoidal UAF

Many activation functions used in real-world applications are sigmoidal functions. Gener-
ally, we say a function g : R — R is sigmoidal (or sigmoid, e.g., see (Han and Moraga,
1995)) if it satisfies the following conditions.

e Bounded: lim; , g(z) =1 and lim,,_ g(x) = —1 (or 0).
e Differentiable: ¢'(z) exists and continuous for all z € R.
e Increasing: ¢'(z) is non-negative for all z € R.

Our goal is to construct a sigmoidal UAF. To this end, we need to design a new function
o based on o such that o can be reproduced/approximated by a g-activated network with
a fixed size. Making o bounded and increasing is not difficult. The key is to make o
continuously differentiable, which can be implemented by the fact that the indefinite integral
of a continuous function is continuously differentiable. To be exact, we can define o as
follows.

T

e For z € (—00,0], define o(z) := o(x) = —z+1-

e For z € (0,00), define

x
o(x) = / Mdt, where ¢ = ﬁ ~ 2.554.
o (2+1) 2 [ s
We remark that there are many possible choices for the integrand in the above definition
of o(x) for z € (0,00). Here, we just give a simple example. See an illustration of ¢ in
Figure 8.
Then o is a sigmoidal function as verified below.

e Clearly, lim,_,_ o(x) = limg_,_ %H = —1. Moreover,

©° 1 1 & 1
lim E(:U):/ w(t)_'_dt:wL/ —dt =1
T—00 0 (Qt + 1)2 2 0 (2t + 1)2
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-0 -8 -6 -4 -2 0 2 4 6 8 10

Figure 8: An illustration of & on [—10, 10].

e Obviously, ¢ is continuously differentiable on (—o00,0) and (0,00). Meanwhile, we
have 5'(0) = 1 and lim, .o &'(z) = 1. Therefore, we have ¢ € C(R) as desired.
e For z € (—00,0), o'(z) = m > 0. For x =0, ¢/(z) = 1> 0. For z € (0,0),

o'(z) = Egm(i)f)% > 0. Therefore, ’(x) > 0 for all x € R.

Based on Theorem 1 corresponding to o, we establish a similar theorem for &, Theo-
rem 11 below, showing that fixed-size g-activated networks can also approximate continuous
functions within an arbitrary error on a hypercube.

Theorem 11. For any f € C([a,b]?) and any e > 0, there exists a function ¢ generated by
a g-activated network with width 1800d(2d + 1) and depth 66 such that

|p(x) — f(x)] <& for any x € [a,b]?.

To prove this theorem based on Theorem 1, we only need to show ¢ can be approximated
by a fixed-size g-activated network within an arbitrary error on any pre-specified interval
as presented in the following lemma.

Lemma 12. For any ¢ > 0 and any M > 0, there exists a function ¢ realized by a o-
activated network with width 50 and depth 6 such that

|p(x) —o(x)| <e for any x € [—M, M].

The proof of Lemma 12 can be found later. By assuming Lemma 12 is true, we can give
the proof of Theorem 11.

Proof of Theorem 11. By Theorem 1, there exists a function ¢, generated by a o-activated
network with width 36d(2d + 1) and depth 11 such that

|po(x) — f(x)| <e/2 for any x € [a, b]d.

By Lemma 12, for any M > 0 and each § € (0, 1), there exists a function o realized by a
o-activated network with width 50 and depth 6 such that

os(t) = o(t) as 0 — 0T foranyte [—~M,M)].

Then, by Lemma 9, there exists another function ¢ = ¢z realized by a o-activated network
with width 50 x 36d(2d + 1) = 1800d(2d + 1) and depth 6 x 11 = 66 such that

|p(xz) — f(x)| <e for any x € [a,b]?

So we finish the proof. [ ]
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Finally, let us present the detailed proof of Lemma 12.

Proof of Lemma 12. Since 1 = ¢’(0) = lim,_, M, it is easy to show: For any & > 0 and

T

any R > 0, there exists a sufficiently small w > 0 such that
|6(wz)/w— x| <& for any x € [-R, R].

Thus, we may assume the identity map is allowed to be the activation function in o-activated
networks. Without loss of generality, we may assume M > 2 because M = max{2, M}
implies M > 2 and [—M, M| C [—J/\Z, ]\/4\]

For simplicity, we denote %A;(N , L) as the (hypothesis) space of functions generated by
o-activated networks with width N and depth L. Then the proof can be roughly divided

into three steps as follows.

(1) Design I' € (9,2) to reproduce zy on [—4M,4M)?, where M = (M + 1)2.

(2) Design 15 € H#°(9,4) based on the first step to approximate o well on [0, M].

(3) Design ¢ € (50, 6) based on the previous two steps to approximate o well on [—M, M].

The details of these three steps can be found below.
Step 1: Design I' € %7(9, 2) to reproduce xy on [—4]\7, 4]\7]2.
Observe that

Y 1
oly)+1= +1= +1= for an <0.
) ly| +1 —y+1 —y+1 =

For any = € [—4,4], we have —z —4 < 0 and —x — 5 < 0, implying

&pa—4y—a—x—5y:(a—x—®+4)—(a—x—a+4)

B 1 B 1
—(—x—4)+1 —(—xz-5)+1
11 1
r+5 x+6 (r+5)(z+6)
It follows froml—%ﬁOfor any x € [—4,4] that
. 90 1 2% + 11z + 30
F1-——— V1= — _ ,
implying
90
2 ~
=900 (1l - —F—7—— 90 — (11 30
o = 905 (x+®@+®)+ (11z + 30)

- 905(1 —90(F(—2 — 4) — 5(—2 — 5))) — 11z + 60

- 90&(1 — 905 (—a — 4) + 905 (—z — 5)) ~ 11z + 60.
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Thus, 2 can be realized by a ¢-activated network with width 3 and depth 2 on [—4,4]. Set

Yy zty
i\}{ f (i%—i—l) . Then, for any z,y € [-4M,4M], we have 5 2T ot € [—4,4]. Recall
e fac

o2 ztyuN2 _ (x N2y \2
zy = 202 ((212)? - (%) - (G&)?).
Therefore, xy can be realized by a g-activated network with width 9 and depth 2 for any
z,y € [—4M 4M] That is, there exists I" € %( 2) such that I'(z,y) = zy on [— 4M 4M]
Step 2: Design 15 € t%f”v(Q, 4) to approximate o well on [0, M].
Recall that 22 can be realized by a o-activated network with width 3 and depth 2 on
[—4,4]. There exists ¢ € 5(3,2) such that

(2z + 1)?

P1(x) = m for any x € [—M, M].

For any small § > 0, we define

Vos(z) = ola+ 635 — o) for any x € R.

Then, we have 195 € %7(2, 1) and

Yo s5(x) = ot 5()5 — (@) = %5(.@) = m as 0 — 0"

for any = € [0, M], where c is a constant given by

1
c= ————— ~ 2.504.

2f0 2t+1 th

For any small § > 0, we define

ds(w) = PLED (g (2), 9r5(2)) — L for any 7 € R.

Since T" € 3%7(9, 2), Y1 € %(3, 2), and )95 € ,%ﬂ”v(Q 1), we have 5 € %?9,4).

Clearly, for any = € [0, M], we have ¢ (z) = ((22]\7;11))2 € [0,1] :aild Pas(x) = ?géi);gé €
[0,c+ 1] C [0,3.6], implying ¢ (x),¥25(x) € [—4,4] C [— 4M,4M] for any small § > 0.
Thus, for any z € [0, M], as § goes to 0T, we have

Ys(w) = (2MH <¢1( ), ¢2,6(96‘)> -1= 2MH apr () - apos(z) — L

= (2M+1)2  (2z+1)2  co(z)+1 1
c (2M+1)2  (2z+1)2 c

=o(x).
That is, for any z € [0, M],

VYs(z) 2 o(z) as & — 07,
Step 3: Design ¢ € %’7(50, 6) to approximate o well on [—M, M].
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Note that (x) = o(x) for all z € [-M,0) and ¢s(z) approximates o(x) well for all
x € [0, M]. Then, we have
Vs(z) - Lipep,m)y + (@) - Lipe-n1,0))

approximates o(x) well for all x € [-M,M]. However, it is impossible to approximate
Lyzep0,m7) well by a g-activated network due to the continuity of 7. To address this gap,
we will construct a continuous function g to replace 1,¢[,ay such that

ve(x) - g(@) +5(2) - (1 - g(x)) (7)

can also approximate o(x) well for all z € [—M, M].
By the continuity of o and o, there exists a small 1y € (0, 1) such that

lo(z)| <e/6 and |o(z)|<e/6 forany x € [0,no]. ()

Then we define

ReLU(z) — ReLU(z —
g(x) = eLU(z) 77e (= 770), where ReLU(x) = max{0,z} for any x € R.
0

See Figure 9 for an illustration of g.

(0, 1)

1.0 g

0.5

0.0

-0 -8 —6 -4 =2 0 2 4 6 8 10
Figure 9: An illustration of g on [—10,10].
We will construct a g-activated network to approximate g well. To this end, we first

design a c-activated network to approximate the ReLU function well. For any z € [-M —
1, M + 1], we have 5755 + 1 € [0,2] C [0, M], implying

I—s(iig+ D) =1 —o(357 +1) =355 as 6 =07,

where the last equality comes from 1 — o(y) = |y — 1| for any y € [0, 2]. Recall that

ReLU(z) = 2 + Wl =2 Mil | o
for any x € [-M — 1, M + 1]. For any small § > 0, we define

gs(r) =5 + %(1 —¥s(3757 + 1)) for any x € R.

Then, ¢5 € #°(9,4) implies g5 € 5(10,4). Moreover, for any = € [-M — 1, M + 1],

Gs(x) 3 £+ M |20 = ReLU(z) as 6 —07.
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Define _ _
gs5(x) — gs(x — o)
Tlo

Clearly, gs € %”(10 4) implies g5 € ,%”(20 4). For any x € [-M, M], we have z,x — 19 €
[-M — 1, M + 1], implying

Gs() = Gs( —m) _, ReLU(z) — ReLU(z — )
Mo Mo

gs(x) = for any = € R.

=g(z) as §—0%.

9s(x) =

Next, motivated by Equation (7), we can define ¢s to approximate o well on [—M, M].
The definition of ¢; is given by

05(2) =T (t5(2), 95(2) ) + T (5(2), 1~ gs(2)) for any @ € R.
Since I' € }(7(9,2), Ps € %7(9,4), and g5,1 — g5 € ,%/’7(20,4), we have
b5 € A(9+20+ 1+ 20,4+ 2) = #(50,6).

Clearly, o(z), gs(z), and 1 — gs(x) are all in [—4M, 4M] for any small § > 0 and all
€ [-M, M]. We will show 9s(x) € [-4M,4M] for any small § > 0 and all = € [-M, M]
via two cases as follows.

e For any z € [0, M], 15(z) = o(z) implies ¢5(x) € [~4M,4M] for any small § > 0.

e For any x € [—M,0), we have ¢ (z) = ((22]\9}:11))2 € [0,1] and

ap(r) = T = 50y = Ly as 00T

Thus, for any = € [—M,0), as § goes to 07, we get

2
Us(w) = LD (Y (@), Y (2)) — & = CUEE . gy (@) i s(a) — &
= (eM+1)?2  (2241)% 1 1 (2a:+1)2—1
c (2M+1)2  (—z+1)2 ¢ c(—z+1)? "

For all z € [-M, 0), we have ¢(—x +1)? > 1, implying (2(””21)1)2 > 0(7;{1)2 > —1 and

T 2_ T 2_
QurlPol < Q2oL < (] +1)2 — 1= A(ja] +1/2)% —

<AM+1)2—1=4M — 1.

That is, 2=t € [—1,4M — 1] for all @ € [~M,0), implying vs(x) € [~4M,4M]

for any small § > 0.

Hence, for any = € [ng, M|, we have 1 — g(x) = 0, implying
os(x) = s(z) - gs(x) + (z) - (1 — gs(z)) = o(z) g(x)+0=0(z) as §—0".
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Similarly, for any x € [—M, 0], we have g(x) = 0, implying
ds(z) = vs(x) - gs(z) +o(z) - (1 —gs(z)) 2 0+5(x)- (1—g(z)) =0o(z) as §—0".
Therefore, there exists a small §y > 0 such that
91(2) — o(@)] < for any z € [~M,0] | o, M),
1960 | Lo (j0.m0)) < 2 11 = gsollLoo(fome)) < 2, and

%60 | oo (0,m0)) < oIl oo (j0,m0)) + €712,

where the above inequality comes from the fact ¢5(x) uniformly converges to o(z) for any
S [07770] C [OaM]
Clearly, for any = € [0,70], by Equation (8), we have
650 (2) — 0 (@)] < 108, (@) + |0 (@) < [ty (2) - 5 (0) + 5(2) - (1~ g ()| + /6
< oo ()] - |95, ()] + [a(2)] - |1 — g5y ()| + /6

e e 3
< (lollzeqon) +15) 2+ -2+ 5

g g g g

By setting ¢ = ¢5,, we have ¢ = ¢5, € ,%ﬂ”v(50, 6) and
[¢(x) — o(z)| = [¢sy (%) — o(x)| <& for any z € [-M, M].

So we finish the proof. |

4.3 Proof of Lemma 9

Let the activation function be applied to a vector elementwisely. Then ¢, can be represented
in a form of function compositions as follows:

bp(x) =LropoLy 10 -+ cpoLyiogoLy(x) for any & € RY,

where Ng = d, N1, Na,---,Np, € Nt, Np oy =1, Ay € RVevrXNe and by € RVe+1 are the
weight matrix and the bias vector in the ¢-th affine linear transform £, : y — Ayy + by for
each £ € {0,1,- -+, L}. Define

Gos() = LpogsoLyr_q0 -+ ogsoLqogsoLy(x) for any = € R%.

Recall that g5 can be realized by a g-activated network with width N and depth L. Thus,
¢o; can be realized by a p-activated network with width N - N and depth L - L. We will

prove
bos(T) = do(x) as §— 0T for any x € [a,b]".

For any « € R? and each ¢ € {1,2,---, L + 1}, define

hy(x) =Ly 1000Ly 90 -+~ opoLjopoLy(x)
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and
hys(x) = Ly10050Lyp 20 --- 0950 Ly10 050 Lo(x).

Note that hy and h;s are two maps from R? to RNt for each £.
We will prove by induction that

hes(xz) = he(z) as & — 0" 9)

for any x € [a,b]? and each ¢ € {1,2,---, L + 1}.
First, we consider the case £ = 1. Clearly,

his(x) = Lo(x) = hy(x) as & — 0" for any « € [a, b]".

This means Equation (9) holds for ¢ = 1.
Next, suppose Equation (9) holds for £ =i € {1,2,---, L}. Our goal is to prove that it
also holds for ¢ =i + 1. Determine M > 0 by defining

M = Sup{th(zc)Hoo t1l:zelab)? j=1,2,--- L+ 1},

where the continuity of ¢ guarantees the above supremum is finite, i.e., M € (1,00). By
the induction hypothesis, we have
his(z) = hi(x) as & — 0T for any = € [a,b]".

Clearly, for any z € [a,b]?, we have |h;(2)|co < M and [|h;s(2)|/oo < |hi(x)]ooc +1 < M
for any small § > 0.
Recall the fact g5(t) = o(t) as & — 07 for any ¢ € [-M, M]. Then, we have

os0his(x) —poh;s(x) =0 as §— 0" for any x € [a, b]d.
The continuity of g implies the uniform continuity of ¢ on [—M, M], from which we deduce
ooh;s(x) —oohi(x) =30 as &— 0" forany x € [a,b]’.
Therefore, for any x € [a,b]?, as § — 07, we have
050 his(x) —oohi(x) =050 his(x) —0ohis(x)+o00oh;s(x) — oo hi(x) =0,

=0 =0

implying
hi+175(3’:) =L;0950 h@g(%) = L;0p0 hl(m) =h;4 (m)
This means Equation (9) holds for £ =i + 1. So we complete the inductive step.
By the principle of induction, we have

Gos(®) = hri15(x) = hpyi(x) = ¢p(x) as §— 0" for any = € [a,b].
There exists a small g > 0 such that
|¢>g50 (z) — ¢p(x)| < /2 for any @ € [a, b]?.
By defining ¢ = Pos,» We have
|6(x) = f(@)] < |05, (@) = do()] + [d(x) — f(z)| <e/2+e/2=¢

for any x € [a,b]?. Moreover, ¢ = $os, can be generated by a o-activated network with
width N - N and depth L - L. So we finish the proof.
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5. Detailed Proofs of Theorems 1 and 4

In this section, we will give the detailed proofs of Theorems 1 and 4. First, we prove The-
orem 1 based on Theorem 6, which will be proved in Section 6. Next, we apply Theorem 1
to prove Theorem 4.

5.1 Proof of Theorem 1

The detailed proof of Theorem 1 converts the above ideas mentioned in Section 2.2 to
implementations using neural networks with fixed sizes. The whole construction procedure
can be divided into three steps.

(1) Apply KST to reduce dimension, i.e., represent f € C([a,b]?) by the compositions and
combinations of univariate continuous functions.

(2) Apply Theorem 6 to design sub-networks to approximate the univariate continuous
functions in the previous step within the desired error.

(3) Integrate the sub-networks to form the final network and estimate its size.

The details of these three steps can be found below.

Step 1: Apply KST to reduce dimension.

To apply KST, we define a linear function £1(t) = (b—a)t+a for any ¢ € [0, 1]. Clearly,
L is a bijection from [0, 1] to [a, b]. Define

Fly) = F(L1(n), L1(y2), -+ L1(ya))  for any y = [y1, 92, yal” € [0, 1]%

Then, f : [0,1]¢ — R is a continuous function since f € C([a,b]?). By Theorem 8, there

exists h; ; € C([0,1]) and g; € C(R) for i =0,1,---,2d and j = 1,2,---,d such that
N 2d d__
fly) = Zﬁi(Zhi,j(yj)) for any y = [y1, 2, yal" € [0,1]%.
i=0  j=1

Let £, be the inverse of £1, i.e., L1(t) = (t — a)/(b — a) for any t € [a, b]. Then, for any
xj € [a,b], there exists a unique y; € [0, 1] such that £i(y;) = x; and y; = L1(z;) for any
j=1,2,--- d, which implies

f@) = flxr, 22, xa) = f(L1(y1), L1(y2), - -+ L1(ya)) = f(y)

2d d _ 2d d _ _ 2d d B _
=> i ( > hz‘,j(l/j)) =) i < > hij (51(%))) =) G ( > higo 51(%’))-
=0 =1 i=0 o j=1 i=0 =1
It follows that
2d d _ _ 2d R
flz) = Z@-(Z hij o ﬁl(xj)) =Y Giohi(x) for any z € [a,b]%,
i—0 =1 i—0
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where

d
= Zﬁ” o El(q:j) for any @ = [z, o, - -, z4]" € [a,b]?.
j=1
Set

(10)

M =

max ﬁl oo +1>0.
iE{O,l%u,Zd} || ||L ([a,b]%)
Define Lo(t)

(t + 2M)/4M and EQ() = 4Mt — 2M for any t € R. Then, L3 is a

bijection from [—M, M] to [4, 3] and L is the inverse of Ly. Clearly, L0 La(t) = t for any
t € [—M, M], which implies h;(z) =

() = L3 0 Ly 0 hi(x) for any x € [a,b]%. Therefore, for any
x € [a,b]?, we have

zgzoh Y ATy

~Son
=0
where

giz@cfg and hiZCQOiALz' fori=0,1,---,2d.
Clearly, Lo(t) €

[+, 3] for any ¢ € [—M, M], which implies
hz(m) =Ly Oﬁi($) S

(11)

[%, %] for any « € [a,b]? and i = 0,1,

-+, 2d.
Step 2:

Design sub-networks to approximate g; and h

Next, we will construct sub-networks to approximate g; and h; for each i. Obviously,
gi = gi © Lo is continuous on R and hence uniformly continuous on [0, 1] for each i. Thus
for i =0,1,---,2d, there exists ¢; > 0 such that

|9i(21) — gi(22)| < e/(4d +2)

Set 6 =min ({6; : i =0,1,---,2d} | J{%}). Then, for i =0,1,-
19i(21) — gi(22)| < e/(4d + 2)
For each i € {0,1, -

for any 21,29 € [0,1] with |21 — 23] < &

-, 2d, we have

for any 21,29 € [0,1] with |21 — 22| < ¢ (12)
2d}, by Theorem 6, there exists a function ¢; generated by an
EUAF network with width 36 and depth 5 such that

19:(2) — ¢i(2)| < e/(4d +2)

for any z € [0, 1]. (13)
Fix i € {0,1,---,2d}, we will design an EUAF network to generate a function
[a,b]? — R satisfying

|hz(w) - 1/}1 (Y

(x)| <& for any = € [a,b]?.
-, xq)T € [a,b]?, by Equations (10) and (11), we have

hi(x) = Egoh (zi: oﬁl >

For any @ = [z, x2,

(Z}Zl hijo Zl(xj)) oM
AM

d OE T; 1 d
Z( i © L1(2) +271) = hijlxg),
7=1
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where

hijoLli(t) 1 _ .
Ll()—i—— for any t € [a,b], i =0,1,---,2d, and j =1,2,---,d.

hij(t) = =0 2d

It is easy to verify that h; j € C([a,b]?) each i € {0,1,---,2d} and each j € {1,2,---,d},

from which we deduce by Theorem 6 that there exists a function 1); ; generated by an EUAF
network with width 36 and depth 5 such that

hig(t) = o ()] < §/d for any t € [a,b).

For each i € {0,1,---,2d}, we define
x) = Zwi,j(mj) for any @« = [z1,x2, - -,xd]T € [a,b]d.

Then, for any & = [x1, 22, - -, 24| € [a,b]? and each i € {0,1,---,2d}, we have

hi j(z5) — i j(z5) ’ Zé/d—é

|hi(z) — Yi(z ’—‘Zhu () wa x]‘—

Step 3: Integrate sub-networks.

Finally, we build an integrated network with the desired size to approximate the target
function f. The desired function ¢ can be defined as

ng), vi(x ng)l(Z@bw (x5) ) for any x = [:1;1,3:2,-~-,:1:d]T € [a, b]d.

Let us first estimate the approximation error and then determine the size of the target
network realizing ¢. See Figure 10 for an illustration of the target network realizing ¢ for
the case d = 2.

Fix z € [a,b]? and i € {0,1,--+,2d}. Recall that h;(z) € [1, 3] and

|hi() — ()| <6 <,

implying ¢;(x) € [0,1]. Then, by Equation (12) (set z; = h;(x) and 2o = 1;(x) therein),
we have

giohi(x) — g O%’(w)‘ = |gi(hi(z)) —gi(d)i(fﬂ))‘ <e/(4d +2).

By Equation (13) (set z = ¢;(x) € [0, 1] therein), we have

9:0 6i(@) — 91 0 %i(@)| = [0s (¥i(@)) — 6:(vi(@)) | < £/(4d +2).
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= Yo(®) | ———r——| b0 0 Yo (x)

B O\

Figure 10: An illustration of the target network realizing ¢ for any x € [a, b]d in the case
of d = 2. This network contains (2d + 1)d + (2d + 1) = (d + 1)(2d + 1) sub-networks that
realize ¢; ; and ¢; for ¢ = 0,1,---,2d and j = 1,2,---,d.

Therefore, for any x € [a,b]¢, we have

2d

e \—\Zgzoh Z@ )| =2
§§;<

2d

<y (5/(4d+ 9) +¢/(4d + 2)) —c.
=0

giohi(x) — ¢io wi(:v)\

giohi(x) —gio 1/%'(33)’ +

g0 (@) ~ .0 (o)

It remains to show ¢ can be generated by an EUAF network with the desired size. Recall
that, for each i € {0,1,---,2d} and each j € {1,2,---,d}, ¢; j can be generated by an EUAF
network with width 36, depth 5, and therefore at most

(1x36+436) + (36 x36+36) x4 + (36 x1+1) = 5437

nonzero parameters. Hence, for each i € {0,1,---,2d}, 1, given by ¢;(x) = Z?:l i j(z5),
can be generated by an EUAF network with width 36d, depth 5, and at most 5437d nonzero
parameters.

Since ¢;(z) € [0,1] for any x € [a,b]¢ and i = 0,1,---,2d, we have o (¢;(x)) = ¢;(x)
for any x € [a,b]?. Hence, ¢; o ¢; can be generated by an EUAF network as visualized in

Figure 11.
(=)o (@) = v@) s [0u(02)) = 610 1s(@)

Figure 11: An illustration of the target EUAF network generating ¢; o ¥;(x) for any x €
[a,b]" and i = 0,1, -, 2d.

Recall that ¢; can be generated by an EUAF network with width 36 and depth 5.
Hence, the network generating ¢; has at most 5437 nonzero parameters. As we can see from
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Figure 11, ¢; o ; can be generated by an EUAF network with width max{36d,36} = 36d,
depth 5+ 1+ 5 = 11, and at most 5437d 4 5437 = 5437(d + 1) nonzero parameters. This
means ¢ = E?io ¢; o ¢; can be generated by an EUAF network with width 36d(2d + 1),
depth 11, and therefore at most 5437(d + 1)(2d + 1) nonzero parameters as desired. So we
finish the proof.

5.2 Proof of Theorem 4

The proof of Theorem 4 relies on a basic result of real analysis given in the following lemma.

Lemma 13. Suppose A, B C R? are two disjoint bounded closed sets. Then, there exists
a continuous function f € C(R?) such that f(x) =1 for any x € A and f(y) = 0 for any
y € B.

Proof. Define dist(z, A) = inf{||x — y||2 : y € A} and dist(x, B) = inf{||jx — yl|l2 : y € B}
for any x € R?. It is easy to verify that dist(z, A) and dist(z, B) are continuous in = € R
Since A, B € R? are two disjoint bounded closed subsets, we have dist(x, A) +dist(x, B) > 0
for any € R%. Finally, define

dist(x, B) d
= f R,
f(@) dist(x, A) + dist(x, B) orany & €
Then f meets the requirements. So we finish the proof. [ |

With Lemma 13, we can prove Theorem 4.

Proof of Theorem 4. For any f = Z;-Izl ri-1p, € 64(E1, E2,- -+, Ey), our goal is to construct
a function ¢ generated by a oc-activated network such that ¢(x) = f(x) for any x €
Uj']:1 E;, where Eq, Fs,---, E; are pairwise disjoint bounded closed subsets of R?. Define

E = U}'le E; and choose a,b € R properly such that E C [a, b]<.

For each j € {1,2,---,J}, E; and Ej = E\Ej are two disjoint bounded closed subsets.
Then, for each j, by Lemma 13, there exists g; € C(R?) such that g;(z) = 1 for any x € E;
and g;(y) = 0 for any y € E; = E\FE;. By defining g := ijl i - g; € C(RY), we have

J J
g(x) = ijl rj-1g,(x) = f(x) forany z € £ = Uj:1 E;.
Since 11,79, -+, 7y are rational numbers and g : [a, b]d — R is continuous, there exist
ni,ng € Z\{0} such that
e ny-T;+ N2 e Nt forj=1,2,---,J;

e ny-g(x) +ng >0 for any € [a, b]°.

By applying Theorem 1 to 2(ny - g + n2) + 1 € C([a, b]?), there exists a function ¢
generated by an EUAF network with width 36d(2d + 1), depth 11, and at most 5437(d +
1)(2d + 1) nonzero parameters such that

‘2(711 cg(x) +mg) +1— ()| <1/2 for any z € [a, b]". (14)
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It follows that

J J
’Q(nl-er-]lEj(w)—i—ng)—|—1—<;51(;1:) <1/2 for anycceE:UEj.
j=1 j=1

Since Fn, Eo, - -+, By are pairwise disjoint, we have
‘Q(nl ‘ri+mng)+1— ¢1(m)‘ <1/2 for any € E; and each j € {1,2,---,J}.  (15)

Define ¢o(z) = 2+ 1/2 — o(x + 3/2) for any = € R. See Figure 12 for an illustration.

—

-~ ©

= W Ut

0 1 2 3 4 5 6 7 8 9 10

Figure 12: An illustration of ¢5 on [0, 10].

It is easy to verify that
¢a2(y) =2k +1 for any y and k € NT with [2k +1 —y| < 1/2. (16)
Then, by Equations (15) and (16) (set y = ¢1(x) and k = ny - rj + ny therein), we have
P20 01(x) =¢2(y) =2k +1=2(n1-7rj +n2) +1
for any € F; and any j € {1,2,---,J}, which implies

—2ng—1
$20 <Z>1(~’132) 12 =r; forany x € Ej and any j € {1,2,---,J}.
ni

Define
_ ¢2 O¢1($) — 2712 — 1

2n1

for any x € [a, b]%.

p(x) :
Clearly, we have ¢(x) = r; for any « € E; and each j € {1,2,---,J}, which implies
J J
o(x) = er g (z) = f(x) foranyxec E= U E;.
j=1 j=1

It remains to show that ¢ can be generated by an EUAF network with the desired size.

Set M = 2|[n1g + n2|l poo(fap¢) + 3/2 > 0. By Equation (14) and the fact ny - g(z) + ng > 0
for any x € [a, b]?, we have

o1(x) € [1/2, 2[ln1g + n2| peoape) + 1 +1/2| C[0,M] for any x € [a, b)e.
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Then, for any x € [a,b]¢, we have
$20 ¢1(x) = d1(x) +1/2 — o(¢1(z) +3/2)
= Mo (¢1(2)/M) +1/2 — o (d1(z) + 3/2).
It follows that

_ $2001(z) —2np—1 _ Mo (¢1(z)/M) — o(p1(x) +3/2) — 2np — 1/2
2nq 2nq

¢(z)

)

for any « € [a,b]?. That means the network realizing ¢ has just one more hidden layer with
2 neurons, compared to the network realizing ¢;. Recall that ¢; can be generated by an
EUAF network with width 36d(2d + 1), depth 11, and at most 5437(d 4 1)(2d + 1) nonzero
parameters. Therefore, ¢, limited on [a, b]d, can be generated by an EUAF network with
width 36d(2d + 1), depth 12, and at most

5437(d+1)(2d+1) + 2x36d(2d+1)+2 + 2x 1+1<5509(d + 1)(2d + 1)

all possible new parameters

nonzero parameters. So we finish the proof. |

6. Proof of Theorem 6

To prove Theorem 6, we need to introduce two auxiliary theorems, Theorems 14 and 15,
which serve as two important intermediate steps.

Theorem 14. Let f € C([0,1]) be a continuous function. Given any e > 0, if K is a
positive integer satisfying

|f(z1) — f(z2)| <e/2 for any z1,x9 € [0,1] with |21 — 22| < 1/K, (17)

then there exists a function ¢ generated by an EUAF network with width 2 and depth 3 such
that ||l e (o,1)) < I fllzeo(fo,1)) + 1 and

K-1

|p(x) — f(z)] <e for any z € U [%,2’;—;1]
k=0

Theorem 15. Let f € C([0,1]) be a continuous function. Then, for any e > 0, there exists
a function ¢ generated by an FUAF network with width 36 and depth 5 such that

|p(x) — f(z)] <e for any = € [0, %].

To prove Theorem 14, we only need to care about the approximation on one “half” of
[0, 1]. It is not necessary to care about the approximation on the other “half” of [0,1]. Such
an idea is similar to the “trifling region” in (Lu et al., 2021; Zhang, 2020). As we shall
see later, the proof of Theorem 14 can eventually be converted to a point-fitting problem,
which can be solved by applying Proposition 7.
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The key idea to prove Theorem 15 is to apply Theorem 14 to several horizontally shifted
variants of the target function. Then a good approximation can be constructed via the
combinations and multiplications of these variants, similar to the idea of (Lu et al., 2021;
Zhang, 2020) to obtain an error estimation with the L*°-norm from a result with the LP-
norm for p € [1,00).

The proofs of Theorems 14 and 15 will be presented in Sections 6.1 and 6.2, respectively.
Let us first prove Theorem 6 by assuming Theorem 15 is true.

Proof of Theorem 6. Define a linear function £ by L(z) = a + Wx for any x € |0, %].
Then £ is a bijection from [0, %] to [a,b]. It follows that f o £ is a continuous function
on [0, %]. By Theorem 15, there exists a function ¢ generated by an EUAF network with

width 36 and depth 5 such that

|f o L(z) — p(x)| <& for any z € [0, 3].

Define E(y) = fo(g/b__?) for any y € [a,b]. Clearly, it is the inverse of £, i.e., Lo Z(y) =y
for any y € [a,b]. Therefore, for any y € [a,b], we have = = L(y) € [0, 2, which implies

[f(y) = do L)l = [foLoLly)—doLly)
= |Fo L(£W)) ~ 6(LWw))| = If 0 £() ~ dlw)| <e.
By defining ¢ = ¢ o L, we have | f(y) — ¢(y)| < & for any y € [a,b] as desired.
Note that ¢ can be realized by an EUAF network with width 36 and depth 5. We can
compose £ and the affine linear map of the network ¢ that connects the input layer and

the first hidden layer. Therefore, ¢ = ¢ o L can also be realized by an EUAF network with
width 36 and depth 5. So we finish the proof. |

6.1 Proof of Theorem 14
Partition [0, 1] into 2K small intervals Z; and Iy, for k = 1,2,--- K, ie.,

T (%R 50w Ti- (SR 3]

Clearly, [0,1] = U,[le(lk UZg). Let aj be the right endpoint of Zy, i.e., zj = 2L for
k=1,2,---, K. See an illustration of Zy, 7y, and x in Figure 13 for the case K = 5.

*  apforke{1,2,3,4,5) =T, forke{1,234,5} Ty for k € {1,2,3,4,5}

T T x3 Ty T5
4 4 4 " "

I 7 I I I A Z Z I s

0.0 0.2 0.4 0.6 0.8 1.0

Figure 13: An illustration of 7 and Ty for k € {1,2,---, K} with K =5.

Our goal is to construct a function ¢ generated by an EUAF network with the desired
size to approximate f well on 7, for k = 1,2,---, K. It is not necessary to care about the
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values of ¢ on fk for all k. In other words, we only need to care about the approximation
on one “half” of [0, 1], which is the key for our proof.

Define () = x —o(z) for any = € R, where o is defined in Equation (1). See Figure 14
for an illustration of 1.

10

— ¥

O N = DY 0

0 1 2 3 4 5 6 7 8 9 10
Figure 14: An illustration of ¢ on [0, 10].
It is easy to verify that
Y(y) =2k —2 for any y € [2k — 2,2k — 1] and each k € {1,2,---, K'}.
It follows that
Y(2Kz)/2+ 1=k forany z €[22 2811 =T} and each k € {1,2,---, K}. (18)

Recall that xy, is the right endpoint of 7, for k = 1,2,---, K. Set M = || f| o (jo,1)) + 1
and define

=L e (0,1) for k=12, K.

Then [£1, &2, - -+, &k]T is in [0, 1]X. By Proposition 7, there exists wy € R such that
lo1(2%) — &| <e/(4M) for k=1,2,-- K.
Let mg be an integer larger than |wy|, e.g., set mg = ||wo|] + 1. It is easy to verify that
2% +2mp >0 for any z € [0, 1].
Since o(x) = o1(z) for any x > 0 and o7 is periodic with period 2, we have
o528+ 2mo) — €] = o (25 + 2mo) — ] = |on(25) — & < =/(471),
for k=1,2,---, K. It follows that

’2MU(WW—+O,€ +2mg) — M — f(:ck)‘ - ‘2Ma(ﬂ 4 2mg) — M — (2Mé&y — M)‘

(19)
= 2M |o (4% + 2mo) — &| < 2M - {57 = ¢/2,

fork=1,2,-- K.
The desired ¢ is defined as

d)(x) = 2MU(W + 2m0) — M for any r c [0, ].]
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Recall that mg > |wg| and ¥ (x) > 0 for any x > 0, which implies
W+2m020 for anyxE[O,l}.

It follows that [|@||pe(jo,1)) < M = || fllzo(jo,17) + 1 since 0 < o(y) < 1 for any y > 0.
For any z € Zj, and each k € {1,2,---, K}, by Equation (18), we have ¢(2Kx)/2+1 =k,
which implies

Clearly, for any x € 7, and each k € {1,2,---, K}, we have |z — x| < 1/K. Then, by
Equation (17), we get

|f(xg) — f(z)] <e/2 for any x € I and each k € {1,2,---, K}.
Therefore, by Equation (19), we have
6(2) = f(2)] = [2Mo (225 + 2mo) — M - f()|
< ‘2]\4(7(7:”—+‘)/,C +2mg) — M — f(xk)’ + |f(ze) = f(z)| <e/2+e/2=¢

for any = € Zj, and each k € {1,2,---, K}. Tt follows that

K K K—-1
6(z) — f(z)| <e foranyze | JZ;= | B2 4] = U [&. %]
j=1 j=1 k=0

It remains to show that ¢ can be generated by an EUAF network with the desired size.
Observe that

y y L
oy +1=—"—+1= +1= for any y < 0.
(®) Iyl +1 —y+1 -y+1 Y=
By setting y = —7 — ¢¥(2Kx)/2 < 0 for any z € [0, 1], we have
1 1
T+ oRKD)/2+1  —y+1 o~ )/2) +
- ( 2Kx—a(2Ka:))/2)+1

=o(—m—Kz+0(2Kz)/2) +1,

where the second-to-last equality comes from 1(z) = z — o(2) for any z € R. Therefore, we
get

:2Ma<wga(—7T—Ka:+a(2Kx)/2)+wo+2m0> — M. (20)

Thus, the desired EUAF network realizing ¢ is shown in Figure 15. Clearly, the network
in Figure 15 has width 2 and depth 3 as desired. It is easy to verify that the network
architecture corresponding ¢ is independent of the target function f and the desired error
e. That is, we can fix the architecture and only adjust parameters to achieve the desired
approximation error. So we finish the proof.
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(K=
S

Figure 15: An illustration of the target EUAF network realizing ¢(x) for € [0, 1] based
on Equation (20).

”< —r— Ka+ 0(21\*7-)/2) *}{lf (lm.n( —m— Ko+ ”(21\'.,)/2) +Fwy+ 217!,4,)}—7 {23\1”(1“‘,0( —r—Kz+ (7(21\'.:)/2) +wp+ ‘Zrm,) -M= c‘)(.’r)}

6.2 Proof of Theorem 15

The key idea of proving Theorem 15 is to apply Theorem 14 to several horizontally shifted
variants of the target function. Then a good approximation can be expected via combina-
tions and multiplications of these variants. Thus, we need to reproduce f(z,y) = zy locally
via an EUAF network as shown in the following lemma.

Lemma 16. For any M > 0, there exists a function ¢ generated by an EUAF network with
width 9 and depth 2 such that

(a,y) =y for any z,y € [~ M, M].

The proof of this lemma is given in Section 6.3. Now let us first prove Theorem 15 by
assuming this lemma is true.

Proof of Theorem 15. Set € = ¢/4 and extend f from [0, 1] to [—1, 1] by defining f(z) = f(0)
for any x € [—1,0). Then f is continuous on [—1,1] and therefore uniformly continuous.
Thus, there exists K = K(f,¢) € NT with K > 10 such that

|f(z1) — f(z2)| < €/2 for any 1,z € [—1,1] with |x; — 29| < 1/K.
For i = 1,2, 3,4, define
fi(x) = f(z - ﬁ) for any = € [0, 1].

For each i € {1,2,3,4} and any z1,z2 € [0,1] with |z; — 22| < 1/K, we have x1 —
' i

1. T2 — 1 € [-1,1] and |(21 — %) — (22 — 7%)| = |#1 — 22| < 1/K, which implies
|fi(a1) = filz2)| = | f(21 — q) — a2 — q5)| <E/2.
That is, for : = 1,2, 3,4, we have
| fi(x1) — filw2)| < €/2 for any x1, 29 € [0, 1] with [v1 — 22| < 1/K,

which means we can apply Theorem 14 to f; € C([0,1]). For each i € {1,2,3,4}, by
Theorem 14, there exists a function ¢; generated by an EUAF network with width 2 and
depth 3 such that

il (o,1)) < Ifill oo,y + 1 < N fllpeo(=r,1p) + 1

and
K—1

|¢i(z) — fi(z)| <E=¢e/4 forany z € U [2k | 2kt1].
k=0
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ANNNN

Figure 16: An illustration of ¢ on [0,2K] for K = 5.

Define
V(@) =0(x+1—o(x+1)) foranyzeR.

See an illustration of ¢ on [0,2K] for K =5 in Figure 16.
Clearly, 0 < ¢)(2Kx) < 1 for any z € [0, 1], from which we deduce

K-1

)((Z)i(:v)—fi(x))@/}(ZKx‘ |¢i(z) — filw)| < /4 forany z e | ) [Z, %4,
k=0

Observe that ¢ (y) =0 for y € Uf;ol [2k + 1,2k + 2], which implies

K—1
Y(2Kz)=0 forany x € U [%,25}2 1210, 1\ U %,—2’5}1 :
k=0

It follows that
’(@-(:c) - fi(x))w(QKx)‘ <e/d forany z €[0,1) and i = 1,2,3, 4. (21)
For each i € {1,2,3,4} and any z € [0, %] C [0,1 — &] € [0,1 — £%], we have
yi =2+ 1= € [1%,1] € [0,1].
Therefore, by bringing = = y; € [0, 1] into Equation (21), we have
£/4 > | (6i(m) — Fily)) VK| = |eim)v 2Ky) - fiy)v(2Ky)
= [0z + )0 (2K (2 + i) = filz + 1)V (2K (2 + )| (22)

= |¢i(z+ 1) (2K 2 + £) — f(2)h(2K 2 + 1)

for any z € [0, 10] where the last equality comes from the fact that fi(z) = f(z — {%) for
any z € [0,1] 2 [;%,1]. The desired ¢ is defined as
4 . .
o(x) = Z gi(z + 1) (2Kz + &) for any z € [0, ).
i=1

It is easy to verify that Z?:l w(x + %) =1 for any = > 0 based on the definition of .
See Figure 17 for illustrations. It follows that Z?:l Y(2Kz+ %) =1 for any z € [0, 10]
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— Pa+1/2) bla+2/2) — 2 (@ +if2) U(z +3/2)
VAV AV AV AYAYS
— T +if) Yo +4/2) — Tl +if)
TW W W W 1
A 2\/3 A% G\/7 M

Figure 17: Illustrations of Z?Zl Y(x+1i/2) =1 for any z € [0, 10].

Hence, for any z € [0, 10] by Equation (22), we have

4

4
|6(2) = f(2)| = ‘ N Gile+ 1) b (2Kz + ) — f(2) Y (2K + 1)

i=1 1=1
4

<
i=1

That is, |¢p(z) — f(z)| < & for any x € [0, 5] as desired. It remains to show that ¢, limited
on [0, ], can be generated by an EUAF network with the desired size.

Note that x + 1 = (2K + 1)0(2”;;:11) for any = € [0,2K], which implies

4

iz + g (2K2 + 1) — f(2)0(2K= + )| < e.

€ _
1=

V(@) =o(z+1—o@+1)) = <(2K+ Do (55 — 0w+ 1)).

This means 1, limited on [0, 2K], can be generated by an EUAF network with width 2 and
depth 2. Since 0 < 2Kz +4§ < 2K 5+2 = 2K (554 %) < 2K for any z € [0, 1], ¥(2K - +1),
limited on [0, 1%], can also be generated by an EUAF network with width 2 and depth 2.

Note that ¢;, limited on [0 1], can also be generated by an EUAF network with width 2
and depth 3. Clearly, = + ;= € [0,1] for any « € [0, %], and, therefore, ¢;(- + %), limited
on [0, 190] can also be generated by an EUAF network with width 2 and depth 3.

Recall that [[¢illzec(o,1)) < Ifllpeeq=1,1) + 1 = M. Thus, |¢i(z + ;%) < M and
2Kz + £)| <1< M for any x € [0, 5] and i = 1,2,3,4. By Lemma 16, there exists a
function I' generated by an EUAF network with width 9 and depth 2 such that

I'(z,y) =2y for any x,y € [-M, M].
It follows that
[(i(e+ 1), 0 (2Ka + 5)) = dilw + gie) (2K + 5) for i =1,2,3,4
Therefore, each component of ¢(z), ¢;(z + 15)¢(2Kz + %) for each i € {1,2,3,4}, can

be generated by the network in Figure 18 for any = € [0, 10] Clearly, such a network has
width 9 and depth 6. Since the 4-th hidden layer of the network in Figure 18 uses the
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Y(2Kz + 1)

7
=" (e e )
T e+ 30)

Figure 18: An illustration of the target EUAF network realizing each component of ¢(z),
oi(x + 4%}()1#(21(.@ + 1), for any z € [0, 1%] and each ¢ € {1,2,3,4}. The networks realizing
¢i(- + 4%) and 1/1(2K . +%) can be placed in parallel since we can manually add a hidden

layers to 9 since o o w(QKx + %) = ¢(2K:U + %) for any z € [0, 1%]'

identity map as an activation function for each neuron in this hidden layer, we can reduce
the depth by 1 via composing two adjacent affine linear maps to generate a new one. Thus,
the network in Figure 18 can be interpreted as an EUAF network with width 9 and depth
5.

Note that ¢ is the sum of its four components, namely,

4
o(x) = Z(bl(m + ﬁﬁb(QKx + %) for any x € [0, 1%].

i=1
Therefore, ¢, limited on [0, %], can be generated by an EUAF network with width 9x4 = 36
and depth 5 as desired. It is easy to verify that the designed network architecture is
independent of the target function f and the desired error €. That is, we can fix the

architecture and only adjust parameters to achieve an arbitrarily small approximation error.
So we finish the proof. |

6.3 Proof of Lemma 16

The key idea of proving Lemma 16 is the polarization identity 2zy = (z + y)% — 22 — 3.
Thus, we need to reproduce z? locally by an EUAF network as shown in the following
lemma.

Lemma 17. There exists a function ¢ generated by an FUAF network with width 3 and
depth 2 such that
¢(z) = x> for any z € [—1,1].

Proof. Observe that

Y Y
ly| + 1 —y+1

1
+1= for any y < 0.

o +1 =
(v) ——

For any x € [—1,1], we have —x — 1 < 0 and —x — 2 < 0, which implies

o(—z—1)—o(—z—2) = (a(—x— 1)+ 1) - (a(—x—z) + 1)
1 1
—(—z—-1)4+1 —(—z—2)+1
1 1 1

z+2 143 (x +2)(z+3)
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It follows from 1 — m <0 for any x € [—1,1] that
12 1 2
(- S S )

implying

_ ( s x+3))+12—(5x+6)

(-12 —r—1)— (33—2))>+116115$
— <1—12U —z— 1)+ 120(— x—2))+110—<6;15$> = ¢(x),

(522

!

) comes from two facts: 2Z € [0,1] since z € [—1,1]

I':U
and o(z) = z for any z € [0, 1

/m\
'Y“/ /\

(o) =) —— (- B =52+ 1) —o(55))

[ (1-120(-2—1) + 120(-2 — 2))]

[</>(1,-) = 12U(1 —120(—2 — 1) + 120(~z — 2)) + 110 (5522) = x2]

Figure 19: An illustration of the target EUAF network realizing ¢(z) = 22 for z € [-1,1].

Then, 22 can be generated by the network shown in Figure 19 for any = € [~1,1]. The
target network has width 3 and depth 2. So we finish the proof. |

With Lemma 17 at hand, we are ready to prove Lemma 16.

Proof of Lemma_16. By Lemma 17, there exists a function gzNS generated by an EUAF net-
work such that ¢(t) = t2 for any t € [~1,1]. Then, for any x,y € [-M, M|, we have

ote) =22 (3(5) - 3(s) - 3(sk) ) = o0

Qutput

Figure 20: An illustration of the target network realizing ¢(x) = zy for x,y € [-M, M].

The target network realizing ¢ with width 9 and depth 4 is shown in Figure 20. Note
that we can reduce the depth by one if the activation function of each neuron in a hidden
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layer is the identity map. In fact, we can eliminate this hidden layer by composing two
adjacent affine linear maps to generate a new one. The 1-st and 4-th hidden layers of the
network in Figure 20 use the identity map as an activation function for each neuron. Thus,
the network in Figure 20 can be interpreted as an EUAF network with width 9 and depth
2. So we finish the proof. |

7. Proof of Proposition 7

We will prove Proposition 7 in this section. The proof includes two main steps. First,
we show how to simply generate a set of rationally independent numbers in Lemma 18
below. Next, we prove that the target point set via a winding of the generated rationally
independent numbers is dense in a hypercube. Such a proof relies on the fact that an
irrational winding on the torus is dense (e.g., see Lemma 2 of (Yarotsky, 2021)) as shown
in Lemma 19 below.

Lemma 18. Given any K € N any transcendental number o € R\A, and any pairwise

distinct rational numbers ri,r9, -, 7 € Q, the set of numbers
1 ..
(a5 k=12, K}

are rationally independent.

Lemma 19. Given any rationally independent numbers ay, as, -, ax for any K € NT and
an arbitrary periodic function g : R — R with period T, i.e., g(x+T) = g(x) for any x € R,
assume there exist x1,ro € R with 0 < xo —x1 < T such that g is continuous on [r1,x2].
Then the following set

{[Q(wad)a g(wag), -, g(waK)]T tw e R}

is dense in [My, M), where My = min g(z) and Ma = max g(z).
z€[z1,72] z€[z1,72]

The proofs of these two lemmas can be found in Sections 7.1 and 7.2, respectively.
With these two lemmas at hand, the proof of Proposition 7 is straightforward. In fact,
we can prove a more general result in Proposition 20 below, which implies Proposition 7
immediately.

Proposition 20. Given an arbitrary periodic function g : R — R with period T, i.e.,
glx +T) = g(x) for any v € R, assume there exist x1,20 € R with 0 < 9 —x1 < T
such that g is continuous on [x1,z3]. Then, for any K € NT, any transcendental number

a € R\A, and any pairwise distinct rational numbers r1,ra,- -, 7 € Q, the following set
T
{loGE), 9z, - gl sw e R}
is dense in [My, Ma)®, where My = min g¢(x) and My = max g(z). In the case of
x€[x1,22] T€[x1,T2]
My < My, the following set
T
{[u-ggrm)w, weg() 4 v e (i) o) :u,v,weR}

is dense in R,
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Clearly, Proposition 7 is a special case of Proposition 20 with g = 01, @ = 7, 1, = k for
k=1,2,---, K. The transcendence of 7 is well known (e.g., see the Lindemann-Weierstrass
Theorem). By setting 1 = 0 and zo = 1, we have [My, Ms] = [0, 1] and o7 is continuous
on [0, 1], which means that the following set

{[nGE), 1(2), -+ i) s w R}

is dense in [0, 1]% as desired.
Finally, let us prove Proposition 20 by assuming Lemmas 18 and 19 are true.

Proof of Proposition 20. By Lemma 18, the set of numbers

(k=12 K}

are rationally independent. Denote ay = +T for k=1,2,---, K. Then, by Lemma 19,

{[Q(wa1)7 g(waz), -, g(waK)]T cw€e ]R}

= {04, 9545, -+ o)) s w e R

is dense in [My, Ma]¥
Next, let us consider the case M; < Ms for the latter result. For any € > 0 and any
x € RE by setting J = [|@[lo + 1 > 0, we have Z5 € [0,1), and hence

y = S5 (My — My) + My € [My, Mo]¥

By the former result, there exists wg € R such that

T _
v - loGa20, g(zam0), - oGm0 < 2t
It follows from y = ZEL (M, — M) + M, that
M+ M:
T = M22 M1y + (]\/[11+M22) =! upy + vo,

J(My+M
where ug = ]\42%(]]\41 and vy = W Therefore,

T
T — [Uog( -) +vo, wog(55%) + vos -, Uog(aiU?K)—Fvo]
oo
" T
UoY + v — [Uog(aJrTl) + 0, u0g(57%;) +vo, * Uog(a+2K) + Uo}
o0
< ug M e = MQZ—JM1 Mtie=e.
Since € > 0 and = € RX are arbitrary, the following set
w w T
{[u'g(a—i-rl) + v, UQ(M) +v, u'g(a—H"K) +fUi| FUu,v, W E R}
is dense in RX. So we finish the proof. [ |
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7.1 Proof of Lemma 18

Before proving Lemma 18, let us first briefly discuss related concepts. Recall that a com-
plex number « is an algebraic number if and only if there exist Mg, A1, -+, Ay € Q with
Z}]:o )\jaj = 0. The set of all algebraic numbers is denoted by A. We say a complex num-
ber is transcendental if it is not in A. Almost all complex numbers are transcendental
since the set A is countable. The best known transcendental numbers are 7 (the ratio of a
circle’s circumference to its diameter) and e (the natural logarithmic base).

In order to prove Lemma 18, we need an auxiliary lemma below, characterizing some
properties of coefficients of Lagrange basis polynomials. Recall that, for any given pairwise

distinct numbers x1, 9, -, zx € R, the Lagrange basis polynomials are
Xr — X, r — X T — Tp—-1 T — Tk+1 r—ITK
pe(z) = H - _;‘ = e e (23)
jerio k) Tk j k 1 k k—1 Tk k+1 k K
J#k
for k=1,2,---, K. They are polynomials of degree < K — 1, which means we can represent
each pg by

K
j—1 K-1
pr(z) = E ap;x’ " = ap + apox + -+ ap T
J=1

for k = 1,2,---,K and any x € R. Thus, the coefficients of these K Lagrange basis
polynomials p1, po, - - -, px form a matrix

a1 a1 o LK
a1 G2 - A2 K

A=(aij)=1| . D | e REXK, (24)
aK1 GK2 " OKK

The lemma below essentially characterizes the linear independence of Lagrange basis
polynomials.

Lemma 21. With the same setting just above, the matriz A given in Equation (24) is
tnvertible.

Proof. For any y = [y1,v2, - yKx] € RE, by the definition of Lagrange basis polyno-
mials pg(x) for £ = 1,2,---, K in Equation (23), p(z) = Z,I::l yrpr(x) is the target in-
terpolation polynomial for sample points (z1,y1), (x2,v2), -, (zx,yx). That is, for any
¢e{l1,2,---, K}, we have

K K K
—1
yo=p(xe) = > ukpe(we) =D yp > ap;a)
k=1 k=1 =1

0 0
a1 a2 0 ALK iy Ty
1 1
a1 a2 - Q2K z; . )
:[ylay27"'>yK]' . . . . . . =Y A .
K-1 K-1
aK,1 QK2 "' OKK T, T
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It follows that

R oK
x x x
T T 1 2 K
Yy :[yl?y27"'7yK]:y A .
-1 K-1 -1
Ty D) Tk
Since y € R is arbitrary, we have
0 0 0
xl $2 DY 'IK
zl rl oo gl
1 2 K
A . . . . - IK7
K-1 [ K-1 K—1
Ty Lo LK
where Iy € REXK ig the identity matrix. Recall that z1, s, -, £x are pairwise distinct,
which implies the Vandermonde matrix
e )
K-1 ,K-1 K—1
J"l xz DY l‘K
is invertible. Thus, A is also invertible. So we complete the proof. |

With Lemma 21 at hand, we are ready to prove Lemma 18.

Proof of Lemma 18. Let x, = —ry, € Q for k = 1,2,---, K and define the Lagrange basis
polynomials as

@)= [ —E =w ] (-,

Tk — Ty

je{1,2,-,K} je{1,2,+,K}
7k #k
where .
wy = H —— 20 fork=12K.
]6{1727.'.1K}
#k

It follows from z, € Q that wy is rational and nonzero, i.e., wx € Q/{0} for any k. Clearly,
each py is a polynomial of degree < K — 1. That means we can represent p; by

K
pr(T) = Z a2’ = a1+ apox + -+ ap g™
j=1

for k = 1,2,---,K and any = € R, where each coefficient ay, ; is rational. Therefore, the
coefficients of p1, p2, - -+, px form a matrix
a1 a2 o ALK
A= (a;;) = a2:,1 a2:,2 GQ;K € QExK,
aK,1 aK2 "' OKK
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Now assume there exist rational numbers A1, Ao, - - -, Ax € Q such that Zszl Ak - ﬁm =
0. Our goal is to prove A\j = Ao = --- = Ag = 0. Clearly, we have
K K K K K
Ak Ak Ak Ak
0= :Z :H(a—xj)'z = — - wy, H (o — z;)
P L = O TR T g k)
=0 =0 irk
K\ K o\ K K K\
k k — k -
=Y @) =) Y apal ! ZZ( Zw g, ) ol
k=1 ¥ k=1 F =1 =1 k=1

————
=0 since a€R\A

For any k,j € {1,2,---, K}, we have A\, wy,ar; € Q, implying Zle %ak’j € Q. Since
a € R\A is a transcendental number, the coefficients must be 0, i.e.,

KA
S Pa;=0 forj=12- K.
=1 Wk

It follows that

ail a2 a1 K
a a a
0= |2 22 AK 21 022 el N YRS Ak | A
T |wi w2’ wi : T wil w2’ ) wg
aK1 GK2 " OKK

By Lemma 21, A is invertible. Thus, [2L, 22 ... 2K] = 0, which implies \; = Ay = -+ =

wi? wz’ Wg
Ax = 0. Hence, the set of numbers {aim k=1,2,-- -,K} are rationally independent,
which means we finish the proof. |

7.2 Proof of Lemma 19

The proof of Lemma 19 is mainly based on the fact that an irrational winding is dense on
the torus (e.g., see Lemma 2 of (Yarotsky, 2021)). For completeness, we establish a lemma
below and give its detailed proof.

Lemma 22. Given any K € N and an arbitrary set of rationally independent numbers
{ar : k=1,2,---, K} CR, the following set

{ [7(way), T(waz), ---, T(waK)]T RTINS ]R} c o, )X

is dense in [0,1]%, where 7(z) ==z — |x] for any x € R.

The proof of Lemma 22 can be found later in this section. Now let us first prove
Lemma 19 by assuming Lemma 22 is true.

Proof of Lemma 19. Define g(z) := g(Tx) for any x € R. Clearly, g is periodic with period
1 since g is periodic with period T. The continuity of g on [z1, x| implies g is continuous
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on [7, 7] and therefore uniformly continuous on [%, Z]. For any ¢ > 0, there exists
§ € (0, #25%L) such that

l9(u) —g(v)| <e for any u,v € [Z, F] with |u —v| < 4. (25)

Given any & = [£1,&, -+, €k] € [My, Ms])¥, by the extreme value theorem and the
intermediate value theorem, there exists 21, 29, -+, 2K € [21, 22| such that

g(zx) =& forany k=1,2,--- K. (26)

For k =1,2, -, K, set yr, = 2,/T € [, 7] and

~ ) d
= g.1 — 2.1 .
e =Ykt 3 {yk§%+g} 2 {ykz%—%}
Then, for k=1,2,---, K, we have
~ d ) T d =« )
— 2.1 — 2.1 c | g, 2 _ 90
and
T —ul <181 _dq ‘<52.
19k = yel < 2 {ykS%JF%} 2 {ykz%*%} <9/

Define 7(x) := x — |z for any = € R. Clearly, [7(y1), 7(%2), - -, 7(¥x)]* € [0,1]¥. Then,
by Lemma 22, there exists wg € R such that

|T(woag) — 7(yg)| < /2 for k=1,2,--- K.
It follows that
‘T(woak) + k] — @Vk‘ = ‘T(woak) — (U — @H)‘ = |r(woar) — T(gr)| < 6/2
for k=1,2,---, K. Since yj, € [Z + g, - g], we have T(woar) + [Jx] € [F, F]. Besides,
7 (woar) + 5] — vi| < |rlwoar) + 5] = | + [ — wu] < 8/2+ 8/2 =
for k =1,2,---, K. Then, by Equation (25), we have
‘ﬁ(T(wgak) + o)) — 'g(yk)’ <e fork=1,2,---, K.
Recall that g is periodic with period 1, from which we deduce

g(r(woar) + [k]) = g(woar — [woar]) + [Gk]) = g(woar) = g(T - woay,)
for k=1,2,---, K. Also, we have

§(yk):g(Tyk)=g(zk)=§k fOI‘k:LQ,"-,K,

where the last equality comes from Equation (26). It follows that
}Q(T - woag) — fk‘ = ‘ﬁ(T(woak) + lokl)) — ﬁ(yk)‘ <e fork=1,2,---, K.
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That is
H [g(wia1), glwnaz), -+, glwnar)]" - EHOO =&

where w) =T - wy € R. Since & € [M, MQ]K and € > 0 are arbitrary, the following set

T
{lo(war), g(waa), -+, glwar)]” : w e R}
is dense in [M7, Ms]¥ as desired. So we finish the proof. [ |
Finally, let us present the detailed proof of Lemma 22.

Proof of Lemma 22. We prove this lemma by mathematical induction. First, we consider
the case K = 1. Note that a; # 0 since it is rationally independent. Thus, we have
{r(way) : w € R} =[0,1), which implies {7(wa;) : w € R} is dense in [0, 1].

Now assume this lemma holds for K = J—1 € N*. Our goal is to prove the case K = J.
Given any ¢ € (0,1/100) and an arbitrary & = [£1, &, -, €5]7 € [0,1]7, our goal is to find
a proper w € R such that

|T(waj) — €| < Ce for j=1,2,---,J, where C is an absolute constant. (27)

We remark that the constant C' in the above equation is actually equal to 11 in our proof.
As we shall see later, we need an assumption that the given point is in [6e,1 — 65]‘] . Thus,
we slightly modify & by setting

& =&+ 66 Ty cpey — 6 Lyg 516 forj=1,2,-+-,J.
Then, we have
£ € [6e,1—6¢] forj=1,2,---,J (28)

and
& — &| = |62 - Lyg,<gey — 62 - Dyg, 516y <62 for j=1,2,---,J, (29)

For any n € Nt we define
& =7(& — Saj) forj=1,2,--,J.

Then EJ = 0 and Ej € [0,1) for j = 1,2,---,J — 1. To approximate [é\l,gz,“',gj—l]T €
[0,1)7~!, we only need to consider J — 1 indices, and, therefore, we can use the induction
hypothesis to continue our proof.

Clearly, the rational independence of a1, as, - - -, ay implies none of them is equal to zero.
Define

by = [1(gta1), T(Ftaz), -, T(%G«J—l)]T e [0,1)"" %

Then, the bounded sequence (b, )% ; has a convergent subsequence by the Bolzano-Weierstrass
Theorem. Thus, there exist ni,ny € Nt with ny < ny such that ||b,, — by, || < &, i.e.,

m(32a) — 7(Gta;)| <& forj=1,2,--+,J - 1.

aj

51



SHEN, YANG, AND ZHANG

Set 7 =ng —ny € NT and

Then, by defining

aj aj +k; forj=1,2 J—1,
we have
;] = | Faj + ky| = m“ﬂf%aﬁrtm“ﬂ*{m“]”
= |30 - [2a:]) - (30 - [2a))| 30)
‘7‘ a;) — (2 1aj)} <e.
It is easy to verify that @1, ds,- -, as_1 are rationally independent. To see this, assume
there exist A1, Ao, -, Ay_1 € Q such that
J—1 J—1 J—1
0=> Naj =Y N(Zaj+k)=> N aj—i—Z)\k:
j=1 j=1 j=1

It follows that
J—1 J—1
0= Z )\jﬁaj + (Z )\jkj)dj.
s =1

Recall that n € N, k; € Z, and \; € Q for any j. That means the coefficients A;n and

Z}]:_ll Ajk; are rational for any j. Since a1, as,---,a; are rationally independent, we have
J—1
Ni=0 and Y Nk;=0 forj=1,2---,J—1.
j=1
It follows from 7 = ng — ny > 0 that A\ = Ao = -+ = Aj_1 = 0. Therefore, ai,ds, -, a -1

are rationally independent as desired.
By the induction hypothesis, the following set

{[T(s Gy), T(sGa), oy T(s-y1)] s € R} c[0,1)"!
is dense in [0,1]7~!. Recall that EJ = T(Ej — g—jaj) €[0,1] for 5 =1,2,---,J — 1, implying

&+3-1 —3-1 € [3¢,1 — 3e].

{£;<3¢} {£;>1-3¢}

Hence, there exists sg € R such that
‘T(Soaj) — (53 + 3¢ - ]1{2]'§3€} — 3¢ - 1{@21_36}>‘ < €
for j=1,2,---,J — 1. It follows that

T(soa;) € [2¢,1 —2¢] for j=1,2,---,J -1
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and

r(s0;) — §| <+ |31 ~3c-1 < de (31)

{€;<3¢} {(€;>1-3¢}

forj=1,2,---,J—1.
To estimate 7(|so|a;) —&;, we need to bound 7(soa;) —7(|so a;). To this end, we need
an observation for any z,y € R as follows.

|t —y| <e and 7(z) € [26,1—-2¢] = |7(x)—7(y)| <e. (32)

In fact, 7(z) € [26,1 — 2¢] implies e < 7(z) —e < 7(x) + & < 1 — ¢, from which we deduce

yElr—e,x+el= [Lafj +7(x) — ¢, |x] —1—7'(95)—1-5]
— —

>e <l-¢
- [m te |z —i—l—a] c |1, 2] +1).

Then, we have |y| = |z, which implies

|7 (x 7(y) - lyl|

|7(x
’ Ed (T(g)—i— y)’:|:c—y|<€.

Thus, Equation (32) is proved.
By Equation (30), we have

ot — Lso s < [0 = Lsol | @] < a5 <& for j=1,2,0+,0 — 1,
Recall that
T(soa;) € [2¢,1 —2¢] forj=1,---,J -1

Then, for each j € {1,2,---,J—1}, by the observation above in Equation (32) (set = soa;
and y = |so|a; therein), we have |7(s0a;) — 7(Ls0a;)| <e.
Recall that fj = 7'(5] a]) for j =1,2,---,J. Therefore, by Equation (31), we have

m(LsoJay) = 7§ — $aj)| = |7(Lso)ay) - &)
< |r(Lsolay) = 7(s0ay)| + [r(s0;) = & < & + e = e,
forj=1,2,---,J—1.
Observe that, for any =,y € R, there exist z € Z such that 7(z) —7(y) =z —y — 2. To

see this, we set z = |z] — |y] € Z and then 7(z) —7(y) =z — |z] — (y— |y]) =z -y — =
Therefore, for j =1,2,---,J — 1, there exists z; € Z such that

7(1s0Jaj) — 7 — £aj) = [s0)a; — (& — £aj) — 2 = |s0Jaj + £a; — (z + &),

which implies

[so)t; + &2a; = (2 + &)| = |m(Ls0)a;) = 7(§ — &2ay)| < 5e.

53



SHEN, YANG, AND ZHANG

It follows that, for j =1,2,---,J — 1,

Lsojaj—i-%aje [2j + & — Be,zj + & +5e] C [z +,2j + 1 — €],
SN—— S——

>e <l—-e

where the fact € < 57 —oes gj +5e < 1 —¢ comes from Equation (28). Therefore, we have
\‘LSOJaj—FQaj)J = Zj fOI’]:l’Q”J_1’

implying - -
7(s0)d@j + 52a;) = (Lso)a; + ££a;) — 25 € (& — b2, & + 5el.
Clearly, we have

[s0J; + $2a; = Lso) (Zas + k) + Ea; = 1924800, 4 gy o)
Z
S

for j =1,2,---,J — 1, which implies

(Lol 0y = 7(|s0]d; + $2a;) € [€ — Be, & + 5el.

We also need to consider the case j = J. By Equation (28), we have £; € [6¢, 1 — 6¢], from
which we deduce .
(Lol 5y = (0] +E5) = €5
=z
Thus, for j =1,2,---,J, we have
‘T(LSOJTL+§J i) — fg‘ < Be.

aj
By Equation (29), we have \g] — & < 6e for j =1,2,---,J, which implies

T(M £‘<‘ Lsojn+£J 53“1“5] f]‘<55+65—115

aj

That means wg = LS“{}@ is the desired w in Equation (27) and the constant C' > 0 therein
is 11. Therefore, ‘

|T(woaj) — &| < 1le for j=1,2,--,J.
Since &€ = [£1,&2,- -+, &y]T €[0,1)7 and £ > 0 are arbitrary, the following set

{[T(wal), T(wag), -, T(waJ)]T tw E R} C [0,1)7

is dense in [0,1]” as desired. We finish the process of mathematical induction and therefore
finish the proof by the principle of mathematical induction. |

We remark that the target parameter wg = % designed in the above proof may
not be bounded uniformly for any approximation error ¢ since n can be arbitrarily large as
€ goes to 0. Therefore, the network in Theorem 1 may require sufficiently large parameters
to achieve an arbitrarily small error €.
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8. Conclusion

This paper studies the super approximation power of deep feed-forward neural networks
activated by EUAF with a fixed size. It is proved by construction that there exists an EUAF
network architecture with d input neurons, a maximum width 36d(2d+1), 11 hidden layers,
and at most 5437(d+1)(2d + 1) nonzero parameters, achieving the universal approximation
property by only adjusting its finitely many parameters. That is, without changing the
network size, our EUAF network can approximate any continuous function f : [a,b]? — R
within an arbitrarily small error € > 0 with appropriate parameters depending on f, ¢, d,
a, and b. Moreover, augmenting this EUAF network using one more layer with 2 neurons
can exactly realize a classification function Zj:l rj-1g; in U}'le Ej for any J € N*, where
r1,79, -, Ty are distinct rational numbers and F1, Fo, - - -, E; are arbitrary pairwise disjoint
bounded closed subsets of RY.

While we are interested in the analysis of the approximation error here, it would be very
interesting to investigate the generalization and optimization errors of EUAF networks.
Acting as a proof of concept, our experimentation shows the numerical advantages of EUAF
compared to ReLLU. We believe our EUAF activation function could be further developed
and applied to real-world applications.
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