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Abstract—Drawing samples from a given target probability
distribution is a fundamental task in many science and engineering
applications. A commonly used method for sampling is the Markov
chain Monte Carlo (MCMC) which simulates a Markov chain
whose stationary distribution coincides with the target one. In
this work, we study the convergence and complexity of MCMC
algorithms from a dynamic system point of view. We focus on
the special cases with Gaussian target distributions and provide
a Lyapunov perspective to them using tools from linear control
theory. In particular, we systematically analyze two popular
MCMC algorithms: Langevin Monte Carlo (LMC) and kinetic
Langevin Monte Carlo (KLMC). By applying Lyapunov theory
we derive impressive complexity bounds to these algorithms:
for LMC, our result is better than all existing results, and for
KLMC, ours matches the best known bound. Our analysis also
highlights subtle differences between sampling and optimization
that could inform the more challenging task to sample from
general distributions. Overall, our findings offer valuable insights
for improving MCMC algorithms.

Keywords—Linear systems, Lyapunov methods, Filtering.

I. INTRODUCTION

The task to draw random samples from an (unnormalized)
distribution ν ∝ exp(−f(x)) with potential f : Rd → R,
plays a crucial role in many areas of science and engineering,
including Bayesian inference, filtering/estimation, uncertainty
quantification, inverse problems, etc [1], [2], [3], [4]. For in-
stance, particle filtering algorithms recursively sample from the
posterior distributions of the state after each new measurement
arrives. In inference problems, in contrast to optimization
approaches that give point estimates, the sampling methods
have the advantage of being able to quantify the uncertainties
of such estimates.

A popular paradigm for sampling is Markov chain Monte
Carlo (MCMC), and chief among them are those based on
the Langevin dynamics, either overdamped or underdamped
[5], [6], [7]. In practice, the Langevin dynamics are (time)
discretized and integrated over a given stepsize. A metric that
is commonly used for quantifying the performance of sampling
algorithms is the number of steps required to achieve a given
level of accuracy in some statistical divergence or metric,
known as mixing time [8], akin to the number of iterations in
optimization to achieve certain accuracy.

Both the overdamped and underdamped Langevin dynamics
(continuous in time) and algorithms (discrete in time) have been
extensively studied with a variety of assumptions on the target
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distribution ν. A standard setting is when the potential energy
f(x) defined on Rd is strongly convex and smooth (i.e. having
a global Lipschitz gradient). In this case, the complexity (i.e.
mixing time for reaching ϵ statistical error) of Langevin Monte
Carlo (LMC) can be Õ(dϵ−2) [9], [10], [11], [12], where the
Õ notation means Landau’s big O additionally with constant
and logarithm terms in ϵ ignored. Under the same assumption,
the complexity of an underdamped/kinetic Langevin Monte
Carlo (KLMC) was however shown to be Õ(

√
dϵ−1) [13],

[14], which gives an order of Õ(
√
dϵ−1) improvement over the

overdamped one. These existing works adopted different proof
techniques to analyze the convergence rates of standard LMC
or KLMC for general strongly-convex and smooth potentials.
It is not clear whether these complexity bounds can be further
improved, even just for the LMC or KLMc algorithms.

In this work, we make inroads toward better non-asymptotic
complexity bounds for sampling by examining the sampling
problems with Gaussian target distributions. Any nondegenerate
Gaussian distributions satisfy the standard setting considered in
the prementioned existing works: the potential is strong-convex
and smooth. In particular, we make the following assumption:

Assumption 1. The target distribution is Gaussian ν ∝
exp(−f) = exp(− 1

2 (· − mg)
TΣ−1

g (· − mg)) (namely ν =
N (mg,Σg)) defined on Rd and the potential f is α-strongly
convex and β-smooth, i.e., αI ⪯ Σ−1

g ⪯ βI. The initial
distribution for the MCMC algorithm is also Gaussian.

We study Langevin sampling algorithms in the Gaussian
setting from a linear control perspective and present a new
complexity analysis for these algorithms by leveraging tools
from linear Lyapunov theory. More specifically, under Assump-
tion 1, it is sufficient to analyze the convergence behaviors of
the mean and covariance matrix separately. Since the dynamics
of the mean and covariance matrix can be expressed by linear
systems, we can apply the Lyapunov theory in linear control
to compute the complexity bound.

Main Contributions: By comparing the results for continu-
ous dynamics and discrete algorithms, our analysis underscores
the fact that the complexity of sampling is from time discretiza-
tion; the continuous-time dynamics of mean and covariance of
Langevin dynamics have exactly the same convergence rate.
Our technique reveals that the time-discretization of the mean
dynamics does not induce bias, but that of the covariance
dynamics does. We conclude that the size of the bias relies
on dimension d, resulting in dimension-dependent complexity
bounds for sampling, in contrast to dimension-free complexity
bounds for optimization. More quantitatively, our analysis
yields a complexity bound Õ(κ

√
d/ϵ) for LMC, better than

all the existing results [9], [10], [11], [12], [15], albeit for
Gaussian cases. For KLMC, we establish complexity bound
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Õ(κ
√
d/ϵ) by Theorem 4, the same as the best existing results

[13], [14].
Notation: For any complex diagonal matrix Λ, |Λ| and

ℜ(Λ) stand for the magnitude and real part of each element,
respectively, and ΛH is the Hermitian transpose of Λ. We
use the weighted norm induced by a matrix P , i.e., for any
vector x, ∥x∥2P = xTPx and for any matrix M , ∥M∥2P =
∥PM∥2F . Denote the eigenvalues of a matrix M by σ(M). Θ
is Landau’s big theta meaning asymptotical equality. We also
use the standard convention of diagonal matrices: the blank
space stands for zero elements.

II. SAMPLING VIA OVERDAMPED LANGEVIN

In this section, we analyze the convergence behavior of
overdamped Langevin dynamics and the LMC algorithm in
the special case with Gaussian target distribution.

A. Overdamped Langevin dynamics

For a given target distribution ν ∝ exp(−f) on Rd, the
associated Langevin dynamics [9] reads

dXt = −∇f(Xt)dt+
√
2dWt,

where Wt is a standard Wiener process. Note this is a stochastic
process and Xt is a random vector for any t. Under mild
assumptions, the distribution of Xt converges to its stationary
distribution that coincides with the target distribution ν. Thus,
one can in principle simulate the Langevin dynamics for a
sufficiently long time to draw samples from ν.

When ν = N (mg,Σg), the Langevin dynamics becomes
a linear stochastic differential equation (SDE) [16]. More
specifically, invoking the quadratic expression of f(x) = 1

2 (x−
mg)

TΣ−1
g (x −mg), it corresponds to the multi-dimensional

version of the Ornstein–Uhlenbeck process [17]

dXt = −Σ−1
g (Xt −mg)dt+

√
2dWt. (1)

By solving the linear stochastic differential equation (1), one
has Xt also follows a Gaussian distribution as long as X0

follows a Gaussian distribution. Thus, the evolution of the
random vector Xt can be fully captured by that of its mean and
covariance. Denote the mean of Xt as mt and the covariance
as Σt, then following standard stochastic calculus we obtain

ṁt = −Σ−1
g (mt −mg) (2a)

Σ̇t = −Σ−1
g Σt − ΣtΣ

−1
g + 2I. (2b)

Specifically, (2a) follows by taking the expectation of (1). To
get (2b), we first apply stochastic calculus to get d(XtX

T
t )

and then take expectation [16].
Both (2a) and (2b) are linear systems. Clearly, the equi-

librium point of (2) is (mg, Σg). Applying linear system
theory, we can establish linear convergence of (mt,Σt) to
the equilibrium point, as follows.

Theorem 1 (Convergence rate of overdamped Langevin
dynamics for Gaussian distributions). Under Assumption 1,

the mean mt and covariance Σt of Xt evolving according to
the Langevin dynamics (1) satisfy

∥mt −mg∥22 ≤ exp(−2αt)∥m0 −mg∥22 (3a)
∥Σt − Σg∥F ≤ exp(−2αt)∥Σ0 − Σg∥F . (3b)

Proof. Denote mt − mg and Σt − Σg by δmt and δΣt

respectively, then the linear system (2) is equivalent to

˙δmt = −Σ−1
g δmt (4a)

˙δΣt = −Σ−1
g δΣt − δΣtΣ

−1
g . (4b)

Under Assumption 1, specifically −Σ−1
g ⪯ −αI , we obtain

∥δmt∥22 ≤ exp(−2αt)∥δm0∥22.

Vectorizing (4b) with Kronecker products yields

vec( ˙δΣt) = (I⊗−Σ−1
g )vec(δΣt) + (−Σ−1

g ⊗ I)vec(δΣt)

= (−Σ−1
g ⊕−Σ−1

g )vec(δΣt).

It is a standard result that the largest eigenvalues of (−Σ−1
g ⊕

−Σ−1
g ) is −2α < 0. Since for any matrix A, ∥vec(A)∥2 is the

Frobenius norm of A, we arrive at

∥δΣt∥F ≤ exp(−2αt)∥δΣ0∥F . (5)

B. Overdamped Langevin Monte Carlo

One popular way to discretize overdamped Langevin dynam-
ics (1), thus turning it into a practical sampling algorithm, is
the (overdamped) Langevin Monte Carlo (a.k.a. Unadjusted
Langevin Algorithm). For a target distribution ν ∝ exp(−f),
it runs as

Xk+1 = Xk − η∇f(Xk) +
√
2ηξk, ξk

iid∼ N (0, I)

where η > 0 is the stepsize. In the Gaussian case where
ν = N (mg,Σg), it becomes

Xk+1 = Xk−ηΣ−1
g (Xk−mg)+

√
2ηξk, ξk

iid∼ N (0, I). (6)

Again, this linear dynamics is fully captured by the mean mk

and covariance Σk of Xk, which evolves according to

mk+1 −mg = (I− ηΣ−1
g )(mk −mg) (7a)

Σk+1 = (I− ηΣ−1
g )Σk(I− ηΣ−1

g ) + 2ηI. (7b)

The convergence of mk,Σk is characterized by the following
result.

Theorem 2 (Convergence rate of Langevin Monte Carlo for
Gaussian distributions). Under Assumption 1, the mean mk

and covariance Σk of Xk evolving according to the Langevin
Monte Carlo (6) satisfy

∥mk −mg∥22 ≤ (1− ηα)2k∥m0 −mg∥22

∥Σk − Σg∥F ≤ (1− ηα)2k∥Σ0 − Σs∥F +

√
dη

2− ηβ
.

Moreover, if η = Θ(ϵ/β
√
d), then for any ϵ ∈ [0,

√
d], we have

α∥Σk − Σg∥F ≤ ϵ after

N = Õ(
κ
√
d

ϵ
)
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iterations, where κ = β/α is the condition number.

Proof. Under Assumption 1, by linear dynamics theory, the
linear system (7) is globally asymptotically stable when η < 1/β.
Moreover, since the stationary point of (7a) is mk = mg, we
have

∥mk −mg∥22 ≤ (1− ηα)2k∥m0 −mg∥22.

In contrast, the stationary point of (7b) is not Σg due to the
discretization error. We denote the true equilibrium point of
(7b) by Σs. By definition of equilibrium point, it satisfies

Σs = (I− ηΣ−1
g )Σs(I− ηΣ−1

g ) + 2ηI. (8)

Combining (7b) and (8), we obtain

Σk+1 − Σs = (I− ηΣ−1
g )(Σk − Σs)(I− ηΣ−1

g ).

It follows that

vec(Σk+1−Σs) =
(
(I− ηΣ−1

g )⊗ (I− ηΣ−1
g )
)

vec(Σk−Σs).

The operator norm of
(
(I− ηΣ−1

g )⊗ (I− ηΣ−1
g )
)

is (1−ηα)2,
implying

∥Σk − Σs∥F ≤ (1− ηα)2k∥Σ0 − Σs∥F . (9)

The above inequality characterizes the convergence rate of Σk

to the stationary state of (7b). We next bound the deviation of
Σs from Σg , i.e., the Frobenius norm of Σk −Σg . Solving the
Lyapunov equation (8) yields that the explicit expression of
Σs is

Σs = 2η(I− (I− ηΣ−1
g )2)−1.

As Σ−1
g is positive definite, we write its eigendecomposition

as Σ−1
g = UΛUT with UUT = I and Λ being diagonal. It

follows that

∥Σs − Σg∥2F = Tr((Σs − Σg)
2)

=
η2

4
Tr
(
(I− ηΛ/2)

−2
)

≤ dη2

(2− ηβ)2

(10)

where the second equality comes from the fact that Σs and
Σg share the same eigenspace, and the last inequality is from
αI ⪯ Λ ⪯ βI following the assumption that αI ⪯ Σ−1

g ⪯ βI.
By (9), (10) and the assumption η < 1/β, we conclude

∥Σk − Σg∥F ≤ ∥Σk − Σs∥F + ∥Σs − Σg∥F

≤ (1− ηα)2k∥Σ0 − Σs∥F +

√
dη

2− ηβ
.

Finally, by choosing η = Θ(ϵ/β
√
d), the discretization error√

dη
2−ηβ is upper bounded by ϵ/2. Then after Õ(κ

√
d

ϵ ) iterations,
with the same η, the other term (1−ηα)2k∥Σ0−Σs∥F is also
upper bounded by ϵ/2.

Remark 1. We use the metric α∥Σk−Σg∥F instead of ∥Σk−
Σg∥F because the former is invariant with respect to rescaling
of the coordinate.

Compared with the bound Õ(dϵ−2) obtained in [9], [10],
[11], [12] for LMC with strongly-convex and smooth potentials,

the mixing time complexity shows an order of Õ(
√
dϵ−1) im-

provement. In [15], the complexity is Õ(κ2
√
dϵ−1). Compared

with these two bounds, our bound for Gaussian distributions
are tighter, which may indicate the theoretically tightest mixing
time complexity of sampling for strongly-convex and smooth
potentials is not achieved yet.

The complexity bound with respect to the Wasserstein-2
distance W2, a popular metric used to measure the convergence
of MCMC, in the Gaussian setting can be analyzed as follows.

Proposition 1. Under Assumption 1, consider Xk evolving ac-
cording to the Langevin Monte Carlo (6). If η = Θ(ϵ/β

√
d), then

for any ϵ ∈ [0,
√
d], we have αW2(N (mk,Σk),N (mg,Σg)) ≤

ϵ after

N = Õ(
κ
√
d

ϵ
)

iterations.

Proof. By equation (3) and (11) in [18],

∥Σ1/2
k − Σ1/2

g ∥2F ≥ Tr(Σg +Σk − 2(Σ1/2
g ΣkΣ

1/2
g )1/2).

Since [19]

W 2
2 (N (mk,Σk),N (mg,Σg))

= ∥mk −mg∥22 +Tr(Σg +Σk − 2(Σ1/2
g ΣkΣ

1/2
g )1/2),

we have

∥Σ1/2
k −Σ1/2

g ∥2F+∥mk−mg∥22 ≥W 2
2 (N (mk,Σk),N (mg,Σg)).

To bound ∥Σ1/2
k − Σ

1/2
g ∥2F , we just need to bound ∥Σ1/2

s −
Σ

1/2
g ∥2F . This is achieved following a similar calculation as in

(10), which is O( dη2β
2−ηβ ). The same η = Θ(ϵ/β

√
d) can then give

the same complexity bound Õ(κ
√
d

ϵ ) with respect to W2.

III. SAMPLING VIA UNDERDAMPED LANGEVIN

In this section, we extend the analysis in the previous section
to underdamped Langevin dynamics as well as the KLMC
algorithm based on it. For the ease of presentation, we do not
give general explicit expressions of the convergence rate in
Theorem 3 and 4. Instead, in Section III-C we consider one
specific case that is widely used in existing works.

A. Underdamped Langevin dynamics
The underdamped Langevin dynamics for target distribution

ν ∝ exp(−f) is

dXt = Vtdt (11a)
dVt = −γVtdt− u∇f(Xt)dt+

√
2γudWt (11b)

where Xt, Vt ∈ Rd. The invariant distribution of (11) in the
phase space is exp(−f(x)− ∥v∥2

/2u) [20]. Here γ and u are
both positive parameters. We further adopt the following mild
assumption to solely simplify the proof.

Assumption 2. det(γ2I− 4uΣ−1
g ) ̸= 0.

Under Assumption 1, let Zt be
(
Xt −mg

Vt

)
, then (11)

reduces to

dZt =

(
0 I

−uΣ−1
g −γI

)
Ztdt+

(
0√
2γuI

)
dWt.
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Again, Zt is Gaussian as long as Z0 is Gaussian. Denote(
0 I

−uΣ−1
g −γI

)
and

(
0√
2γuI

)
by A and B, respectively.

Let δmt and Σt be the mean and covariance matrix of Zt,
respectively, and δΣt be Σt − Σ̃g where

Σ̃g =

(
Σg

uI

)
(12)

is the covariance of the stationary distribution of Zt, then

˙δmt = Aδmt (13a)
˙δΣt = AδΣt + δΣtA

T . (13b)

This is a linear system and its convergence property is
determined by the eigenvalues of A. Standard computation for
the eigenvalues of blocked matrices gives

σ(A) = {−γ ±
√
γ2 − 4uλ

2
, λ ∈ σ(Σ−1

g )}. (14)

Clearly, the linear system (13) is stable as γ, u, λ are all
positive. Moreover, (14) implies that each eigenvalue of Σ−1

g

corresponds to two eigenvalues of A. Thus, we define two
diagonal matrices Λ+ and Λ− as follows. Let λi represent the
i-th eigenvalue of Σ−1

g , then the i-th elements of Λ+ and Λ− are
−γ+

√
γ2−4uλi

2 and −γ−
√

γ2−4uλi

2 , respectively. Furthermore,
let the eigendecomposition of Σ−1

g be UΛUT with UUT = I.
By Assumption 2, one can express the eigenvectors of A by
Λ+, Λ− and U , which follows that the eigendecomposition of
A is

A = V

(
Λ+

Λ−

)
V −1 (15)

where

V =

(
U U

UΛ+ UΛ−

)
. (16)

It is worth mentioning that the decomposition (16) does not hold
when γ2 − 4uλ = 0 for some λ, namely, when Assumption
2 does not hold. In that case, we can consider the Jordan
decomposition instead of the eigendecomposition.

By linear control theory, the convergence rate of (13) is
characterized by

rc = −maxℜ(σ(A)) (17)

and the associated Lyapunov inequality is

ATP + PA ⪯ −2rcP.

It turns out one such choice is P = V −HV −1. Indeed,

ATP + PA = 2V −H

(
ℜ(Λ+)

ℜ(Λ−)

)
V −1 ⪯ −2rcP.

(18)

By Lyapunov theory, it follows that

∥δmt∥2P ≤ exp(−2rct)∥δm0∥2P .

Similarly, for the dynamics of the covariance matrix (13b), we
have

d

dt
∥δΣt∥2P =

d

dt
Tr (δΣtPδΣtP )

= Tr( ˙δΣtPδΣtP + δΣtP ˙δΣtP )

= 2Tr((ATP + PA)δΣtPδΣt)

≤ −4rc Tr(PδΣtPδΣt))

= −4rc∥δΣt∥2P ,
which follows that

∥δΣt∥P ≤ exp(−2rct)∥δΣ0∥P .

Thus, we have established the following convergence results.

Theorem 3 (Convergence rate of underdamped Langevin
dynamics for Gaussian distributions). Under Assumption 1 and
2, for (Xt, Vt) evolving according to the Langevin dynamics
(11), one has

∥mt −mg∥2P ≤ exp(−2rct)∥m0 −mg∥2P (19a)

∥Σt − Σ̃g∥P ≤ exp(−2rct)∥Σ0 − Σ̃g∥P . (19b)

where mt and Σt are the mean and covariance matrix of
(Xt, Vt), respectively, and Σ̃g is as in (12). Here ∥ · ∥P is the
weighted norm induced by P = V −HV −1 with V given by
(16), and the convergence rate rc > 0 is defined in (17).

B. Kinetic Langevin Monte Carlo

In [5], the implementation of underdamped Langevin dynam-
ics is obtained by one discretization of underdamped Langevin
dynamics (11) with step size η, which uses(

Xk+1 −mg

Vk+1

)
= Ad

(
Xk −mg

Vk

)
+ξk, ξk

iid∼ N (0, Q) (20)

where

Ad =

(
I− u

γ

(
η − 1

γ (1− e−γη)
)
Σ−1

g
1
γ (1− e−γη)I

−u
γ (1− e−γη)Σ−1

g e−γηI

)
.

Here Q is a 2-by-2 block matrix with

Q11 =
2u

γ

(
η − 3

2γ
+

2

γ
exp(−γη)− 1

2γ
exp(−2γη)

)
I

Q12 =
u

γ
(1 + exp(−2γη)− 2 exp(−γη)) I

Q21 =
u

γ
(1 + exp(−2γη)− 2 exp(−γη)) I

Q22 = u(1− exp(−2γη))I

where each block is a d-by-d matrix. To see more clearly the
effects of time discretization, in what follows, we consider the
first-order approximation of Ad and Q,

Âd =

(
I ηI

−uηΣ−1
g I− γη

)
(21a)

Q̂ =

(
0 0
0 2uγηI

)
. (21b)

Hence, (20) reduces to(
X̂k+1 −mg

V̂k+1

)
= Âd

(
X̂k −mg

V̂k

)
+ ξ̂k (22)
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with ξ̂k ∼ N (0, Q̂). It is worth mentioning that (22) is also
one way to discretize (11). The following result characterizes
the convergence of the mean mk and covariance Σk of (22).

Theorem 4 (Convergence rate of kinetic Langevin Monte Carlo
for Gaussian distributions). Under Assumption 1 and 2, for
(X̂k, V̂k) evolving according to the kinetic Langevin Monte
Carlo (22), one has

∥mk −mg∥2P ≤ r2kd ∥m0 −mg∥2P
∥Σk − Σ̃g∥P ≤ r2kd ∥Σ0 − Σs∥P + ∥Σs − Σ̃g∥P

where mk and Σk are the mean and covariance matrix of
(X̂k, V̂k), respectively, and Σ̃g is as in (12). Here ∥ · ∥P is the
weighted norm induced by P = V −HV −1 with V given by
(16), and the convergence rate rd < 1 is as in (25).

Proof. Denote the mean and covariance matrix of
(
X̂k −mg

V̂k

)
by δmk and Σk, respectively, then

δmk+1 = Âdδmk (23a)
Σk+1 = ÂdΣkÂ

T
d + Q̂. (23b)

We next compute the eigendecomposition of Âd. Notice that

Âd = I+ η

(
0 I

−uΣ−1
g −γI

)
.

Hence, by the decomposition in (15) and (16), we have

Âd = V

(
1 + ηΛ+

1 + ηΛ−

)
V −1 (24)

where V , Λ+ and Λ− coincide with the ones used in the
decomposition (16). Adopting the same weighted norm induced
by P = V −HV −1, one has the Lyapunov inequality for discrete
systems as

ÂT
d PÂd = ÂH

d PÂd

= V −H

(
|1 + ηΛ+|2

|1 + ηΛ−|2
)
V −1

⪯ r2dP.

(25)

Here r2d is the largest value of the elements in |1+ ηΛ+|2 and
|1 + ηΛ−|2. It follows that

∥δmk∥2P ≤ r2kd ∥δm0∥2P . (26)

Since the stationary point of (23) is not Σ̃g, we denote the
true one as Σs which solves

Σs = ÂΣsÂ
T + Q̂. (27)

Then Σk converges to Σs based on the following identity

Σk+1 − Σs = Âd(Σk − Σs)Â
T
d .

By (25), it implies that

∥Σk+1 − Σs∥2P = ∥ÂH
d PÂd(Σk − Σs)∥2F ≤ r4d∥Σk − Σs∥2P .

Hence,
∥Σk − Σs∥P ≤ r2kd ∥Σ0 − Σs∥P .

The conclusion follows the triangle inequality of the weighted
norm ∥ · ∥P .

The non-asymptotic bound of Σk − Σ̃g in terms of standard
Frobenius norm can then be achieved by noticing that

∥Σk − Σ̃g∥F ≤ ∥P−1∥O∥Σk − Σ̃g∥P
≤ ∥P−1∥O(r2kd ∥Σ0 − Σs∥P + ∥Σs − Σ̃g∥P )
≤ C(P )(r2kd ∥Σ0 − Σs∥F + ∥Σs − Σ̃g∥F )

(28)

where C(P ) := ∥P∥O∥P−1∥O is the condition number of P
induced by the operator norm.

We next consider the bound of ∥Σs − Σ̃g∥P . With (27), one
has

Σs − Σ̃g = Âd(Σs − Σ̃g)Â
T
d +K, (29)

where

K = Q̂−Σ̃g+ÂdΣ̃gÂ
T
d = uη2

(
I −γI

−γI uΣ−1
g + γ2I

)
. (30)

Let D := V −1(Σs− Σ̃g)V
−H . Plugging the decomposition of

Âd into (29) yields that

D =

(
1 + ηΛ+

1 + ηΛ−

)
D

(
1 + ηΛ+

1 + ηΛ−

)H

+ V −1KV −H .

Plugging into the expressions of V and K in (16) and (30)
yields that V −1KV −H is a 2-by-2 blocked matrix, where each
block ∈ Rd×d is diagonal, namely,

V −1KV −H =

(
E11 E12

EH
12 E22

)
, (31)

with

E11 = ϕ
(
|Λ−|2 + uΛ + γ2 + 2γℜ(Λ−)

)
E22 = ϕ

(
|Λ+|2 + uΛ + γ2 + 2γℜ(Λ+)

)
E12 = −ϕ

(
uΛ + γ2 + r(ΛH

+ + Λ−) + ΛH
+Λ−

)
,

where ϕ = uη2|Λ+ − Λ−|−2. It follows that

D =

(
E11

1−|1+ηΛ+|2
E12

1−(1+ηΛ+)(1+ηΛ−)H

EH
12

1−(1+ηΛ+)H(1+ηΛ−)
E22

1−|1+ηΛ−|2

)
.

Lastly, with the definition of D and the decomposition of Âd

in (24).

∥Σs − Σ̃g∥2P = ∥P (Σs − Σ̃g)∥2F = ∥D∥2F

=

∥∥∥∥ E11

1− |1 + ηΛ+|2

∥∥∥∥2
F

+

∥∥∥∥ E22

1− |1 + ηΛ−|2

∥∥∥∥2
F

+ 2

∥∥∥∥ E12

1− (1 + ηΛ+)(1 + ηΛ−)H

∥∥∥∥2
F

(32)

where the last equation is from the definition of Λ+ and Λ−.
Further analysis on the bound of ∥Σs − Σ̃g∥2P depends on the
sign of γ2 − 4uλ for each λ ∈ σ(Σ−1

g ).
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C. Example

In this subsection, we present one implementation of KLMC.
We assume γ = 2, u = 1/(2β). This set of parameters is
obtained from [5]. In this scenario, the sign of each γ2 − 4uλ
is nonnegative. Hence, by definition, the convergence rate of the
continuous dynamics rc in Theorem 3 is 1−

√
1− α

2β ≈ 1
4κ .

Moreover, assuming η < 1

1+
√

1− 1
2κ

, the convergence rate of

the discrete implementation rd in Theorem 4 is 1 + η(−1 +√
1− 1

2κ ) ≈ 1− η
4κ . The bound of each block of D in (32)

can be computed as follows.∥∥∥∥ E11

1− |1 + ηΛ+|2

∥∥∥∥
F

=

∥∥∥∥∥ η22β 1

4− 2
βΛ

Λ
2β + (Λ+)

2

(ηΛ+)(2 + ηΛ+)

∥∥∥∥∥
F

.

(33)

Notice that each element in 1
|(4− 2

βΛ)(2+ηΛ+)| is bounded.
Hence, ∥∥∥∥ E11

1− |1 + ηΛ+|2

∥∥∥∥
F

= O(

√
dη

α
).

With the same procedure, one can show∥∥∥∥ E22

1− |1 + ηΛ−|2

∥∥∥∥
P

= O(

√
dη

α
)

and ∥∥∥∥ E12

1− (1 + ηΛ+)(1 + ηΛ−)H

∥∥∥∥
F

= O(

√
dη

α
).

It follows that for (32), we have

∥Σs − Σ̃g∥P = O(

√
dη

α
). (34)

Hence, in particular, if we take η = Θ( ϵ√
d
), then for any

ϵ ∈ [0, 1], we obtain α∥Σk − Σ̃g∥P ≤ ϵ after

N = Õ(
κ
√
d

ϵ
) (35)

iterations. Moreover, one can show

P−1 =

(
2I −2I
−2I 4I− Λ/β

)
.

Hence, the condition number of P is a bounded constant that
is independent of κ and d, and by (28), we have the same
mixed time complexity for the standard Frobenius norm. Our
result match the best existing bound for KLMC [14].

IV. CONCLUSION

In this work, we present a linear control perspective to certain
MCMC sampling algorithms for Gaussian target distributions.
We focus on two classical algorithms: LMC and KLMC,
one based on the overdamped Langevin dynamics and one
based on the underdamped Langevin dynamics. Our results are
better than the existing bounds in the Gaussian setting. More
importantly, our analysis may shed light on complexity analysis
for Langevin-based algorithms for general distributions. In the
future, we plan to further investigate the KLMC algorithms with
different choices of parameters γ, u as well as other algorithms
such as HMC.
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